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Abstract—We compare and contrast the effects of two distinctly 
different mechanisms of coupling (mechanical and electrical) on 
the parametric sensitivity of micromechanical sensors utilizing 
mode localization for sensor applications. For the first time, the 
strong correlation between mode localization and the 
phenomenon of ‘eigenvalue loci-veering’ is exploited for accurate 
quantification of the strength of internal coupling in mode 
localized sensors. The effects of capacitive coupling-spring tuning 
on the parametric sensitivity of electrically coupled resonators 
utilizing this sensing paradigm is also investigated and a mass 
sensor with sensitivity tunable by over 400% is realized. 
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I.  INTRODUCTION  
Vibration localization has been employed as an 

ultrasensitive approach to detecting small perturbations in the 
structural properties of micromechanical sensors [1-3]. Besides 
its high sensitivity to structural perturbations (mass/stiffness), 
an eigenstate shift based sensor offers the added advantage of 
intrinsic common mode rejection that makes it less susceptible 
to false positive outputs arising from ambient environmental 
fluctuations [2], [4]. Parametric sensitivities that are orders of 
magnitude greater than the more conventionally used resonant 
frequency shift approach have been experimentally 
demonstrated using this sensing paradigm [1-3]. Further 
enhancements in the sensitivity in such sensors however, 
depend critically on the ability to control and predict the 
strength of the internal coupling between the resonators. In this 
paper, we compare the effects of two disparate mechanisms of 
coupling - mechanical and electrical coupling, on the 
parametric sensitivity of micromechanical sensors utilizing this 
paradigm of sensing. Furthermore, in an attempt to improve the 
accuracy of such sensors, we pay special attention to the 
behaviour of the eigenvalues of the system when localization 
occurs and exploit the associated phenomenon of eigenvalue 
curve veering for the accurate experimental quantification of 
the internal coupling spring constants between the coupled 
resonators. We also explore the potential for tuning parametric 
sensitivity in mode-localized sensors that are electrically 
coupled and realize a mass sensor with a parametric sensitivity 
tunable by over 400% by simply altering the applied DC bias 
voltages.   

II. MODE LOCALIZATION AND CURVE VEERING 
In an array of identical resonators coupled through weak 

springs, a small perturbation in the structural properties of one 

of the resonators strongly impacts coupled oscillations causing 
the vibration modes to localize. The extent of this vibration 
energy confinement depends not only on the magnitude of the 
induced disorder, but also on the strength of internal coupling 
between the resonators with weaker coupling resulting in 
stronger localization of the vibration modes. Mode localization 
is also associated with the phenomenon of ‘eigenvalue curve 
veering’ [5-7].  Curve veering or loci veering refers to the 
abrupt divergence of the eigenvalues of coupled oscillators as 
they approach each other when a system parameter is varied 
[7]. All of the modal properties get interchanged at this point 
of transition or veering of the eigenvalues [5]. It has been 
shown that the existence of close eigenvalues in a coupled 
vibratory system is likely to cause the occurrence of both 
curve veering and mode localization suggesting that they are 
both manifestations of the same drastic phenomenon [6]. In 
order to understand the physics underlying the phenomena, let 
us consider a simple system of two coupled oscillators as 
shown in Fig. 1.  

 
Figure 1.  Discrete element model of two coupled oscillators. 

In Fig. 1, ‘ m ’ represents the mass of resonators 1 and 2 
( mmm == 21 ); 1k and ( )kkk Δ+= 12 represent their respective 
stiffnesses; ck - the internal coupling spring constant; 21 , xx - 
their displacements. The two important parameters that we pay 
special attention to are the non-dimensionalized coupling factor 
( )1kkc=κ  between the two oscillators and the non-
dimensionalized stiffness disorder on resonator 2 relative to 
resonator 1 ( 1kkΔ=δ ).  The eigenvalue problem for 
undamped free vibration may be expressed as– 
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with eigenvector components given by:  
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When the disorder in the stiffness of resonator 2 is zero, i.e., 
when ( )21;0 ββδ == , the system is tuned or ordered and the 
eigenvalues and the corresponding eigenstates of the system 
may be expressed as –  
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Under conditions of weak internal coupling ( 1<<κ ), plotting 
the loci of the two eigenvalues of the system ( λ ) versus the 
disorder in the stiffness of resonator 2 ( δ  ) yields Fig. 2. It 
may be observed that the loci of the two eigenvalues do not 
cross but rather veer abruptly with high local curvatures as the 
two eigenvalues approach each other. The point of transition 
corresponds to the point at which the system is symmetric 
( )21 ββ = as illustrated in Fig. 2 and represented in (4). At 

values where ( ) ( )22
21 4κββ >>− , however, the modes 

localize as seen from (3) and (2) and illustrated in Fig. 2.  

 
Figure 2.  Loci of the dimensionless eigenvalues of the two coupled 

oscillators in terms of the disorder δ. 

Since the eigenvalues at the transition/veering zone 
correspond directly to the point at which the system is 
symmetric, (4) may be utilized to accurately quantify the 
strength of internal coupling between the resonators if the 
resonators could be tuned to the transition region. It is to be 
noted that weaker coupling springs result in higher local 
curvatures at the veering zone, suggesting a more rapid 
transition of the eigenfunctions even for small symmetry 
breaking perturbations in stiffness – consequently causing the 
mistuned system to become strongly localized. Furthermore, 
the closeness of the eigenvalues is also dictated by the strength 
of internal coupling between the resonators with weaker 
coupling spring constants resulting in closer eigenvalues as 
illustrated in Fig. 3. While the analytical description so far has 
been with the assumption of a positive coupling spring constant 
(kc) between the coupled oscillators i.e., a mechanically 
coupled resonator configuration, the presence of a negative 
coupling spring as in the case of electrical coupling, inverts the 
phase performance and in consequence, the modal behaviour of 
the system at the two eigenvalues. Nevertheless, the 
phenomenon of frequency veering would still exist under such 
conditions as the eigenfunctions are now simply interchanged 
at the two eigenvalues. 

 
Figure 3.  Loci of the dimensionless eigenvalues of the two coupled 

oscillators in terms of the disorder δ at varying strengths of internal coupling. 

Utilizing curve veering for accurate quantification of the 
internal coupling spring constant becomes especially important 
when utilizing weakly coupled oscillators for mode-localized 
sensing applications. This is due to the critical dependence of 
the measured relative shifts in the eigenstates on the strength of 
internal coupling between the coupled oscillators. The relative 
shifts in the eigenstates due to small perturbations in mass or 
stiffness in a pair of weakly coupled oscillators may be 
expressed as in (5) and (6) respectively [3], [1]: 
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It is clear from (5) and (6) that any inaccuracy in the 
quantification of the scaled coupling factor directly results in 
errors in the calculated eigenmode shift in such a sensing 
paradigm. Furthermore, this approach is even more useful for 
mechanically coupled mode localized sensors as experimental 
quantification of the coupling factor in resonators subjected to 
weak mechanical coupling is not as straightforward as in the 
electrical case. Moreover, fabrication tolerances in the 
micromachining process often limit perfect matching of the 
coupled resonators and hence quantifying the strength of 
internal coupling from the observed resonant frequency 
spectrum without performing the veering test would result in an 
uncalibrated output. In what follows, we utilize the electrical 
spring softening effect to induce parametric variations in the 
stiffness between coupled micromechanical resonators, and 
plot the eigenvalue loci of the system until the loci veer. We 
then use the point of veering to deduce the scaled coupling 
spring constant and utilize the value thus deduced, to accurately 
predict the relative shifts in the eigenstates to small, induced 
symmetry breaking perturbations in mass, and thus, use the 
system as a highly sensitive mass sensor. Results from the 
relative shifts in the eigenstates deduced with and without 
performing the initial eigenvalue curve veering test are 
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compared and an improvement in accuracy of over 200% is 
demonstrated.  

III. IMPLEMENTATION AND VERIFICATION 

A. Device descriptions 
The concept is experimentally demonstrated here using two 

pairs of double ended tuning fork (DETF) resonators subjected 
to electrical and mechanical coupling - scanning electron 
microscope (SEM) images of which are shown in Figs. 4 and 5.  

 
Figure 4.  SEM image of electrically coupled DETF resonators – The insets 

show magnified images of the deposited platinum masses on resonator 1. 

Both devices were fabricated in a commercial foundry process 
using the silicon-on-insulator microelectromechanical systems 
(SOI-MEMS) process through MEMSCAP Inc., USA.  

 
Figure 5.  SEM image of mechanically coupled DETF resonators – the insets 

show magnified images of the deposited platinum masses on resonator 2. 

Each of the tines in both configurations was designed to be 25 
μm thick, 300 μm long and 6 μm wide with a gap of 6 μm 
between the tines. The resonators were driven and sensed 
using capacitive transduction with the drive and coupling gaps 
designed to be 2 μm wide. Actuation was achieved using 
parallel plates of equal dimensions (260 μm long, 6 μm wide, 
25 μm thick), attached to either side of each resonator in both 
configurations as illustrated in the Fig. 4 and 5. The open-loop 
transmission frequency responses were measured using a 
Vector Network analyzer (VNA) – Agilent 4396B. The 
resonators were actuated in the ‘tuning fork’ mode as the out-
of-phase motion of the resonators in this mode serves to cancel 
out the stresses at the anchors thereby enhancing the quality 
factor (Q) of resonance. The fabricated devices were tested 
under partial vacuum (50mTorr) in a custom vacuum chamber. 

B. Mechanically coupled DETF resonators 
Initially, in order to obtain an accurate estimate of the 

coupling spring constant, the loci of the two eigenvalues 

measured from the mechanically coupled DETF configuration 
were plotted as a function of stiffness variations induced on 
resonator 2 as illustrated in Fig. 6. This was achieved by 
applying a DC bias voltage of 10V on port 0 (refer Fig. 5) 
while providing an AC input from the VNA corresponding to 

25− dBm on port 1. The DC voltage on resonator 1 was 
maintained at 0 V thereby resulting in a single port input drive 
force applied on resonator 1. The DC bias voltage on port 2 
was then tuned to alter the stiffness of resonator 2 maintaining 
that of resonator 1 constant as shown in Fig. 6.  

 
Figure 6.  Veering of the loci of the  eigenvalues observed when electrically 

varying the stiffness of resonator 2. 

It may be observed that as the loci of the two eigenvalues 
approach each other, the eigenvalues veer as predicted by (2). 
The eigenfunctions at this point of veering hence correspond to 
those represented in (4) and may be used to directly deduce the 
scaled coupling factor of the system. The value of 

1kkc=κ thus estimated corresponded to .0027776. Deducing 
the value of κ without performing the veering test, however, 
yielded a value of .00582036 – a value nearly 2 times higher. 
This directly translates to an enhancement in accuracy by 
nearly 200% (from (5)). After estimating the value of κ , 
keeping the voltage on port 0 at 10 V, the ac power input was 
switched from port 1 to port 0. A DC input voltage of 0V was 
then applied on both ports 1 and 2. This allowed for the same 
force of actuation to be applied to both resonators thereby 
enabling us to directly deduce the eigenstates of the system by 
simply measuring the relative S21 transmission responses 
arising from the motional currents of resonators 1 and 2 
generated at ports 1 and 2 respectively. As long as the modes 
do not overlap, each eigenstate is simply the normalized vector 
formed by the amplitudes thus measured. After measuring the 
initial eigenstates using this approach, two platinum patches 
(measuring approx. 2 μm ×  2 μm  ×  300 nm and 
corresponding to a volumetric mass of approx. 51.5pg), were 
deposited on the anti-nodal parallel plates of one of the 
mechanically coupled tuning forks (resonator 2) using the 
focused ion beam (FIB) (Fig. 5). The relative transmission 
responses of resonators 1 and 2 before and after mass addition 
(after cancelling the effects of capacitive feed-through current) 
are shown in Fig. 7. Comparing the responses, it may be 
observed that the relative shifts in the eigenstates correspond to 
0.89% at first eigenvalue and 1.24% at the second. Based on 
the estimate of the scaled coupling factor derived from the 
veering test, the predicted variation corresponded to 1.05%. 
Comparing the relative shifts in the eigenstates with those in 
resonant frequency (which corresponded to 0.0086%), it can be 
observed that the variations in the eigenstates were nearly two 

Veering 
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orders of magnitude greater than corresponding shifts in the 
resonant frequency for the same perturbation in mass. 

 
Figure 7.  Experimentally observed relative S21 transmission responses 

measured from ports 1 and 2, before and after mass addition. 

C. Electrically coupled DETF resonators 
Unlike mechanical coupling, electrical coupling provides an 
added advantage in such a sensing paradigm as it can yield 
significantly weaker coupling spring constants, and 
consequently stronger localization. Furthermore, as the 
coupling spring is voltage tunable, it enables the realization of 
mode localized sensors with electrically tunable sensitivity 
(from (5) and (6)). In order to test the effects of spring tuning 
on parametric sensitivity of electrically coupled resonators 
utilizing this paradigm of sensing, the electrically coupled 
DETF configuration described in section III – A and illustrated 
in Fig. 4 was utilized. The initial eigenstates of the coupled 
resonators under varying effective coupling spring constants 
were characterized by applying DC bias voltages of equal 
magnitudes but opposite polarities on the two resonators and  
measuring the corresponding relative transmission responses. 
After measuring the initial eigenstates, two platinum patches 
(measuring approx. 1.8 μm ×  1.8 μm ×  180 nm and 
corresponding to a mass of approx. 25 pg), were deposited on 
the anti-nodal parallel plates of resonator 1 using the FIB (Fig. 
4). The relative transmission responses of resonators 1 and 2 
before and after mass addition for an applied bias of +5 V and 
−5 V respectively are shown in Fig. 8. It can be noticed that 
the relative shifts in the eigenstates for the induced mass 
addition correspond to 1.27% and 1.88% at the two 
eigenvalues. Comparing these with relative shifts in resonant 
frequency ( )0.002%≅ ,  the variations in the eigenstates were 
found to be nearly three orders of magnitude greater than 
corresponding resonant frequency shifts for the same 
perturbation in mass. Owing to significantly weaker coupling 
spring constants, the relative shifts in the eigenstates are higher 
than those observed in the mechanically coupled configuration 
for lower induced mass shift. Furthermore, measured relative 
shifts in the eigenstates for the same induced mass additions 
were observed to increase with lower kc as illustrated in Fig. 9, 
indicating that tuning kc to lower values result in stronger 
localization of the vibration modes as predicted by (5). 
Tunability in parametric sensitivity of nearly 400% was 
observed by tuning the electrical coupling spring.  

 
Figure 8.  Experimentally observed relative S21 transmission responses 

measured from resonators 1 and 2, before and after mass addition. 

 
Figure 9.  Variation in eigenstate for the same induced perturbation in mass 

at varying effective coupling spring constants. 

IV. CONCLUSIONS 
This paper compares the effects of electrical and 

mechanical coupling on the parametric sensitivity of mode 
localized mass sensors. The phenomenon of eigenvalue curve 
veering is employed to accurately quantify the strength of 
internal coupling in the mechanically coupled configuration, 
improving the accuracy of the predicted shifts in eigenstates by 
over a factor of two. The tunability of the coupling spring 
constant in electrically coupled mode-localized sensors is also 
utilized to realize a mass sensor with tunable sensitivity.  
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