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medical sciences
Dankmar Böhning
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Abstract. We consider count data modeling, in particular, the zero-
truncated case as it arises naturally in capture-recapture modeling as
the marginal distribution of the count of identifications of the members
of a target population. Whereas in wildlife ecology these distributions
are often of a well-defined type, this is less the case for social and
medical science applications since study types are often entirely ob-
servational. Hence, in these applications, violations of the assumptions
underlying closed capture-recapture are more likely to occur than in
carefully designed capture-recapture experiments. In consequence, the
marginal count distribution might be rather complex. The purpose of
this note is to sketch some of the major ideas in the recent developments
in ratio plotting and ratio regression designed to explore the pattern
of the distribution underlying the capture process. Ratio plotting and
ratio regression are based upon considering the ratios of neighboring
probabilities which can be estimated by ratios of observed frequencies.
Frequently, these ratios show patterns which can be easily modeled by
a regression model. The fitted regression model is then used to predict
the frequency of hidden zero counts. Particular attention is given to re-
gression models corresponding to the negative-binomial, multiplicative
binomial and the Conway-Maxwell-Poisson distribution.

Key words and phrases: closed capture-recapture, Conway-Maxwell-
Poisson, mixtures, multiplicative-binomial, negative-binomial, zero-truncated
count distributions.

1. INTRODUCTION

We are interested in zero-truncated count distributional modelling which arises
naturally in capture-recapture experiments or studies. The size N of a target
population needs to be determined. For this purpose a trapping experiment or
study is done where members of the target population are identified at T oc-
casions where T might be known or not. Furthermore, the sampling occasions
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might be specified prior to the study or they might occur randomly during the
observational period. For each member i the count of identifications Xi is re-
turned where Xi takes values in {0, 1, 2, · · · } for i = 1, · · · , N . However, zero-
identifications are not observed; they remain hidden in the study. Hence, a zero–
truncated sample X1, · · · , Xn is observed, where we have assumed w.l.o.g. that
Xn+1 = · · · = XN = 0. So, n is the number of recorded individuals. The as-
sociated untruncated and zero-truncated densities will be denoted as px(θ) and
p+

x (θ) = px(θ)/[1 − p0(θ)], respectively. The setting above has been developed
primarily for wildlife populations (Bunge and Fitzpatrick 1993, Borchers et al.
2004, Chao 2001, Sanathanan 1977, Wilson and Collins 1992). We are interested
here to apply the framework to social and medical scenarios as we will illustrate
in the following three examples.

1.1 Homeless population of the city of Utrecht

As illustration of the problem, we consider the question of estimating the home-
less population of Utrecht (NL). The city of Utrecht runs a shelter where homeless
people can stay overnight. Data are available for a period of 14 nights in 2013
and are shown in Table 1. It can be assumed that the shelter covers only the city
of Utrecht. The table contains information on how often homeless people stayed
in the shelter within this 14-nights period. For example, f1 = 36 people stayed
exactly one night, whereas f2 = 11 people stayed exactly two nights, and so forth.
In total, 222 different homeless people stayed in the shelter, spending a total of
S =

∑14
x=1 xfx = 2, 009 nights there. For more details see van der Heijden et al.

(2014a). In this case, the number of occasions is known with T = 14 and also
the occasions are specified in the observational period. Whereas some homeless
people use the shelter frequently, others use it only occasionally or very rarely.
Hence the register for homeless people based on the shelter is incomplete. The
city of Utrecht is interested in the total size of its homeless population. Hence,
we are interested to find an estimate of N , or, equivalently, of f0, the size of the
hidden homeless population.

Table 1
Frequency distribution of the number of nights x stayed in the shelter per homeless person for

the city of Utrecht for a period of 14 nights in 2013

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n
fx 36 11 6 11 5 7 6 11 3 8 7 12 22 77 222

1.2 Domestic violence in NL

In a study of domestic violence, van der Heijden et al. (2014b) reports per-
petrator offense data in the Netherlands for the year 2009. The data represent
the Netherlands excluding the police region for The Hague. Here the perpetrator
study is reported in Table 2. In this case T is unknown and there are no pre-
specified sampling occasions as domestic violence incidents occurred at unplanned
time points in the observational period 2009.
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Table 2
Frequencies of the number of times perpetrators have been identified in a domestic violence

incident in the Netherlands in the year 2009

x 1 2 3 4 5 6 7 8 9 n
fx 15,169 1,957 393 99 28 8 6 1 1 17,662

There were 15,169 perpetrators identified as being involved in a domestic vio-
lence incident exactly once, 1,957 exactly twice, and so forth. In total, there were
17,662 different perpetrators identified by the police in the Netherlands for 2009.
As not every case of domestic violence is reported to the police, an unknown
number of perpetrators remain hidden. Hence, here the target population of in-
terest consists of the perpetrators in the Netherlands (excluding The Hague) in
the year 2009, whether they have been identified by the police or not.

1.3 Size of forced labour worldwide

The International Labour Office (ILO) undertook a study to estimate the size
of forced labour worldwide (ILO 2012). Here forced labour is characterized by
provision of some form of work or service which is done under threat of penalty
and undertaken involuntarily. Frequently the term slave labour is used instead
(Bales 2012). Due to its hidden nature forced labour is hard to measure. For this
reason, the ILO launched a capture-recapture study to estimate the size of forced
labour worldwide. Teams were established and searched for reports on forced
labour. Sources of information included media, government reports, academic and
trade union reports and many more. In total about 2500 different sources have
been used. The period that was covered was the years 2002 – 2011. Reports were
collected from anywhere in the world and therefore considerable heterogeneity
should be expected. Table 3 shows the zero-truncated frequency distribution of
the count x, the number of times a case of forced labour has been identified in
any of the sources. There were 4069 cases of forced labour that were exactly
identified by 1 report, 1,186 cases that were identified by 2 different reports etc.
Each case will have a certain number of persons involved. From this an estimate
of the size of forced labour (the number of people involved) can be derived. Here
we are interested in estimating the number of cases f0 that were identified by
x = 0 reports.

Table 3
Frequency distribution of forced labour report counts

x 1 2 3 4 5 6 7 8 9 10 11 n
fx 4,069 1,186 167 46 10 7 3 1 0 1 1 5,491

1.4 Screening for bowel cancer

Bowel cancer can develop without any early warning signs. The Faecal Occult
Blood Test (FOBT) can detect small amounts of blood in the bowel motion. This
might be indicative of a problem such as cancer but also something else such
as polyps or nothing at all. Lloyd and Frommer (2008, 2004a, 2004b) present
results of a screening study for bowel cancer in Sydney (Australia). From 1984
onwards about 50000 subjects were screened for bowel cancer using the FOBT.
Self-administered testing took place on T = 6 successive days and at each of the
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6 occasions absence or presence of blood in faeces was recorded. If at least one of
the T tests is positive a gold standard evaluation took place and results could be
healthy, polyps, or cancer. A person that tested negatively on all T tests is not
further assessed. Out of exactly 49,927 persons, 46,553 tested negatively on all
six tests (and these were not further investigated). Out of the other 3374 subjects
who tested positively at least once, 3106 were examined and their true disease
status determined. The other 268 subjects who tested positively were lost to the
study. In Table 4 we see the frequency distribution of the 228 persons with cancer
where x is the count of positive tests in the 6-days period. As 46,553 remained
without further assessment the question arises of how much hidden cancer is
present among this unassessed population.

Table 4
Frequency distribution of number of positive tests of those with cancer and testing positive at

least once (Lloyd and Frommer 2008)

x 1 2 3 4 5 6 n
fx 46 27 26 33 39 57 228

1.5 Assumptions involved in the ratio-regression approach

The ratio-regression approach to be presented is not assumption-free. We as-
sume that the target population is closed, e. g. that there is no migration, no
deaths, and no births. Specifically, the no-migration assumption can be question-
able in some of the examples above such as the homeless study in the city of
Utrecht. Here, the size of the time window is a steering element in satisfying the
closed-population assumption. The larger the observational period the more likely
is the occurrence of migration. The smaller the period the less homeless people
are observed. In this case, it was found that 14 days established a reasonable
compromise as increasing the period by one week did not add substantially more
homeless people to the observed part of the homeless population. An alternative
way to proceed would be to use open population modeling such as the Cormack-
Jolly-Seber model (McCrea and Morgan 2015; see also Cormack 1964, Jolly 1965,
Seber 1965 and this special issue) in which the time-specific dependency of the
data is incorporated.

In some cases it might be unclear how the target population is defined. Whereas
in the case of the bowel cancer study 1.4 the target population is the disease-free
screened population, this is less clear in the domestic violence study 1.2 of the
Netherlands. Here, we define the target population to be all perpetrators that
actually performed acts of domestic violence whether this has been identified by
the authorities or not.

2. RATIO PLOT

We aim to estimate the population size N . As N = Np0+N(1−p0) where p0 is
the probability of a zero count or missing an observation, we can get an estimate
of N by using the moment estimate n for N(1 − p0) and solving N̂ = N̂p0 + n
for N̂ = n/(1 − p0), a Horvitz-Thompson estimate of N . As p0 is unknown
in most applications (and certainly in those of section 1) we need to come up
with some estimate for p0. A natural way to proceed is to use a parametric
model px = px(θ) for x = 0, 1, · · · , derive some estimate θ̂ for θ on the basis of
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p+
x (θ) for x = 1, 2, · · · , and use θ̂ in p0(θ̂) to estimate N . See also Sanathanan

(1977). McCrea and Morgan (2015) call N̂ = n/[1− p0(θ̂)] a Horvitz-Thompson-
like estimate to distinguish it from the conventional Horvitz-Thompson estimate
N̂ = n/(1− p0).

A natural starting point for searching for an appropriate count distribution is
the power series density

(1) px(θ) = axθx/η(θ)

where ax is a known, nonnegative coefficient, θ a positive parameter and x =
0, 1, · · · ranges over the set of nonnegative integers. Also, η(θ) =

∑∞
x=0 axθx

is the normalizing constant. The power series distribution contains the Poisson
(ax = 1/x!), the binomial (ax =

(T
x

)
for x = 0, · · · , T with positive integer T and

ax = 0 for x > T ) or the geometric (ax = 1).
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Fig 1. Ratio plot for a sample of 100,000 counts from a binomial with T = 6 and event parameter
p = 0.4 (left panel) and frequency distribution (right panel). The vertical axis in the left panel
shows p̂ = r̂x/(1 + r̂x).

It is a fundamental property of the power series distribution that

(2) rx =
px+1(θ)/ax+1

px(θ)/ax
=

p+
x+1(θ)/ax+1

p+
x (θ)/ax

= θ,

the ratio of neighboring probabilities multiplied by the inverse of their respective
coefficients is a constant, independent of x, in fact it is the parameter θ itself. This
property occurs for the untruncated as well as for the zero-truncated distribution
as the normalizing constant (1− p0(θ)) cancels out. The quantity rx can be used
to develop a diagnostic device for the presence of a particular distribution. As px

is an unknown quantity we replace it by its nonparametric estimate fx/N so that
we obtain an empirical ratio

(3) r̂x =
ax

ax+1

fx+1

fx
,

as the unknown quantity N cancels out. Plotting r̂x against x provides the em-
pirical ratio plot or simply the ratio plot. If the ratio plot shows a horizontal
line pattern we can take this as supportive evidence for the presence of the dis-
tribution of interest. The determining quantity in (3) is the ratio ax/ax+1 of
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the coefficients of the power series family member. For the Poisson this ratio is
ax/ax+1 = x + 1, for the binomial it is ax/ax+1 = (x + 1)/(T − x), and for the
geometric it is simply ax/ax+1 = 1. As the ratio plot construction depends on the
coefficient ax we emphasize this by mentioning the family member. For example,
if we use the concept for the binomial we speak of the binomial ratio plot, if we
use it for the geometric we speak of the geometric ratio plot. If there is no doubt
of which family member is used we simply speak about the ratio plot. The ratio
plot has been developed in its basic form in Böhning et al. (2013). We illustrate
the concept for the binomial in Figure 1. 100,000 counts have been sampled from
a binomial with size parameter T = 6 and event parameter p = 0.4 corresponding
to the parameterization in the power series of θ = p/(1 − p) = 2/3. In the left
panel of Figure 1 we see the ratio plot for the binomial on the event parameter
scale. There is clear evidence of a horizontal line pattern supporting the binomial
distribution. The benefit of the diagnostic device becomes clear when comparing
it to the bar chart provided in the right panel of Figure 1 where the binomial
distribution is more difficult to recognize.
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Fig 2. Binomial ratio plot (on the log-scale) for homeless data of section 1.1 (upper left panel)
and bowel cancer data of section 1.4 (lower left panel) with associated frequency distributions
(upper and lower respective right panel)

We now apply the binomial ratio plot to the homeless study data of section
1.1 and the bowel cancer data of section 1.4. Figure 2 shows the ratio plot for
the homeless data of Utrecht (upper left panel) and for the bowel cancer data
(lower left panel). Note that the ratio r̂x = (x + 1)/(T − x)× fx+1/fx is plotted
on the log-scale. The associated frequency distributions are provided in the right
panels of Figure 2. There is clear evidence that a horizontal line pattern does not
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hold. There could be various reasons why a horizontal line pattern is violated
in the ratio plots present in Figure 2. It could be that the repeated visits to
the homeless shelter (upper left panel) are not independent or that homeless
people have different tendencies to visit the shelter. Similar issues might occur
in the bowel cancer data (lower left panel) where repeated testing might not be
independent or different patients might have different risk for a positive test. An
alternative approach to deal with dependencies between occasions is the approach
using log-linear models as suggested by Fienberg (1972) and Cormack (1989).
See also Chao (2001). This approach requires availability of the data in form of
complete capture histories xij where xij = 1 if unit i is identified at occasion j
and 0 otherwise. In certain applications such as the homeless or bowel cancer data
occasion-specific data might be available (although we did not have access to these
for the present work), in other applications such as the worldwide forced labour
study only xi =

∑T
j=1 xij is available and log-linear modelling is not possible in

these cases.
Let us now turn to the domestic violence data of section 1.2. The Poisson

ratio plot in Figure 3 (left panel) provides evidence for a violation of the Poisson
assumption in this case. There is a clear positive trend visible in the ratio plot.
However, there is no reason why we can expect domestic violence counts to follow
a Poisson distribution. We might as well consider the geometric distribution and
its associated ratio plot implying plotting x → fx+1/fx as provided in the right
panel of Figure 3. Apparently, there is also a positive trend visible although this
appears more diminished in the geometric ratio plot than in the Poisson ratio
plot. We denote by T0 the largest count considered, in this case T0 = 5. Note
that T0 ≤ T if the number of sampling occasions is known. An inspection of
the chi-square goodness-of-fit statistic χ2 =

∑T0−1
x=1 (log r̂x − log r̄x)2/v̂ar(log r̂x)

confirms this impression. Here, v̂ar(log r̂x) = 1/fx+1 + 1/fx (Rocchetti et al.
(2011), Böhning et al. (2013)), and for estimating the parameter θ we use the
consistent and asymptotically unbiased estimates r̄x =

∑T0−1
x=1 (x + 1)fx+1/fx for

the Poisson ratio plot and r̄x =
∑T0−1

x=1 fx+1/fx for the geometric Poisson ratio
plot. We find χ2 = 382.54 for the Poisson and χ2 = 94.86 for the geometric
ratio plot, both with T0 − 1 = 4 df. Thus, it is clear that even in the case of the
geometric the fit is not yet acceptable, and we will turn to ratio regression in the
next section to extend the modelling framework considerably.

3. RATIO REGRESSION

The basic idea is to extend the ratio plot to a full regression approach. Consider
r̂x = ax

ax+1

fx+1

fx
and the regression model in count x

(4) r̂x =
p∑

j=1

βjgj(x)

where gj(x) is a known regression function of count x. In most applications we
have in mind, p = 2 or p = 3, and gj(x) is of simple structure such as g1(x) = 1
and g2(x) = x or g2(x) = log(x + 1). After estimating the coefficients β1, · · · , βp

we can estimate f0 as

(5) f̂0 =
a0

a1

f1∑p
j=1 β̂jgj(0)

.

imsart-sts ver. 2014/10/16 file: ratio_plotR3.tex date: January 27, 2016



8 D. BÖHNING
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Fig 3. Poisson ratio plot (left panel) and geometric ratio plot (right panel) for the domestic
violence data of the Netherlands ignoring low frequency data x ≥ 6

3.1 Ratio regression and mixtures

We are interested in connecting the presence of unobserved heterogeneity
(which could be described by a latent variable) with the concept of the ratio
plot and ratio regression. If the target population consists of subpopulations and
subpopulation membership is not observed we speak of the occurrence of unob-
served heterogeneity. For example, in the case study on forced labour 1.3, reports
were collected from anywhere in the world and therefore considerable hetero-
geneity should be expected. Assuming that in each subpopulation a power series
distribution is valid then unobserved heterogeneity leads to a mixture of power
series distributions mx =

∫
θ px(θ)f(θ)dθ, where f(θ) represents the mixing dis-

tribution, the distribution of the subpopulation parameter θ in the population.
Hence mixtures of parametric count distributions have attracted some attention
in capture-recapture modelling (Dorazio and Royle 2005, Pledger 2005, Norris
and Pollock 1996, Wang and Lindsay 2005, 2008, Mao and You 2009, Böhning
and Kuhnert 2006). We can likewise consider the ratio plot for mixtures

(6) rx =
ax

ax+1

mx+1

mx

where we use again the known coefficients ax associated with the mixture kernel,
for example, in the case of a Poisson kernel ax = 1/x! or the case of a geometric
kernel ax = 1. The estimate of rx will not change; however, the interpretation of
the observed pattern in the ratio plot will. This is mainly due to the following
result (Böhning and Del Rio Vilas 2008):

Theorem 1. Let mx =
∫
θ px(θ)f(θ)dθ where px(θ) is a member of the power

series family and f(θ) an arbitrary density. Then, for rx = ax
ax+1

mx+1

mx
we have

the following monotonicity:
rx ≤ rx+1

for all x = 0, 1, · · · .

The result in Theorem 1 can be interpreted as saying that the presence of
unobserved heterogeneity will force a monotone increasing pattern in the ratio
plot. In some special cases for the mixing distribution stronger results are possible.

imsart-sts ver. 2014/10/16 file: ratio_plotR3.tex date: January 27, 2016



THE RATIO PLOT 9

Suppose that X|Θ=θ is Poisson with density px(θ) and suppose further that the
density f(θ) of Θ is a gamma with parameters k and β. Then, using standard
knowledge,

mx =
∫
θ px(θ)f(θ)dθ = 1

Γ(k)βk

∫∞
0

exp(−θ)θx

x! × θk−1 exp(−θ/β)dθ

= Γ(x+k)
Γ(x+1)Γ(k)β

−k
(

β
β+1

)k+x
,(7)

which corresponds to a negative-binomial with parameter p = 1/(β + 1) so that

(8) mx =
Γ(x + k)

Γ(x + 1)Γ(k)
(1− p)xpk.

It is easy to work out that rx = ax
ax+1

mx+1

mx
= (x + 1)mx+1

mx
= (1− p)(x + k) in this

case, so that the monotone pattern in the ratio plot becomes a straight line with
intercept (1− p)k and positive slope (1− p).

3.2 Ratio regression and Chao estimation

Another question is how the result in Theorem 1 connects to established esti-
mators such as Chao’s estimator (Chao 1987, 1989). Chao’s estimator of f0 has
been developed as a lower bound estimator under mx =

∫
θ px(θ)f(θ)dθ where

px(θ) is the Poisson density and f(θ) an arbitrary mixing distribution. The orig-
inal estimator takes the form f̂0 = f2

1 /(2f2) and is one of the most frequently
used estimators in capture-recapture modeling.

We let px(θ) be any member of the power series now. Then Theorem 1 implies

(9)
a0

a1

m1

m0
≤ ax

ax+1

mx+1

mx
for x = 0, 1, · · · .

For x = 1 it follows that m0 ≥ (a0a2/a2
1)(m

2
1/m2), and replacing mx by fx/N

leads to Chao’s lower bound estimator (a0a2/a2
1)(f

2
1 /f2) for f0 in the case of

the power series family, and in particular to f2
1 /(2f2) in the Poisson case. The

lower bound estimator becomes asymptotically unbiased if there is no heterogene-
ity (the mixing distribution becomes a one mass point distribution). Note that
the lower bound estimator is valid for any mixing distribution on θ including a
discrete mixing distribution with point mass at zero (leading to a zero-inflated
distribution) as this is a special case of a discrete mixing distribution. However,
its bias will depend on the choice of the mixture kernel. For example, in the case
of the domestic violence data of section 1.2 we can expect, by inspecting the ratio
plot in Figure 3, that the geometric lower bound will have a smaller bias than
the Poisson lower bound as the bias-determining difference

(10)
a0

a1

f1

f0
− a1

a2

f2

f1

can be expected to be smaller for the geometric than for the Poisson.
The result of Theorem 1 allows many lower bound estimators since m0 ≥

(a0ax+1/ax) (m1mx/mx+1) for x = 1, 2, · · · . For example, (a0a3/a2)(f1f2/f3)
provides a lower bound estimator for f0 if we choose x = 2. However, none will
be as sharp as Chao’s lower bound, the one we obtain for x = 1. Nevertheless,
considering the ratios rx for x > 1 can be helpful and ratio regression can be
viewed as a way of projecting to a best lower bound.
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3.3 Ratio regression and empirical Bayes

The ratio rx = ax
ax+1

mx+1

mx
has an interesting connection to Bayesian inference.

In fact,

rx = ax
ax+1

mx+1

mx
= ax

ax+1

∫
θ

ax+1θx+1/η(θ)f(θ)dθ∫
θ

axθx/η(θ)f(θ)dθ

=
∫
θ θ × axθx/η(θ)f(θ)∫

θ
axθx/η(θ)f(θ)dθ

dθ =
∫
θ θf(θ|x)dθ(11)

is the posterior mean w.r.t. the prior distribution f(θ) on θ. Here f(θ|x) =
axθx/η(θ)f(θ)∫

θ
axθx/η(θ)f(θ)dθ

is the posterior distribution. Hence r̂x = ax
ax+1

fx+1

fx
provides an

estimate of the posterior mean without assuming any knowledge of the prior dis-
tribution nor is there any requirement for estimating the prior distribution, an
idea which goes back to Robbins (1955) and is considered the origin of empir-
ical Bayes. For more details see Carlin and Louis (2011). In conclusion, when
modelling rx we are modelling the posterior mean.

3.4 Ratio regression and count distribution modeling

We return to the ratio regression approach (4). To ensure positive fitted values
we need to incorporate a link-function leading to the ratio-regression model

(12) log r̂x =
p∑

j=1

βjgj(x)

where gj(x) is a known regression function of count x. Indeed, fitting a simple
straight line to r̂x in the domestic violence data of section 1.2 would lead to a neg-
ative intercept estimate (see left panel of Figure 3) and, hence, to a non-feasible
estimate of f0. This is not a specific problem of the least-squares estimation tech-
nique used here, but a more general deficiency of the negative-binomial as also
the maximum likelihood estimate of the shape parameter lies on the boundary of
the parameter space. Invoking an appropriate link-function such as the log-link
avoids this non-feasibility, but we are also losing the interpretation of the straight
line ratio regression as the negative-binomial model. Instead of working with the
negative-binomial we can try the Conway-Maxwell-Poisson distribution given by

(13) mx =
1
C

θx

(x!)ν
,

for x = 0, 1, · · · and positive θ and ν. The normalizing constant C =
∑∞

x=0 θx/(x!)ν

is not available in closed form. For more details see Sellers and Shmueli (2010). It
is easy to see that rx = (x + 1)mx+1/mx = θ(x + 1)1−ν which suggests the ratio
regression approach with log-link

(14) log rx = β1 + β2 log(x + 1)

where β1 = log θ and β2 = (1−ν) and the restriction β2 ≤ 1. Hence working with
the Conway-Maxwell-Poisson distribution is equivalent to working with a straight
line model on the log-scale for the ratio regression. We see the log[(x+1)fx+1/fx]
and the model fit for β1 + β2 log(x + 1) in Figure 4 for the domestic violence
data of section 1.2. While the fit of the Conway-Maxwell-Poisson distribution is
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Fig 4. Poisson ratio regression using β1 +β2 log(x+1) (solid curve) and β1 +β2 log(x+1)+β3x
(dashed curve) for the domestic violence data of section 1.2

good for x = 1, 2, 3, it is deteriorating for values x = 4, 5. The model log rx =
β1 + β2 log(x + 1) + β3x provides an excellent fit for all x−values as Figure 4
shows. An estimate f̂0 is simply found from the estimated regression coefficients
as f̂0 = f1 exp(−β̂1). Here as well as for the general case of the model E(Y) = Xβ,
we use the weighted least-squares estimate

(15) β̂ = (XTWX)
−1

XTWY,

where Y = (log r1, · · · , log rT0−1)T , X is the design matrix containing the regres-
sion functions of the model, W is a diagonal matrix containing the estimated
inverse variances of Y1, · · · , YT0−1, more precisely, wi = (1/fi + 1/fi+1)−1. Here
T0 is the largest count considered. Note that the estimated covariance matrix of
(15) is readily available as

(16) ĉov(β̂) = (XTWX)
−1

.

The ratio regression approach opens the door to a huge arena of techniques.
However, whatever we choose as regression model we would like to make sure
to include an intercept term as this guarantees that the power series family is
included as a special case. For example, in the Poisson ratio regression case r̂x =
(x + 1)px+1/px =

∑p
j=1 βjgj(x) we always choose g1(x) = 1 as this will include

the Poisson model as a special case (β2 = · · ·βp = 0).
In the search for better fitting ratio regression models we are also moving away

from known corresponding probability models. In fact, the question arises does
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a model such as log rx = β1 + β2 log(x + 1) + β3x correspond to a probability
distribution at all? The answer to this question is given by Theorem 2 and is
basically a yes under the mild assumption that rx > 0 for all x = 0, · · · , T0 − 1
and underlines the importance of an appropriate link function. [We think of rx

as arising from some regression model rx = exp[
∑p

j=1 βjgj(x)].]

Theorem 2. Let rx > 0 be given for x = 0, 1, ..., T0 − 1. Then there exists a
unique count distribution px for x = 0, ..., T0 with the properties

1.
px+1 = pxrxax+1/ax

for x = 0, 1, ..., T0 − 1
2.

p0 =
1

1 + r0a1/a0 + (r0a1/a0)(r1a2/a1) + ... +
∏T0−1

x=0 rxax+1/ax

A proof of Theorem 2 is given in the appendix. The value of Theorem 2 lies in
the fact that it guarantees the existence of a proper probability distribution for
any valid ratio regression model. It will also allow the construction of an estimator
for p0 by means of

(17) p̂0 =
1

1 + ˆ̂r0a1/a0 + (ˆ̂r0a1/a0)(ˆ̂r1a2/a1) + ... +
∏T0−1

x=0
ˆ̂rxax+1/ax

,

where ˆ̂rx = exp[
∑p

j=1 β̂jgj(x)] is the fitted regression model for x = 0, 1, · · · , T0−
1, ultimately leading to the Horvitz-Thompson-like estimator n/(1 − p̂0). Note
that we are using here ˆ̂rx for the fitted value to distinguish it from the em-
pirical observed ratios r̂x, and the theoretical model ratios rx. However, in the
following applications we will only use the simpler estimator for f0, namely
f̂0 = exp[−

∑p
j=1 β̂jgj(0)]× f1 = ˆ̂r0 × f1.

3.5 Ratio regression and variance estimation

Another benefit of the ratio regression approach is that variance estimators
for f̂0 can easily be developed as variance estimators for the estimated regression
coefficients are easily available. We will demonstrate this for the binomial straight
line ratio regression model. In this case, f̂0 = f1 exp(−β̂1)/T . Using conditioning
moment techniques (Böhning 2008)

V ar(f̂0) = E[V ar(f̂0|f1)] + V ar[E(f̂0|f1)](18)

≈ 1
T 2

(
f2
1 exp(−β̂1)2V ar(β̂1) + f1 exp(−β̂1)2(1− f1

n+f̂0
)
)

(19)

= 1
T 2 f1 exp(−β̂1)2

(
f1V ar(β̂1) + 1− f1/(n + f̂0)

)
,(20)

where we have used the δ−method for the first term on the RHS of (18). Note
that an estimate of V ar(β̂1) is readily available from (16). Hence a prediction

interval for f0 can be constructed as f̂0 ± 1.96
√

V ar(f̂0) and for N as n + f̂0 ±

1.96
√

V ar(f̂0).
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4. APPLICATIONS

We start with the data on the homeless population of Utrecht discussed in
section 1.1. We have seen in the binomial ratio plot (upper left panel of Figure
2) that the model

(21) log
(

x + 1
T − x

px+1

px

)
= β1 + β2x

provides a good approximation of the observed log-ratio log
(

x+1
T−x

fx+1

fx

)
. Hence

we use this model to predict f̂0 = exp(−β̂1)f1/T = 66, leading to a population
size estimate of N̂ = n + f̂0 = 288.

It is interesting to note the connection to the multiplicative-binomial distribu-
tion (Altham 1978) defined as

(22) px =

(
T

x

)
θx(1− θ)T−xηx(T−x)/C

where η > 0 is an additional positive parameter and C =
∑T

x=0

(T
x

)
θx(1 −

θ)T−xηx(T−x). Clearly, if η = 1 the multiplicative-binomial reduces to the stan-
dard binomial. The parameter η catches over- as well as underdispersion al-
though there are no simple ranges for η representing the two forms of non-
equidispersion. For more details see Lovison (1998). The ratio regression approach
for the multiplicative-binomial yields

(23) log rx = log
(

x + 1
T − x

px+1

px

)
= β1 + β2x

with no restrictions on β1 = log[θ/(1 − θ)] + (m − 1) log(η) and β2 = −2 log η.
Hence the straight line model for the binomial ratio regression is identical to the
multiplicative-binomial.

In Table 5 we have given two additional estimators. One is Chao’s estimator
provided as f̂0 = (T −1)/Tf2

1 /(2f2) = 55 for the binomial as developed in section
3.2, corresponding to a population size estimate of N̂ = 277. We can see that
the ratio regression approach corrects the Chao estimator upwards. The other is
Turing’s estimator under homogeneity. Here the idea is to express p0 as a function
of p1 and the mean. As it turns out for the binomial, p0 = (p1/E(X))T/(T−1)

where X is binomial with size parameter T . The Turing estimate N̂ = n/(1− p̂0)
with p̂0 = (f1/S)T/(T−1) follows. Note that S = f1 + 2f2 + · · · + TfT . One
can also view the Turing estimator as a form of coverage estimator as 1 − f1/S
represents the sample coverage. For more details on Good-Turing estimation see
Good (1953), Bunge and Fitzpatrick (1993), and Chao and Bunge (2002). In the
case of the homeless data we find the Turing estimate of the population size of the
homeless population to be 225, considerably smaller than the other two estimates
which is as expected.

Here we look at the bowel cancer screening data of section 1.4. As the lower
left panel of Figure 2 suggests we can use the straight line regression model in
this case. Besides the 228 cancer cases detected by the screening programme we
estimate 71 additional undetected cancer cases in contrast to Chao’s estimator
with 33 additional cases. The Turing estimator provides only 7 additional cases,
clearly too low. For the details see Table 5.
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We have already discussed in section 3.4 the modelling for the Poisson ratio
regression of the domestic violence data of section 1.2 where it was found that the
model log[(x+1)fx+1/fx] = β1 +β2 log(x+1)+β3x+εx provided an excellent fit.
Note again that the term Poisson solely refers to the construction of the response
log[(x + 1)fx+1/fx]. Using the model log[(x + 1)fx+1/fx] = β1 + β3x + εx in the
ratio regression, we find an estimate of the total number of domestic violence
perpetrators in the Netherlands of 131,668. For comparison Chao’s estimator
n + f2

1 /(2f2) provides an estimate of 76,451 perpetrators and Turing’s estimator
n/(1 − f1/S) yields 64,370 persons, only half the size of the ratio regression
estimator. Using the better fitting model log[(x + 1)fx+1/fx] = β1 + β2 log(x +
1) + β3x + εx, we find an estimate of 328,224 perpetrators. The AIC for this
model is -47.7 which compares well with the AIC of -6.6 of the former model.
However, we have seen in section 2 that there is evidence that the geometric
distribution provides a better fit to the domestic violence data than the Poisson
distribution. Note that a geometric ratio regression can be viewed as a Poisson
ratio regression with an offset term log(x + 1). In our case, the geometric ratio
regression model log[px+1/px] = β1 + β3x is equivalent with the Poisson ratio
regression log[(x + 1)px+1/px] = log(x + 1) + β1 + β3x. Hence this appears to be
a reasonable alternative model to use. Fitting a geometric ratio regression model
log[fx+1/fx] = β1 +β3x+ εx leads to an estimate of the total number of domestic
violence perpetrators in the Netherlands of 179,979. Based on this estimate, the
sample coverage is very low at about 10%, hence the police data base provides
only a small peak of the domestic violence iceberg in the Netherlands. This is as
expected since dark number research1 estimates the number of reported domestic
crimes between 10% and 20% (Summers and Hoffman 2002). The details are found
in Table 5.

Let us now look at the data on the magnitude of worldwide forced labour.
We see in Figure 5 that the Poisson ratio regression model log[(x + 1)fx+1/fx] =
β1+β2x+εx provides a reasonable approximation of the pattern visible in the ra-
tio plot. The ratio regression estimate for worldwide number of reports on forced
labour is 14,096, almost three times as much as has been found in the sources (n =
5,491). The estimators of Chao and Turing are 12,471 and 12,475, respectively.
The details are again in Table 5. Note that Turing and Chao are very close here,
despite the fact that there is considerable heterogeneity, illustrating that Chao’s
estimator is not always able to adjust for heterogeneity satisfactorily. The ratio
regression model used here does not correspond to a known probability density al-
though it can be thought of as an approximation of the Conway-Maxwell-Poisson
distribution as log(x + 1) ≈ x in the vicinity of 1.

1Dark number research is a social sciences term for research focussing on elusive target
populations such as populations untertaking illegal activities or behaviors.
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Fig 5. Poisson ratio regression using β1 + β2x for the forced labour data of section 1.3

Table 5
Estimates of the population size N for the various applications; RR denotes the ratio
regression approach; ’P’ stands for Poisson, ’G’ for geometric and ’B’ for Binomial

estimates of N
with 95% prediction intervals

application n ax model RR Chao Turing

1.1 222 B β1 + β2x 288 277 225
(233 - 342) (229 - 324) (224 - 226)

1.2 17,662 P β1 + β3x 131,668 76,451 64,370
(106,583 - 156,753) (73,363 - 79,538) (62,302 - 66,438)

1.2 17,662 P β1 + β3x 328,224
+β2 log(x + 1) (320,586 - 335,862)

1.2 17,662 G β1 + β2x 179,979
(156,718 - 203,240)

1.3 5,491 P β1 + β2x 14,096 12,471 12,475
(10,749 - 17,443) (11,916 - 13,026) (12,016 - 12,934)

1.4 228 B β1 + β2x 299 261 235
(269 - 329) (238 - 283) (232 - 238)

golf tees 162 B β1 + β2x 218 195 172
(N = 250) (173 - 263) (173 - 217) (168 - 176)

taxicabs 283 B β1 + β2x 411 395 376
(N = 420) (310 - 512) (353 - 437) (350 - 402)

We conclude this section by applying the method to two data sets for which
the true population size is known. The first one is reported in Borchers et al.
(2004) and goes back to a capture-recapture experiment. Golf tees were placed
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Fig 6. Binomial ratio plot with T = 8 for golf tees data (left panel) and binomial ratio plot with
T = 10 for taxicab data (right panel)

in 250 clusters in a specific area on grounds of the University of St. Andrews
(Scotland) and 8 surveyors were used to recover them. Of the total of 250 golf
tee clusters 162 could be recovered successfully. Details are provided in Table
6. Note that here f0 = 88 is known but we will not use this information in
the estimation process. The binomial ratio plot for these data is shown in Fig-
ure 6 (left panel). Based on this graph we think that a straight line regression
log ([(x + 1)/(T − x)fx+1/fx]) = β1 + β2x + εx is not inappropriate. The estima-
tors for these data are presented in Table 5. For the binomial ratio regression we
find an estimate of 218 which improves upon Chao’s (195) and Turing’s (172)
estimate and compares favorably with the true size of 250. In fact, the predic-
tion interval for N (see also section 3.5) based on the binomial ratio regression is
(173−263) with the upper interval end covering the true N = 250. The prediction
interval for N based upon Chao’s estimator is instead (173− 217), not including
the true N = 250. Similarly, the prediction interval for N based upon Turing’s
estimator is (168− 176), clearly not including the true N .

Table 6
Frequency distribution of recovery count per golf tee cluster (Borchers et al. 2004)

x 0 1 2 3 4 5 6 7 8 n
fx (88) 46 28 21 13 23 14 6 11 162

Table 7
Frequency distribution of count of identifications per taxicab (Carothers 1973); there were no

counts larger than T0 = 6

x 0 1 2 3 4 5 6 n
fx (137) 142 81 49 7 3 1 283

The second data set is reported in McCrea and Morgan (2015) and goes back
to Carothers (1973). The number of registered taxicabs in Edinburgh (Scotland)
is known to be N = 420 at the time of the experiment. On T = 10 sighting occa-
sions the passing taxicabs are identified and the count of re-sightings per taxicab
determined. The details are provided in Table 7. n = 283 different taxicabs could
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be identified of which 142 were seen only once, 81 twice, and so forth. No taxicab
had been identified more than 6 times. For the binomial ratio regression we also
use a straight line model as is motivated by the right panel in Figure 6. The
associated binomial ratio regression estimate of the population size is 411 which
is close to the known number of taxicabs of 420. Chao’s and Turing’s estimates
are 395 and 376, respectively (see also Table 6). In this data set there is more
variation as the prediction intervals for N based on the binomial ratio regression
and Chao’s estimator are both wide: (310 − 512) for the ratio regression and
(353 − 437) for Chao’s estimator. Both easily cover the true N = 420. Turing’s
estimator underestimates with a prediction interval of (350− 402), not including
the true N = 420.

These examples and applications show that the ratio regression approach can
be a valuable tool in estimating population size.

5. EXTENSIONS AND DISCUSSION

The question arises of what happens if part of the target population remains
undetectable. For example, in the case study of homeless people in Utrecht 1.1,
some homeless people might never visit a shelter to stay overnight. As for any
other method the ratio regression approach assumes that there is a positive de-
tection probability. If this is not the case, then, even if the observational period
is chosen to be large, some homeless people remain undetected and the ratio re-
gression approach will provide only a lower bound. Hence it is crucial to discuss
with practitioners responsible for the well-being of homeless people how realistic
the assumption is that every homeless person is likely to visit the shelter at some
time.

Some guidance for the practical use of the ratio regression model might be
appropriate. The first important choice is the base family as this leads to the
coefficients ax, for x = 0, 1, · · · . For example, if there is a finite number of trap-
ping occasions such as in applications 1.1 and 1.4 the natural base family is the
binomial and every regression model considered should include an intercept term
so that the binomial is included as a special case. In data examples such as 1.2
or 1.3, the base family is less clear as at least the Poisson or the geometric distri-
butions could be considered. Here ratio plotting might help and the distribution
with least positive trend might be chosen as base family (and hence determine the
coefficients ax). The choice of link function is usually not a problem as the log-link
is typically suitable. Choosing the regression model is clearly important and guid-
ance can be received again from the ratio plot. However, several models might
appear equally suitable and model selection criteria such as the Akaike infor-
mation criterion might be used to select models. Finally, goodness-of-fit analysis
could be provided as already mentioned in section 2. The ratio regression ap-
proach can be widely applied, clearly also to ecological data. However, it should
be mentioned that sample sizes should be at least moderate as the ratios fx+1/fx

need to be constructed on the basis of frequency distribution of the count of
captures X. Depending on the spread of the distribution, our experience is that
n > 50 is desirable.

The approach can be extended in several ways. A very interesting extension is
that validation information can be easily incorporated into the ratio regression
modeling. To demonstrate, we again consider the bowel cancer application of
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section 1.4. For some reason a subsample of the screened persons with confirmed
bowel cancer took the diagnostic test a second time for six consecutive times.
The results for n = 122 persons with confirmed cancer are found in Table 8.
As we know the cancer status of all 122 persons participating in this secondary
application we do observe zero counts. For 22 persons with bowel cancer the
diagnostic test was negative at all times. We call this a validation sample as there
are no hidden cases here.

Table 8
Frequency distribution of number of positive secondary tests of those with confirmed cancer

(Lloyd and Frommer 2004b)

x 0 1 2 3 4 5 6 n
fx 22 8 12 16 21 12 31 122
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Fig 7. Binomial ratio regression with additional validation sample using log[(x + 1)/(T −
x)fx+1/fx] = β1 + β2x + β3set + β4x × set + εx for the bowel cancer data of section 1.4
with additional validation information

It is now possible to incorporate the information coming from the validation
sample into the modeling as is done in (24):

(24) log[(x + 1)/(T − x)fx+1/fx] = β1 + β2x + β3set + β4x× set + εx.

Here set represents a dummy variable which takes on the value 1 if fx is from
the validation sample and 0 otherwise. The model (24) allows two completely
separate lines for the positive sample (where no zero counts are observed) and the
validation sample (where zero counts are observed), respectively. The associated
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graph is given in Figure 7. If β4 = 0 the parallel line model occurs and if β3 = 0, in
addition, the two lines become identical. Tests for these hypotheses can be done
in standard ways and, in our case, there is no evidence to reject the identical
lines model as also Figure 7 indicates. The resulting estimate is 298 persons
with cancer which is not much different from the estimate of 299 achieved by
the positive sample only. Using a validation sample does not only lead to an
increased efficiency it also reassures that the model, used for the positive sample
to predict the frequency of hidden zero counts, is also a reasonable model for the
prediction. In the parallel line model, the prediction would still partly use the
validation sample whereas in the separate line model the validation sample is not
used at all in predicting f0.

Ratio plotting has been proposed in Böhning et al. (2013) and connected work
has been referenced therein. See also McCrea and Morgan (2015). Ratio regression
for the Poisson case has been suggested in Rocchetti et al. (2011) and a special
fractional polynomial model for the binomial ratio case by Hwang and Shen
(2010). This paper develops the most general form of the ratio regression approach
as it allows any member of the power series distribution as base distribution, a
basically unlimited choice of regression model which is connected to the ratio of
neighboring frequencies by a feasible link function.
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Utrecht 2013. Universiteit Utrecht en University of Southampton. Utrecht, 28 januari 2014.

[40] van der Heijden, P.G.M., Cruyff, M. and Böhning, D. (2014b). Capture-recapture to
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APPENDIX

Proof. Let rx > 0 be given for x = 0, · · · , T0−1. Any probability distribution
p0, . . . , pT0 > 0 will meet the constraint p0 + · · ·+ pT0 = 1. Since the probability
distribution needs also to fulfill the recurrence relation px+1 = rxpxax+1/ax, we
have that

1 = p0+· · ·+pT0 = p0+p0r0a1/a0+(p0r0a1/a0)(r1a2/a1)+· · ·+p0

T0−1∏
x=0

rxax+1/ax

= p0[1 + r0a1/a0 + (r0a1/a0)(r1a2/a1) + · · ·+
T0−1∏
x=0

rxax+1/ax].

Hence, it follows that

p0 = 1/[1 + r0a1/a0 + (r0a1/a0)(r1a2/a1) + · · ·+
T0−1∏
x=0

rxax+1/ax]

necessarily, and 0 < p0 < 1. The remaining probabilities follow uniquely from
the recurrence formula. According to the latter, px+1 = rxpx/ax implies that
0 < px+1 < 1, x = 0, . . . , T0 − 1.
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