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Abstract: Resonant-based vibration harvesters have conventionally relied upon accessing the fundamental mode 

of resonance to maximise the conversion efficiency of mechanical-to-electrical power transduction. This paper 

explores the use of parametric resonance, which is not limited by linear damping and can potentially offer higher 

and broader nonlinear peaks. Despite the promising potential, a damping-dependent initiation threshold amplitude 

has to be overcome first. Design approaches have been explored to resolve this limitation. A numerical model has 

been constructed to analysis the improvements over the convention. An out-of-plane (to accommodate large 

displacements) electrostatic MEMS prototype (~ 0.147 mm
3
), driven at 4.2 ms

-2
, has demonstrated a peak power 

of 0.011 µW at the fundamental mode of resonance and 0.16 µW at the principal parametric resonance. A two 

fold increase in frequency bandwidth was also observed for the parametrically excited device. 
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INTRODUCTION 
In recent years, there has been increased interest in 

vibration energy harvesting, especially to enable self-

powered wireless sensor networks for structural health 

monitoring [1]. While some early commercial 

solutions have witnessed increasing deployment [2], 

two of the key technical limitations still persist; 

namely, the low power density relative to 

conventional power supply and the confined 

operational frequency bandwidth while faced with the 

wideband nature of real vibrations. 

This paper attempts to address these issues through 

employing parametric resonance instead of the 

convention of accessing the fundamental mode of 

resonance. Parametric resonance is a type of self-

excited nonlinear resonant phenomenon, which unlike 

the conventional approach, does not exhibit amplitude 

saturation due to linear damping. Therefore, theory [3] 

predicts the potential for an order higher in power 

output for such devices. Additionally, the onset of 

nonlinearity that eventually saturates its growth helps 

moderately widen the operational frequency 

bandwidth. Despite these promising advantages, an 

early experimental investigation [4] failed to report 

any notable performance enhancements over the 

current paradigm. One of the key limiting factors is 

the presence of a damping-dependent initiation 

threshold amplitude, which the excitation amplitude 

must attain in order to activate parametric resonance. 

Following sections numerically and experimentally 

analyse the potential enhancements of parametric 

resonance over the fundamental mode of resonance, 

as well as exploring design approaches to overcome 

the limitation of initiation threshold amplitude in 

order to practically realise the promising potential of 

parametrically excited vibration energy harvesters. 

THEORY AND SIMULATION 
Parametric resonance 

The motivation for employing parametric 

resonance for vibrational energy harvesting can be 

summarised as, 

• Maximises power output by mechanically 

amplifying displacement amplitude. 

• Broadens operational frequency bandwidth with 

the nonlinear characteristics of its resonant peak. 

 

This resonant phenomenon is characterised by the 

presence of a time-dependent modulation in one of its 

system parameters as described by the Mathieu 

equation below [5]. 

 

 ɺɺx +c ɺx + (δ + 2ε cos(2t ))x = 0  (1) 

 

Where x is displacement, c is damping, t is time 

domain, ε is a generic amplitude parameter and δ is 

the generic frequency parameter. 

Parametric excitation, unlike direct excitation, is 

usually perpendicular and not parallel to the direction 

of displacement. In order to achieve parametric 

resonance, it can be shown that the excitation 

frequency ω needs be approximately 2ω0/n; where ω0 

is the natural frequency of the resonator and n is an 

integer defining the order of parametric resonance. 

Therefore, the first order (principal) parametric 

resonance can be attained when the excitation 

frequency is twice the natural frequency. 

Additionally, there is a prerequisite of a non-zero 

initial displacement in order to `push' the system out 

of stable equilibrium. 

Apart from these requirements, the excitation 

amplitude needs to overcome a damping-dependent 

initiation threshold prior to accessing the parametric 
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resonant region as illustrated in the bifurcation 

diagram in Fig. 1. This appears counterproductive in 

the context of vibration energy harvesting, since the 

essence of the art relies on electrically damping the 

mechanical resonator in order to extract electrical 

energy. However, once parametric resonance is 

activated, the oscillatory amplitude growth is not 

limited by linear damping and can only be saturated 

by either physical limits or the onset of nonlinearity. 

 

 
(a) Undamped 

 
(b) Damped 

Fig. 1: Bifurcation diagrams for systems described by 

undamped and damped Mathieu equations. Grey 

(unstable) regions are where parametric resonance is 

achieved. With increasing damping ‘c’, higher 

excitation amplitudes are required to overcome the 

initiation threshold amplitude prior to accessing the 

unstable regions. 

Cantilever resonators 

The cantilever resonator is a common design choice 

in the art [2]. It is able to achieve large displacements 

near the free end (ideal for electromagnetic and 

electrostatic transducers) and experience high levels 

of stress near the clamped end (ideal for piezoelectric 

transducers). Conventionally, the cantilevers are 

driven with a direct excitation parallel to the 

displacement as summarised below. 
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Where, c1 is the linear damping parameter, c2 is a 

quadratic damping representing the dominant higher 

order damping nonlinearity, µ is a parameter 

representing cubic geometric non-linearities, A is the 

excitation displacement amplitude, k is the spring 

stiffness, m is the effective mass, l is the effective 

beam length, E is the modulus of elasticity and I is the 

area moment of inertia. 

When a parametric excitation is applied 

perpendicular to the direction of the displacement, the 

following equation of motion (a version of the 

damped Mathieu equation (Eq. 1)) can be observed. 
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Fig. 2 numerically (using ode45 solver in MATLAB 

with `Relative tolerance' of 1E-05) contrasts the 

resonant peaks of a micro-cantilever when subject to 

either type of excitation at varying acceleration levels. 

While direct excitation always yields a response 

regardless of the excitation level, its parametric 

counterpart has a zero steady-state response below the 

initiation threshold amplitude and a small non-zero 

initial displacement condition is required. However, 

with increasing excitation amplitudes beyond this 

threshold, parametric resonance rapidly outperforms 

the fundamental mode of resonance. 

 

 
Fig. 2: Numerical comparison of the steady-state 

resonant peaks between direct and parametric 

excitations at various excitation acceleration levels. 

 

Both this numerical simulation and an existing 

experimental study in the literature [4] have ascribed 

large values for this initiation threshold amplitude; 

whereas in practice, the ambient vibration available 

for harvesting is usually very small. Therefore, the 

gap of this threshold and the base axis shown in Fig. 

1b needs to be minimised in order to practically 

exploit the merits of parametric resonance. 

 

DESIGN AND FABRICATION 
Other applications, such as MEMS gyroscopes [6] 

have already employed parametric resonance as a 

means of mechanical amplification, typically 

incorporating active excitation to overcome the 

limitation of initiation threshold amplitude. However, 

energy harvesting cannot afford the additional power 
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expenditure. Therefore, a passive solution to fulfil this 

critical criterion is needed. 

 

 
Fig. 3: Design approaches to passively minimise 

initiation threshold amplitude. ‘Additional mechanical 

amplifiers’ encompasses direct and parametric 

resonators as well as non-resonating amplifiers such 

as levers; and ‘n DOF’ represents  n degrees-of-

freedom. 

Fig. 3 presents the proposed design approaches in 

an attempt to address this issue. The first design route 

employs an electrically undamped parametric 

resonator that is coupled to an additional electrically 

damped mechanical amplifier. Here, the parametric 

resonator has intrinsically lower initiation threshold 

amplitude. The second design route introduces an 

electrically undamped mechanical amplifier prior to 

the electrically damped parametric resonator. In this 

scenario, the base vibration amplitude is amplified 

and brought up towards the threshold. Referring back 

to Fig. 1b, the first approach essentially lowers the 

position of unstable region while the second approach 

raises the horizontal base axis. 

 

 
Fig. 4: COMSOL designs of the MEMS cantilevers. 

Direct excitation equates to out-of-plane driving 

force, whereas an in-plane excitation can potentially 

induce parametric resonance in (a) and auto-

parametric resonance in (b). Capacitive comb fingers 

extend off the cantilever beam. Accompanying fixed 

comb fingers are not shown here. 

A design model of a micro-cantilever with 

capacitive combs is shown in Fig. 4a. Out-of-plane 

vibration is equivalent to direct excitation while an in-

plane excitation force applied along the long axis of 

the cantilever can potentially induce parametric 

resonance at the right frequency and amplitude 

conditions. Fig. 4b is an iteration of the second design 

route from Fig. 3 by adding a double beam between 

the anchor and the otherwise anchored end of the 

cantilever. This additional initial spring structure acts 

as the electrically undamped additional mechanical 

amplifier (direct resonator) and enables the possibility 

of observing auto-parametric resonance. 

 
(a) Parametric harvester.     (b) Auto-parametric harvester. 

Fig. 5: SOIMUMPS realization of the parametrically 

and auto-parametrically excitable MEMS designs as 

seen in Fig. 4a and 4b respectively. 

 

The designs from Fig. 4 were fabricated using the 

MEMSCAP foundry's Silicon-On-Insulator (SOI) 

Mutli-User MEMS Processes (MUMPs) and sample 

devices can be seen in Fig. 5. The silicon thickness is 

25 µm and the total device volume is ~ 0.147 mm
3
. 

For each movable comb finger extending from the 

cantilever beam, a corresponding fixed capacitive 

comb finger is placed beside it with 10 µm gap 

spacing; thus, forming an electrostatic transducer. 

 

RESULTS 
Experimental tests were 

carried out using the set 

up shown in Fig. 6 with 

measurement circuit based 

on [7]. All tests were 

undertaken at normal 

atmospheric pressure and 

cantilevers were mounted 

with free ends upright to 

overcome the non-zero 

initial displacement 

criterion. This upright 

arrangement is equivalent 

to an inverted pendulum and the cantilever tip rests in 

an unstable equilibrium. 

COMSOL simulations (Fig. 4) and frequency 

sweeps using a Polytec laser vibrometer of the MEMS 

devices revealed no resonant modes at either twice or 

half the natural frequencies. Therefore, the possible 

presence of other resonant peaks within the vicinity of 

these frequency ranges can be excluded. 

Through mechanical excitation by the shaker, 1st

and 3rd order parametric resonances were recorded 

for the auto-parametric harvester in Fig. 5b. Although 

onsets of 2nd order parametric resonance was also 

observed around fn, steady-state response always 

converged towards the fundamental mode of 

Fig. 6: Test set up. 

(a) (b) 
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resonance. As predicted, this design had lower 

initiation threshold amplitude than the Fig. 5a device:  

• Parametric harvester: ~ 30  ms
-2

. 
• Auto-parametric harvester (with additional spring) 

- 1st order: ~ 1  ms
-2

. 

- 3rd order: ~ 3  ms
-2

. 

 
Fig. 7: Experimental power response of auto-

parametric harvester at input acceleration of 4.2 ms
-2

. 

1st and 3rd order parametric resonances can be seen 

at twice and half of the natural frequency fn 

respectively. 

Table 1: Comparing the results with selected 

counterparts from the literature in terms of power 

density normalised against acceleration squared. 

Reference µWcm
-3

m
-2

s
4
 

Parametric (1st order) 61.7 

Parametric (3rd order) 50.1 

Roundy et al. (2002) [8] 22.9 

Wong et al. (2009) [7] 19.0 

Fundamental mode 4.24 

In fact, an order of magnitude higher power 

response can be observed for parametric resonance 

well below 1g of input acceleration as is demonstrated 

in Fig. 7. At 4.2 ms
-2

, power peaks of 0.011 µW, 

0.156 µW and 0.127 µW were recorded for the 

fundamental mode, first order parametric and third 

order parametric resonances respectively. Table 1 

briefly contrasts these results with a few selected 

electrostatic harvesters in the literature. Additionally, 

the operational frequency bandwidth (measured from 

half power points) of the principal parametric 

resonance is approximately twice that for the 

fundamental mode of resonance. 

FUTURE WORK 
Further design iterations based on Fig. 3 are being 

explored to better address the issues of initiation 

threshold amplitude and the non-zero initial 

displacement requirement. MEMS, thin/thick-film and 

macro-scale devices are also being developed to 

investigate the power efficiency of this novel 

technique in contrast to directly excited harvesters 

when subjected to ambient vibrations in real 

scenarios. 

 

CONCLUSION 
This paper presents a novel study of incorporating 

parametric resonance as a means of mechanical 

amplification to maximise the electrical power output 

of MEMS vibration energy harvesters. While this 

resonant technique theoretically promises better 

power and frequency response in contrast to the 

conventional directly excited harvesters, a list of strict 

initiation criteria, such as a minimum excitation 

amplitude threshold, needs to be fulfilled. A passive 

design approach to address this limitation has 

experimentally shown a reduction of the excitation 

amplitude threshold by nearly 30 times. Over an order 

of magnitude higher power response and 

approximately twice the operational frequency 

bandwidth have been recorded for the parametrically 

excited scenario in contrast to the same harvester 

driven at fundamental mode of resonance. The results 

also compare favourably with the literature. 
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