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Key Points 12 

1. Rapid ocean warming, as during the PETM, can lead to rapid hydrate dissociation, but 13 

methane release to the ocean is delayed and gradual.  14 

 15 

2. In our models, most of the methane released from hydrate remains in the sediment 16 

pores, with only a small fraction reaching the ocean. 17 

 18 

3. A late Paleocene hydrate inventory of at least 4000 Pg is needed to explain the PETM 19 

carbon isotope excursion. 20 

 21 

Abstract  22 

During the Paleocene-Eocene Thermal Maximum (PETM), the carbon isotopic signature 23 

(δ13C) of surface carbon-bearing phases decreased abruptly by at least 2.5 to 3.0 ‰.  This 24 
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carbon isotope excursion (CIE) has been attributed to widespread methane hydrate 25 

dissociation in response to rapid ocean warming. We ran a thermohydraulic modeling code to 26 

simulate hydrate dissociation due to ocean warming for various PETM scenarios.  Our results 27 

show that hydrate dissociation in response to such warming can be rapid but suggest that 28 

methane release to the ocean is modest and delayed by hundreds to thousands of years after 29 

the onset of dissociation, limiting the potential for positive feedback from emissions-induced 30 

warming. In all of our simulations at least half of the dissociated hydrate methane remains 31 

beneath the seabed, suggesting that the pre-PETM hydrate inventory needed to account for all 32 

of the CIE is at least double that required for isotopic mass balance.  33 

 34 

1. Introduction 35 

Methane is a strong greenhouse gas that oxidizes in about a decade to carbon dioxide and can 36 

thereby continue to impact climate for many millennia [Archer and Brovkin, 2008].  Methane 37 

hydrates are stable at high pressures and low temperatures and can accumulate beneath the 38 

deep ocean over millions of years.  If the overlying ocean warms, hydrate that has 39 

accumulated beneath the seabed over a long period can dissociate and methane may be 40 

released into the ocean.  Present-day venting into the oceans at several locations may be 41 

attributed to such a mechanism [Darnell and Flemings, 2015; Phrampus and Hornbach, 42 

2012; Phrampus et al., 2014; Westbrook et al., 2009], though the origin of the methane 43 

involved remains controversial [Berndt et al., 2014].  Widespread hydrate dissociation has 44 

the potential to lead to a positive feedback in which the released methane and its oxidation 45 

product, carbon dioxide, enhance warming [Archer and Buffett, 2005].  On the centennial to 46 

millennial timescales over which this feedback is hypothesized to operate, however, several 47 

processes below the seafloor have the potential to slow, shut down or even reverse methane 48 

release in response to thermal dissociation of gas hydrate. In addition to the long-recognized 49 
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effects on heat propagation of thermal diffusion [e.g., Dickens et al., 1995], it is important to 50 

consider the role of latent heat in hydrate dissociation [e.g., Thatcher et al., 2013], and the 51 

effects of of bubble transport and biogeochemical consumption [e.g., Boetius and Wenzhöfer, 52 

2013] on methane release from the seabed. 53 

 54 

The early Paleogene was characterized by several “hyperthermals”, which appear to represent 55 

geologically brief (< 200 kyr) episodes of globalwarming and massive carbon input 56 

associated with decreases in the stable oxygen and carbon isotope composition of biogenic 57 

carbonate [Littler et al., 2014; Sexton et al., 2011; Zachos et al., 2008]. The most extreme and 58 

the best-studied of these events, the Paleocene-Eocene Thermal Maximum (PETM; Figure 1), 59 

is characterized by an increase in the global mean surface ocean temperature of ~5 °C, 60 

warming of the surface ocean locally by up to 9 °C, shoaling of the depth in the ocean of total 61 

carbonate dissolution in seafloor sediments by at least 2 km in the Atlantic, the extinction of 62 

many species of benthic foraminifera and a prominent carbon isotopic excursion (CIE) 63 

involving a decrease in δ13C of carbon-bearing phases by at least 2.5-3.0 ‰ [Dickens, 2011; 64 

Dunkley Jones et al., 2013; Foster et al., 2013; Zachos et al., 2005; Zeebe et al., 2009]. These 65 

observations indicate rapid perturbation of the exogenic carbon cycle through the release of 66 

buried organic carbon.  67 

 68 

Mass balance considerations suggest that between 2,000 and 13,000 Pg of carbon rich in the 69 

12C isotope must have been released in less than 10,000 years at the start of this event [Cui et 70 

al., 2011; Dickens, 2011; Dickens et al., 1995; Panchuk et al., 2008; Zeebe et al., 2009]. Most 71 

current estimates for the duration of the initial isotope excursion are in the range 1 to 10 kyr; 72 

the bimodal isotope distribution seen in records from individual shells in expanded sections 73 

point to the short end member of this range [Zachos et al., 2007] but there is little support for 74 
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a much shorter (decadal) perturbation [Wright and Schaller, 2013]. As a result, the PETM has 75 

been proposed as a partial analogue to current anthropogenic emissions and climate change, 76 

where the total mass of carbon input is comparable but where anthropogenic rates of carbon 77 

emission are an order of magnitude faster [Zeebe et al., 2016]. Several sources of carbon have 78 

been hypothesized to be involved including permafrost or kerogen and volcanism-induced 79 

thermogenic methane during the emplacement of the North Atlantic Volcanic Province [Cui 80 

et al., 2011; DeConto et al., 2012; Svensen et al., 2004] but the longest standing hypothesized 81 

mechanism involves widespread dissociation of methane hydrates [Dickens, 2011; Dickens et 82 

al., 1995; Sluijs et al., 2007; Thomas et al., 2002].   83 

 84 

Because PETM modeling efforts to date have been motivated largely by a need to understand 85 

the basic mass balance [Dickens, 2011] they have, understandably, employed relatively 86 

simplistic numerical analysis. Commonly, for example, it is assumed that the timescale for 87 

methane release is primarily controlled by the diffusion of heat into the subsurface [e.g., Katz 88 

et al., 2001], and that all the methane from hydrate dissociation rises rapidly to the seabed. Xu 89 

et al. [2001] developed a model for the PETM that explicitly considers fluid flow and 90 

methane transport. However, that model (i) does not account for the effects of latent heat, 91 

which slows the downward propagation of heat [Thatcher et al., 2013] or for salinity 92 

variations that perturb the phase boundary, (ii) only considers methane transport in solution, 93 

without bubbles, and (iii) assumes high fluid flow rates more representative of active than 94 

passive margins. Thus, enhanced methane transport into the ocean results primarily from 95 

increased methane solubility in warmer pore fluids. A more recent simulation of the PETM 96 

incorporates the effects of latent heat, but not the effects of pressure and salinity variations 97 

resulting from hydrate dissociation [Zeebe, 2013]. That simulation assumes that upon 98 

dissociation, methane is rapidly released into the ocean, and therefore does not consider the 99 
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physical and biogeochemical processes that may slow its ascent and perhaps even prevent its 100 

arrival at the seafloor.  Here we employ a more sophisticated numerical model of sub-seabed 101 

processes that was developed to understand present-day methane release and to predict future 102 

release [Marín-Moreno et al., 2013; Reagan and Moridis, 2007; Stranne et al., 2016; 103 

Thatcher et al., 2013].  We simulate the response of hypothetical slope sediment sequences 104 

representative of those likely to have contained methane hydrate during the Palaeocene to 105 

some simple PETM warming scenarios to show how methane transport and dissolution 106 

processes influence the timescale and magnitude of methane generation and release into the 107 

ocean. 108 

 109 

2. Method and Results 110 

We ran one-dimensional simulations using the thermohydraulic fully coupled 111 

TOUGH+Hydrate code [Moridis et al., 2012]. This code numerically solves coupled 112 

equations of heat and mass balance, and hence can model the non-isothermal gas release, 113 

phase behavior and flow of fluids and heat in gas hydrate bearing geological systems.  The 114 

continuum balance equations of each of the mass components (water, methane and salt) and 115 

heat are discretized in space by the integral finite difference method [e.g., Narasimhan and 116 

Witherspoon, 1976] and in time by first order finite difference. The resultant set of coupled, 117 

non-linear, algebraic equations are solved by Newton-Raphson iteration, approximating the 118 

Jacobian matrix by numerical differentiation, and using sparse direct matrix methods or 119 

iteratively with a preconditioned conjugate gradient method [Moridis and Pruess, 1995]. We 120 

assumed equilibrium conditions for hydrate formation and dissociation and that the mass 121 

components water, methane and salt were partitioned between four possible phases: hydrate 122 

(water and methane), aqueous (water, methane, salt), gas (water and methane), and ice 123 

(water). We modeled heat exchanges due to conduction, convection, hydrate formation and 124 
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dissociation, and methane and salt dissolution. We used Darcy’s law for the flow of water 125 

and methane in the aqueous and gas phases, respectively, and for the advective transport of 126 

methane and salt in the aqueous phase. For the molecular diffusive transport of methane and 127 

salt within the aqueous phase we used a Fick’s type law. Calculated seabed methane 128 

emissions include contributions from both methane bubble flow and dissolved methane.  129 

TOUGH+Hydrate is a well-documented code and has been employed in several works to 130 

model warming-induced hydrate dissociation [e.g., Marín-Moreno et al., 2013; Reagan and 131 

Moridis, 2007; Stranne et al., 2016; Thatcher et al., 2013]. However, for completeness, 132 

further details of this code and our approach to its use are given in the supporting 133 

information. 134 

 135 

Our models used parameters matching those of Zeebe [2013] and Marín-Moreno et al. [2013] 136 

(supporting information). Model sensitivity to a wide range of parameters has been explored 137 

previously [Marín-Moreno et al., 2013; Thatcher et al., 2013]. The permeability and the 138 

irreducible gas saturation (IGS), above which free gas can flow, are key parameters 139 

controlling the onset of methane emissions and amount emitted.  If permeabilities appropriate 140 

to hemipelagic sediments are used, hydrate dissociation leads to a build-up of pore pressure 141 

that would be sufficient to fracture such sediments [Stranne et al., 2016; Thatcher et al., 142 

2013].  The released version of TOUGH+Hydrate can neither simulate the formation of 143 

fractures nor, in a one-dimensional model, account for pre-existing fractures. The formation 144 

of fractures has been tackled recently by Marín-Moreno et al. [2015a] and Stranne et al. 145 

[2016] using an a posteriori offline approach following Daigle and Dugan’s [2010] 146 

normalized overpressure ratio criterion. Here we model porous flow in pristine hemipelagic 147 

sediments using an intrinsic permeability of 10-16 m2, and approximate fracture flow by 148 

modeling porous flow with an enhanced intrinsic permeability of 10-13 m2 (supporting 149 
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information). Our simulations compute the evolution of intrinsic permeability with porosity 150 

according to Xu’s et al., [2004] relationship, the methane and water relative permeabilities 151 

according to a modified version of Stone’s [1970] first three-phase relative permeability 152 

method, the capillary pressure according to van Genuchten’s [1980] law, and the bulk 153 

thermal conductivity of the sediments according to Moridis et al. [2005] (supporting 154 

information). The relative permeability and capillary pressure models were initially 155 

developed for partially saturated sediments, but they can also be used to model fluid flow in 156 

hydrate systems with minor modifications depending on hydrate saturation [Dai and 157 

Santamarina, 2013; Dai and Seol, 2014]. We use IGSs of 2%, appropriate to porous flow in 158 

gas hydrate bearing geologic systems [e.g. Liu and Flemings, 2007; Thatcher et al., 2013], 159 

and 0%, which may be appropriate for purely fracture flow. The anaerobic oxidation of 160 

methane in the sulfate reduction zone can consume between 10 and 20% (for high fluid flow 161 

rates) and 80% (for lower rates) of dissolved methane approaching the seabed [Boetius and 162 

Wenzhöfer, 2013].  We represented the effects of this process by including in our starting 163 

models a methane-free zone close to the seabed, in which methane approaching the seabed 164 

dissolves.  This approach likely over-estimates methane consumption at the base of the 165 

methane-free zone initially, but perhaps underestimates methane consumption close to the 166 

seabed at later times, as methane concentrations build up.  Following Zeebe [2013], we used a 167 

thickness of 20 m for the methane-free zone.  168 

 169 

We assumed an initial hydrate saturation of ~5% between the methane-free zone and the 170 

hydrate stability limit, which is representative of estimated saturations beneath the modern 171 

ocean [e.g., Milkov, 2004; Thatcher et al., 2013].  We used a similar seabed temperature 172 

function to that of Zeebe [2013], but considered only his initial temperature rise of 5 °C at the 173 

PETM onset, with an initial deep ocean temperature of 11 °C. Following this initial 174 
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temperature rise, we maintained the seabed temperature at a constant value until the end of 175 

the model runs after 20 kyr (Figure 1).  We considered two alternative durations for the initial 176 

temperature rise: 6 kyr, as used by Zeebe [2013], and 0.6 kyr, to explore the effect of a very 177 

short duration end-member.  To capture the range of possible behaviors, we also ran models 178 

for two different water depths: 1750 m, where the hydrate stability zone (HSZ) is thick (~150 179 

m) and hydrate remains stable at the seabed at maximum PETM temperatures; and 1100 m, 180 

where the hydrate stability zone is thin (~30 m) and hydrate is stable at the seabed before 181 

warming begins but becomes unstable during the initial PETM temperature rise (Figure 2). 182 

We imposed a basal heat flow of 56 mW m-2 to obtain initial thicknesses of the GHSZ that 183 

match those of Zeebe [2013].   184 

 185 

At 1750 mwd (m water depth) hydrate dissociation peaks ~1 kyr and 6 kyr after the initial 186 

temperature rise, for 0.6 kyr and 6 kyr warming periods respectively, before dropping to zero 187 

as the hydrate is exhausted. At 1100 mwd these peaks are 0.2 and 1.2 kyr after the initial 188 

warming. For a 0.6 kyr warming period, hydrate dissolution due to increased methane 189 

solubility at higher temperatures [Waite et al., 2009], occurs initially throughout almost the 190 

entire HSZ and reaches a maximum at the top of the HSZ (Figure 3a, c). Hydrate dissociation 191 

occurs at the base of the HSZ, and starts earlier for 1100 mwd because hydrate is present in a 192 

much thinner zone (Figure 3a, c). The dissociation rate is over an order of magnitude greater 193 

than the rate of hydrate dissolution (Figure 3c). With this very rapid warming and when the 194 

HSZ is thin, similar rates of hydrate dissociation can occur on the top and bottom of the HSZ 195 

with lower rates occurring in between (Figure 3a). This behavior may also occur in modern 196 

hydrate systems affected by ocean warming [Marin-Moreno et al., 2015b]. For a warming 197 

period of 6 kyr, hydrate dissolution does not occur and dissociation starts at the base of the 198 

HSZ. This relatively slow warming rate allows hydrate re-formation from the ascent of 199 
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methane released by hydrate dissociation below (Figure 3b, d). Note that intrinsic 200 

permeability and IGS do not influence the rates of hydrate dissociation and dissolution and 201 

only influence the rate of hydrate re-formation. Therefore, the results presented in Figure 3 202 

are very similar to those obtained in the other cases modeled. 203 

 204 

A striking result from our study is that in all cases, hydrate dissociation and methane 205 

generation in the sediment column is poorly related to methane release to the ocean, both in 206 

timing and in magnitude (Figure 2). The models with an intrinsic permeability of 10-16 m2 207 

show zero emissions over the 20 kyr duration of our runs. For the models with an intrinsic 208 

permeability of 10-13 m2, gas escape into the ocean is delayed by 0.3-3 kyr and 2-8 kyr after 209 

gas is generated by hydrate dissociation, for the 1100 and 1750 mwd models respectively. 210 

This delay results from the slow vertical rise of gas when it is close to the IGS, and increases 211 

as the IGS increases (Figure 2). It decreases as intrinsic permeability increases, but changes 212 

little for permeabilities greater than 10-13 m2 [Thatcher et al., 2013]. This result is important 213 

because the delay limits the potential for positive feedback between hydrate dissociation and 214 

climate change. For an IGS of 2%, methane release into the ocean is spread over a long 215 

period of time: 7-8 kyr for 1100 mwd and 3-4 kyr for 1750 mwd. The shorter duration at 216 

1750 mwd, despite the thicker HSZ, occurs because a larger amount of released methane is 217 

present as free gas, which increases the relative permeability for gas and hence the rate of 218 

methane ascent. If this saturation threshold is removed, the duration of flow is reduced to 219 

300-800 years, and the variation with water depth is more complex.  Importantly, at least half 220 

of the methane released by dissociation remains in solution or as gas bubbles beneath the 221 

seabed at the end of these model runs (Figure 2). Dissolution occurs within the initially 222 

methane-free sulfate reduction zone, but also elsewhere because of the solubility increase due 223 

to warming. For an IGS of 2%, more methane remains beneath the seabed as gas bubbles 224 
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below that threshold, and less than 15% of the dissociated methane escapes to the ocean 225 

(Figure 2). 226 

 227 

3. Discussion and Conclusions 228 

The delays in methane release associated with thermal diffusion to the seabed have been 229 

pointed out before [e.g., Dickens et al., 1995; Zeebe, 2013].  However, our analysis shows 230 

that there are additional mechanisms that both slow and reduce the methane release into the 231 

ocean. These mechanisms operate also in the modern ocean [Stranne et al., 2016].  The 232 

delays will be less and emissions more complete in shallower water, with higher geothermal 233 

gradient and with a thinner methane-free zone, and vice versa. The different responses of the 234 

different parts of the system will result in a net long slow rise in emissions followed by a long 235 

slow decline.  More rapid escape to the ocean might be triggered by catastrophic slumping, 236 

but such events would need to occur globally over a millennial timescale to dominate the 237 

global flux into the ocean [Nisbet et al., 2009].  If such catastrophic mechanisms are 238 

excluded, and our model runs are broadly representative, then the CIE can be explained by 239 

hydrate dissociation only if (i) fractures were present or formed during hydrate dissociation to 240 

enhance the permeability and (ii) the minimum hydrate inventory is at least double the c. 241 

2000 PgC [e.g., Dickens et al., 1995] required to account for the CIE based on isotopic mass 242 

balance considerations.  Given a warm Paleocene ocean and therefore a more restricted 243 

hydrate stability field than at present, such a large hydrate inventory is difficult to reconcile 244 

with model-based estimates of the modern inventory of c. 550-3000 PgC [Buffett and Archer, 245 

2004; Kretschmer et al., 2015; Piñero et al., 2013; Yamamoto et al., 2014].  These 246 

inventories might be reconciled if the modern inventory is under-estimated by models 247 

[Beaudoin et al., 2014] and/or if higher seabed temperatures stimulated significantly greater 248 

methanogenesis in the late Paleocene than today [Gu et al., 2011].     249 
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 250 

We conclude the following: 251 

1. Rapid warming of the deep ocean, such as during the PETM, can lead to rapid hydrate 252 

dissociation, but methane release to the ocean is delayed significantly by transport 253 

processes through the hydrate stability field.  254 

2. In our models, most of the methane released from hydrate remains in the sediment 255 

pores, as dissolved methane or as free gas and only a small fraction reaches the ocean. 256 

3. To explain the global carbon isotopic excursion at the PETM onset, the global hydrate 257 

inventory needs to be significantly larger than that required for isotopic mass balance 258 

and the permeability of the sediments needs to be enhanced by fractures. 259 

4. Global PETM warming may well have resulted in hydrate dissociation and release of 260 

methane to the global ocean but our results raise further challenges around the 261 

mechanism of these processes. 262 

 263 
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Figures 431 

 432 

Figure 1. Abrupt warming and carbon cycle perturbation across the PETM revealed in (a) 433 

δ13C [Zachos et al., 2003; with age model of Penman et al., 2014] and (b) Mg/Ca [Penman et 434 

al., 2014] data from planktic foraminifera (Morozovella velascoensis: green squares and solid 435 

line for average; and Acaranina soldadoensis: magenta diamonds and dot-dash line for 436 

average) from ODP Site 1209 (N. Pacific) revealing a ~3 ‰ carbon isotope excursion and a 437 

~5 oC warming respectively. Panel (c) illustrates the two bottom water temperature functions 438 

(a 5 oC increase over either 0.6 kyr (8.330 oC ky-1) or 6 kyr (0.8330 oC ky-1)) used in this 439 
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study. Grey shading indicates the pre-PETM baseline, orange shading the core of the PETM, 440 

and yellow shading the post-PETM recovery. 441 

 442 

 443 

 444 

Figure 2. Methane generation from hydrate dissociation (thick lines) and associated seabed 445 

methane emissions for an intrinsic permeability of 10-13 m2, irreducible gas saturations of 0% 446 

(medium lines) and 2% (pale lines) and for 0.833 oC ky-1 warming (blue) and 8.330 oC ky-1 447 

warming (red). Panels (a) and (b) for simulations with a 150 m-thick hydrate layer; panels (c) 448 

and (d) for simulations with a 30 m-thick hydrate layer. Note that the vertical scale is 449 

logarithmic Histograms show total methane generation and emissions. 450 
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 452 

Figure 3: Rate of hydrate dissociation and/or dissolution (GH-D) and hydrate formation (GH-453 

F) at different times (indicated by the values in kyr next to each line), for models with an 454 

intrinsic permeability of 10-13 m2 and irreducible gas saturation of 2%. (a and b) Results for a 455 

30 m hydrate layer for a warming rate of (a) 8.33 C kyr-1 and (b) 0.833 C kyr-1. (c) and (d) 456 

show equivalent plots for a 150 m hydrate layer. In a) and c), the relatively sharp peaks 457 

represent dissociation, while the parts of the curves with negative values that slowly increase 458 

towards the seabed represent dissolution. 459 
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Table S1 gives further model parameters that are not given in the text, and the sources of 

these parameters. 
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Text S1. Modeling approach 

 

We employ TOUGH+ Hydrate (T+H), a thermohydraulic numerical code for the 

simulation of the behavior of gas hydrate bearing sediments under non-isothermal 

conditions. Here we describe the most important physical processes modeled and 

assumptions considered; detailed information about the mathematical formulation is 

available from the online T+H manual 

(http://esd.lbl.gov/files/research/projects/tough/documentation/ TplusH_Manual_v1. pdf).   

Following previous studies [e.g. Reagan and Moridis, 2007; Thatcher et al., 2013], 

methane and water relative permeabilities were computed according to a modified 

version of Stone’s [1970] first three-phase relative permeability method and the capillary 

pressure was calculated using van Genuchten’s [1980] law (Table S1). Both models were 

adjusted using the Evolving Porous Medium (EPM) model #2 [Moridis et al., 2012]. The 

relative permeability model was adjusted for changes in the saturation of solid phases (ice 

or hydrate) occupying the pore space. The capillary pressure model was adjusted for both 

changes in porosity, resulting from changes in pressure and in saturation of solid phases 

in the pores, and changes in intrinsic and relative permeabilities, resulting from changes 

in porosity (Table S1). In our runs, changes in porosity due to changes in pressure (Table 

S1) are almost negligible.  

 

For each model we performed an initialization run to establish steady-state initial 

pressure, temperature, and gas hydrate distribution conditions (in this initialization run 

molecular diffusion was not considered). To obtain an initial temperature profile with a 



 
 

4 
 

geothermal gradient of 37.3°C km-1, similar to the initial geothermal gradient used by 

Zeebe [2013] of 37-40 °C km-1, we (i) imposed the initial seabed temperature on the top 

cell of 11 °C and a heat flow source on the bottom cell of 5.6x10-2 W m-2, (ii) assumed a 

sediment thermal conductivity in fully water saturated conditions of 1.5 W m-1K-1 and a 

porosity of 40% [Zeebe, 2013], and (iii) ran the model long enough to achieve 

convergence (steady-state conditions). We imposed the heat flow instead of geothermal 

gradient because the latter changes with the phase (water, gas, hydrate and ice) occupying 

the pore space  

 

To model warming-induced hydrate dissociation, we initialized the models using the 

steady-state pressure, temperature and gas hydrate distribution profiles obtained during 

the initialization runs, and step-changed the temperature of the top cell (representing the 

seabed) every 100 yrs while keeping a constant source of heat flow at the bottom of the 

model equal to that used during the initialization process. The heat supply by seabed 

temperature changes does not have sufficient time to diffuse down and reach the deeper 

part of the model (at 1 km below seabed). Thus, the bottom temperature remains constant 

even without considering the heat flow source at the base. However, when hydrate 

disappears completely and giving sufficient time, this source of heat allows recovering 

the initial steady-state geothermal gradient of 37.3 °C km-1 in the entire column. We also 

considered a fully water saturated thermal conductivity and an initial porosity equal to 

those used during the initialization runs (Table S1).  
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It is unlikely that very low permeability can be maintained in marine sediments when gas 

is being produced rapidly from hydrate dissociation [e.g. Stranne et al., 2016], because, 

for an intrinsic permeability of about 10–16 m2, the pore pressure exceeds the lithostatic 

load only a few years after the dissociation of hydrate commences [Thatcher et al., 2013]. 

Consequently, fractures are likely to form and fluid flow to become dominated by the 

greater permeability of the fractures, rather than the original intergranular permeability of 

the sediments in which they occur. The approach of Marín-Moreno et al. [2015a] and 

Stranne et al. [2016] does not consider pre-existing fractures in the system before hydrate 

dissociation. Therefore, here we prefer the enhanced permeability approach justified in 

detail by Thatcher et al. [2013] that implicitly embodies the assumption that shallow 

fractures are present. A value of 10-13 m2 was required to explain observed warming-

induced methane emissions in the continental margin offshore west of Svalbard, where 

fractures have been seismically interpreted [Thatcher et al., 2013]. For intrinsic 

permeabilities greater than 10-13 m2 our general statements regarding the onset of 

methane emissions are still valid because the rate of free methane gas transport from 

dissociated hydrate to the seabed is then limited by the rate at which the latent heat 

required to dissociate hydrate can be supplied [Marín-Moreno et al., 2013; Thatcher et 

al., 2013] 

 

The 1D models have a total thickness of 1.005 km with a constant cell size of 0.5 m 

except for the top cell (where the top boundary condition is imposed) that has a thickness 

of 0.005 m. Convergence is achieved when the norm of the ratio of the residuals from the 

Newton-Raphson iteration with respect to the accumulation term, which includes mass 
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and heat components, is below a convergence tolerance assume here to be 10-5. When the 

accumulation term is below 1, an absolute convergence criterion is applied and 

convergence is achieved when the norm of the residuals is below 10-5. 
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Table S1. Physical properties of the gas hydrate system.  

1 Heat flow estimated based on Zeebe’s [2013] geothermal gradient and water saturated thermal conductivity. 
GHSZ, gas hydrate stability zone; MFZ, methane-free zone; mwd, meters water depth; mbsf, meters below seafloor;  

 is critical porosity; nk is a fitting parameter; krA and krG are relative permeabilities for aqueous and gas phases, 

respectively; SA, SG, and SH are saturations for aqueous, gas and hydrate phases; SirA and SirG are irreducible aqueous and gas 
saturations; SmxA is the maximum water saturation; P is the pore pressure; Pcap is the capillary pressure; Pmax is the maximum 

value of capillary pressure; P0 is the capillary entry pressure; T is the temperature; n, nG and λ are fitting parameters. 

φc

Parameter  Value Reference 
Initial salinity [wt%] 3.5  [Thatcher et al., 2013] 
Initial hydrate saturation [vol %] 5 [Thatcher et al., 2013] 
Initial MFZ thickness [m] 20 [Zeebe, 2013] 
Gas composition 100% CH4 [Marín-Moreno et al., 2013] 
Heat flow1 [W m-2] 5.6x10-2 [Zeebe, 2013] 
Sediments thermal conductivity 
in fully water saturated conditions. kTw [W m-1K-1] 

1.5  [Zeebe, 2013] 

Sediments thermal conductivity  
in dry conditions kTd [W m-1K-1] 

0.55 [Marín-Moreno et al., 2015] 

Bulk thermal conductivity of the sediments  
[W m-1K-1] 

 [Moridis et al., 2005] 

Solid grain density [kg m-3] 2600  [Zeebe, 2013] 
Solid grain specific heat [J kg-1K-1] 1000 [Zeebe, 2013] 
Pore compressibility  [Pa-1] 3x10-8 [Marín-Moreno et al., 2015] 

Thermal expansivity  [K-1] 0  

Initial porosity  [%] 40 [Zeebe, 2013] 
Porosity function [%]  [Moridis et al., 2012] 
Initial intrinsic permeability ki0 [m2]  10-13, 10-16 This study 
Intrinsic permeability function [m2] 

 
[Xu et al., 2004]  

Relative permeability model: 

Modified version of Stone’s first three phase relative 
permeability method  

 

[Stone, 1970]    
 
 
 
 

Capillary pressure model  

 

[van Genuchten, 1980] 

 

 
Initial diffusivity [m2 s-1]  [Marín-Moreno et al., 2013]  
CH4: aqueous phase, gas phase  2x10-9, 2x10-5

 

 
H2O: aqueous phase, gas phase 1x10-9, 3x10-5

 

 
NaCl: aqueous phase, gas phase 1.5x10-9, 0
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%

&
'

nG

, 1
(
)
*

+*

,
-
*

.*

(
)
*

+*

,
-
*

.*
,

SirA = 0.12, SirG = 0.02, 0[ ], n = nG = 4

Pcap = −P0 S *( )−1/λ −1"
#

$
%
1−λ
,

−Pmax ≤ Pcap ≤ 0,

S*=
SA − SirA( )
SmxA − SirA

,

λ = 0.254, SirA = 0.11, P0 =12500 Pa,
Pmax =10

6  MPa, SmxA =1


