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Abstract—We present a solution for a fourth-order, narrow-
bandwidth filter comprising of a single silicon tuning fork 
resonator driven using one electrode only. Voltage controlled 
electrical spring tuning is employed to match the primary and 
secondary modes of the resonator to achieve filter response. A 
narrow bandwidth single resonator MEMS tuning fork filter is 
demonstrated with a center frequency of 1.2866MHz, a 3dB-
bandwidth of 0.0085% and a 1.5dB ripple.  

I. INTRODUCTION 
Electromechanical filters based on microfabricated silicon 

resonators have the potential to replace quartz crystal and 
SAW technologies with significant benefits in terms of 
reduced size, power dissipation and the potential for 
integration with conventional CMOS technologies [LHP98] 
[GKL+06][LLX+05]. Reported results to achieve higher-order 
and narrow-bandwidth silicon microfabricated filters are 
usually based on the mechanical and/or electrical coupling of 
MEMS resonator arrays [LHP98]. For instance, micro-electro-
mechanical resonators may be coupled via mechanical beams 
or via electrodes for band-pass filtering functionality [LHP98, 
PA05]. However, the design and fabrication of narrow 
bandwidth and high frequency filters remains a challenge, 
particularly with increasing center frequency due to the 
demands on the miniaturization of both the resonator as well 
as the coupling elements. One possible solution is to 
electrically couple serially-arranged arrays of resonators 
[PA05] to overcome the demands on fabrication tolerances for 
coupling elements in high frequency microresonator filters. A 
second solution [DN05] achieves fourth-order filter response 
by adding frequency control masses to break the degeneracy 
of two closely spaced resonant modes in a single structure. 
However, this solution suffers the drawback of large electrode 
count and the requirement to precisely preset the frequency 
control masses to tune the filter bandwidth. 

We propose a solution for a fourth-order, narrow-
bandwidth filter comprising of a single silicon tuning fork 
resonator driven using one electrode only. By varying the DC 
voltage on the electrode, it is possible to employ electrostatic 
spring tuning to lower the frequency of the out-of-phase 
tuning fork mode to closely match the in-phase mode. As the 
frequencies of the two modes are gradually matched, there is 

an increased coupling of mechanical energy between the two 
modes through the stem of the tuning fork ultimately resulting 
in a narrow bandwidth filter response.  

II. CAPACITIVE TRANSDUCTION AND FILTER MECHANISM  

A.  Tuning forks 
Tuning forks are utilized as a standard frequency 

benchmark for the tone-calibration of musical instruments at 
the macro-scale and have been demonstrated as micro-scale 
building blocks in oscillators [Roe98], accelerometers 
[RHPS95] and gyroscopes [PGR96]. An SEM of the tuning 
fork filter is shown in Fig. 1. The single-ended tuning fork 
consists of two tines attached through a single stem with the 
nodal point of vibration set at the support stem [Joh83]. 

 

 
Fig. 1. SEM of the single-ended tuning fork (SETF) filter 

 

     
 

Fig.2. FEA is used to depict the primary mode (symmetric 
coupled mode) and the secondary mode (asymmetric 
decoupled mode). 

Funding from the European Community Framework 6 Project entitled 
‘NanoTIMER’ is acknowledged. 

1-4244-0647-1/07/$20.00 ©2007 IEEE 1366



B. Capacitive actuation 
The tuning fork actuation force  F  is calculated from the 

derivative of the potential energy with respect to the resonator 
displacement x,  as [Sen01][Ngu94] 
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If the applied DC voltage (VDC) is much larger than the AC 
voltage (VAC), the 2nd harmonic term in the above equation is 
small in comparison with fundamental. Under these 
conditions, the 1st harmonic term will dominate the driving 
force at the resonant frequency and can be written as:  
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C. Narrow bandwidth Filter mechanism 
As opposed to adding frequency control masses to break 

the degeneracy of orthogonal modes of a micromechanical 
disk as reported in [DN05], voltage control is used to shift the 
frequency of the primary mode (symmetric coupled mode) 
preferentially towards the secondary mode (asymmetric 
decoupled mode) of the tuning fork filter as shown in Fig 3.  
The electrical energy is pumped preferentially into the primary 
mode of the resonator while the stem couples mechanical 
energy between the two modes. The electrical effective spring 
constant (kele) is given by [Sen01]: 
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where C0 is the nominal parallel-plate capacitance and g is the 
nominal gap between the electrode and the resonator. The 
overall effective spring constant (keff) is given by [LLL+04] 

eff mech elek k k= −     (4) 

The resonant frequency (f) as a function of DC bias voltage is 
given by 
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Fig.3. The electrode topology allows for a direct capacitive 
actuator interface to the primary mechanical mode. 

The driving force expressions for the primary (Fpri) and 
secondary modes (Fse) using the electrode topology shown in 
Fig. 3 are given by: 
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As can be seen from Eq. 6, electrical energy is pumped 
preferentially into the primary mode. Similarly, the electrical 
spring softening preferentially modulates the frequency of the 
primary mode. The frequency softening effect of the primary 
and secondary modes are given as 
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The linear relationship between primary mode frequency 
shift and the square of the DC voltage bias as predicted by the 
analytical model is confirmed by experiment as shown in Fig. 
4. A comparison between the experimental results and the 
calculated electrical-spring-softening effect for the primary 
and secondary modes is shown in Fig. 5. 

 
Fig. 4. Measured electrical spring softening induced frequency 
shift of the primary mode of the SETF resonator with the 
squared of the DC bias voltage.  

 
Fig. 5. Comparison of the measured and modeled resonant 
frequency with varying DC-bias for the primary and 
secondary modes. 

D. Equivalent circuit model and Y-parameters extraction 
The measured resonator characteristics are typically 

affected by parasitic capacitances in parallel and series with 
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the resonator as shown in Fig. 6. In the limit of high Q-factor, 
the parallel resonant peak is close to the series resonant 
frequency [KMO+03]. The measured S-parameters are fitted 
to the electrical equivalent circuit model (shown in Fig. 6) to 
extract the motional parameters of the resonator. 

 

 
(a) With DC-bias   (b) Without DC-bias 

Fig. 6. Two port network model of the SETF 

 

The equivalent resonator motional parameters are given by: 
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Where Rm, Cm and Lm are the motional resistance, capacitance 
and inductance respectively, η is the transduction parameter 
and Q is the Quality factor of resonance. The equivalent 
circuit model can be represented as Fig. 6.b when the bias 
voltage is removed. In this case: 

 0, , 0,m m mR C Lη = = ∞ = = ∞    (10) 

The measured Y21 parameter with and without applied DC bias 
can be related to the motional parameters of the resonator and 
the capacitive parasitics as: 
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Thus the motional impedance of the resonator can be derived 
from these measurements as: 
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E. Nonlinear effects 
A number of experiments were conducted to estimate 

limiting nonlinearities for various driving voltages. Fig. 7 
shows the measured frequency response of the resonator with 
varying DC voltage at fixed AC input power. Fig. 8 shows the 
extracted Y-parameters with variable DC bias for two 
different values of AC driving -5dBm and 5dBm respectively. 
The Y-parameters are also extracted for various AC drive 
voltages as shown in Fig. 9. A classic spring softening Duffing 

nonlinearity limits the output amplitude for increasing AC 
input power and DC bias [LL60]. 

 

 
Fig. 7. SETF resonator S-parameters measurement results 

with fixed AC power at -5dBm and variable DC bias. 

 

 
Fig. 8. Extracted Y-parameters frequency response with 

variable DC bias and fixed AC power at -5dBm and 5dBm 
respectively. 

 

 
Fig. 9. Extracted Y-parameters frequency response with 

variable AC power and for resonator DC-bias fixed at 35V. 

 

 
Fig. 10. Typical frequency response for a resonator 

describing a spring softening Duffing nonlinearity.  
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Fig. 10 depicts the frequency response of a nonlinear resonator 
depicting a Duffing spring softening type of nonlinearity. 
[KMOS03]. A clear hysteresis is observed together in the 
frequency response together with an amplitude jump as the 
frequency is scanned forwards and backwards about resonance. 
The critical driving force FCR is determined when the section 
BC (in Fig. 10) is reduced to a point which is given by [LL60]: 

2 2 3
08CRF m ω λ κ=    (14) 

where m is the effective mass, ω0 is the resonant frequency 
without nonlinear effect and λ is the damping factor. 
Substituting an expression for driving force as a function of 
driving voltage from Eq. (2), the unstable nonlinear vibration 
boundary is determined as: 
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Thus, a condition is derived that defines a ceiling on the 
product of the applied DC and AC voltage for a given 
resonator topology to operate in the linear regime of the 
resonator [ACC+06]. 

III. FILTER PERFORMANCE 
The measured frequency response of the SETF is shown in 

Fig. 11 as a function of varying DC bias voltage. As the 
frequency of the two modes of the SETF are tuned closer, a 
filter characteristic is obtained at a bias voltage close to 45 V. 

  
Fig.11 Measurement results of variable DC-voltage tuning.  

 
Fig.12. Magnitude and Phase S-parameter measurements 

for the SETF filter. The input AC power is -20 dBm and DC 
bias is 45 V. 

Fig. 12 shows the measured S-parameters of the filter, where 
the central frequency is 1.2866MHz, the 3dB-bandwidth is 
0.0085% (109Hz) 10dB-bandwidth is 0.023% (300Hz) and the 
ripples are 1.5dB with 45.08V DC tuning voltage. The high 
insertion loss is due to the large impedance mismatch between 
the resonator and the measurement setup. Dimensional scaling 

(including decreasing the capacitive gaps) will allow for 
higher frequency SETF filters to be realized using this concept 
while simultaneously lowering the insertion loss as well.  
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