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This thesis examines a number of passively and actively mode-locked fibre laser devices.
The passive systems that are described incorporate the fast, saturable absorber-like action
of a Kerr-type nonlinear optical switch to provide the passive mode-locking mechanism.
Two such all-fibre nonlinear switches are described and analysed, namely the nonlinear
optical loop mirror and the nonlinear optical gate. The mode-locked fibre laser systems
based on the performance of these devices, informally known as the "Figure-of-eight"
laser and the "nonlinear polarisation evolution" laser are described and characterised with
respect to their modes of operation, self-starting thresholds and resonator parameters.
These lasers provide a unique and convenient method for generating fundamental solitons
0.1-5 ps long. A theoretical analysis shows that the resonant loss mechanism, which is
responsible for the formation of sidebands in the optical spectrum of the solitons
produced by these systems, imposes a limit on the soliton pulsewidth that can be derived
from a given cavity. This limit has a square-root dependence on the product of the

intracavity dispersion and resonator iengin.

The actively mode-locked fibre laser configurations that are described are 100-1000m
long and form part of an investigation into their use for distributed temperature sensing.
The sensing method is based on the production of spontaneous Raman backscattered
radiation from the mode-locked pulse circulating within the cavity. An extended version
of the Kuizenga-Siegman (K-S) analysis of active mode-locking has shown that in systems
with large dispersion-length-(bandwidth)? products there is a significant increase in the
pulse durations that can be achieved. However, the accuracy of the K-S theory is also
shown to be questionable when used for cavity lengths >50m. Optical time-domain
reflectometry measurements on a 4km mode-locked ring laser provided strong supporting

evidence for the successful use of long fibre lasers for distributed temperature sensing.



ACKNOWLEDGEMENTS

I wish to thank all members of the Optical Fiber Group (now part of the Opto-electronics
Research Centre) for their valuable assistance and encouragement. In particular I would
like to thank my supervisor, Dr. T. P. Newson, for his continuous guidance and technical
(as well as moral) support. I am also grateful to Prof. D. N. Payne and Prof. W. A.
Gambling for allowing me the privilege to be part of this group. Special thanks are due
to Dr. D. J. Richardson for his assistance and collaboration on many of the experiments
presented in this thesis, Dr. P. R. Morkel and Dr. R. I. Laming for useful discussions
and to Dr. J. E. Townsend, Dr. W. L. Barnes and Mr. L. Reekie for giving generously
their time and expertise, especially at the beginning of my stay here. Many thanks are
also due to Chris Nash for producing diagrams of unsurpassed quality. Last, but not

least, I wish to thank my family for their continuous encouragement and financial

assistance.



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
THESIS CONTENTS

CHAPTER 1 : INTRODUCTION TO THE THESIS

CHAPTER 2 : GENERAL CHARACTERISTICS OF END-PUMPED SINGLE-
MODE FIBRE LASERS AND AMPLIFIERS

2.1 Introduction . . . .. .. . ... e e e 7
2.2 Small-Signal Gain of 3 and 4-level Single-Mode Fibre Amplifiers ..... 8
2.2.1 Population Densities for 3 and 4-level systems .. ............ 8
2.2.2 Pump ADSOIPLON . . . . . . it e 10
2.2.3 Small-Signal Gain . .. ... ... ... ... . ... .. ... 13
2.2.4 Power-Dependent Gverlaps and Optimum Cut-Gff Wavelength . . . 20
2.2.5 The Overlap Factor I and Self-locking . .. ............... 24
226 Maximum Gain . . ... ... 27
2.2.7 Gain Variation with Signal Wavelength . . . ... ... ... .. ... 27
2.3 CW Fibre Laser Characteristics . . . . ... ... ... ... .. ....... 30
2.3.1 Fibre Laser Threshold Optimisation .. ................. 30
2.3.2 Fibre Laser Output Power Optimisation . ................ 31
2.4 ConClusions . . . . .. . .. e 34
References to Chapter 2 . . . . . . . .. . . e 35
Appendix to Chapter 2 . . . . . . . . . . e 36

CHAPTER 3 : PASSIVE MODE-LOCKING OF FIBRE-LASERS I: SQUARE
PULSES, SOLITONS AND SAGNAC LOOP MIRRORS

3.1 Introduction . . . . . . . . . e e e e 38

3.2  Linear Characteristics of Sagnac Loops .. ................... 40



3.2.1 Theoretical Analysis of the Fibre Sagnac Ioop .. ........... 42

3.3  Non-Linear Characteristics of the Sagnac Loop ... ... .......... 50
3.3.1 Introduction ... ...... ... ... ... 50

3.3.2 Square Pulse switching . .. ........................ 50

3.3.3 Soliton Propagation in Optical Fibres .. ... ... ... ... .. .. 55

3.3.4 Sagnac Loop soliton switching . ..................... 63

3.4  Passively Mode-locked Fibre Lasers Incorporating Fibre Sagnac Loops .. 65
3.4.1 The Birefringence-biased (B-B) Configuration . ............ 65

3.4.2 Experimental Details and Results on the B-B Configuration ... .. 67

3.4.3 The Figure-of-8 (F-8) Configuration . .................. 70

3.4.4 Experimental Details and Results on the F-8 Configuration . . . . .. 72

3.5  Theoretical Investigation of Mode-locked Fibre Lasers with Sagnac Loop Mirrors
................................................... 73
3.5.1 Square-Pulse Regime . .. ... .. ... .. ... .. ... .. . ... 78

3.5.2 Soliton Regime . . ... ... ... .. . ... . 79

3.5.3 The Effect of Resonant Loss on the Soliton Pulsewidth . . ... ... 81

3.6 Conclusions . .. ... e 86
References to Chapter 3 . . . . . . . . . . . . . . e 87
Appendix to Chapter 3 . . . . . . .. ... 90
CHAPTER 4: PASSIVE MODE-LOCKING OF FIBRE LASERS II:
SYSTEMS BASED ON NON-LINEAR POLARISATION

EVOLUTION

4.1  Introduction . . . .. .. . . e e 94
4.2  Review of the Theory of Non-Linear Polarisation Evolution (NLPE) of Light in
Birefringent Media . . . ... ... ... ... . ... . ... .. e 95

4.3  NLPE in a Fibre Ring Laser Configuration .. ................. 99
4.3.1 Theory . ... . . e e 99

4.3.2 Experimental Details and Results . . . . ... ............. 105

4.4  NLPE in a Fabry-Perot Fibre Laser Configuration ............. 125
4.4.1 Experimental Details and Results . . ... ............... 128

4.5 Solitons and Non-Linear Birefringence . ................... 132



CHAPTER 5 : LONG MODE-LOCKED FIBRE LASERS FOR SENSING

APPLICATIONS
5.1  Infroduction . .. .. ... .. . ... e
5.2 Theoretical Considerations . .. ... ... .. .. ... ... ...
5.3  Experimental Results on Actively Mode-locked Systems . .........
5.3.1 Fabry-Perot AM Mode-Locking Using an Acousto-optic Modulator
5.3.2 Sagnac Loop AM Mode-Locking Using a Piezoelectric Cylinder
5.3.3 Fabry-Perot FM Mode-locking Using a Piezoelectric Cylinder
5.4  Kuizenga-Siegman Theory . . . ... ... . .. ... ... .. ... .. ...
541 AMmode-locking . ........... ... .. ... .. .. ... ..
542 FMmode-locking . ... ........ . . . .. ...
5.4.3 Result Interpretation . . . .. ... ... ... ... ...
5.5  Experimental Results on Passively Mode-locked System ... .......
5.6 Conclusions .. ... ... .. .. . e e
References to Chapter 5 . . . . . . . . . . . .

Appendix to Chapter 5 . . . . . . ... . e

CHAPTER 6: THESIS SUMMARY AND GENERAL CONCLUSION



If a man will begin with certainties, he shall end in doubts;

but if he will be content to begin with doubts, he shall end in certainties.

Francis Bacon, Advancement of Learning, 1.v.8



CHAPTER 1

INTRODUCTION TO THE THESIS

1.1 INTRODUCTION

Low-loss rare-earth doped single-mode optical fibers have made a significant impact in
the fields of opto-electronics and telecommunications. Since the first demonstration of the
mcorporation of rare-earth ions into the core of a monomode optical fibre by an extended
Modified Chemical Vapour Deposition (MCVD) process [1], a wide range of rare-earth
doped-based fiber devices have been developed, including fibre lasers and amplifiers as

well as novel fibre sensors and fibre optic switches.

The most exciting of these developments has been in the area of optical communications
with the erbium-doped fibre amplifier outperforming its rival, the semiconductor optical
amplifier, within just a few years of it first being reported [2]. The field of fibre lasers
has also been the focus of a high level of research activity; fibre lasers now span a range
of operating wavelengths of about 3um, from 0.651um (Sm3*) to 3.5um (Er’"), with
some of the transitions reported lasing at extremely iow threshold pump powers: the high
field intensities that are created as a result of the ability to confine both the pump and
lasing lights with the lasing species into the very small area of the fibre core, combined
with good cross-section-fluorescence lifetime products has enabled efficient fibre
amplifiers to be designed. For example, the Er** system can provide single-pass gains
in excess of S0dB at only modest pump power levels (~50mW). The fibre laser systems
that are presently being developed include the high-output power cladding-pumped fibre
lasers [3], single longitudinal mode fibre lasers [4] and fibre lasers which operate at
wavelengths suitable for gas sensing or medical applications [5,6]. All of these systems

have the advantages of relatively wide tunability and compatibility with existing optical

fibre technology.



The use of optical fibres as sensing elements for physical quantities such as pressure and
temperature has been demonstrated over the last two decades. As well as point-
monitoring, optical fibres also provide the capability of true distributed sensing of these
quantities. Rare-earth doped single-mode optical fibres have made their presence felt in
this field too, and there have been several reports on their novel incorporation into

systems for current [7], temperature [8], polarimetric [9], and rotation [10] sensing.

The high gains achieved with rare-earth doped fibre amplifiers have enabled the
construction of fibre lasers with cavity lengths ranging from less than a cm to more than
10km long. Whilst the symmetry of the SiO, molecule, unfortunately, prevents the
generation of second-order nonlinear effects in optical fibres, the combination of long
cavity lengths with high mode field densities has provided researchers the opportunity to
observe and exploit third-order nonlinear effects. Even though the third-order non-linear
coefficients involved are extremely small, these effects have been observed at power
levels of a few milliwatts. For example, optical switching has been successfully

demonstrated at optical power levels below one milliwatt {i1].

The large (> 30nm) gain bandwidths of rare-earth doped fibre amplifiers such as the Er’™*
or the Nd>* system have made fibre lasers highly attractive for ultrashort pulse
generation. This has been achieved by incorporating a nonlinear optical fibre switch into
a fibre laser system: the action of the optical switch, which is similar to the behaviour
of a saturable absorber, causes passively mode-iocked operation; in the negative group-
velocity regime this leads to the generation of optical solitons [12,13]. Until the mid-
eighties ultrashort pulse production could only be achieved by using dye or colour-centre
lasers, often in combination with external pulse compression techniques. These recent
developments in the field of ultrashort pulse generation by fibre laser technology are

thought to set new standards for the reliability, simplicity and cost of future ultrafast

communication systems.

The principal aim of this thesis is to investigate two types of mode-locked fibre laser
systems. The systems belonging to the first type are those which utilise the characteristics

of a nonlinear optical switch, based on a nonresonant Kerr-type (third-order) fibre



nonlinearity, to produce passively mode-locked soliton laser operation. Two prime
examples of such switches are the Sagnac loop switch and the non-linear polarisation
switch. The significance of these systems lies in their capability to produce fundamental
solitons of time durations ranging from ~ 50ps to ~ 100fs. Moreover, the simplicity of
these systems and their compatibility with existing fibre technology makes them attractive
candidates as soliton sources in a soliton-based communications system. The second type
of mode-locked fibre laser systems that is investigated are long, actively mode-locked

fibre lasers for use as distributed temperature sensors.

This thesis is divided as follows:

Chapter two serves as an introduction to the continuous-wave operation characteristics
of fibre lasers with particular emphasis given to the Er>*-doped system (a 3-level system)
that was used for the majority of the experimental work. For the sake of completeness,
the Pr**-doped system was chosen to represent the class of ideal 4-level fibre laser
systems. Semi-analytical expressions for the gain of 3 and 4-level amplifiers are derived
and concepts such as the power-dependent effective area and the optimum cut-off
wavelength are discussed in detaii. Guidelines for iasing threshoid and output power
optimisation are given and the factors that determine the operating wavelength of the

Er’* system are investigated.

Chapter three investigates the mode-locked operation of fibre laser systems which use the
nonlinear characteristics of the Sagnac loop mirror. Following an analysis of its linear
characteristics in which the effects due to the birefringence in the loop are discussed, the
analysis then focuses on its nonlinear behaviour. Owing to the particular relevance of
these nonlinear characteristics to optical soliton propagation, a summary of the theory of
the propagation of solitons in optical fibres is presented, providing also the neccessary
theoretical background for later discussions of experimental work. The ideas that have
been developed are then verified experimentally using two fibre laser systems, namely
the birefringence-bias and the Figure-of-8 configuration. The chapter closes with a
discussion on the mechanisms that limit the pulsewidth in mode-locked fibre soliton laser

systems and suggests ways that could minimise this problem.



Chapter four investigates the mode-locked operation of fibre laser systems based on
another type of nonlinear fibre-optic switch which operates by using the effect of non-
linear polarisation evolution (NLPE). A brief introduction to the principles of NLPE is
followed by extensive experimental studies on the utilisation of this effect to provide self-
starting, passively mode-locked soliton operation in both ring and Fabry-Perot fibre laser
cavities. As with the Figure-of-8 laser, the systems are characterised with respect to their
operating regimes and other parameters such as the cavity length and the type of fibre

used. A brief account of the soliton behaviour in the presence of birefringence is also

given.

Chapter five reports on an investigation into the possible use of long mode-locked fiber
lasers for distributed temperature sensing (DTS). The chapter starts by discussing the
merits of a fibre laser-based DTS system in comparison with those using the conventional
Q-switched laser source approach. Various experimental configurations are then presented
and their relative merits discussed. Optical Time Domain Reflectometry measurements
on a 4km iong mode-locked fibre laser were performed for the first time. An extension
of the Kuizenga-Siegman model for actively mode-locked lasers to include the effects of
significant intracavity dispersion present in uitra-long fibre laser cavities, helps to

interpret the experimental results.

The final chapter of this thesis provides a summary of the results of each chapter and

states the overall conclusions of the thesis.
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CHAPTER 2

GENERAL CHARACTERISTICS OF END-PUMPED SINGLE-MODE
FIBRE LASERS AND AMPLIFIERS

2.1 INTRODUCTION

The objective of this chapter is to review the continuous-wave operation (CW)
characteristics of longitudinally pumped single-mode fibre lasers prior to a discussion of
the mode-locked regime of operation. Particular emphasis is therefore given to topics
which are relevant to mode-locking, such as the lasing wavelength in Er3*-doped systems
and the overlap of the signal with the inverted population. Wherever possible, an
analytical approach is pursued. The fibre laser systems are assumed to be ideal 3 or 4-
level systems and distinctions are made between the two. An ideal 3 or 4-level system
is defined as one in which the lasing species (atoms, molecules etc) can be found to exist
in either one of two energy levels only; the "ground" state or the "excited" (or "lasing")
state. In this respect both systems are effectively "2-level" systems and the only lifetime
of significance is the fofal lifetime of the excited state. This assumption is valid for the
laser transitions in three different types of rare-earth doped fibres, namely the *F;,—*F,,,
transition in Nd** pumped at 810nm, the *I,5,~*1,5, transition in Er**, pumped at the
excited-state-absorption-free wavelength of 980nm and the 'G,~Hj transition in Pr’*
pumped at 1017nm. The systems are assumed to be homogeneously broadened; in the
case of the Er’* system, the Stark-splitting effect can be accounted for by ascribing a

wavelength-dependent emission and absorption cross section.

The fibre modes for the signal and pump wavelengths are assumed to be Gaussian and
their spotsizes with respect to the fibre V-value are determined not by Marcuse’s formula

[1] but by using a more appropriate formula derived by Whitley [2]. Whitley’s formula



provides the respective Gaussian mode spotsize of an LP;; mode by maximising the
overlap between the two as opposed to maximising the corresponding launch efficiency
(Marcuse). This approach is shown to give more precise results when used for fibre

amplifier gain calculations.

The semi-analytical expressions which are derived for the small-signal gain of ideal 3 and
4-level fibre amplifiers can be used to determine the lasing threshold of fibre laser
cavities using such amplifiers. The effect of Amplified Spontaneous Emission (ASE) on
the amplifier gain is neglected, as it is not relevant for laser threshold calculations. Gain
optimisation curves are drawn with respect to the fibre cut-off wavelength and the
concept of a pump power-dependent effective area is introduced in connection with the
overlap between the signal mode and the inverted ion population. This is followed by the
determination of the lasing wavelength in systems with wavelength-dependent signal
emission and absorption cross-sections, such as the Er** system. Finally, this chapter
ends by deriving a formula for the fibre laser slope efficiency and suggests methods that

can lead to output power optimisation.

2.2 SMALL-SIGNAL GAIN OF 3 AND 4-LEVEL SINGLE-MODE FIBRE
AMPLIFIERS

To obtain an expression for the small-signal gain of a single-mode fibre amplifier, the
relationship beiween the pump power and the population densities for 3 and 4-level
systems first needs to be calculated. The pump absorption along the doped fibre can then
be determined and hence the small-signal gain can be evaluated. The dependence of the
small-signal gain on various parameters such as the fibre cut-off wavelength and the

wavelength-dependent signal absorption and emission cross-sections is then investigated.
2.2.1 Population Densities for 3 and 4-level Systems

First consider an ideal 4-level laser system. A standard rate equation analysis [3] yields
the following formulae for the energy level population densities of a 4-level system at

steady-state conditions:
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where h is Planck’s censtant, N,(r,z) and N,{(r,z) are the lasing species popul
densities (eg number of ions per unit volume) in the ground and the upper lasing level
states respectively with Ny, (r,2)=N;(1,2) +Ny(r,2), 0, and o denote the pump
absorption and signal emission cross-sections respectively, 7, is the total (fluorescence)
lifetime of the lasing level, », and »; are the frequencies of the pump and laser light
respectively and I(r,z), I(r,z) refer to the pump and laser intensities at a radial distance
r from the fibre core and axial distance z. 7, iS a mixture of two components, the
radiative part 7,4 and the non-radiative part 7,4 of the laser transition, which satisfy the

following relationship:

1_1 1

—= +
Tf Trad  Tnrad

A similar rate equation analysis for the ideal 3-level system [3] provides us with the

following equations for the relevant energy level population densities at equilibrium:

N Wy Wy 2.5
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where

y=_2 (2.7)

04> O Deing the signal absorption and emission cross-sections respectively. The pump

emission cross-section is assumed to be zero in both the 3 and 4-level systems.

Assuming a Gaussian approximation for the pump and laser mode profiles inside the

fiber:

)"2 2
"o o 2.8)
W,(r,2)=W,0,20e * W(r,2)=W(0,2e ™

where r is the radial coordinate across the (circular) fibre waveguide and w,,w, are the
radii where the intensity has dropped to 1/e of its value at r=0. The distribution of the
dopant ions is assumed to be "top hat” (ie having a square profile extending to r=r,) and

being uniform along the fibre. P,(z) (k=p,s) is the total power carried by the fibre mode

and is given by

T W,(0,.2hv, .
P(2)= £ I(r,2)2mrdr=I k(O,z)ww,%=k(T)Vk Tw% =W(0.,2)7, P ot (2.9)
k

where

s M, (2.10)
0T

is the signal or pump saturation power and oy is either g,, Or 0.

2.2.2 Pump Absorption

The amount of inverted ions at any point along the doped optical fibre is determined

(through eqns.(2.1) and (2.2)) by the amount of the pump light that is present. In the case

10



of an end-pumped fibre, the absorption of the pump light due to the dopant ions and the
attenuation due to the background losses is given by

(o]

‘[ al,(r.2)

o 27rdr=- ‘[ ("paNl (r,2) +ap)1p(r,z)27rrdr (2.11)

or, in terms of the total power carried by the pump mode Pp(z),

F, 0 o0
de(z) )

—="9,F,® ‘[Fp(r)Nl(r,Z)27rrdr—apPp(z) le@%@ 2.12)

where F (1) is defined as

-
‘we NI [

(2.13)

e
F,(n=
Tw

and o, is the pump backround ioss coefficient. The pump absorption length in the absence
of background losses (o, =0), Ly, is defined as

1
o N

p, lotal

L,=

(2.14)

Case (a): No pump background losses

At threshold (W(r,2)=0) and in the absence of any pump background losses (c,=0),
eqn.(2.12) becomes

.
dP (2) Y F.(D 215
2210, N :[ 2 omrar| P (2.15)

2
-r?
p(e ™ "+l

where
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(2.16)

is a normalised pump parameter. When the radial integral is determined this reduces to

p(z) _ 1 p(2) e a1 (2.17)
z;—

dz p(@)+1

Eqn.(2.17) can only be solved numerically [4], but by approximating the logarithmic
function on the RHS with the rational function (see Appendix to Ch.2)

’) ’)

{ Lu A ~ )
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an approximate solution can be given in closed form:
. ( 2] ]
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where L is the fiber length and
= ) (2.20)
P,0)
‘1]’1‘ 1’\ Aﬂf\ ﬁf‘ n]‘]

. .
the residual pump fraction at the fiber end. C, and C, are constants which depend onl

t

1
4

on the normalised pump spot size w, /1, (see Appendix to Ch.2).
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Case (b): Inclusion of pump background losses

Egn.(2.12) is now equivalent to

dP,x) | P, 1l g (2.21)

& | P@L,

n | P@ e
p@@)+1

] -a, [ P,(2)

By using the same approximation for the logarithmic function as in case (a), the

approximate closed-form solution of this equation is

C{ap(0))’ +Csap(0)+C
2.22
C PO +Cp(0)+C, @.22)
=Cftanh™}(Cyap(0)+ Cy)~tanh (Cyp(0)+Cy)

Inc +_.l.'_
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where

1 (2.23)

%

L

b

and C; (i=3..9) are constants that depend on w,/ry, Ly and L, (see Appendix to Ch.2) and

are determined in a similar fashion as for C; and C,.

Fig.2.1 plots the numerical solution of eqn.(2.12) for an Er** amplifier 200m long in the
two cases of (a) zero background loss (Ly=00) and (b) Lp=2000m. The derived
approximate analytic solutions given by eqns.(2.19) and (2.22) were so close to the
numerical solution of eqn.(2.12) that the two could not be distinguished. With reference
to p(0), ie the ratio of the input pump power P (0) to P, the absorption of the fibre is
divided into two main regions: for p(0) > 10 the absorption is linear whereas for p(0) <1

fila T oty
the fibre ab ti
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Fig.2.1 Ef* amplifier pump absorption: fo=2um, wlto=1,

0,a=2.52x10%, A, =980nm, 7,=12ms.
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2.2.3 Small-Signal Gain

With a knowledge of the number of excited ions at each point along the fibre, the small-
signal gain can be calculated. The propagation equation for a signal at the lasing

wavelength is described by

-]

2rrdr= ‘[ (o, No(r.2) i I (r.2)2rdr (2.24)

T AL(r.2)
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o}

[ ; )27rr dr= [(UseNz(” ,Z)—USaNl(r,z)—as)ls(r,z)Zwrdr (2.25)
0 - 0 i

N

for the 3-level system. In terms of the power carried by the mode P(z),

)

dP(z) (2.26)
dz = totalg) * \r\f)m—rﬂr_i G ‘h',l(r’z)‘p( )2@rd; _asJ! Ps(z)
Ty }‘0
dP (z) N N (2.27)
pE = lastmmll bs(r)zﬂ-rdr—L [\asemsa)Nl(r,z)ﬁ s(r)27rrdr—ozs} P (2)
for the 4 and 3-level laser amplifiers respectively. F (r) is defined as
o (2.28)
e .
F(r=
T,

and « is the signal intensity background loss coefficient. We have also used the fact that

N,(r,z) =N,,,;-N,(r,z) for ideal 3 and 4-level systems. Using eqn.(2.12) to eliminate dz
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from eqns. (2.26) and (2.27) we obtain the following expressions

PyL) 2 p)

dP, o© 22 o
J Ps= se(l_e ol )L£+ i,; JS@)@_QSL (2.29)
ro s %, 0 %, W plo)
P(L) 2 pI)
dP. ¢ 2,3 o, +o
J s _ se<1__ ro/ws)£+( s, Sa)(_",g_ J S(p)@—axL (2.30)
oy Fs 9, Ly 0, o} ol

where S(p) is a function that represenis the effect of the power-dependent overlap
between the signal and the population inversion and is given by
Ty
—r2u?
[ N,(r.2)e” " 2ardr

Sy =- 2.31)

7wl (0
lNl(r,z)e ! C””27rm’r+_ff’7rw;

%%,

Again, we consider two cases with respect to pump background losses:

Case (a): No pump backeround loss

In the case of zero pump background loss (o, =0) and under the assumption of negligible
signal power (W((r,z)=0) it can be shown that S(p) always lies between two values, ie

Sp(p=0) <Sy(p) <Sy(p=0) where the subscript O indicates that there is zero pump

background loss and

2( —rglwf)
w. \l-e
SminE 0(p =0)=_;—7 (2.32)

wy\1-e o w")
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2 2
_re(fw-1w))
S =Selpooo)= 8 (2.33)
ro(Vwg-1w,)

If the pump and signal spotsizes that correspond to a certain fibre V-value for each

wavelength are calculated using Whitley’s formula [2]

“-0.436+1.174V"15+0.698V 6 (2.34)
a

(where a is the core radius) with

Vo As (2.35)

Vi N

the following function was found to be a reasonable approximation for S,(p):

) Ciop+Cyy
o C,,p+1

(2.36)

where C; (i=10-12) are constants that depend on the pump and signal normalised

spotsizes (see Appendix to Ch.2).

Fig.2.2 plots Sy(p)/S,,;, against the normalised intensity parameter p for two different
values of the signal V-value. The signal wavelength is 1.56um and the pump wavelength
is 0.98um. The solid curves were obtained by numerical integration of eqn.(2.31) and
the dashed curves by direct evaluation of formula (2.36). It can be seen that the
approximation holds very well over a wide range of signal V-values. Note, however, that
Whitley’s formula can be used only when the dopant radius r, is equal to the core radius
a and that eqn.(2.36) is an approximate formula which holds only for the range of signal

and pump spotsizes that are calculated using egns.(2.34) and (2.35).

By use of the above approximation (eqn.(2.36)), the integrals of (2.29) and (2.30) may

be determined yielding the following expressions for the integrated small-signal gain of
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Fig.2.2
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3 and 4-level amplifiers:

2

¢ -rifa® %, w
]nG4—lev€I= sf(l_e af 5)£.+.i_p(s . lna +(S -5 . )Iﬂ[
—U L o 2 min max min:
F 0 Py Wy

aCp0)+1

C,p(0)+1 ]]_“*‘L 2.37)

[ 5

nga-e. "y, ) L, (%) i;[smlna +(Sm_sm),n[m]]-a L (2.38)

Gy, S, Cp0)+1

L~

5

where

G=_2" (2.39)

1s the small-signal gain of the 3 or 4-level fibre amplifier. Eqns.(2.37) and (2.38) give
the small-signal gain of 3 and 4-level fibre amplifiers in analytical form, provided that
o, the residual pump fraction at the amplifier end is known. This can be found by

applying Newton’s method to eqn.(2.19) or by solving numerically eqn.(2.17).

Case (b): Inclusion of pump background loss

By solving the integral on the denominator of the expression on the RHS of eqn.(2.31),

S(p) can be written as

e ] ] B (2.40)

By using the approximation of eqn.(2.18) on the above equation, the integrals in
eqns.(2.29) and (2.30) can determined, but the resulting expressions are complicated and

cumbersome and hence a numerical approach is preferable.
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2.2.4 Power-Dependent Overlaps and Optimum Cut-Off Wavelength

In order to maximise the gain of a fibre amplifier two parameters are of vital importance:
(a) the existence of a good overlap between the signal spotsize and the inverted
population and (b) the "interaction area" between the pump and the dopant must be made
as small as possible. Increasing the numerical aperture (NA) of the fibre ensures that
most of the signal and the pump power propagates inside the fibre core and helps to
maximise the aforementioned overlap. The size of the "interaction area” is determined
by both the NA and the fibre core radius a (and the dopant core radius as well, but in this
analysis it has been assumed to be equal to the core radius). In fact, it transpires that
there is an optimum (a NA) product that provides maximum amplifier gain for a given
NA. This means that although increasing the fibre NA always results in higher amplifier
gain, the fibre core-radius "a" should be decreased to provide the optimum (a NA)

product. Since the cut-off wavelength A_is defined as

\ o 2malNA _ NV (2.41)
€ 2405 2.405

where k=(p,s), optimising the amplifier performance with respect to A, is then equivalent

to optimising the (a NA) product.

For fibre amplifiers the optimum cut-off wavelength is usually defined as the wavelength
that provides the maximum gain efficiency (eg dBs of gain / mW of launched pump
power) under fully optimised conditions. That is, the length of the amplifier and the input
pump power must be first optimised to provide the maximum possible gain efficiency.
The case of a 4-level fibre amplifier with no signal background losses is the most simple;
one has only to ensure that for every value of A, the length is sufficient to absorb all of
the pump light. In this case, the optimum cut-off wavelength at low pump powers is
determined by the requirement of a good overlap between the signal profile and the
inverted population, ie such that most signal power propagates inside the region where
there are inverted dopant ions. At low pump powers, the inverted population profile

follows that of the pump and so the aforementioned overlap is a three-way overlap
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between the signal, inverted ion population and pump profiles. At high pump powers, the
inverted population profile cannot follow the pump profile due to saturation effects and
so the overlap is between the signal and the inverted ion profiles. Although this Iowers
the gain efficiency compared to the three-way overlap case, the optimum cut-off
wavelength does not change significantly. For 3-level lasers the situation is more
complicated: as the pump intensity across the dopant area varies, there will be signal
absorption in the "wings" of its profile if there is insufficient pump light to provide gain
in that region. In this case it is best to confine the inverted population in an area smaller

than the core area, so that it only interacts with the central part of the pump and signal

profiles.

The gain dependence on the overlaps leads to a definition of an effective core area A 4
which is pump power dependent. From eqns.(2.37) and (2.38) by substituting for Ine
from eqn.(2.19) and using again the approximation of eqn.(A2.2) in the Appendix, the

expressions for the gain of 3 and 4-level amplifiers with no pump background losses

become
e 5 B0 g (2.42)
hvp Aeﬁ(Pp(O) ,PP(L) ,INA ,rO)
(05 +0,)T P (0)(1- T
InG*- = sa; wJ T o ,{)f )rf ya) —— s Ntotaxl —€ ! J)L_O‘A'L (2.43)
v, A eﬁ(‘t’p(U),I’p(L),fVA,I‘O) s
where

Ag{P,(0).NA,ro) =7y T(P,(0).P,L). V,,. V) (2.44)

and I'(P,(0),Py(L),V,,Vy is the value of the power-dependent overlap. Limiting

essions for this effective core area have appeared in the literature [5,6].

In the case of background pump losses the optimum cut-off wavelength shifts to higher

values, because this ensures rapid pump absorption by the dopant ions and hence an
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increase in the pump absorption efficiency.

Fig.2.3 plots the gain efficiency of a praseodymium laser amplifier (4-level system)
versus cut-off wavelength for six different cases. In all cases the length was chosen so
that >99% of the pump light was absorbed and the signal background losses were set
to zero. For curves (a), (b), (d) and (e) the pump backround losses were set to zero.
Curves (a) and (b) correspond to an NA value of 0.20 and input pump powers SmW for
curve (a) and 1W for curve (b). In curve (a) the optimum cut-off is around 780nm,
whereas for curve (b) the optimum occurs at 765nm with reduced gain eficiency
throughout. This demonstrates the effect that the power-dependent overlap has on the gain
efficiency and optimum cut-off wavelength of the amplifier. Curves (d) and (e) are
analogous to curves (a) and (b) in terms of input pump powers (SmW for curve (d) and
IW for curve (e)) but the NA is 0.15 and the gain efficiency is significantly reduced.
Since the pairs (a),(d) and (b),(e) share the same value for the optimum cut-off
wavelengths (780 and 765nm respectively) it is evident that the optimum cut-off is
independent of the fibre NA. These figures are in good agreement with results based on
full numerical modelling of the amplifier (including ASE) predicting optimum cut-off

wavelengths at 750nm [7] and 800nm [§].

Curves (c) and (f) include a pump background loss "absorption length” L, (eq.(2.23)),
10 times higher than the dopant loss absorption length L. The values for the input pump
powers and fibre NA’s are 1W, 0.20 and SmW, 0.15 respectively. The optimum cut-off
wavelength has now shifted to 825nm and has become virtually independent of the input

pump power.

In the case of erbium fibre amplifiers (3-level system) the situation is more complicated.
For a given input pump power there exists an optimum amplifier length which maximises
the gain (and hence the gain efficiency). Fig.2.4 plots the gain efficiency of an erbium
amplifier (Y1 axis) at the optimum length L, /L, (Y2 axis) vs input pump power for
three different values of the fibre cut-off wavelength. All background losses were set to
zero for simplicity. As the three gain efficiency curves cross each other, it is evident that

the optimum cut-off wavelength depends on the input pump power. As the pump power
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Fig.2.3
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increases, however, the gain efficiency for each cut-off wavelength approaches a certain
distinct maximum value which is different in each case. The optimum cut-off wavelength
may be taken as the one that yields the best value for this gain efficiency limit and is
therefore independent of the pump power. Fig.2.5 plots the gain efficiency vs cut-off
wavelength at an input pump power of 20mW for two values of fibre NA. Y2 axis shows
the value of the optimum length used for each poimnt in normalised units. The cut-off
wavelength that corresponds to maximum gain efficiency is around 835nm for both fibre
NA’s, again in good agreement with results derived using full numerical models

predicting the optimum A, to be 800nm [9].
2.2.5 The Overlap Factor I' and Self-locking

The eqns.(2.42-44) of the previous section show that minimising the overlap factor T
leads to higher single-pass gains. This is, in fact, the principle behind passive "self-
locking" in Ti:Sapphire systems, yielding pulses as short as 11fs with peak powers in
excess of 100kW [10]. The mode-locking mechanism works as foliows: During CW
operation, third-order non-linear effects produce self-focusing of the lasing mode inside
the gain medium and, as a result, the mode "shrinks" in dimension. Under certain
optimised conditions, this effect leads to an increase in the mode overlap with the
inverted population, producing higher gain with higher intracavity powers and hence
pulsed operation is favoured. However, the relatively high self-starting pump powers
(~6-10W) that are required makes this technique iess atiractive than the seif-starting,
passive mode-locking techniques that will be discussed and analysed in chapters three and

four.
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Fig.2.4 Er’* amplifier: Pump power dependence of gain efficiency
(Y1 axis) at the optimum length (Y2 axis) for three
different values of cut-off wavelength: (a) 0.7um, (b)
0.85um and (¢) lpm. NA=02, 0,=2.52x107,
0, =7.9x10%, 0, =7.11x10"%, \,=980nm, \,=1536nm,

Te=12ms.
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Fig.2.5 Ec* amplifier: Gain efficiency vs cut-off wavelength at
P,(0)=20mW evaluated at the optimum length (Y2 axis) (a)
NA=0.15, (b) NA=0.20. The rest of the other parameters

are the same as in Fig.2.6.
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2.2.6 Maximum Gain

To obtain an expression for the maximum gain for an amplifier of length L in the case

of zero pump background losses, we let « — 1 in eqns.(2.37) and (2.38)

2, 2
InG,,= [(1 —€ _rOwa) UseN total_as] L (245

In deriving this expression the effect of ASE has been neglected. In practice, the
maximum achievable gain is limited by ASE. To find the corresponding maximum pump

power that can be absorbed in a given amplifier of dopant volume V, we let & - 1 in

n.(2.19):
AN v
pmax_ /17 (2.46)
< abs ~ Ntomtv D
T
f
2.2.7 Gain Variation with Signal Wavelength

Erbium amplifiers have absorption and emission cross-sections that vary with wavelength
and, as a consequence, the wavelength of maximum gain is a function of the input pump
power. This effect is shown in Fig.2.6, in which the spectral gain of a GeO,-Al,05-5i0,-
type Er’*-doped single mode fibre is plotted for various pump powers using eqn.(2.37)
and published data [11] for the signal emission and absorption cross-sections o, and g,.
At low pump powers, the gain is maximum in the long wavelength ("red") side of the
spectrum; as the pump power is raised, the point of maximum gain shifts to the "blue”
side of the spectrum. Fig.2.7 is a graph of the wavelength at which lasing will occur as

a function of the round-trip cavity loss. For graph (a) the fibre length used was 5 times

the fibre absorption length L, whereas for graph (b) the length was 10 times the

Ciliw 1xasiNe 5T V)

absorption length. The pump background loss was assumed to zero. Note that there are
three discrete "windows" in which lasing occurs: the first is around 1.61pm, the second

is around 1.56pm and the third is at 1.53um. Note also that the "width" of the windows
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Small-signal Gain (dB)

Fig.2.6 EC* amplifier: Gain dependence on wavelength and input
pump power for a GeO,-Al,0,-5i0,-type fibre: NA=0.2,
A.=835nm, L/L,=10, 7;=12ms.
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(in terms of round-trip loss values) changes significantly with fibre length; the width of
the 1.56um window in graph (a), for example, spans a range of cavity loss between 15%
and 55% whereas in graph (b) the span is broadened and shifted, ranging from 30% to
80% . These results are consistent with work published elsewhere [12,13]. This is a useful
method to obtain a rough estimate of the laser intracavity losses, since estimates based
on laser threshold calculations in 3-level systems involve large uncertainties. This is
because the laser threshold in 3-level systems is only weakly dependent upon the
intracavity losses, with pump saturation intensity being the most important factor. For
example, the difference in the laser threshold across the range of cavity losses depicted

in both graphs of Fig.2.7 was only a few mW.

The usefulness of this method of estimating the value of the cavity losses will become

apparent in later chapters which deal with the passive mode-locked operation of fibre

lasers.
2.3 CW FIBRE LASER CHARACTERISTICS

This section outlines the basic procedures that lead to laser threshold minimisation or

output power maximisation in fibre lasers.
2.3.1 Fibre Laser Threshold Optimisation

The condition for laser oscillation in any laser cavity is

G,(1-Loss,)=1 (2.47)

where G, and Loss, are the round trip intensity gain and fractional loss respectively.
Since the expressions for the 3 and 4-level fibre amplifier gain are given in closed form
with respect to the input pump power (due to the power-dependent effective area A.g),
no analytical expressions for a fibre laser threshold can be derived. At best, analytical
expressions have been derived only for limiting values of A ¢ [5,6] in the case of no
pump background losses. It is therefore inevitable that an accurate optimisation of fibre

laser threshold should be done by solving eqn.(2.47) numerically, using the 3 and 4-level
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amplifier gain expressions that were derived earlier.

In order to achieve full laser threshold optimisation, one has to find initially the optimum
length for each value of fibre cut-off wavelength (all other parameters being constant).
There will then be a specific (L, A;) combination which provides the smallest threshold
from all others. The value of fibre NA should be chosen as high as possible, provided
that this is not at the expense of a reduced pump launch efficiency. In case there are no
severe length restrictions due to background losses, the fibre length should be chosen to

be at least a few times longer than the critical length L, which, using eqn.(2.45), is given

by

_In/R
L= /R (2.48)

[ 5 5\
__rl m;) _
(1 € JseN total~ s

where R is the output coupling reflectivity. The critical length is the length below which

no fibre laser will be able to reach threshold, no matter how hard it is pumped.
2.3.2 Fibre Laser Output Power Optimisation

The standard laser output characteristic is given by

P,,=n(P,0)~P,,) (2.49)

[4]

where P, Py, are the laser output and threshold powers respectively and 7 is the laser
slope efficiency. It represents the fraction of the input pump power above threshold that

is converted to useful output laser power ie, by definition

Pou (2.50)

dP,0)-P,,)

i

n

Output power optimisation involves the determination of the unique combination of the
parameters (R,L,\,), or, equivalently, (P4,.n), that yields maximum ouput power at a

specified value of pump power.
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In order to find an expression for » which includes cavity losses besides the laser output
coupling, let’s consider a laser cavity with constant circulating energy E_. .. The power

that is dissipated maintaining this circulating energy is given by

Ecirc
Pus=—2=P,(0)-P,, (2.51)

L.
[4

where

Tr 1

-
I

N (2.52)
In(R)+Y_ In(1-L)
i=1

with T,, being the cavity round-trip time and L; (i=1..N) being the values of various
intracavity losses other than R.

Eqn.(2.51) can then be written as

4 ‘ ¥ n M EN
p thr o Uy \ i {£.0D)
Ly A i=1 j
=P out+ lost
where
E .

Po== ;::cln(R)

In(R) (2.54)

=(P,(0)-P,,) -
In(R)+Y" In(1-L,)
i=1

From this last equation it is evident that 5, the part of the total slope efficiency that is

due to various intrinsic intracavity losses, is given by
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In(R)

Te™ (2.55)

N
In(R)+Y _ In(1-L)
=1

The total slope efficiency is then the product of the Stokes and pump absorption

efficiencies with the coupling efficiency 7,:

n=%(1 —a)n, (2.56)

i)

In the case of pump background losses the pump absorption efficiency n,=(1-«) should

T
U

A Tarnad s
LS P.I.C!.UCU y
Fy
i -rw?
Ne  Plurdr
P,(L) l[ 1 m
dP
I 7 P (2.57)
F,0) 12w a, 2
iNle P2mrdr+—— 7w,
i, = UP 4
- PN
P, (0)
Other efficiencies such as the launch efficiency #;, a pump fluorescent quantum efficinecy

7n¢ [3] and an overlapping efficiency », may also be included, along with a corresponding
modification for P,.. The overlapping efficiency 75, appears in situations were the pump
light is absorbed by atoms in places which are not "seen” by the signal and thus cannot
contribute to any increase in the gain of the amplifier [14]. In such cases, the inverted
population continues to build up in these areas even after lasing starts, as the lasing mode
is unable to saturate the gain. In fibre lasers, however, where the signal spotsize is
always larger than that of the pump, the values for », are very close to unity. The
formula for the total slope efficiency, eqn.(2.56), is the same for both 3- and 4-level
systems. It is interesting to note that signal reabsorption losses in 3-level lasers do not

affect the laser slope efficiency. This is true, provided that there are no cavity losses
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other than the output coupling. In this case, signal photons that are absorbed by the ideal
3-level laser medium are not lost; they increase the population of the excited level and
re-appear by stimulated emission back into the cavity; spontaneous emission can be
ignored. If, however, there are other cavity losses present, some photons that are re-
emitted are lost and so the circle of absorption and re-emission does not preserve energy
as in the previous case. This results in a higher percentage of lost power than with no re-

absorption taking place and a subsequent reduction in the slope efficiency.

2.4 CONCLUSIONS

This chapter has outlined the basic features of CW operation of fibre lasers and fibre
amplifiers. The development of an analytical 3 and 4-level fibre amplifier model lead to
the derivation of small-signal amplifier gain expressions, including the effect of the
overlap variation between the signal and the inverted ion population with pump power.
The optimum cut-off wavelength for the Pr** and the Er’* fibre amplifiers for low or
high pump power conditions and in the case of non-negligible pump background losses
was estimated and found to be in good agreement with theoretical results published
elsewhere. The amplifier model was then used to determine the lasing wavelength in Er>*
fibre lasers as a function of the intracavity losses. It was found that, depending on the
cavity loss, any Er’*-doped fibre laser will lase at one of three discrete lasing
wavelengths, namely at 1.61, 1.56 or 1.53um. The range of cavity loss values that
correspond to each of these three wavelengths was found to depend on the fibre ampiifier
length. This information will be used in chapters 3 and 4 in which Er’*-doped fibre laser
configurations with active intracavity loss control are discussed. Optimisation methods

for maximising a fibre laser’s performance were also proposed.

34



REFERENCES:

1. D. Marcuse: "Loss analysis of single-mode fibre splices” Bell Syst. J. 56 p.703
(1977).

2. T. J. Whitley and R. Wyatt: "Alternative Gaussian spot size polynomial for use with
doped fibre amplifiers" to be published in IEEE Phot. Techn. Lett.

3. A. Siegman: Lasers, Oxford University Press (1985).

4. F. F. Ruhl: "Prediction of optimum fibre lengths for erbium doped fibre amplifiers"
Electron. Lert. 27 p.769 (1991).

5. T. J. Whitley and R. Wyatt: "Analytic expression for gain in an idealised 4-level
doped fibre amplifier” WB2 In Proc. OSA Topical Meeting on Optical Amps. and their
Applications, Santa Fe, New Mexico (1992).

6. P. Morkel: Ph.D Thesis, Southampton University (1990).

7. M. Kasarek: "Numerical analysis of Pr’*-doped fluoride fibre amplifier" JEEE
Photon. Techn. Lett. 4 p.1266 (1992).

8. B. Pedersen, W. J. Miniscalco and R. S. Quimby: "Optimisation of Pr’*:ZBLAN
fibre amplifiers" IEEE Photon. Techn. Lett. 4 p.446 (1992).

9. B. Pedersen, A. Bjarklev, O. Lumbhoit and J. H. Povlsen: "Detailed design analysis
of Erbium-doped fibre amplifiers" IEEE Photon. Techn. Lett. 3 p.548 (1991).

10. M. Asaki, C. Huang, D. Garvey, J. Zhou, H. Kapteyn and M. Murnane:
"Generation of 11-fs pulses from a self-mode locked Ti:sapphire laser" Opr. Lert. 18
11. W. L. Barnes, R. I. Laming, E. J. Tarbox and P. R. Morkel: "Absorption and
emission cross-section of Er’* doped silica fibres" IEEE J. Quant. Electron. QE-27
p.1004 (1991).

12. A. O. Nielsen, J. H. Povisen, A. Bjarklev, O. Lumholt, T. P. Rasmussen and K.
Rottwitt: "Fast method for accurate prediction of fibre laser oscillation wavelength"
Electron. Let. 27 p.1644 (1991).

13. J. Chen, X. Zhu and W. Sibbett: "Derivation of the threshold pump power of
erbium-doped fibre lasers” Opt. Lett. 17 p.926 (1992).

14. W. P. Risk: "Modelling of longitudinally pumped solid-state lasers exhibiting
reabsorption losses" J. Opt. Soc. Am. B 5 p.1412 (1988).

35



APPENDIX TO CHAPTER 2

Approximation of eqn.(2.18):

A series expansion of the logarithmic function on the LHS of eqn.(2.18) yields

(A2.1)

m[ cp+1] __ A=) |, _1pli-c),
p+l

p+1 2 p+1

provided |p(1-c)/(p+1)| < 1 where c=exp(-ry*/w,”). A second-order approximation to

this function should then be a function of the form

[P
b
o

1] _ _pli=) [, 0p+B) (A2.2)
p+1 | p+l l 'yp+lJ

Fd

For p—0, the above equation gives =0 and for p—~o we have o/y=-(In(c)/(1-c)+1).
Finally, for p=1 we have 2In((c +1)/2) =-(1-c)}(1 +«/(y+1)). From the last two equalities

we obtain

+1
I fc -1 (1n(c)+1 —C) (A2.3)

{2
Inc+2In l_1J

-¢) (A2.4)
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Approximation of eqn.(2.36):

Let Sy(p) be approximated for p>0 by a hyperbolic function

S o)y~ P (A2.5)

From eqn.(2.30) with o,=0, Sy(0)=S.;,, so Cy; =8, and Sy(e0)=8.,,, so
C10/C1p=S,ax- Eqn.(A2.5) is then equivalent to

So(p)= Sma"cci;j”fmin (A2.6)
1

The formula for C,, that yielded the best results for a broad range of fibre V-values was

empirically found to be

~rglely 2
_Smm(1 —e " )ws 7
C (A2.7)
127 )
Smaxr 0

C,L L L
C=222 5 GG 5 GGG+ -2(1+C) 5 Co=— | Cpr 2
2 0 4 P LP
~-CX(C,+C,)-C L"(c £2C,-1)
(1A 2 OL_ 2 1 2a b

C7: P ; C8= , C9=

Ly/L,\b*-4ac yb2-4ac Yb>-4ac
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CHAPTER 3

PASSIVE MODE-LOCKING OF FIBRE LASERS I:
SQUARE PULSES, SOLITONS AND SAGNAC LOOP MIRRORS

3.1 INTRODUCTION

Following the brief discussion on the main features of continuous wave (CW) operation
of fibre lasers presented in the previous chapter, the rest of this thesis will be concerned
with mode-locked fibre laser operation. Whereas in (multimode) CW operation the output
power is effectively delivered continuously with the laser modes oscillating with random
phases and amplitudes, in mode-locked operation the laser modes are "in phase" with one
another and the output power is delivered in ordered, discrete packets of energy at time
intervals equal to the cavity round trip time or multiples thereof. The standard way to
achieve mode-locked operation is to provide a mechanism which discriminates against
CW operation by ensuring a higher round-trip loss for CW radiation. This fact is based
on the observation that a laser will, in general, operate in the mode having the lowest
loss, since ii 18 aiways the mode with the lowest ioss (ie the longest cavity lifetime) that
saturates the gain. However, additional requirements may also have to be met: for
example, in many passively mode-locked systems the mean intracavity intensity needs to

be above a certain critical value for the mode-locking to be initiated from a noise

fluctuation.

There are two kinds of laser mode-locked operation termed either active or passive mode-
locking. Active mode-locking involves a systematic and periodic modulation of the
intracavity loss, the modulation period being equal to the cavity round-trip time or a
multiple thereof (harmonic mode-locking). This is achieved by placing an acousto-optic

or electro-optic modulator inside the laser cavity. Passive mode-locking on the other hand
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requires an intensity-dependent cavity loss, with the loss decreasing with increasing
intracavity laser intensity. This is achieved by placing an intracavity element which
exhibits a "saturable" loss, such that the transmission of light through it will increase if
the laser intensity increases. The advantages of passive and active mode-locking for short

pulse production depend on the application, as each has distinct characteristics:

Active mode-locking is more controllable than passive mode-locking in terms of desired
pulsewidth, repetition rate and pulse-to-pulse stability. The disadvantage of this method
is that the minimum pulsewidth and maximum repetition rate of pulse production are
limited by the "speed" or bandwidth of the modulating element. However, during the last
decade there has been considerable improvement in modulator design and now quoted
bandwidths are well into the gigahertz regime. As a result, light pulses of only a few
picoseconds duration at gigahertz repetition rates and with peak powers of tens of watts
can be produced [1-3]. A brief analysis of active mode-locking, based on a theory by

Kuizenga and Siegman, is presented in Chapter 5.

For the generation of ultra-short (< 1ps) pulses, on the other hand, passive mode-locking
is required. By using the broad gain bandwidth of the Ti:Sapphire laser, this method has
recently produced pulses as short as 11fs [4], corresponding to a pulse of only a few
optical cycles long. Since passive mode-locking relies upon the magnitude of the
intracavity laser light intensity for the modulation of the cavity loss, its main drawback
is its inevitabie dependence upon stochastic variables and probabilities; in some cases the
laser may not display a well-defined, reproducible mode-locked behaviour. In such cases
both active and passive methods may be used simultaneously: the passive mechanism is

used to dictate the pulse duration and shape, while the active mechanism ensures pulse

stability.

As was mentioned earlier, passive mode-locking involves the use of an intracavity
element with an intensity-dependent transmission which acts as, or is, a saturable
absorber. For laser systems with a gain recovery time much longer than the cavity round-
trip time, such as most solid-state lasers, one has to ensure that the recovery time of the

saturable absorber action, ie the time required for its transmission to revert to its original
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value if the magnitude of the light intensity is instantaneously dropped, is of the same
order of magnitude, or less, than the pulsewidth that one wishes to produce. This
condition is well satisfied in the recently developed femtosecond systems [S] which rely
upon the fast (<10fs) non-resonant Kerr-type nonlinearity of a passive modulator as the
underlying mechanism to provide the saturable absorber action needed for passive mode-
locking. Two such passive modulators, namely the non-linear optical loop mirror (or non-
linear Sagnac loop) and the non-linear polarisation evolution switch are extensively
described and analysed in this thesis. These are perfect examples of a class of optical
devices generally named as "non-linear switches": "non-linear" because their operation
relies on the non-linear propagation of light in the material and "switch" because of their
transmission characteristic. The present chapter will analyse the use of the fibre Sagnac
loop mirror as a non-linear switch for passive mode-locking of fibre lasers and will
discuss its relevance for soliton pulse generation. Two fibre laser configurations that
utilise these non-linear characteristics of the fibre Sagnac loop for passive mode-locking

purposes will then be presented along with experimental resulis.
3.2 LINEAR CHARACTERISTICS OF SAGNAC LOOPS

A Sagnac loop is formed when the two output ports of a fibre coupler are spliced together
as shown in Fig.3.1a. Fig.3.1b shows the analogous configuration using bulk optics.
Light launched through port #1 is split into two counter-propagating waves which return
to recombine in the coupler region after time T,,, the loop transit time. Depending on the
coupler’s splitting ratio a:1-c;, some of the launched light will emerge from port #1, the
input port, while the rest will exit through port #2, the output port or "switching" port.
The transmission of light from port #1 to port #2 via the loop is represented by the loop
"transmission" or "transfer" function T(N,«). The following analysis will produce a
simple formula that describes the fibre Sagnac loop transmission in the presence of
birefringence inside the loop. Although based on the assumption that polarisation-
maintaining fibres are used to form the Sagnac loop, similar results are expected when
ordinary, non-polarisation maintaining fibres are used, combined with polarisation

controllers to control the light polarisation inside the loop.
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Fig.3.1
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(a) An optical fiber Sagnac loop mirror (b) The analogous

configuration using bulk optics.
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3.2.1 Theoretical Analysis of the Fiber Sagnac Loop

Suppose light with electric field components E;, E;, is launched at port #1 of a lossless
four-port coupler which has ports #3 and #4 connected with a Hi-Bi fibre and the ends
of the Hi-Bi fibre at the coupler ports are aligned so that the respective birefringence axes
are parallel (Fig.3.2). A reference coordinate system may then be chosen with axes
parallel to these birefringence axes. It is assumed that there is a splice inside the loop at
distance L, from port #3 and distance L,=L-L, from port #4. Let Q,, Q, denote the two
rotation angles of the birefringent axes, at 1.; and L, respectively, from their original
orientations. Then the algebraic sum of these two angles represents the respective
"misalignment" angle of the splice, ie a measure of how well aligned the two Hi-Bi axes
are after splicing. We can write the following equations for the field components

immediately after the splitting of the field at the coupler: For port #3

_ 12
Es, ‘0‘1/2E1x (3.1)
E3y = Ely

L

5]
(=
o
=
]
Q
Pt
-
S
£

E4.X3=J(1 _a)i:jElx (3.2)
E,=j(1-a)’E,,

where the j factor indicates a w/2 phase change. Using Jones calculus [6] on these field
vectors we can write the following matrix equations for the field components after

counter-propagating inside the loop and are about to recombine at ports #3 and #4:

E‘{x E3x
E] =1 NN ) E;, (3.3)
E3/x E4x
o | NN | 64
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Fig.3.2 Schematic diagram for the Sagnac loop model.
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where

JB.L;
e 0 ;
( L,’ )= =ejBlLi

1 0 ,
0 fABL] =MLy =12 (3.5)
e i

0

cos{), -sin{);
()= i=1,2 (3.6)
sinQ; cos{);
and
(1)5[1 O] G.7
10 -1]

is a matrix which indicates that Eij’ (1=3,4 j=x,y) are now with respect to a right-handed
coordinate system with the same x-axis as the original but, with the z-axis pointing in the
opposite direction. This is done to account for the reversal in the direction of the two

counter-propagating fields. Egs.(3.3) and (3.4) can be re-written as

El| £,
i =" HI)R0)L)(@,-)(L) ’ (3.8)
Ej, y
El|l E,
| =ePHnpe) @@, | (3.9)
Ej, E,

In order to simplify the algebra, but without any loss of generality, 2, and 1, are set

equal to zero, and from now on @, and L; will be denoted as © and L respectively.

Eqgns.(3.8) and (3.9) then simplify to
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E; E
8 N :
= e |, (3.10)
Ey, 3y
x| / Ey 3.11
" =) y-a) G1D
E;, 4y
The transmission function T(\,«) is given by
E 2, E 2
m(’)\, \=.| 2!:!2 ' 2yl2 (3_12)
Ey, | +lEly'
and by setting [Elx|2+|Ely|2=1 , TQ:D‘):!sz‘z*lEzy'Z where
I 12, ing!
Ey=Epo +j(1-a) " Ey, (3.13)

/ .
E,,=Ey0!+j(1-0)2E}

From eqns.(3.12) and (3.13), using eqns.(3.10) and (3.11) and the identity

| E‘j‘zzEz‘fEij* (i=1-4, j=X,y) the following formula is obtained for the transmission

function:

T, (N @) =(1 -20)* +2(1 -a)sin*Q[1 -cos(ABL)] (3.14)

where the b subscript denotes a birefringent loop. Since

a=c(\)=sin?C(\) (3.15)

where
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A
CON=-"Cysp c3d3=% (3.16)
3dB

n being the coupling cycle, Ayyp the =0.5 wavelength and AB=27/L,,, where L, is the
natural beat length of the birefringent fiber (=N An), eqn.(3.14) can be used to give us
information about the dependence of the power switched from port #1 to port #2 on o,
(0, L/Ly, (the number of beat lengths contained in the loop length 1) and A, the
wavelength of the launched light, since both « and L, depend on it. Note that T(\,«) is
independent of the input state of polarization but the output polarisation state is in general

dependent on the input polarisation state.

The various regimes of operation may now be identified from egn.(3.14). Setting =0
we obtain the normai, birefringent-free characteristic ie Ty=(1-20)*. Likewise, setting
0#0 and L/L,=N (N=1,2,..., ie L is an integral number of beat lengths) the same
birefringent-free formula is obtained. In order to see any birefringence effects both Q=0
and L/L,;#N should hold true. Fig.3.3 shows how T depends on the ratio L/L, at a
particular wavelength, taking &=0.5 and varying { from 0° to 90°. We see that there is
complete power transfer from port #1 to port #2 when L/Li;=0.5 or odd multiples

thereof.

Figs.3.4a-d and 3.5a-d show how birefringence degrades the normal sin>(2C) wavelength
dependence of T(A,e) for vartous misalignment angles. For Figs.3.4a-d, L/L,, was set
equal to 3/2 at 1.5um and for Figs.3.5a-d, L/L,, was set equal to 101/2 at the same
wavelength. o was chosen to be equal to 0.5 at 1.5um and n was set equal to 3. Note

that Q plays the role of the "degradation amplitude" as defined in Ref.[7].
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Fig.3.3 Birefringent loop transmission Ty(A, ) as a function of the

number of beat lengths L/L,, for various values of the

misalignment angle Q. « is set equal to 0.5.
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3.3 NON-LINEAR CHARACTERISTICS OF THE SAGNAC LOOP

3.3.1 Introduction

Since an optical fiber has an intensity-dependent refractive index due to x© effects,
unless ov=0.5 the optical lengths for the two counter-propagating waves of different
intensities inside the Sagnac loop will be different and, as a result, the loop transmission
function becomes intensity-dependent. Section 3.3.2 examines this effect in detail and will
demonstrate its use for pulse switching. Section 3.3.3 reviews some of the basic theory
governing soliton propagation in optical fibers and prepares the ground for section 3.3.4

in which soliton switching in the Sagnac loop is discussed.

3.3.2 Square Pulse Switching

The transmission function of a birefringent Sagnac loop, when the input light intensity
is strong enough to cause significant non-linear effects, cannot be described by any
general analytical formula. The transmission is no longer independent of the input state
of polarisation because the non-linearity couples the two orthogonal polarisation
components of each wave, thus making their evolution dependent on the initial conditions
(ie the state of polarisation at the input of the loop). Numerical methods have been used
to evaluate the loop transmission characteristics in this regime [8]. There are, however,

two special cases in which it is possible to derive an analytical formula:

Case (a): Birefringent-free loop

Provided the input polarisation is linear and assuming there is no linear birefringence in
the Sagnac loop, ie (8,=B,=f3) the intensity-dependent propagation constant 5 may be

written as

8 2T, ,

where n, and n, are the linear and non-linear refractive indices respectively. The previous

analysis yields the following result for the transmission function
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Ty (N )=1-2a(1-e){1+cos[(1 -2c)B; L1} (3.18)

which agrees with the formula derived in Ref.[9]. Fig.3.6 shows a graph of T(\,«) vs
a power-length product (PL) at a wavelength of 1.5um and an effective area A 4 (=P/T)
of 30um?. It can be seen that full switching occurs at periodic intervals, the period being
dependent on «. For small « the switching power-length product required is small, but
the contrast is poor. As « approaches 0.5, the contrast is increased but at the expense of
a higher power-length product required for full switching. This finally becomes infinite
at «=0.5. When the Sagnac loop is operating in the non-linear regime, it will be refered

to as a Nonlinear Optical Loop Mirror (NOLM).

It has been shown [10] that the value of the power-length product requirement for
switching may be radically reduced by including a fibre amplifier in one arm of the loop
as shown in Fig.3.7. The counter-propagating field intensities now differ by (1-(G+1)«x)

instead of (1-2¢) as in the previous case. The transmission function is now

Trp (M) =1-20(1-0){1+cos[(1-a(G+1))8p L1} (3.19)

and using a 50:50 coupler full contrast can be achieved at extremely low switching
power-length products (200uW for 336m has been reported [11]). A NOLM which
includes gain inside will be referred to as NALM (Nonlinear Amplifying L.oop Mirror).

Case (b): Birefringent loop with 9=90°

In the case of a birefringent loop with 2=90°, assuming again linearly polarised input,

the loop transmission (including gain) is given by

Toar (na)=1-2a(1-c) {1 +cos [{1-a(G+1))8 L+ABL] } (3.20)

Compare eqn.(3.19) with eqn.(3.20): The argument of the cos term, which indicates the
"bias" of the loop, now includes the extra ABL term. Fig.3.8 plots eqn.(3.20) for
ABL=m, all other parameters being the same as in Fig.3.6. It can be seen that the loop
transmission characteristic is now exactly the reverse of what it was in Fig.3.6. Section

3.4.2 will report on a fibre laser cavity arrangement that utilises this "biasing"” feature
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Fig.3.7 A nonlinear amplifying Sagnac loop mirror.
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Fig.3.8
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of the Sagnac loop for passive mode-locking.

The above results were derived assuming a single value for the input intensity at port #1.
In practice, the finite rise and fall times of an input pulse will in general give rise to a
distorted switched output pulse, since the switching action depends on the instantaneous
intensity. Under certain conditions, however, solitons are able to propagate and the pulse
shape is preserved. In order to understand the operation of the NOLM/NALM in this
soliton regime, the following section will provide a brief introduction to the fundamental
principles of soliton propagation in optical fibres. For a more detailed discussion the

reader is referred to Ref.[12].
3.3.3 Soliton Propagation in Optical Fibres

It has been theoretically predicted [13] and consequently demonstrated experimentally
[14] that the equation of motion for signals propagating through optical fibers can accept
soliton solutions, provided certain conditions are satisfied. The soliton solutions that exist
when the second-order derivative of the propagation constant of the fundamental mode
in the fiber (8,) is negative, take pulse forms with profiles that repeat themselves in a
periodic fashion as the pulse propagates. The soliton "order" refers to the particular
pattern that this periodic evolution follows. The equation of motion for the envelope of
a light wave propagating through an optical fiber in the presence of an intensity-
dependent refractive index and group-velocity dispersion is, with appropriate

transformations, reduced to the non-linear Schrodinger equation:

2
i, 10 20 (3.21)

The general soliton solutions of eqn.(3.21) at z=0 are

AT_1 "N N

u(z=0,0)=Nn,y sech(nyty  N=1,2,3,..

—~
W
b
[\

~

where #y is a constant determined by the initial condition and N is the soliton order

number. u,z,t are the normalised amplitude, distance and time respectively, being
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associated with the real variables by

172

27rn
_ A2 pm By |L R4 (3.23)
= R z_.. 5 -

|32|Aejj‘ 7 7

We see that the coordinate system moves at the group velocity. With the appropriate
choice of 7y, the arbitrary time scale 7 allows a pulse of standard duration in the
dimensionless retarded-time variable t to correspond to a pulse of any desired duration
in real time t’. For ny=1, 7 is equal to (see Appendix to Ch.3 for proof):

~ | FWHM (3.24)

1.76

where Tpwpy 1S the real full-width-at-half-maximum puisewidth.

The energy of a pulse with a sech’ intensity profile, peak power Poeax and FWHM

plﬂseWidth TEWHM is

¢ 1.76t 2 3.25)
P sech? dt= P_.T 3.
peak:l;o |' TFWHM] 1.76 peak' FWHM
In normalised units the pulse is written as
172
27
Tnz 1/2 (3.26)
u(0,5)=Asech(nt) ; A=7 || Pom
|32 'Aeﬂ
with corresponding normalised pulsewidth
r
p=_ NTEWHM (3.27)

2cosh‘1(\/5 )
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and energy

°° 2
A2 j sech2(nt)=24" (3.28)
oo N

In the frequency domain, the Fourier transform of u(0,t) from eqn.(3.26) is

FT{Asech(n?)} AT och [ﬁ ] (3.29
1 n

and the corresponding pulsewidth-bandwidth product is

[ P o
Trwene N rwen = \COSh,rsz} =~0.3148 (3.30)

Only solitons of first order, or "fundamental" solitons, are discussed in this thesis and

these retain a constant sech pulseshape throughout their propagation distance. At time t

and distance z, the soliton solution, eqn.(3.22), with N=1 evolves as
J (3.31)
u(z,t)=n, sech(nr) exp > Nz .
No corresponding analytical formula for the propagation of solitons of order >2 exists
Choosing u(0,0)=1 sets n;=1 and the above equation becomes
u(z,1) =sech(r) exp{ J%} (3.32)

Note that the phase factor e/ applies to the whole pulse (independent of t). This is
because the chirp caused by self-phase modulation is cancelled by the group velocity
dispersion such that the pulse envelope propagates at a constant group velocity with zero

broadening.

The periodicity of |u(z,t)|? (pulse envelope) occurs at z intervals of /2 and is obeyed
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by all higher-order solitons. The distance between two successive iterations of the pulse
envelope 1s referred to as the soliton period z, and although it would really seem
applicable to solitons of higher order than the first, it is commonly used as a length unit
when considering perturbating effects in the propagation of the fundamental soliton. The
soliton period is a pulse-profile period and not a phase period which, for example, in the
case of the fundamental soliton is 47. Hence one phase period is equivalent to eight
soliton periods. Setting z=7/2 in the second transformation of eqn.(3.23) we obtain the

following expression for the soliton period

7’ (3.33)

Z0=—

218,

A
P0= ‘BZI eff (334)

The normalised area S determines the number of solitons that will propagate when a pulse

with normalised amplitude envelope u(0,t) is launched in an optical fiber:

o

S= [ w©,n)dt (3.35)

- o

From eqn.(3.22) the area of an N'! order soliton is

Sy= I Ny sech(nyt)dt=Nm (3.36)

The evolution of a sech pulse is dependent on its area: In general, a soliton of order N
is formed for a sech pulse of area S, Sy-7/2<S<Sy+7/2. More specifically, if

S=(N+e)w, |e| <1/2, as in the following pulse
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w(0,8)=(N+£)n,y sech(ny?) (3.37)

then the soliton part of the pulse corresponds to an initial pulseshape of the form

u(0,0)=(N+2¢)n,, sech [WN [ N;VZE] t] (3.38)

This is an N™ order soliton with pulsewidth 7'=[N/(N+2¢)]7 and amplitude
u’(0,0)=u(0,0) +nye. We see that both amplitude and pulsewidth have changed: for
e>1/2 the pulse narrows with a corresponding power increase; the opposite occurs for
€< 1/2. In both cases, however, the pulse energy decreases by AE=2yye?. Fig.3.9 plots

7'/ vs u(0,0). Note the discontinuities of the curve whenever e=+1/2.

Let us now consider the particular case of S=(1+e¢)w. Fig.3.10 shows the evolution of
the puise’s amplitude on the way to become an exact soliton. Before it settles down to
a fixed value, the amplitude oscillates and the pulse loses some energy. The full solution

for the asymptotic soliton in this case is

u(z,0)=n(1+2¢) sech[n(1+2e)f] exp { _é. [n(1 +2e)]zz}> (3.39)

which in the case of an initial pulse
u(0,1)=Asech(?) , A=1+¢ (3.40)

can be simplified to

w(z,0)=(24-1) sech[(24-1)] exp{2j(A-1/2)%} (3.41)

The phase factor is important; it is this phase factor that enables soliton switching in a

Sagnac loop t . as will be shown in the next section.

It is useful to estimate the "tolerance” of the two parameters of an initial optical pulse (ie

pulse duration and peak power) for it to evolve to a fundamental soliton when it is
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Fig.3.10
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launched into an optical fibre of known dispersion, nonlinearity and mode area. This can
only happen if S;-7/2<S<S,;+/2, which, in the case of a pulse described by
eqn.(3.40), means that 0.25< A2<2.25. From the previous analysis this translates to

P
0.25 < P"’“’; < 2.25 (3.42)
Py1y

This relattonship shows that a launched pulse can be between 0.25 and 2.25 times the
peak power of a fundamental soliton P, of the same duration or, equivalently, between
0.5 and 1.5 times the pulsewidth of a fundamental soliton of the same power and still
evolve to become a fundamental soliton. This demonstrates the great amount of flexibility

that these wave packets exhibit when it comes to propagating as a single unit.

The incorporation of a fibre amplifier in a fibre Sagnac loop has a dramatic improvement
in its nonlinear switching performance regarding the switching threshold. In view of this
fact and for later discussions on solitons in fibre lasers, it is useful to outline the basic
phenomena governing soliton propagation in an amplifying fibre. Experimental [15] and
theoretical [16,17] results have shown that soliton propagation in optical fibre amplifiers
is governed by four basic factors:

(a) The ratio of the amplifier length L, to the soliton period z,;

(b) The amplifier gain G=exp(gL,);

(¢) The ratio of the amplifier gain bandwidih to the soliton bandwidih;

(d) The influence of the Soliton Self-Frequency Shift (SSES).
SSFS is a phenomenon whereby Raman effects cause a continuous downshift of the mean
soliton frequency as it propagates through an optical fibre. The strength of this effect is

shown to vary approximately with the inverse fourth power of the soliton pulsewidth

[18]. It is therefore only significant for soliton pulses <500fs.

Of all the possible regimes of soliton propagation in amplifying fibres which are
determined by the values of various parameters mentioned above, two of the most basic
and common regimes arise by ignoring the effects of SSES and amplifier bandwidth. The

NLSE, eqn.(3.21) in this case is modified to
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. 2 _, _
za_z+§?+|u] u—-il'u=0 (3.43)
where
g
r=> , =1 (3.44)
7L, g

and g is the amplifier gain coefficient in m!. Depending on the values of T' and the
amplifier length L,, the two regimes can be described as follows:

(a) For z, > > L, and irrespective of the value of I' the amplification can be
considered as "lumped" ie the pulse exiting the amplifier is just amplified by an amount
equal to the power gain of the amplifier with the rest of its other features (ie pulsewidth
and optical spectrum) unchanged. This regime is called non-adiabatic.

(b) For z, < L, and I'<T'_ where [16]

I‘cz_Z_(A+1)2ln[A;1] (3.45)

an input pulse A sech(t) is both progressively amplified and narrowed as it propagates
through the amplifier and the regime is called adiabatic. As the pulse gets narrower and
narrower, the adiabatic regime is inevitably affected by the SSFS and the amplifier gain
bandwidth, and these two effects will ultimately determine the final pulseshape. The case

of I'>T, leads to the creation of additional binding solitons [16].

3.3.4 Sagnac Loop Soliton Switching

Now that the basic features of soliton propagation in optical fibres have been introduced,
soliton switching in Sagnac loop mirrors can be discussed. Consider a Sagnac loop with
a sech pulse as in eqn.(3.40) entering port #1. The pulse splits into two parts which, after
traversing the loop, arrive at ports #3 and #4 to recombine. If these two parts are to
retain their soliton character, the coupling coefficient « should be such that o>0.25/ A?

for < 0.5. Provided 0.5, the two pulses will experience different phase shifts given
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by eqn.(3.39), so that when they arrive at ports #3 and #4 and recombine we can write

2
E! =j(1-0)'"* 4] sech(t/7)) exp{zj{(l—a)”A—l/z] z} (3.46)

E]=a'? A]sech(t/r}) exp{ZJ{al’zA—I/Z]zz}

where

Al =240"2-1 ; 7/ =1/A] A =24(1-0)12-1 ; h=1/4] (47

and it was assumed that the loop is long enough for the amplitudes and pulsewidths of
the two counter-propagating solitons to settle to their asymptotic values given by

ann A1) e
CULL\D. 51,

P =EE, , E,=a'E]+j(1-o)'E; (3.48)
which yields
P = 1,12A/'2 -y /\+,1 _ \1/QA/2se VRN
e { SeCn /Ty )r1—x) 7 Cn-iTy) (349)
20V 2(1-0))124] A] sech(t/7))sech(tiT))cosh
where
. o o ) {
0=22 {{o24-1/27 -1 -0y 24-1/2} (3.50)
Integrating with respect to time gives the energy switched in normalised units
E,,=Yod{ +(1-0)A; ~a*(1-0)A] 4] T cosb) (3.51)
where
I= j sech(t/7]) sech(t!ry) dt (3.52)
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If, on the other hand, the loop length is short so that pulse-shaping can be ignored, the

formula for the switched energy becomes

E, =2A4[1-2a(1-a)(1+cosh)] (3.53)

It can be seen that in both cases due to the phase uniformity of solitons, complete

switching in the first-order (0.5 <A <1.5) regime can, in principle, be achieved when

6=22{(024-1/2P (1~ 2A-1/2P} = (3.54)
Fig.3.11 shows E,, as a function of input energy (=2A2) as evaluated using eqn.(3.53)
and as calculated by numerical integration [9] of the NLS for comparison. The agreement

cod, even though

i th
A LRANY Ulv&l

s . 2 .
in the switche fundamental solitons (2A°<4.5)

T 1Un

pulse shape changes were ignored. This has also been demonstrated experimentally with

maximum transmissions ~93% for 46pJ sech pulses [19] and ~90% for 55pJ Gaussian

pulses [20].

3.4 PASSIVELY MODE-LOCKED FIBRE LASERS INCORPORATIONG FIBRE
SAGNAC LOOPS

In this section two methods for passive mode-locking of fiber lasers are presented, based
on the utilisation of Sagnac loop reflectors as non-linear switches. The first method,
referred to as the "birefringence-biasing" method, exploits the birefringence effects
mentioned in section 3.2 to bias the loop and invert its non-linear characteristic. The
second arrangement, which is commonly referred to as the "Figure-of-8" arrangement,
operates with the Sagnac in its unbiased, non-linear regime. The experimental results

presented in each section are followed by a theoretical analysis of the mode-locked

behaviour of these systems.
3.4.1 The Birefringence-Biased (B-B) Configuration

As mentioned earlier, one of the methods used in order to achieve passive mode-locking

employs an intracavity element which has an intensity-dependent loss, the loss decreasing
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Fig.3.11 Sagnac loop transmission for soliton pulses. After Ref.[35].

66

10



with increasing intensity. Under the operating conditions of case (b) on page 48, the
Sagnac loop features precisely this characteristic: in this case the Sagnac loop acts as an
intensity-dependent mirror, with its reflectivity increasing with increasing intensity, until
a maximum of 100% reflectivity is reached. Note, however, that there is a significant
difference between the transmission characteristic of a saturable absorber and a Sagnac
loop as shown in Fig.3.6: once the saturable absorber is "bleached" its transmission is
constant, ie no longer intensity-dependent. Fig.3.6 on the other hand, shows that once
the point of maximum transmission has been reached the transmission starts to decrease
again. In this case, the "preferred" pulse (ie the one which experiences the least loss upon

passing through the loop) is a rectangular pulse, ie of fixed power and arbitrary duration.

The fibre laser configuration that exploits the intensity-dependent reflectivity of a
birefringent Sagnac loop in the "biased", 2=90°, regime is called the Birefringence-

Biased (B-B) configuration.
3.4.2 Experimental Details and Results on the B-B Configuration

The experimental arrangement is shown in Fig.3.12. The Sagnac loop was a 500m long
length of fiber wound on a drum. Polarisation controllers were used near the coupler
ports to bias it to the desired point of operation. Port #1 was spliced to ~3m of N@**
fiber with a dopant concentration of 200ppm and ali fibers used were single mode at the
lasing wavelength of 1.08um. The coupler had a 50:50 splitting ratio at 1.08um and the
amplifier was pumped using a Ti:Sapphire laser at 810nm through a dichroic mirror

(80% transmission of 810nm and 99 % reflection of 1.1um). The output was through port
#2.

The laser had a pumping threshold of ~60mW . Passive mode-locking at the cavity round
trip frequency of 440kHz was achieved spontaneously by adjusting the polarisation
controllers while rotating the drum slightly. Square pulses of various durations were
observed, depending on the bias conditions. Fig.3.13 shows two examples. Note that

these pulse traces were obtained from the output port of the loop, ie they represent the
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Fig.3.12 Experimental arrangement for passively mode-locked

Sagnac loop laser using birefringence biasing.
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Fig.3.13 Passively mode-locked pulses obtained using the

experimental arrangement of Fig.3.12.
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rejected parts of the pulses that circulate in the laser cavity. When mode-locking was
initiated there was a drop in the mean output power, indicating an increase in the
reflectivity of the loop. Since the mode-locking mechanism depends on the correct biasing
of the loop (ie Q=90°, ABL=nm), the laser’s performance is dependent on external
disturbances such as temperature, pressure etc and this explains why the mode-locked
operation was not very stable. The solution to this problem would be to construct a cavity

by using only polarisation maintaining fibres,
3.4.3 The Figure-of-8 (F-8) Configuration'

Fig.3.14 shows the Figure-of-8 (F-8) laser configuration [33,34]. At low input powers
the NALM acts as a conventional loop mirror reflecting light back to the port from which
it came. Thus low intensity light circulating anticlockwise in the isolator loop enters the
NALM at port A and is reflected back to the same port, ie towards the isolator, where
it is lost. As the intensity of light incident at port A is increased, the loop becomes
nonlinear and light is switched to port B, whereupon it circulates anticlockwise in the
isolator loop providing feedback to the gain medium. The system thus experiences the
lowest loss for high light intensities and is therefore biased to operate in a pulsed mode.
As shown in sections 3.3.2 and 3.3.4 the pulses that experience the least amount of loss
are either rectangular with a peak intensity determined by the switching power of the
loop, or fundamental solitons which develop a uniform phase over the entire pulse
envelope as they propagate and can thus be fully switched. The Iow input powers
required to switch a NALM operating at high gains means that pulsed operation is able
to build up from noise at the NALM input. The noise is provided by reducing the linear
cavity loss to a level sufficient for the onset of CW lasing. This is achieved either by
applying a birefringence-induced phase bias within the NALM, or by arranging for
asymetric splitting at the NALM coupler. This latter option would permit the system to

be constructed entirely of polarisation maintaining fibre, thus improving the system

stability [21].

IThe experiments on the F-8 laser were carried out in collaboration with Dr. D. J. Richardson
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Fig.3.14 The Figure-of-eight configuration.
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3.4.4. Experimental Details and Results on the Figure-8 Configuration

In our experiments the loop coupler had a 50:50 power splitting ratio at 1.55um while
a 980/1550 WDM coupler was used for pumping the erbium amplifier. Output coupling
was provided by a 30:70 coupler placed in the isolator loop. The isolator was deliberately
chosen to be polarisation sensitive, with an insertion loss of 0.4dB and an isolation of 40
dB. This was because polarisation insensitive isolators possess a significant amount of
birefringence which obstructs the formation of ultra-short pulses. The unidirectional
isolator loop had a total length of 8m, while the total NALM length was varied between
8 and 36m. The doped fibre, located asymmetrically within the NALM, was 3m long and
contained 800ppm of Er’*. All fibers used were single mode at 1.55um and had a
dispersion parameter of D= ~5ps/nm/km. The round trip cavity loss was estimated to
be ~3dB. The pump laser was a Ti:Sapphire laser operating at 980nm. Polarisation

controllers were used in both the unidirectional and Sagnac loops.

Once a certain input pump power level was reached, typically 50mW, passive mode
locking was observed at the cavity round trip frequency. Once mode-locked, the input
power could then be reduced well below the power required for self-starting. When
mode-locked, the system lased at 1563nm, which according to the analysis in chapter 2
indicates a low-loss cavity. At low pump powers and for certain loop birefringence
settings, a self-Q switch/mode-locked lasing regime was encountered. In this regime the
lasing wavelength shifted to 1535nm, the wavelength shift being associated with the

change in the cavity loss due to the change in the loop bias.

Both long duration (> 100ps) square pulses and solitons (1-0.32ps) were observed with
this system. The square pulses were generated at the cavity round-trip frequency and had
an optical bandwidth of ~35nm. As mentioned previously, their rectangular shape owes
its existence to the switching characteristic of the NALM, which causes the laser cavity
loss to decrease progressively with pulse intensity until a certain point is reached where
the loss starts to increase again. Hence, the power of the internal circulating pulse
remained clamped to this value while its width must increase to accommodate a higher

average circulating power. The effect is shown in Fig.3.15 where the pulse is seen to
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narrow as the pump power is decreased. Autocorrelation traces of these pulses showed

strong evidence of substructure on a 100fs time scale.,

At low pump powers (< 100mW) the square pulses became less stable and the system
switched to the soliton regime of operation. In general, the soliton pulses were seemingly
randomly spaced within bunches, with the bunches repeating at the cavity round trip
frequency. Fig.3.16 shows a example of this random pulsing. Since the detector response
time is far longer than the pulse duration, the oscilloscope effectively displays the pulse
energy. The pulse with twice the amplitude of the others is due to two pulses occuring
within the detector response time. With appropriate adjustment of the polarisation
controllers and the input pump power, harmonic mode-locking occured, Fig.3.17.
Repetition rates ranging from 50MHz to 10GHz were observed within the bunches and
autocorrelation was required to measure the highest repetition rates. In a practical system,
the addition of a pulse multiplier such as a Fabry-Perot cavity or a recirculating delay
line has been shown to stabilise the repetition rate [22]. A background-free
autocorrelation of a typical soliton pulse is shown in Fig.3.18. The 7pwy of the pulses
was 660fs. The corresponding optical spectrum of width 4.5nm, also shown in Fig.3.18,
yields a time-bandwidth product of 0.32, which indicates bandwidth-limited mode-locked
operation. Note the two side lobes located 7nm either side of the main peak. This feature
is always present when the laser enters the soliton regime and becomes progressively
more pronounced as the soliton duration is reduced. The effect originates from the
repetitive nature of the various perturbations that the soliton is subjected to whilst
circulating the fibre laser cavity [23]. As will be shown in the next section, this effect
imposes a major limitation to the pulse durations that can be achieved in all fibre soliton

lasers and will subsequently be refered to as "resonant loss".

3.5 THEORETICAL INVESTIGATION OF MODE-LOCKED FIBRE LASERS
WITH SAGNAC LOOP MIRRORS

This section aims to provide some insight into the mode-locked systems described in the
previous section. Section 3.5.1 investigates the parameters affecting the square pulse

regime and section 3.5.2 discusses the soliton regime.
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Fig.3.15 Output pulse shape of rectangular mode-locked pulses
produced by the F-8 fibre laser as a function of pump

power
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Fig.3.16

Typical internal structure of soliton pulse bunches generated
at the cavity round-trip frequency. Pulse of apparently twice
the amplitude of the others is due simply to two pulses
occuring within a time period less than the detector

response time. Soliton pulses were of 450fs duration.
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Fig.3.17 Harmonic mode-locking of F-8 fibre laser, f=67.2 MHz.
Pulses have a half width of 450 ps and peak power of 40
W. 980nm pump power was S0mW
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Fig.3.18
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Background-free autocorrelation trace and optical spectra of
660fs soliton pulses.
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3.5.1 Square pulse regime

If the gain medium is placed outside the Sagnac loop, from eqn.(3.14) the requirement

for square pulse switching is

&
_ _ My
Ab=tm or Py 2m,|1-2|L 639

If the gain medium is placed asymmetrically inside the loop (NALM) the case becomes
motre complicated due to apparently conflicting requirements regarding the gain of the
active fiber: high gain improves pulse-switching and hence minimises the cavity loss, but

minimising the cavity loss implies low gain. The saturated gain satisfies

G=_1 (3.56)
¥ 1-Loss

where

Loss=1-R(1-T5") =1 -R2a(1 ~ar)(1 +cos(8+) (3.57)

for the birefringence bias system and

Loss=1-RT,;=1-R(1-2c(1 -c){1 +cosB}) (3.58)

for the F-8 system. In both cases

61-c(G,+D)By L (3.59)

and R is an effective mirror reflectivity which accounts for all cavity losses except for

the loss due to the loop transmission. The point of operation will be where the loss is

minimised so, again, == for both cases or

. A A,

sq
2n,L

(3.60)

1o |1+ 1
[ R(1-(1 -2a)2)]
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for the birefringence-bias case and

W
P, = i (3.61)

" 2n2L( 1-a(1+R™ )’

for the F-8 case.
3.5.2 Soliton Regime

In discussing the limitations imposed on the pulsewidth of the soliton pulses which
circulate inside a passively mode-locked fibre laser cavity, the following assumptions are
made:

(i) The normalised amplitude A of the pulse must satisfy

0.5<AK1S

at all points inside the cavity

(ii) The gain spectrum of the fiber amplifier has an infinite bandwidth so that

frequency-dependent gain and gain dispersion effects can be ignored

(iii) All pulse shaping effects can be ignored so that eqn.(3.53) can be used

(iv) The pulse is amplified non-adiabatically upon passing through the amplifier

(v) SSFS effects are not significant.
Assumption (i) ensures that no great losses occur during the round trip that may result
in the break-up the soliton pulse, as discussed in section 3.3.3. Ignoring the effect of
resonant loss for the time being, consider the two cases of the gain positioned either

inside or outside the Sagnac loop.

With the gain medium placed outside the loop (NOLM), and using the same reasoning

as in Sec.3.5.1., we may set

(3.62)

/ <1/

9=—22[(1 ~20)A4 2+ 2 -(1 —oz)“‘)A]= +7

Solving for z(=nL/2z;) and using the formula for the soliton period (eqn.(3.33)) leads

to the following expression for the soliton pulsewidth:
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1

r= _;?'? |62' ((1 —20{)142"‘(0!1/2—(1 —a)1/2)A |L 2 (363)

with a corresponding peak power

P

so1=4 °P 0 (3.64)

Note that 7 o« L2, A is the value of the soliton amplitude before it enters the Sagnac
loop and, subject to the restrictions in (i) above, it can vary slightly between jumps in the
number of circulating pulses: The experimental results showed that when the F-8 laser
operates in the soliton regime, pump power variations do not cause pulse broadening as
happens in the square-pulse regime. Instead, the number of soliton pulses that circulate
inside the cavity changes in discrete steps. In a detailed study of this energy quantisation
behaviour [24], however, it was found that the soliton pulse energy (o< A?) inside the
loop is not precisely quantised but, depending on the number of circulating pulses, it can
vary up to ~10% during successive power jumps. This is particularly noticabie when

there are only a few circulating pulses.

With the gain medium inside the Sagnac loop, proceeding as in Sec.3.5.2, we consider

the two expressions that involve the saturated gain G, and the angle 6:

G = L (3.65)
R[1-20(1-0i)(1 +cosh) |

and

1]° ik (3.66)
0=22|:[(aGs)“2A—_2_] —[(1—a)1’2—§] ]

For minimum loss we require = yielding

@yl oo

f=(3\52|
T
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Note that in both cases the non-linear refractive index n, and the effective area A 4 are

not involved in the determination of the soliton pulsewidth.
3.5.3 The Effect of Resonant Loss on the Soliton Pulsewidth

In the previous section the soliton pulsewidth for a minimum loss condition was
calculated with the assumptions (i)-(v) above, but without taking into account the effect
of resonant loss. The actual pulsewidths observed in our experiments were longer,
because resonant loss ultimately sets a limit to the soliton pulsewidth. In order to
understand the impact this effect has on the performance of mode-locked soliton fibre

lasers, it will be useful to outline the governing principles.

It was shown in Sec.3.3 that the fundamental soliton has a phase period equivalent to 8
soliton periods. Intuitively, one may predict that if this soliton experiences periodic
perturbations of loss and gain and if the perturbation period is made equal to the soliton’s
phase period, its phase will systematically be distorted upon each perturbation period.
Eventually this will lead to its temporal collapse. During the last two years there have
been extensive experimental and theoretical studies on this effect [23,25-27,35,37] and
the main conclusions that can be drawn are as follows:

(i) Any periodic perturbation on the fundamental soliton pulse leads to the gradual
creation of a dispersive wave. This wave, in general, contains frequency components that
are well outside the initial soliton frequency spectrum and, because the wave is
dispersive, these components travel at different velocities and away from the soliton.

(i) The frequency components of this dispersive wave that are phase matched to
the perturbation period experience a linear growth in power with distance. This implies
that although during one perturbation period the total gain equals the loss, the soliton

gradually loses its energy to the dispersive wave. The phase matching criterion yields

[23,26]

1| n8n_ |? (3.68)




where Ay, is the frequency separation from the soliton carrier frequency and L is the
perturbation length. For sinusoidal gain-loss perturbation with maximum gain/loss
coefficient g, (in m!), the rate of energy loss per period of perturbation is (see

Appendix to Chapt.3)

L, (3.69)

(iii) In the absence of a mode-locking mechanism, the draining of energy away
from the soliton eventuaily leads to a gradual increase of the soiiton pulsewidth r. This,
in turn, increases the soliton period so that less and less energy is lost to the dispersive
wave and the soliton reaches a steady state. If a mode-locking mechanism is present, (ie
a mechanism by which the round trip loss is also a function of 7), the soliton pulsewidth
reaches an equilibrium value which yields the lowest combined loss. Fig.3.19 plots the
soliton loss per cavity round trip against the ratio zy/L, separately for the NOLM and for
the resonant loss as well as for the combined loss of these two. It can be seen that the
resonant loss shifts the point of minimum loss of the system to higher values of zy/L,,

and hence to higher soliton pulsewidths, compared to the point of minimum loss for the

NOLM loss alone.

No analytical expression can be derived for the equilibrium position, but an approximate
limiting expression based on eqn.(3.68) can be deduced by assuming that if the resonant
loss per round-trip should only have a perturbative effect on the intracavity circulating
soliton, it should drain away no more than a few percent of the total soliton energy. As
Fig.3.20 shows, for average gain/loss modulation below ~40-50% this condition is
satisfied for ratios of z,/L, = 0.3. Viewed from a different perspective, this is equivalent
to assuming that for stable soliton propagation the first sideband should fall outside the

main soliton spectrum, ie Awr; =Avpyyy. From eqn.(3.68) we can now obtain the

82



Loss Per Round Trip

1 i
0.8
Total Loss
0.6 - /
| .
0.4/ ::
/ Minimum point /
W ; ~_- Non-linear Switch Loss
0.2} \ / e
i b
| \ /Resonant Loss
O . i
0.1 /8 0.2 0.3
Ratio Of Soliton Period To Cavity Length
Fig.3.19 Hlustration of mechanisms limiting the soliton pulsewidth:

The non-linear switch loss was calculated using eqn.(3.44)
with A=1.3 and «=0.4. The resonant loss was calculated
from eqn.(A3.13) for gu,L.=1.14, corresponding to an
average round trip gain/loss modulation of ~30%.
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Fig.3.20
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Fig.3.21 Soliton pulsewidth versus dispersion-length product (log

scale). Solid line: Eqn.(3.70). The data points are taken

from the references cited.
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following limiting expression for the soliton pulsewidth 7:

TEK[O.(DDL (3.70)
c

where Ay, is the frequency separation of the first sideband from the central frequency of
the soliton, Avgyyy 1 the full width at half maximum of the soliton spectrum, L is the
length period of the perturbation (L=L, for Fig-8 and ring lasers, L=2L, for Fabry-
Perot). As Fig.3.21 shows, the above expression is in good agreement with experimental
results that have so far been obtained in Fig-8, ring and Fabry-Perot lasers by various
research groups [28-32]. It must be emphasised that eqn.(3.70) provides a minimum
estimate for the soliton pulsewidth; further restrictions on the soliton pulsewidth may be
imposed by the particulars of a given system. Ultimately, for pulsewidths in the
femtosecond regime, the SSFS will start to impose an extra limitation as the optical

spectrum of the pulse gradually shifts outside the gain bandwidth of the amplifier.

3.6 CONCLUSIONS

The use of the non-linear optical loop mirror for passive mode-locking of fibre lasers was
demonstrated and its non-linear characteristics were analysed. Two fibre laser

configurations utilising non-linear optical loop mirrors were presented, namely the

118.

nd tha Eigure,8 {(E_R

) and the [ (F-8) system. In the norm
dispersion regime, the B-B system produced square pulses of 1-10ns duration but further
experiments are needed to examine its behaviour in the anomalous dispersion regime,
where solitons can be generated. Soliton behaviour was successfully demonstrated by the
F-8 system, producing fundamental solitons of subpicosecond duration that earned it the
status of the first all-fibre soliton laser. A theoretical analysis showed that the resonant
loss mechanism, which is inherent in all soliton lasers, imposes a lower limit on the pulse
durations that can be produced in soliton iasers. It was subsequently shown that in order
to minimise the influence of this effect and hence achieve shorter pulsewidths, the
intracavity losses should be kept as low as possible and the dispersion-length product of

the cavity should be minimised.
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APPENDIX TO CHAPTER 3
A.3.1 Proof of (3.14)

The soliton solution of eq.(3.11) at z=0 is

u(0,8)=Nnysech(nyt)
¢ (A3.1)
=Nn, sech [ Ny— ]
-

The pulse’s full-width-at-half-maximum (FWHM) should then satisfy

N2psech? nNTFWM =-1-N2’712v (A3.2)
27 2
or, equivalently,
cosh IWNTFWHMJ =2 (A3.2)
27
Hence,
. 2cosh‘1(\/2_ )T (A3.3)
FWHM™ —
N
For ny=1 we obtain
Towey = 1.767 (A3.4)

A.3.2 Resonant loss formula (3.60)

The expression for the energy-loss coefficient derived by Gordon [23] is

| L.[W ]]2
Wk‘An|o€Cu EQ I (Ags)

s 9

where
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4
Q=\2k-1 : k=_20 (A3.6)

and | A, | is the Fourier amplitude of the n™ spatial harmonic component of the periodic

perturbation A(z)

A(Z) - E Ane inkz+An* e -inkz (A3 7)
n=—-co
Let
A(z)=A,, cos(kz) (A3.8)

For this case A,=A,,/2. From the transformations on page 93 of Ref.[23] we have

g
45C) - 1 26G) (A3.9)
dz
where
G(2)=1+A(2) (A3.10)

Note that I'; as defined by Gordon is minus twice the I' as defined by eqn.(3.35) (hence

the subscript G).
Substituting eq.(A3.10) into (A3.9) gives

A, Kksin(kz)

o= (A3.11)
1+4_, cos(kz)

For values of A, significantly less than 1, the function described by eqn.(A3.11) is
approximately sinusoidal with the same period as A(z) and of maximum amplitude equal
to A,k (see Fig.A3.1). Hence, for a sinusoidal gain-loss of maximum normalised

amplitude T, =g .. 7,/ (with T' as defined by eqn.(3.35)), the corresponding |A, | is
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A | < Bmade (A3.12)
" 4T

and the energy lost to the dispersive wave per round trip (=perturbation period) is then

T. . D7z (A3.13)

1-e =]1-e

Note that the average gain-loss over a half-period is

Smadlc A3.14

93



CHAPTER 4

PASSIVE MODE-LOCKING OF FIBRE LASERS II:
SYSTEMS BASED ON NON-LINEAR POLARISATION EVOLUTION

4.1 INTRODUCTION

Following the successful use of the Sagnac loop as a non-linear switch for passive mode-
locking of fibre lasers, this chapter introduces a second type of non-linear switch that has
been proved to be equally successful. Its operation is based on the fact that the
polarisation evolution of light as it propagates through a birefringent medium is intensity-
dependent. This effect has been given the general name "Non-Linear Polarisation
Evolution" (NLPE), but it has aiso been referred to as "Non-Linear Polarisation
Rotation". The origins of the NLPE technique for passive mode-locking of solid-state
lasers date back as far as 1972 [1] but more extensive studies were performed five years
later by K. Sala [2]. Although Sala’s experiments on a Nd:glass Fabry-Perot system were
quite successful (achieving self-starting mode-locked operation) the NLPE technique was
not adopted by any other group until 1991 when M. Hofer et al. [3] demonstrated self-
sustaining passive mode-locked operation of a Nd>*-doped fibre laser in a Fabry-Perot

configuration.

This chapter will introduce the fundamental principles behind NLPE and will present for
the first time experimental results which demonstrate how NLPE can be used to produce
self-starting passively mode-locked operation in Er’*-doped ring or Fabry-Perot fibre
lasers. The experiments show that, as with the Figure-8 fibre laser configuration, the
pulse type generated with the NLPE fibre laser schemes is the fundamental optical

soliton.
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4.2 REVIEW OF THE THEORY OF NON-LINEAR POLARISATION
EVOLUTION OF LIGHT IN BIREFRINGENT MEDIA

In 1964 P. D. Maker, R. W. Terhune and C. M. Savage [4] showed that the intensity-
dependent refractive index due to the third-order non-linear susceptibility x> leads to self-
induced changes in the polarisation state of an intense light beam propagating through an
isotropic non-linear medium. Many years later, H. G. Winful [5,6], motivated by
previous encouraging experimental results which demonstrated the feasibility of all-optical
logic gates and intensity discriminators using birefringent optical fibres [7,8], presented

a full solution to the problem and showed its association with the existence of a

polarisation instability.

The non-linear polarisation evolution of light in a birefringent medium can be visualised
to be the result of a self-induced change in the fibre’s birefringence: Consider a
birefringent medium with birefringent axes f (fast) and s (slow) and corresponding
refractive indices n; and ng (n;<n,, see Fig.4.1). If a light beam of intensity I propagates

along the fast axis of the birefringent medium then the refractive indices of the two axes

for light of the same wavelength are given by

r1
R, —ns+§.n21 @1

/
ne =netn,l

Similarly, if the light beam is oriented along the slow axis, the new refractive indices n's,

n', will be

~

ny =ng+n,l

/

1 4.2)
ny =nf+§n21

Equivalently, one may interpret this as a change in the beat length L,. Figs.4.2, taken
from Ref.[6], show a phase plane representation of the evolution of the state of

polarisation of light in a birefringent fibre at (a) low and (b) high input powers. Starting
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Fig. 4.1 Non-linear refractive index change in birefringent media.
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from an arbitrary input polarisation state, the polarisation evolves with distance along a
trajectory indicated by the arrows in Figs.4.2(a,b) and all orbits close after a distance
equal to the beat length. Closed orbits represent oscillatory motion with input orientations
of less than 45° from the slow axis leading to oscillatory motion about that axis, whereas
larger angles result in oscillations about the fast axis. Figs.4.2(a,b) show that although
at low input powers both axes, points C,,C,, are stable oscillation points, at high input
powers only the slow axis, point C, is still a stable point of oscillation whereas oscillation

along the fast axis, point S, has become unstable. Introducing a normalised input power

p given by

nyl

<
ll

4.3)
An

o w

the instability occurs for p values close to unity. This is because for p=1, light directed
at the fast axis has exactly the amount of input intensity required to make n’; and n’

equal, ie to cancel the intrinsic birefringence An of the medium.

Solving the differential equations for the NLPE of light in birefringent fibres involves the
use of elliptic functions but for some particular cases approximate solutions have been
derived [9]. The exact solution of the optical fibre’s beat length variation L, with input

power p is given by

Ly _ 2K(m) (@.4)

Ly, a1 +p2—2pcos(249)}1/4

where L, is the fibre’s natural beat length as given in p.45, K(m) is the quarter period
of the Jacobian elliptic function cn(x/m) and 6 is the azimuth angle of the polarised light

with respect to the fast axis. For linearly polarised light at =45, the approximate

expression for L, is given by

-172
§+§ 1+p2] 4.5)
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Thus, by placing a polariser at the end of a birefringent fibre carrying light of variable
intensity, a non-linear transmission characteristic is obtained; this is the principle behind

the passively mode-locked operation of fibre lasers which use NLPE.

4.3 NON-LINEAR POLARISATION EVOLUTION IN A FIBRE RING LASER
CONFIGURATION

This section studies the effects of NLPE in a fibre ring laser arrangement. The theoretical
section 4.3.1 shows that these effects are best observed when low birefringent fibres are
used and discusses the variation of the switching power with the fibre beat length
number. Dispersion effects have been initially neglected for simplicity but this case will
be covered later in the chapter. The experimental results that are subsequently presented
provide a full characterisation of the NLPE ring laser configuration in which the various

mode-locking regimes are discussed and the mode-locked performance associated with

various cavity parameters is investigated.
4.3.1 Theory

Consider a ring laser cavity which includes a Birefringent element [L], a polariser [P] and
a rotating element [{2] as shown in Fig.4.3. Starting from point A and representing [L],
[P] and [Q] with their Jones matrices we can write the following eigenvalue equation for

the components of the electric fieid circulating inside the cavity:

K E
(P12 [Z] [ f} A [ j} (4.6)
1B s

Ay

where the subscripts f and s denote that the electric field has been resolved with respect
to the fast and slow axes of the birefringent element. By using a right-handed coordinate

system of axes, the matrices [P], [L] and [Q] take the form

Pl= { cos?6 sin(?cosﬁil @.7)

sinfcosf  sinZf
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.
n=|" ° (4.8)
0

cosQ? -sinQ 4.9
=" (49)
sin{? cos(2

The eigenvalues A\ that obey eqn.(4.6) are the following:
A =0, \,=e %y Lcos(@ -M)cosf+e i SLsin(O -M)sind (4.10)

where (3¢, O, are the two propagation constants along the axes of the birefringent element

xritle wamsannd Fn Flan Foed neio meed 3 oio
WILL 1COPLCL LU LIC 1adL dAld alil 3 1d

'

of length L, & is the azimuth angle o
the rotation angle. Note that the system possesses only one polarisation eigenmode
because one of the eigenvalues is zero. The magnitude of the second eigenvalue gives the
round trip intensity transmission T of the system:

T=|\ 2=coszﬂ—_1.3111(219)sin(2(0—Q)) 1-cos | 27-L (4.11)
2 2 L

by

where Ly, is the natural (linear) beat length of the birefringent element. Three cases are

of particular interest:

(a) If cos 27 L/Lyp)=1, ie the ring is made up of an integer number of beat lengths at
the wavelength of operation, then the round trip transmission is equal to cos’Q, ie

independent of the orientation of the polariser 6.

(b) If cos 27 L/Lyy)=-1, ie the ring is made up of a half integer number of beat lengths
at the wavelength of operation, and Q=0 then the transmission becomes equal to 1-

sin®(26).

(c) If 6=0 then the transmission becomes wavelength independent.
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The beat length variation with input power ultimately then results in an intensity
dependent cavity transmission T(p). Fig.4.4 shows the numerically evaluated cavity
transmission T(p) for §=45°, 30° and 20° with L/L,,=1 and 2=90°, so that T(0)=0 at
the wavelength of operation. Note that T(p) reaches a maximum value of 1 around p=2.5
and then starts falling again, a behaviour similar to that observed from the non-linear

optical loop mirror, see Fig.3.6.

Provided that © is set such that the cavity loss is maximised for low powers (T(0)=0) at
a particular wavelength and @ is set equal to 45° (for maximum switching efficiency), we
can use the approximate expression eqn.(4.5) and write the following equation for the

"switching" power, ie the power required for T(p) to reach its first maximum:

-i/2
[ 3.5/1:0? 2 4.12)

which has the solution

2 (4.13)

Fig.4.5 displays how the switching power p,, depends on the number of beat lengths
L/L,, in the cavity. Notice that the p,, has fallen drastically after 20 beat lengths, hence
the advantage of working in the multi-beatlength regime. In terms of real power units,
eqn.(4.3) in conjunction with eqn. (4. 13) indicate that for the same number of beat lengths
the use of low birefringent fibre provides an additional reduction in the optical power

required in order to observe the non-linear polarisation effects. In the experiments

:

-200m of low birefringence spun fibre were used to form a part of
a ring or a Fabry-Perot fibre laser cavity. This enabled non-linear polarisation switching

to take place at input pump powers as low as 80mW.
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Fig.4.5
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Normalised switching power p,, vs Beat length number
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4.3.2 Experimental Details and Results

Initially, the experimental configuration shown in Fig.4.6 was used. The pump source
was an argon-ion pumped Ti:Sapphire laser providing up to 3W of cw light at 980nm to
pump the EDFL through a wavelength division multiplexing (WDM) coupler. The
remaining output port of the WDM served for monitoring the launched pump power. The
cavity comprised of 4m of erbium-doped fibre, 180m of passive, low birefringence spun
fibre, a fibre pigtailed polariser (FP), both supplied by York Fibres Ltd, a pigtailed
polarisation-insensitive optical isolator (OI) from BT&D Technology and two sets of
polarisation controllers (PC’s) one placed before the FP and one before the OI. These

served as the means to control € and # and thus control the total loss of the system.

Output coupling was provided by a 90:10 coupler as shown. The active fibre had an
erbium dopant concentration of 800ppm, NA=0.15 and a cutoff wavelength of
A.=960nm. The passive fibre was characterised by an NA of 0.1, a cutoff wavelength
of A,=1250nm, a group velocity dispersion parameter of D=17ps/nmkm @ 1.56um, an

effective core area of 124um? and an estimated beat length >10m @ 1.56um.

For a certain setting of the PCs, the laser exhibited a CW threshold of 25mW launched
pump power; because of the presence of a polariser in the ring, the orientation of the PCs
controls the total loss of the system. In this way, the output power of the laser could be
reduced to as low as 3% of its full power (minimum loss) value, i.e. an extinction ratio
of 15 dB. When set in this high-loss condition, the laser is encouraged to operate in a
pulse mode by the fact that high-intensity pulses cause the onset of nonlinear
birefringence and a concomitant swing in the polarisation state reaching the polariser,
thereby reducing the resonator loss. After appropriate adjustment of the PC’s, self-
starting mode-locking could be initiated by increasing the launched pump power to a
"second" threshold value of 80mW. Figs.4.7(a,b) show the CW and mode-locked optical
spectra respectively. When running CW, the optical spectrum of the laser exhibited a
number of equally spaced peaks. This is a consequence of eqn.(4.11) which indicates a
wavelength-dependent cavity loss with period AN=NL,,/L. It is believed that the isolator
leads, which are made of polarisation maintaining fibre, were the dominant source of

birefringence in our cavity and provided the 1nm peak spacing in the optical spectrum.
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When the laser was mode-locked, the peaks disappeared and a broad (> 10nm) lasing
linewidth resulted. With intracavity pulse powers in the region of 40W, there was no
evidence in the optical spectrum of self-modulational instability [10] or stimulated Raman
scattering. Fig.4.8 shows the dependance of the pulsewidth on pump power for a
particular arrangement of the PC’s. The pump power values, in descending order, are
850, 450 and 250mW, leading to pulse durations of 7, 4 and 2 ns respectively as shown.
The square pulse shape is indicative of a switching level similar to that observed in the
mode-locked Sagnac loop lasers discussed in Chapter 3. This is because of the similarity
between the transmission characteristics of the NLPE-based non-linear switch and those
of the NALM / NOLM. By careful adjustment of the PC’s with the pump power kept at
a fixed level, this switching level, and hence the intracavity pulse power, could be made
to vary between 20-40 W with an associated variation in pulsewidth of 4-2ns respectively.
Mode-locking could be sustained at a minimum launched power of 79mW, indicating

minimal hysterisis in the mode-locking behaviour.

Replacing the 180m of low-bi fibre with 3km of standard telecommunications fibre
(A\,=1201nm, NA=0.11, D=18ps/nmkm @ 1.55um) resulted in a less stable mode-
locked behaviour. The mode-locking threshold, pulse repetition rate, shape, duration and
optical spectrum were all very sensitive to the setting of the PC’s. The laser could either
operate at the fundamental, as seen in Fig.4.9(a), or higher harmonics of the fundamental
round trip frequency. The pulse duration varied between 300ns for the fundamental
repetition rate and 0.75ns at the highest repetition rate observed. Pulse bunching and
pulse break-up effects were also observed as seen in Figs.4.9(b,c), indicating a departure
from the pure mode-locked behaviour. Typical values for the cw lasing and mode-locking
thresholds, which, as with the 200m fibre, were dependent on the PC’s orientation, were
32mW and 700mW of launched pump power respectively, but, once mode-locked, the
pulses could be sustained at a much lower pump level (80mW). This hysterisis effect was
not observed in the experiments with the 200m fibre. For launched pump powers greater
than 750mW we observed broad (150nm) laser oscillation, with the harmonically mode-
locked laser producing pulses of 2ns duration at a repetition rate of 2.2MHz, which was
the 33" harmonic of the cavity (see Figs.4.10 and 4.11), The pulse power was 6.8W

which is above the threshold power for stimulated Raman scattering for our fibre which
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Fig.4.9 3km fibre ring laser: (a) Fundamental mode-locking (b)
Pulse bunches circulating around cavity at the round trip
frequency (c) Exploded view of individual bunch
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Fig.4.10 3km fibre ring laser: (a) 33" harmonic mode-locking when
the lasing linewidth was 150nm (b) View of individual
pulse.
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was calculated to be 1.5W. Since the insertion loss of the FP in the region of 1600-
1700nm is considerably higher (1-2 dB respectively) than that at 1500nm (0.24dB), even
broader lasing linewidths than 150nm should be possible with a different polarising

intracavity element.

By replacing the polarisation-independent isolator with a polarisation-dependent one,
thereby discarding the need for a fibre polariser, and changing back to the 180m of spun
Lo-Bi fibre, our results improved dramatically in terms of the new pulse durations and
the stability of the system. The modified experimental setup is shown in Fig.4.12. The
remaining output port of the WDM coupler served to monitor the launched pump power

and for active pump stabilisation using a servo-loop.

As with the previous set-up (Fig.4.6), long duration (> 500 ps) square pulse behaviour
was observed with this system at high pump powers. The square pulses were generated
at the cavity round-trip frequency with an optical bandwidth of 30-40 nm. However, at
low pump powers (<150 mW) the square pulse split into a multitude of smaller pulses
of much shorter duration, seemingly randomly spaced within bunches and repeating at

the cavity round-trip frequency.

Fig.4.13(a) shows the evolution in the optical spectrum of the laser as the pump power
is raised and Fig.4.13(b) shows the corresponding output power hysterisis curve. The CW
lasing threshold was 27mW of launched pump power. With appropriate adjustment of the
PCs, self-starting mode-locking could be initiated by increasing the launched pump power
to a "second" threshold value of 70mW. From the slope efficiencies of the two hysterisis
lines the fractional difference in the cavity loss between CW and mode-locked operation
was estimated to be ~4-5%. As shown in Fig.4.12(a), the onset of mode-locked
operation was marked by an abrupt change in the optical spectrum: The narrow CW line
developed into a much broader, approximately sech? spectrum which possessed two
distinct symmetrically-located side-lobes. The onset of mode-locking was often
accompanied by an additional CW component, an additional sharp spectral feature on the
soliton spectrum, which could subsequently be eliminated on reduction of the pump

power. Note that Fig.4.13(a) is plotted in log intensity to emphasize these features. Side-
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lobe suppression to > 30dB of the peak level was readily obtainable with this laser by
appropriate control of the PC controllers and the input pump power. Once mode-locking
had been initiated, gradually decreasing the pump power produced discrete and abrupt
downward jumps in the laser output power, coinciding with the disappearance of
individual pulses from the cavity. This is shown in the inset of Fig.4.13(b). This process
would continue until at a particular pump power, which was very close to the CW
threshold power of 27mW, only one pulse would remain inside the laser cavity,
indicating fundamental mode-locking. Fig.4.14 shows this time-domain behaviour for an
initial number of 8 circulating pulses. Immediately after a jump in pulse number, any
excess energy above that required to support the reduced number of pulses is removed
by energy shedding into the dispersive wave and absorption at the nonlinear switch. Note

hat there is a certain "tolerance” in the pulse energy between successive jumps (owing

Hid ]

to the slow response time of the detector, the pulse energy is proportional to the height
of each pulse on the oscilloscope trace) and this tolerance can be best observed in these
last two pictures which demonstrate fundamental mode-locked operation; as the pump
power decreases, the intracavity soliton re-adjusts its normalised amplitude A to span part
of the 1.5-0.5 range, depending on the cavity losses. The appearance of any pedestal
component in the autocorrelation trace as a result of this process was not observed,

although slight changes in pulsewidth were observed when a small number of pulses were

present in the cavity.

By monitoring the number of pulses in the cavity and recording the change in output
power every time a pulse disappeared, the intracavity pulse energy was estimated to be
~48 p]. An autocorrelation measurement (Fig.4.15) for this particular setting of the PCs
revealed a sech® pulse shape with a pulse duration of 1.55 ps. The FWHM bandwidth of
the optical spectrum was 1.68 nm, thus yielding a time-bandwidth product of 0.32. The
energy of a fundamental soliton of 1.55 ps duration for the parameters given above is 47
pJ, which is in excellent agreement with the measured value of 48 pJ and this indicates

that the pulses in the laser are fundamental solitons.

Further autocorrelation measurements showed that by tuning the PCs the pulsewidth could

be varied between 1.55 ps up to about 4 ps, with corresponding ratios of soliton period
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to total cavity length of 0.29 and 2 respectively. The autocorrelation traces were found
to be well fitted by sech? pulse forms and were pedestal free. It should be noted that side-
lobe suppression improved as the pulse duration was increased, or, equivalently, as the
ratio of the cavity length to soliton period decreased. This fact was expected, according
to the theory based on the average soliton approach presented in Chapter 3. The side-lobe

intensity was effectively suppressed >40 dB relative to the central peak for the longest

duration pulses.

The pulse duration also depended to some extent on the pump power. When operating
with the PCs set to give minimum pulse duration, the pulse width narrowed from 2 ps
at a pump power of 150 mw down to 1.55 ps at a power of 30 mW. The time-bandwidth
products at these pump powers were 0.38 and 0.32 respectively. The wavelength tuning
range was of the order of 5 nm, although it should be noted that mode-locked operation
could be obtained around both 1.538 and 1.558 um. In addition, it should be noted that
simultaneous, multiple wavelength mode-locked operation could be obtained, as shown
in Fig.4.16. This fact highlights an important difference between this laser and the figure-
eight laser: In the present case the intensity-dependent loss mechanism that facilitates
passive mode-locking varies periodically with wavelength. Since in the Er** system the
laser gain is also wavelength-dependent (see Chapter 2), there exists a case in which two
different wavelengths which experience different losses have, nevertheless, exactly the
same threshold, thus allowing the dual wavelength operation shown in Fig.4.16.
Simultaneous mode-locked operation at as many as three central frequencies was observed

during the course of all these experiments.

By changing the setting of the PCs and working at pump powers within the soliton regime
of operation (< 150mW), a new mode of solitonic behaviour was observed, which was
quite different from the one previously described. The difference between the two modes
of solitonic operation, which from now on will be named as modes #1 and #2, is most
strikingly demonstrated by observing their spectral behaviour as a function of pump

power, as well as comparing their respective power hysterisis curves.

In mode #1 (Fig.4.17a, same as 4.13a), the central wavelength and spectral shape of the
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pulses remained constant as the pump power was varied. However, the ratio of the
amplitude of the side-lobes to that of the central frequency was generally found to depend
on the pump power (as well as depending on the PCs setting as mentioned above). In
mode #2 (Fig.4.17b), discrete changes in the central wavelength and spectral shape were
observed with varying pump power. These became particularly prominent at pump

powers close to the CW threshold value.

The output power characteristic of the laser for the two soliton modes is shown in
Fig.4.18. In mode #1 (dashed lines, same as in Fig.4.13b) the CW threshold was 27 mW
and, as mentioned earlier, mode-locking was found to self-start at a second "threshold”
of 70 mW (not shown in Fig.4.18). A higher CW threshold of 30 mW was observed for
the system operating in mode #2 (bold lines, Fig.4.18), however the second "threshold”
was now reduced to 47 mW. Once initiated, mode-locking this mode could be maintained
at pump powers significantly lower than its CW threshold of 30mW. Abrupt jumps, both
upwards and downwards, in the output power were observed in this instance. Jumps
downwards were associated with pulse disappearances and were not constant from jump
to jump particularly when a small number of pulses remained in the cavity. The (much
smaller and more difficult to see) jumps upwards were associtaed with discrete
wavelength shifts (~3nm). The fundamental difference between these two solitonic

modes is currently not understood.

In order to monitor the state of polarisation (SOP) of the circulating light before it
reaches the optical isolator, an extra 90:10 coupler was placed immediately before the
polarising optical isolator and the SOP of light emerging from the output port of this
coupler was monitored as a function of pump power by using a real-time polarisation
analyser (Electro-Optic Development). Unfortunately, this instrument employs a fibre
input lead of unknown birefringence and therefore a measurement of the absolute state
of polarisation at the polariser input was not possible. The device could however be used
to detect changes in the polarisation state. The results of the measurements are shown in
Fig.4.19. It was observed that the SOP at the output port remained approximately
constant during CW operation up until the onset of mode-locking, at which point an

abrupt change in the SOP was observed. The SOP remained fixed at pump powers
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beyond this point. These observations provide strong evidence that NLPE provides the
mode-locking mechanism within this laser and are similar to those published by other
groups [20,21], where azimuth changes between 1° and 8° were reported.

The LoBi fibre section was then cut back to a length of 45m and subsequently to 3m in
order to measure the minimum pulse width obtainable as a function of the total cavity
length. The length of the residual fibre in the cavity i.e. EDFA, isolator pig-tails and
coupler leads was ~ 15m. The shortest pulses obtained had a duration of 720 fs with the
3m Lo-Bi fibre section. Similar measurements were made with a section of standard
telecommunications fibre. Lengths of fibre ranging from 200m down to 3m were tested.
The shortest pulse observed with this fibre was 700fs. Fig.4.20(a) shows the
autocorrelation trace of an incident in which the intracavity soliton pulses formed coupled
pairs. This is also reflected in the optical spectrum (Fig.4.20(b)) which is modulated at
1.67nm (200GHz), corresponding to the observed 4.3ps pulse separation. The cavity
length was 30m. Fig.4.21 summarises the pulsewidth dependence on the total cavity
length for the two types of fibre used. It is seen that the pulsewidth follows an
approximate L!? dependency in both cases which is in agreement with the theory on the
resonant loss mechanism presented in the previous chapter. It should be noted that, with
a maximum pump power of 100 mW, no spontaneous mode-locking was observed without
at least a 3m section of relatively low birefringrence (I,,>2m) fibre within the fibre
laser cavity. When sections of medium to highly birefringent fibre (L,;<0.1m) were
incorporated within the cavity no mode-locking was observed, irrespective of the fibre
length used. Finally, it must also be mentioned that in terms of ability to self-start,
spectral quality and overall stability, the Lo-Bi fibre produced significantly better results

than the ordinary telecommunications fibre.

4.4. NON-LINEAR POLARISATION EVOLUTION IN A FABRY-PEROT FIBRE
LASER CONFIGURATION

The NLPE method of passive mode-locking can also be applied to a Fabry-Perot cavity
configuration. However, the experimental results presented below demonstrate a dramatic
increase in the self-starting threshold for mode-locking compared to the ring laser system
described previously. Section 4.4.1 provides a description of the laser system and

presents the experimental results.
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4.4.1 Experimental Details and Results

Fig.4.22(a) depicts the laser cavity schematic and Fig.4.22(b) the actual experimental set-
up. The system comprised 40m of Lo-Bi spun fibre (NA=0.12, A,=1250nm, D=17
ps/nm/km, A, 4.=124um? and beat length >10m), 3m of Er**-doped fibre (dopant
concentration =800ppm, NA=0.15, \,.=960nm), a fibre polariser (FP) and a polarisation
controller (PC) situated just before the fibre polariser. Pumping was provided by a
Ti:Sapphire laser operating at 980nm and the pump power was actively stabilised with
a feedback circuit and a Bragg-cell intensity modulator placed in front of the launch
optics. A 980/1550nm fibre WDM was used to couple the pump light into the Er-doped
fibre and the laser cavity was formed by butting the end of port #2 of the WDM against
a 1550nm 99% reflecting mirror (M1) and the fibre polariser end against an 85%

reflecting output mirror (M2).

Using the Jones calculus approach as previously performed for the ring laser cavity, the

linear cavity transmission for the system depicted in Fig.4.22(a) is given by

s

AR
2rl || (4.14)
L

]

where L is the length of the birefringent fibre and the polariser is assumed to be located

1 (
T=1 —isin2(26) [ 1-cos

at one end of the cavity. The angie # between the polariser axis and the x-axis of the

fibre birefringence in the experiment is specified by the orientation of the PC.

With the PC adjusted so as to minimise the intracavity loss, the laser had a CW threshold
of 25mW launched pump power. The onset of mode-locked operation was marked by an
abrupt change in the optical spectrum and output power at a particular value of the
launched pump power (450mW). Once initiated, mode-locked operation could be
sustained to powers within a few mW of the CW threshold (25mW). The self-start pump
power threshold is considerably higher than that required for self-starting mode-locked
operation in the Fig-8 and ring configurations presented earlier (typically 50-80 mW). In

general, the modes within a laser cavity are unevenly spaced due to the effects of

128



High reflector

40m io-bi fibre

M1 7\ FP M2
P aa:aaﬂ EDI'!:A l pC . N
Y coa , () §_,
/—\ . To
.‘ autocorrelator
and optical
980nm pump S;.'-‘:aﬁ;-’sh::

Fig.4.22 (a) Fabry-Perot fibre laser cavity schematic and (b) actual

experimental arrangement.

129



spurious reflections [10] and, in the case of a Fabry-Perot laser, due to the formation of
complex refractive index grating in the gain medium set up by the two counter-
propagating waves [11]. This uneven mode-spacing leads to beat-note line broadening and
hence limits the lifetime of the mode-beating fluctuations. Fig-8 and ring fibre lasers are
inherently travelling-wave lasers and therefore have a significant advantage over their
Fabry-Perot counterpart in which the effect of spatial hole burning sets up the refractive
index grating, thus leading to substantial beat-note line broadening. Subsequently the
intensity of the fluctuations and hence the pump power required to initiate self-starting
mode-locking is significantly higher in Fabry Perot cavities, in general agreement with
the work of Zehetner and Krausz [12,11]. It should also be noted that the effects of
spurious reflections are significantly less in a unidirectional cavity due to the presence of

the isolator which will also contribute to the low self-start threshold.

Two distinct regimes of mode-locked operation were observed depending on both pump
power and the setting of the PC: in the "square pulse” regime, long duration (> 500ps)
square pulses at the cavity round-trip frequency (2MHz) were observed, as was also
discussed in the previous experiments on the Figure-8 laser and the NLPE ring laser.
These pulses were characterised by broad bandwidths of 10-15nm. In the soliton regime
and at high pump powers (around the self-start threshold =450 mW) tightly-packed
bunches of solitons exhibiting chaotic behaviour were observed. As the pump power was
gradually decreased, these bunches would break up to produce stable bunches of
randomly-spaced fundamental solitons, the bunches repeating at the cavity round trip
period. At pump powers close to the cw laser threshold, as few as two pulses were
obtained within the cavity. Autocorrelation measurements (see Fig.4.23(a)) showed a full
width at half maximum of 2.5ps, corresponding to a pulse duration of 1.6ps. The spectral
width was 1.5nm (see Fig.4.23(b)), yielding a time-bandwidth product of 0.32, as

expected for transform limited sech? pulses.

When the 15% output coupling mirror was replaced by a 50% output coupler, thus
reducing the intracavity power, it was not possible to obtain stable soliton operation at
low pump powers. At best, only a mixed operating regime of square and soliton pulses

could be obtained. With the output coupler increased further to 85%, no pulses could be

130



SHG Intensity (arbitrary units)

1
Time delay - 8ps/division

@
s P 7
c
e | i
> L A -
R
-;;_ - FWHM = 1.5nm i
5 L -
= | -— l i
5 | i
g
: R -y
- y R J 1 J\JL 4 e ]

1550 1560 1570
Wavelength (nm)

Fig.4.23 (@) Autocorrelation trace and (b) optical spectrum of the
soliton pulses produced in the Fabry-Perot cavity

configuration.

131



obtained at all, possibly because the mode-locking threshold is then higher than the
maximum available pump power (700mW launched). No simultaneous dual-wavelength
modelocked operation as previously seen with the ring laser configuration was ever

observed in the course of these experiments.

The two dielectric mirrors were then replaced by two highly reflective fibre gratings of
1nm bandwidth in order to form an all-fibre laser cavity. The results were, however,
disappointing: When both gratings were used, no mode-locking was observed and at best,
square-pulsed operation was observed when only one reflection grating was used and a
dielectric mirror on the other side of the cavity. The absence of soliton formation is
thought to be due to the narrow bandwidth and the high dispersion that these fibre
gratings possess [13]. Fig.4.24 displays the gratings’ wavelength transmission
characteristics and Fig.4.25 shows a picture of the square pulse and its optical spectrum
as transmitted from the grating side of the cavity. Since the grating bandwidth is only
1nm, the optical spectrum shows the band of frequencies generated by self-phase

modulation in one cavity round trip.
4.5 SOLITONS AND NON-LINEAR BIREFRINGENCE

When considering propagation in a non-linear birefringent medium, the NLSE that
governs soliton wave propagation in a one-dimensional non-linear medium (eqn.(3.21))

is split into two coupled NLSEs [14]:

upou) P2 2| e batre g 159
AT R L
igzoz
) &
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where u,v are the normalised amplitudes for the two orthogonal polarisations and § is a

normalised birefringence parameter defined as follows:
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As an example, if 7Tpyy=1 ps, D=-17 ps/nm/km, A=1.56 pm and L,;,=1 m, 6=0.067
and 8zy/L,~184. If 8zy/1;,,;> > 1, ie the soliton phase period is much greater then the

fibre beat length, then the exponentially varying terms in eqs.(4.15) can be neglected.

The solution of the system of eqn.(4.15) under specified conditions has been studied by
many authors [15-19], although, to the author’s knowledge and at the time of writing of
this thesis, a complete study of the system has yet to appear. The basic conclusions of

these studies that are of interest here can be summarised as follows:

(a) For moderate values of 6 (0.1-0.8) and assuming that 8z,/14,> > 1 so that the
exponentially varying terms can be neglected, it has been found that for a linearly
polarised input soliton pulse of the form Asech(t) launched at an angle with respect to the
birefringence axes there is a critical threshold for the value of A above which, the

+
v

('D
o]

nonlinearity is sufficient to constrain both the spreading that is du
splitting that is due to birefringence, thus keeping the two partial pulses bound together.
More specifically, above threshold, if the input pulse is launched unevenly with respect
o the fibre birefringence axes, then the largest amplitude pulse is found to "capture" part
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any further energy exchange. If, on the other hand, the input pulse exites both othogonal
modes equally, the two partial pulses are seen to move with respect to each other in an

oscillatory fashion without energy exchange.

(b) For lower values of 6 such that the exponentially varying terms of eqns.(4.15)
can no longer be neglected, it has been found that if the input pulse is launched along the
fast axis its energy is eventually transferred permanently to the slow axis, which, as in
the CW wave case (ie with no dispersion effects included) is the stable axis. Thus,
although in the CW case the energy cannot relax to the stable mode and is forced to

oscillate between the two modes, the extra dimension introduced by the dispersion allows
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the energy to relax to the stable mode by shedding radiation from the central pulse.

The important thing to note from these analyses is that in a birefringence-polariser
transmission situation, solitons are equally, if not more, flexible compared to square
pulses: That is, if a birefringent fibre laser includes an intracavity polariser, a soliton
pulsewidth can always be found, within the allowed limits set by effects such as the
resonant loss or the soliton self-frequency shift, which permits stable and lossless
propagation, the same way that a certain "switching" power exists for square pulses in
order to pass through the polariser without loss. This is because both parameters of the
coupled system of eqn.(4.15) which determine the soliton evolution, ie 8 and 8zy/Ly,,
depend on 7, the soliton pulsewidth. This observation agrees with the experimental results
which demonstrated that the pulsewidth may be varied from 5 to 1.5 ps by changing the
position of the polarisation controllers. Although this variation may initially seem
insignificant, note that the ratio 8zy/L,, is changed appreciably due to the quadratic
dependence of z, on 7. Another point to note is that the normalised birefringence
parameter 6 is inversely proportional to 3,, the group velocity dispersion. Hence,
decreasing (3, should resuit in shorter soliton pulsewidths in order to keep an acceptable
value for 6§ <0.9 to ensure stable soliton propagation. As was discussed in Chapter 3,

however, the ultimate pulsewidth is still determined by the resonant loss mechanism.

4.6 CONCLUSIONS

Non-linear polarisation evolution provides an simple and effective way for passive mode-
locking of fibre lasers. As with the Figure-8 laser, it can produce soliton pulses of
picosecond and subpicosecond duration and it also has the additional advantage of
avoiding the soliton splitting and the subsequent interferometric recombination that is
required in Figure-8 lasers, thus keeping the soliton more or less intact at each round
trip. The passively mode-locked fibre lasers produced by the NLPE technique were
characterised in terms of their modes of operation, hysterisis curves, cavity length and
fibre birefringence. It was demonstrated experimentally that standing-wave configurations,
such as a Fabry-Perot, have a substantially higher mode-locking threshold over travelling-

wave arrangements such as ring or Figure-8 lasers and is in confirmation with recent
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theoretical investigations [11]. The existence of NLPE as the mechanism behind the

passively mode-locked operation was verified by state of polarisation measurements.
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CHAPTER 5

LONG MODE-LOCKED FIBER LASERS FOR SENSING APPLICATIONS

5.1 INTRODUCTION

This chapter investigates the potential of using long mode-locked fibre lasers for
distributed temperature sensing (DTS). In a conventional DTS system a high-power short
pulse is launched into an optical fibre and the temperature-dependent Raman
backscattered signal, produced by the pulse travelling along the fibre, is detected using
a fast detector and time-averaging techniques. In principle, a fundamentally mode-locked
long fibre laser should be capable of generating a measurable Raman signal, with the

fibre laser cavity forming the sensing element.

The first section of this chapter examines the relative merits of such a fibre laser DTS
system with respect to that of a commercially available system which uses a source

external to the sensing fibre. Three experimental mode-locked system conﬁgurations that

the experimental results. In this analysis the theory of active mode-locking as developed
by Kuizenga and Siegman (K-S) [1], is extended to include the effects of intracavity

dispersion which become significant at long fibre laser resonator lengths.

5.2 THEORETICAL CONSIDERATIONS

As mentioned in the introduction, a long mode-locked fibre laser may be used as a
distributed temperature sensor. Assuming that there is only one pulse circulating inside
the cavity, the backward-scattered ratio of the Stokes and the anti-Stokes Raman light

allows the determination of the absolute temperature at each point according to the
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formula [2]

4
E] exp[__fzéz] (5.1)
4

where Av=|p, .. ;| is a chosen value of the Stokes/anti-Stokes frequency shift from the
laser light »; at which the ratio is measured, T is the absolute temperature, and k, h are
Boltzmann’s and Planck’s constants respectively. The (»,/v,)* factor is a consequence of

Rayleigh scattering.

This method of detection has been used with success in the past [2] and is given the
acronym DART (Distributed Anti-Stokes-Raman Thermometry). In the state-of-the-art,
commercially available system at present, high (~250nJ) energy pulses from a Q-
switched laser are injected into a passive multimode fiber at a repetition rate of ~4kHz
and the backscattered ratio at a convenient wavelength is subsequently measured and

averaged. The backward scattered anti-Stokes signal for a launched energy of 1] is given

by [3]

PA _S(Z)=SQ(Z)7]A_S(Z,T)Vge (_Io (d(z/)+ab,4_s(z/))dz/) (5.2)

where « and o, 5 g are the fiber attenuation at the launched and backscattered wavelengths
respectively, n,.5(z,T) is the effective quantum efficiency of the anti-Stokes process
(defined as the ratio of Raman anti-Stokes signal generated to the power lost from the
forward-traveling pulse in a scattering region at temperature T and distance z), v, is the
group velocity of the optical guide and S is the backscatter capture ratio, which for a

homogeneous step index fiber is given by [4]

2
3 [ A ] (5.3)

\ being the optical wavelength of the backscattered light, n, the refractive index of the

fiber core and w the fibre 1/e? intensity spotsize at the backscattered wavelength. For
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multimode step-index fibres S is given by [4]

2
NA

nCO

5.4

Spy=1

where 7 is a function of the power distribution of the backscattered power. For a uniform
power distribution n=3/8. Fig.5.1 plots the ratio Sy;,/Sgy against the single-mode fibre
V-value for the case of equal single-mode and multimode fibre NA’s. If the NA’s are
unequal, the value of Syy4/Sqy from the graph at a particular V-value should be
multiplied by the square of the ratio NAy/NAgy. Setting the following values into
eqn.(5.2) 7, §=0.001, a=ay, =10 cm™ (~0.4dB/km), $=0.001, v,=2x10'° cm/s,
L=500m, we obtain P,_¢(1.)=18 pW for a 1 nJ pulse. At room temperature, the Stokes

signal is 4 times stronger.

A 1-10km long low-loss mode-locked fiber laser configuration which produces 1-10ns,
10W pulses at repetition rates of 10-100kHz could then be developed to offer an attractive
alternative to the current Q-switch source/passive fibre DTS approach. In fact, by using
a low loss fibre laser cavity, intracavity puise energies in excess of 200nJ shouid be
possible at modest (< 150mW) pump powers. This offers a significant advantage in terms
of power efficiency over the existing system which uses each probing pulse only once.
By using wavelength selective couplers, the Raman Stokes and anti-Stokes signals could
be routed out of the cavity and detected whilst the iasing waveiength is maintained inside.
Consequently, and in combination with the relatively high repetition rates, the averaging
time needed to obtain sufficient data would be significantly reduced. However, the onset
of stimulated Raman scattering, typically a few Watts for a 1 km silica core single-mode
fiber cavity at 1.55um [5], will impose a maximum limit to the pulse power that can be
used, although owing to the pulse walk-off effect the Raman threshold for nanosecond

pulses is expected to be greater, typically 10-15W.
5.3 EXPERIMENTAL RESULTS ON ACTIVELY MODE-LOCKED SYSTEMS

This section presents experimental results on two types of fibre laser cavity
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configurations, namely Fabry-Perot and antiresonant ring (Sagnac) lasers. Active mode-
locking techniques were pursued using amplitude and phase modulators with an aim to

find the most suitable arrangement for a DTS system.
5.3.1 Fabry-Perot AM Mode-Locking Using an Acousto-Optic Modulator

The experimental arrangement is shown in Fig.5.2a. 5m of Nd**-doped fiber (dopant
concentration=190ppm, NA=0.2, cut-off wavelength=790nm) were spliced onto 500m
of low-loss (< 1.5 dB/km) undoped fiber, (NA=0.16, cut-off wavelength 960nm). The
Bragg cell modulator (IntraAction Corp. Model AOM-40R) had an acoustic carrier
frequency of 40 MHz with a modulation bandwidth of 2.9-4.5 MHz (depending on the
input beam diameter) and was anti-reflection coated at the lasing wavelength of 1.08um.
The diffraction efficiency was measured to be 80% at the modulating frequency of 200
kHz. The intracavity lens (Newport KPX010) was an anti-reflection coated planoconvex
lens positioned with its flat surface facing the fiber so as to minimise spherical aberration.
The end of the passive fiber was also pclished at an angle to prevent etalon formation.

The laser had a pump threshold of 80mW and a slope effici
frequency was modulated using square and sinusoidal signals, with the former producing
20ns mode-locked pulses and the latter producing 35ns pulses. Since these pulses were
far from being bandwidth-limited, the grating arrangement shown in Fig.5.2b was
subsequently used. Although this arrangement caused a reduction of the lasing linewidth

to 0.15nm, no pulse shortening was observed.
5.3.2 Sagnac Loop AM Mode-Locking Using a Piezoelectric Cylinder

Another method to produce AM mode-locking using an FM modulator is to use the
arrangement of Fig.5.3. The phase difference of the two counter-propagating fields in the
Sagnac loop previously provided by birefringence and/or non-linear effects, as discussed
in Chapter 3, is instead now produced using a phase modulator positioned on one arm
of the loop. This phase modulation actually mode-locks the Sagnac laser by means of

amplitude modulation.
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Fig.5.2 The experimental arrangements for AM mode-locking using

an acousto-optic modulator (Sec.5.3.1).
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Fig.5.3 Action of phase modulator in the Sagnac loop.
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We can write for the fields E’; and E';:

E, (t)=a'E, (t-T)e/ [BL+9¢-D]

, , (5.5
Ey (0=j(1-0)E (¢ -T)e/ [PL+# 0]
where
$(f)=6cos(w,7) (5.6)
The transmission function becomes
T (=1 -4a(1 -)cos? [w} (5.7

For low modulation indices cos?(x) = 1-x? and the transmission function can be written

as

( \
: ] r (5
T (1) = 6sin’ l:wm {f—gJ ] sin? l—wg J (for =0.5) (-8

Because of the sinz(me/Z) factor in the transmission function, the length of the whole
cavity should be made as close as possible to the loop length. Note also that the

amplitude modulation frequency is twice the phase modulation frequency that produces

it.

Fig.5.4 shows the experimental set-up. The modulator used was a piezoelectric cylinder
(Vernitron PZT 5H 32-16125) with an outer diameter of 25.4mm, a wall thickness of
3.18mm and length 50.8mm. The modulation efficiency of the device at 1.1 MHz was
measured by setting up a Mach-Zender interferometer and was found to be 0.1 radians
per volt per meter at a wavelength of 632.8nm. A length of ~80m was used to form the
Sagnac loop for fundamental mode-locking. This was composed of ~35m of a low doped
erbium doped fiber spliced with 45m of undoped fiber, both single mode at the lasing
wavelength of 1.55u. Almost all of the 35m of the doped section was wound on the

cylinder.
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When the modulator was switched on, mode-locking of the laser was achieved. The
pulses observed had a 5ns envelope with a 300ps substructure (see Fig.5.5) which was

probably caused by an excessive modulation index.
5.3.3 Fabry-Perot FM Mode-Locking Using a Piezoelectric Cylinder

In this experiment the same piezoelectric cylinder as described in the previous experiment
was used to provide phase modulation of a Fabry-Perot cavity. The experimental
arrangement is shown in Fig.5.6. 30m of a low-doped Er-doped fiber was spliced onto
70m of passive fiber. As the phase modulation efficiency of the cylinder was small, even
when used at its thickness resonance frequency, almost all of the Er-doped fiber was
wound onto it. When a sinusoidal voltage of 40Vp-p at the round trip frequency (1.1
MHz) was applied to the piezo, mode-locking produced a pulsewidth of 7ns. In Fig.5.7
the cw and mode-locked linewidths are shown. It was also observed that the noisy cw
spectrum became quieter when the phase modulator was on, irrespectively of the applied
frequency (see Fig.5.8). This effect has recently been used for noise suppression in a
harmonically mode-locked fibre ring laser [6], with successfull results. Similar
experiments using a Nd-doped fibre in a 1km cavity produced pulsewidths ~ 85ns.

5.4 KUIZENGA-SIEGMAN THEORY

These preliminary attempts at actively mode-locking iong fibre lasers failed to achieve
the desired pulse durations of ~ 1-10ns required for a spatial resolution of ~0.1-1m,
assuming a cavity length of ~ 1km. In order to assess the effect of the various parameters
on the mode-locking performance of the fibre laser configurations that were presented in
the previous section, it is neccessary to use an extended version of the Kuizenga-Siegman
(K-8) theory of active mode-locking. Kuizenga and Siegman developed a model in order
to predict the pulsewidth and bandwidth of a Gaussian pulse formed in a mode-locked
laser with a homogeneously broadened linewidth using either an amplitude (AM) or a
phase (FM) modulator. The solution is based on finding a Gaussian pulse, the real and

imaginary parts of which transform self-consistently after one round trip inside the laser

cavity:
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Fig.5.5 Mode-locked pulse obtained with the arrangement of
Fig.5.4
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Fig.5.7 Pulsewidth and optical spectrum produced with the
arrangement of Fig.5.6.
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gainmedium modulator otherelements

E@f) --— E(+t) -— E(t+1)-——>...-—E(t+t,)=E(t) (5.9)

where
E(t)=E, exp {-Tt*} exp{iw,t};
'=e-183
wy, =carrier frequency of the pulse and
t,=T,=cavity round-trip time.

The pulsewidth and bandwidth of the Gaussian pulse in terms of « and 8 are given by

(0

. [@] z (5.10)

Af= (211‘12)_2' o?+32 ?i (5.1D)
T o
Egn.(5.9) may be expressed mathematically as
E,0)=E (-T )e i (5.12)

with

E,(t)=rE;(t-2L./c)

E;()=Ex(t) T(t-ty)

E)(0)=G(w) E(w)
where r is the field amplitude reflectivity of the output mirror, G(w) is the double pass
amplitude gain transfer function of the amplifying medium, T(t) is the modulator
transmission function (amplitude or phase) and t,, 2L /c allow for delays of the pulse
envelope from the passage through the gain medium and the passive optical cavity length

L. respectively.

The theory assumes that the Gaussian pulse remains Gaussian after one round trip, and

eqn.(5.12) is reduced to an equation for I':
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Fround trip =T initial (5 13)
Refering to Fig.5.9, this corresponds to
T MorFst modutaror=L initial (5.14)
where
2
6w
I-‘AM modulator=r gain medium + _22
5 (5.15)
Jo,.w,,
I‘FM modulator™ Pgain medium™ C2
and
8InG;_,
r gain medium™* initial~ initial (5.16)

where G is the double pass intensity gain through the active medium, §, is defined by
the transmission function of the amplitude modulator m(t) =exp{-6,(1-coswt}} and 26,
is the peak-to-peak phase deviation through the phase modulator. By substituting
eqns.(5.15) and (5.16) into eqn.(5.14), a quadratic equation for I' is obtained which can

be solved easily to give us the steady-state values of « and §3.

The next two sections will investigate the effect of the intracavity fibre dispersion on the

standard formulas for the mode-locked pulsewidth in both the AM and FM mode-locking

cases.
5.4.1 AM Mode-Locking

When using an amplitude modulator, the ¢ and @ parameters predicted by the theory are
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Fig.5.9 The transformation of T' for one cavity round trip: (a) pulse
entering the gain medium section of the cavity, (b) pulse
entering the modulator section and (c) pulse has completed

one round trip.
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[ B 50 (5.17)

which correspond to a pulsewidth of

m—' 1/4 ) 12
- g (5.18)

with bandwidth

AM _ 2In2

Afy (5.19)

Ty

where g is the double pass saturated amplitude gain coefficient, f, is the modulation

frequency and Aw=27Af is the gain bandwidth.

The pulsewidth-bandwidth product is thus 0.44 (the pulse is bandwidth-limited).
Fig.5.10(a) shows how this pulse transforms in the complex plane for one round trip. The

gain and the amplitude modulator actions have been exaggerated for clarity.

The model can be easily modified to include dispersion effects which become significant
in long fiber laser cavities. Following the same method that lead to the derivation of
eqns.(5.18) and (5.19) [1], but using a Taylor expansion up to second order terms for the
propagation constant of the material comprising the gain medium, it can be shown (see
Appendix to Ch.5) that the predicted pulsewidth, 7,(AM) with the inclusion of GVD in

a laser cavity of length L is given by

—

1+ A2 /8
TD(AM)=To(AM)(— (5.20)

8
COS—
2

where
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Fig.5.10 The transformation of I' for one cavity round trip in the
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A BAA (5.21)

4g
N | ¥n (5.22)
2mc? | 9N
f=tan”!(-A) (5.23)
and the bandwidth by
et oan(1 +A2) 7"
=D TH0 T/ T (5.24)
|'cos_
9]
\j P

0.44
cos(6/2) '

These give a pulsewidth-bandwidth product of

The important thing to note is that for values of A>1 the pulsewidth becomes essentially
independent of Aw; the (Aw)™/? initial dependance of 7,*M is cancelled by the strong A
term in eqn.(5.20). Fig.5.11(a,b) shows how 7/7,"M and AfyAM/Afy™ vary with A and
Fig.5.12 shows a z plot of the pulse’s real and imaginary parts (normalised to oy®M) as

a function of A.
5.4.2 FM Mode-Locking

For a phase modulator, the real and imaginary parts of the steady-state Gaussian pulse

oM 6FM= w,Aw 6, (5.25)
0 “Po 3 r
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but now § can be either positive, corresponding to a pulse having a positive chirp and
passing through the phase modulator at the maximum of the phase variation, or negative,
corresponding to a pulse having a negative chirp and passing through the phase modulator
at the minimum phase variation point. Hence there are two stable mode-locked pulses
inside the cavity of equal pulsewidths but different phase chirps. Fig.5.13 illustrates the
action of the phase modulator on the positively chirped pulse. The tangents on the left
and on the right of the peak phase variation point have been drawn quite far apart from
it for the sake of clarity. It can be seen that the front, low frequency part of the pulse (in
space) gets downshifted, the rear, higher frequency part gets upshifted, while the centre
of the pulse experiences no Doppler shift at all. The overall result is an increase in the

pulse’s bandwidth. The same increase happens with the negatively chirped pulse.

The predicted pulsewidth and bandwidth are

1/4 1/2
(M= /02 ﬁ] 1 (5.26)
0 T |8, 7.Af
J L
AfM=2 2;;2 527
’TrTD

Fio
X 15.

The action of the modulator and the gain medium have, as in the AM case, been

5.10(b) shows the pulses’ tranformations for one round trip on the complex plane.
exaggerated for clarity. It can be seen that the action of the gain medium is to decrease
the bandwidth of the pulse by an amount equal and opposite to the increase due to the
action of the FM modulator. Therefore, no pulsewidth shaping occurs at steady-state FM
mode locking, since o remains constant. In contrast, the action of the gain medium in the
AM case is to cause pulse broadening without any change in its bandwidth. This counter-
balances the action of the amplitude ioss modulator which sharpens the pulse by
its edges. The gain medium therefore acts differently in each case. In fact, these are two
special cases; in general a gain medium acts to alter both of the « and § parameters of

the pulse.
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If dispersion effects are taken into account it is found that the degeneracy between the
two pulses is lifted (see Appendix to Ch.5). Dispersion discriminates between the two

pulses and the predicted pulsewidths are

B 1+A2)1/8
Tr(FM) =T, (FM)—<
P 0 / (5.28)
ff cose_
2
. L+ A2>1/8
Th(FM) =T, (FM)—(
P 0 - (5.29)
2 sine_
)
where
9/ =tan~! {_}&.j (5.30)

The - and + superscripts indicate the sign of the chirp that the pulses had originally and
correspond to 8,= +jé, and -jo, respectively (see Appendix to Ch.5). Fig.5.14(a) shows
how 7 %)/7, vary with A: the pulse with the negative chirp is shortened slightly before
it starts broadening whereas the puise with the positive chirp broadens immediately and
much more rapidly. The reverse happens when (3, is negative. Fig.5.14(b) shows how the
bandwidth ratios Af""")/Af, change with respect to the dispersion parameter A and
Figs.5.15(a-d) show the location of these pulses on the complex plane with respect to

their zero dispersion values as a function of this parameter. The formulas for the new

bandwidths are
2 (5.31)
0/
COS—
2
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+
2 (5.32)
‘ .0
Simn—
2

0.624 0.624
and the pulsewidth-bandwidth products are g’ and . @ respectively.
\/icos? 2sm3

Using the formulas presented in the previous section, with the values 3,=1.73 10726 s%/m
(D=-27 ps/(nm km)) for the Nd@** system and 8,=-1.91 10"% s¥/m (D=15 ps/(nm km))
for the Er2 ™ system and, accordingly, L(Nd)=500 m, L(Er)=100 m, g(Nd,Er)=0.34 for
R.x=0.5, Af(Nd)=10 THz, Af(Er)=7.5 THz, {,(Nd)=200 kHz, f (Er)=1 MHz,
6(Nd)=0.4, 6,(Er)=1 the expected values for the pulse durations are 7(Nd)=3.2ns,
7(Er)=745ps with corresponding bandwidths Af(Nd)=200 MHz and Af(Er) =600 MHz.

The experimental results therefore differ by a factor of ~10 from the theoretical
predictions for both experiments. However, one must bear in mind that the Kuizenga-
Siegman theory assumes a homogeneously broadened linewidth which ensures near-
bandwidth-limited operation. In order to be able to make comparisons between the theory
and the experiment, the oscillating linewidth should be reduced to that required for
bandwidth-limited operation, otherwise the excessive osillating linewidth may result in
imperfect mode-locking. In an imperfectly mode-locked laser, the lasing linewidth
consists of several groups or "domains" having perfect internal phasing but random
phases relative to other domains [7]. As was shown in the previous section, the
pulsewidth becomes essentially independent of the gain bandwidth for values of A>1,
having assumed that perfect mode-locking takes place. However, when the mode locking

is imperfect due to excessive gain bandwidth and with the modes locked in "domains”,
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reducing the osillating linewidth should result in the reduction of these domains and hence
be a possilt;le means for reducing the pulsewidth. Experimentally it was found that
reducing the linewidth from 7nm to 0. 15nm produced no pulsewidth shortening, however
it may be argued than a linewidth of 0.15 nm (38 GHz) is still two orders of magnitude
greater than the bandwidth-limited value of 200 MHz.

A plausible explanation for the discrepancy between the experimental results and the
predictions of K-S theory, even with the linewidth reduced to the bandwith-limited value,
is found by looking at the estimate of the time constant T, which indicates the time
needed for the pulsewidth to be within ~20% of its final, steady state value. For an AM

mode-locked system T is given by [8]:

I'e 3 %
1 1 Ar (5.33)
8915 H £2

L) Im

T =

S5S

which, for the Nd-doped system described previously, has a value of ~4 min! This is
much larger than the mutual mode-coherence time of the laser and so the pulsewidth will

never reach its steady state value.
5.5 EXPERIMENTAL RESULTS ON A PASSIVELY MODE-LOCKED SYSTEM

Since it proved difficult to produce short (~ 1-10ns) pulses by active mode-locking for
cavity lengths close to ~ lkm, the passive mode-locking method based on NLPE (see
previous Chapter) was tried next. The experimental set-up is depicted in Fig.5.16. The
pump source was an argon-ion pumped Ti:sapphire laser providing up to 3W of cw light
at 980nm to pump the erbium doped fibre (Er concentration 800ppm, NA=0.15 and cut-
off wavelength A, =960nm) through a 980/1550 wavelength division multiplexing (WDM)
coupler. A small amount of 980nm light from the remaining output port of the WDM was
fed back to an active stabilisation circuit, which by means of a Bragg cell compensates
for any variations in the pump power. The cavity comprised of 4 m of the erbium-doped
fibre, two reels of standard telecom fibre (NA=0.11, A\,=1200nm) of lengths 1km and
3km each, a fibre optical polarising isolator (BT&D Technology), two sets of polarisation
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Fig.5.16 The 4-km passively mode-locked ring laser configuration.
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controllers and a 1480/1550 WDM coupler situated between the erbium-doped fibre and
the 1 km reel as shown. One free port of this coupler was used to monitor the
backscattered light as shown in Fig.5.16, whereas the other free port was tightly bent so
as to eliminate any reflection. The output coupling of the 1480/1550 WDM at the lasing
wavelength was 16%. A 1480/1550 WDM was used as an output coupler for the
backscattered light in order to enhance the intensity of the spontaneous backscattered
Raman Stokes and Anti-Stokes wavelengths, located 100 nm away on either side from the
main Rayleigh backscattered wavelength (1560nm). An InGaAs detector (Analog Devices
Model No 713K-7-B) with 200MHz bandwidth and transimpedance gain of 16V/mW was
used to detect the backscattered light. The signal was recorded using a digitizing scope

with time averaging capabilities (Hewlett-Packard Model No HP 54111D).

The mode-locked operation of this laser was similar to the ring laser configurations
described in detail in Chapter 4. In short, the laser produces "square" pulses of 40-50ns
duration which, by appropriate adjustment of the PC’s, can be split into smaller tight
pulse bunches, each pulse inside the bunch being typically 1-2ns long. By graduaily

decreasing the pump power, only one of these pulses of 1-2ns duration can be left to

circulate inside the cavity.

Fig.5.17 shows a typical backscatter trace obtained when a 43ns square pulse was
circulating in the laser cavity. The power of the circulating pulse just before the
1480/1550 WDM was estimated to be 15.3 W and the average backscattered output
power was 325nW. The trace is an average of 64 samples. Points (a) and (b) on the trace
are shown on separate inserts for greater clarity. Point (a) represents the start of the
Rayleigh backscatter signal with the small hump identifying the splice between the
1480/1500 WDM and the 1 km reel. The second, much bigger spike at point (b)
originates from the optical isolator back-reflection. This was estimated from our
measurements to be 58dB, in close agreement with the manufacturer’s data which is
60dB. After the pulse has gone through the isolator, no backscattered signal is detected
until the pulse passes the 1480/1550 WDM. The method may be applied to any mode-
locked fibre laser to determine the loss parameters of each of the intracavity elements

(isolators, modulators, polarisers, splices etc).
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Fig.5.18
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The optical spectrum of the backscattered signal is shown in Fig.5.18. The solid line
shows the c;ptical spectrum of the detected signal while the broken line shows the true
optical backscattered spectrum after correcting for the 1480/1550 WDM’s transmission
characteristics. Fig.5.18 indicates that there is strong evidence of backscattered
spontaneous Raman Stokes and anti-Stokes light; measurements of the backscattered
spontaneous emission of erbium at wavelengths 1460 and 1660nm corresponding to the
peaks of the Raman gain spectrum are more than 15dB below our recorded values. This
demonstrates that the system is not only able to measure attenuation by conventional
Optical Time-Domain Reflectometry [9] but also has the potential to become a distributed

temperature sensing device, based on the measurement principles outlined previously.

5.6 CONCLUSIONS

This chapter investigated the potential of distributed temperature sensing by means of
measuring the backscattered light produced by an optical pulse circulating in a long
mode-locked fibre laser. In an extension of the Kuizenga-Siegman’s model for

homogeneously broadened actively mode-locked lasers which allowed for the inclusion

>}
"
r
3

o ispersion in the host medium, theoretical pred
pulsewidth and bandwidth of the mode-locked pulses for the cases of amplitude (AM)
modulation and phase (FM) modulation have been derived and compared with
experimental results based on long, actively mode-locked fiber laser systems. The
pulsewidths achieved in these systems were an order of magnitude higher than those
predicted by the theory but an estimate for the pulse transient build-up time indicated that
the theory breaks down at very long cavity round-trip times. The passively mode-locked
system based on the non-linear polarisation evolution technique presented at Chapter 4
was subsequently used, providing square pulses of 1-35ns duration with ~ 15W of peak
power (intracavity). Time-domain reflectometry measurements performed on this 4km-
system provided an estimate for the transmission/back-reflection of the various intracavity

_____ ' y Py

clements while the backscattered specrtum showed the existence of the Raman

Stokes/anti-Stokes spectra.
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APPENDIX TO CHAPTER 3

The quadratic equation for I' in the presence of second-order dispersion is

2,2

0,w,A
I‘Z—I‘(Sgwi- gOm2E = =
16g+4jB,LAw"

(A5.1)

where §,=6, or +j6., depending on whether an AM or an FM modulator is used.

For AM mode-locking, the solution of eqn.(A5.1) is
2

2
I1= 6twm + 6twm 1+ R
2 1+jA
where
R= Aw® i
4g|6, | wy,
and A is given by eqn.(5.21).
The complex expression on the RHS of eqn.(A5.2) is equal to
. .8
L 30
1+ R pr| (L.l ) (A ¢?
1+7A R 1+A? 1+A?
1 | 3

where

f=tan™! RA ] ~tan"}(-A)

1+A%+R

(A5.2)

(A5.3)

(A5.4)

(AS.5)

and we have used the fact that for any case of practical interest R> >1+A2,

The real and imaginary parts of I', & and (3, are thus
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from which, using eqn.(5.10), 7p(AM) is determined.
For FM mode-locking, 6,= +j6, and the solution to eqn.(AS.1) is

. 2 2
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2 2 [ 1+]A]

The complex expressions on the RHS of eqn.(A5.8) are equal to
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where

9 ~tan-' | L (A5.11)
A

and we used the fact that in all cases of practical interest RA> >1+4A2. The real and

imaginary parts of I" are thus

5wl R
a'=— "R 1+AY Tcos L
2 2 (A5.12)
8. ! S 4 S 1 L .
Br=— " 1+R*(1+A2) FsinZ_ | =~ "R*(1+A%) FsinZ_
2 2 2 p)
b, Lo -1 pf
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2 (A5.13)
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CHAPTER 6

SUMMARY OF THE THESIS AND GENERAL CONCLUSIONS

This thesis presented a theoretical and experimental examination of a number of single-
mode fibre laser devices which are aimed for short-pulse generation via passive or active
mode-locking. The passively mode-locked configurations that were examined were the
Birefringence-Bias (B-B), the Figure-of-Eight (F-8) and the Non-Linear Polarisation
Evolution (NLPE) laser. The actively mode-locked fibre laser configurations were part
of an investigation of their potential use as distributed sensors and were hundreds of

meters long. The structure of the thesis was as foilows:

Chapter 2 provided a brief description to continuous wave characteristics of fibre lasers.
The analysis assumed ideal 3 or 4-level systems and inciuded possible signal and pump

background losses and the effect of a power—dependent overlap. It was shown that the

power-dependent overlap leads to the introduction of a power-dependent effective area
and a power-dependent optimum cut-off wavelength. The optimum cut-off wavelengths
of two fibre laser systems namely Er’* and Pr’* were calculated and the results were
compared with numerical models developed by other groups. An analytical approach was

ued wherever

pur wher ssible, although in some cases this led to cumbersome expressions.

po
An analysis to determine the lasing wavelength of Er’*-doped lasers as a function of the
cavity losses and length of Er’®*-doped fibre used, confirmed experimental observations
on the F-8 and NLPE Er*™ lasers which demonstrated the existence of three lasing
"windows" at 1.61, 1.56 and 1.53um. Chapter 2 concluded with guidelines for achieving
minimum threshold or maximum output power. Further work on CW laser modelling
should be concerned with optimising the performance of more complicated systems, such

34+ 73+ ot .

as the Er "/Yr'~ system, which has a great potential

applications.

Chapter 3 described the mode-locked performance of the B-B and the F-8 lasers. The
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linear and non-linear characteristics of the Sagnac loop mirror, upon which the operation
of the B-B and F-8 laser relies, were analysed in detail. Experimental results on a Nd3*-
doped B-B laser demonstrated the production of 1-10ns square pulses whereas an Er’*-
doped F-8 system produced either square or soliton pulses, depending on the pump
power. Both systems were self-starting, but the soliton operation of the F-8 laser was
only observed at pump powers close to the lasing threshold. Depending on the cavity
length, the F-8 produced soliton pulses between 1ps and 300fs. An analysis based on the
average soliton model revealed a pulsewidth limitation mechanism showing that limiting
pulsewidth depends on the square-root of the dispersion-length product of the laser cavity.
Thus, in order to achieve shorter soliton pulswidths, the cavity dispersion-length product
should be minimised. The analysis aiso revealed that the magnitude of the intracavity
losses play an important role in the final pulsewidth determination. Experimental results

showed excellent agreement with these predictions.

Chapter 4 introduced and applied the technique of NLPE to produce self-starting, passive
mode-locking in ring and Fabry-Perot fibre laser cavities. The laser systems were
characterised with respect to their modes of mode-locked operation, cavity length and

used. The mode-locked operation was in general similar to that

o
1
PRI AY

type of ©
observed with the F-8 laser, with the soliton pulses being produced at low pump powers
and square pulses appearing at higher pump power levels. Two important effects that
were observed in the soliton regime and were not observed with F-8 laser were the
existence of a wavelength-unstable mode, in which the operating wavelength was
observed to change abruptly with varying pump power, and a multiple wavelength
operation mode, in which identical soliton spectra were observed to lase simultaneously
at different wavelengths. The appearence of these effects is believed to stem from the
wavelength-dependent loss of the cavity, but further research on soliton propagation in
birefringent fibres should be conducted in order to fully understand these phenomena.
The soliton pulsewidths ranged from 5ps down to 700fs with the shortest cavity length
used. The low-birefringence fibre, that was used in
the most stable mode-locked operation. The Fabry-Perot fibre laser was found to have
a much higher self-starting threshold for passive mode-locking than the fibre ring cavity.

In accordance with the theoretical results of Krausz and Brabec, this effect was attributed
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to the existence of a complex refractive index grating which is formed by the standing
wave pattcfn of the Fabry-Perot cavity. However, further work is needed in order to
establish a definite quantitative agreement between Krausz’s theory and our experiments.
This would involve measuring the width of the first intermode-beat spacing in different
types of fibre laser as well as the number of lasing modes as a function of pump power

for each laser.

Compared to F-8 soliton lasers, the NLPE fibre ring laser can produce slightly better
quality solitons since it does not involve the pulse splitting and the subsequent
interferometric recombination that solitons undergo inside a F-8 laser. Both schemes have
been identified as potential sources of picosecond soliton pulses which are thought to be
the future carriers of digital information. Advantages such as high pulse quality,
compactness and compatibility with single-mode optical fibre technology as well as low
cost have placed them in a truly competitive position with respect to m
semiconductor laser diodes. However, there are still some very important problems that
should be addressed if these fibre lasers are to be used as scliton sources for future
transmission systems, namely repetition-rate stability, environmental sensitivity and the

ispersive wave generation problem. A possible solution to the environmental stability

o]

issue would be to use polarisation maintaining (PM) fibres. In this case F-8 fibre lasers,
which can be wholly constructed from PM fibres and couplers, have a significant
advantage over NLPE fibre ring lasers which would require the inclusion of an
environmentally shielded, ordinary fibre section where NLPE can take place. The
repetition rate stabilisation problem requires the development of an active, low-loss,
intracavity fibre modulator, which in conjunction with the passive mode-locking
mechanism would produce a well-defined, repetitively stable pulse train. In addition,

single-mode fibre gratings could be used for bandwidth limitation and/or dispersion

compensation purposes.

a distributed temperature sensor (DTS). A theoretical analysis showed that in order to
compete with the existing state-of-the-art DTS systems, such a laser should produce 10-

15W of pulses of < ~5ns duration. A variety of cavity arrangements and mode-locking
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schemes were therefore examined and the experimental results were compared with the
Kuizenga-Siegman (K-S) theory, extended to account for the effects of intracavity
dispersion. This comparison showed a significant discrepancy between theory and
experiment, which was attributed to the break-down of the K-S theory at very long
resonator lengths and low modulation frequencies. The most successfull system of all
those that were examined was a 4 km passively mode-locked ring laser configuration,
similar to that presented in Chapter 4. This scheme produced 1-35ns pulses, depending
on pump power, with peak intracavity powers of ~15W. Rayleigh backscatter
measurements on this system provided an estimate of the various intracavity losses and
the optical backscattered spectrum revealed the presence of Raman Stokes and anti-Stokes
wavelengths. Future work should aim to temporally resolve these signals and hence

extract the temperature profile along the fibre laser cavity.

In order to construct a practical distributed temperature sensing system based on the
shuttle-pulse approach, the mode-locking performance of the fibre laser must be
completely immune to any environmental influences. The fact that the operation of the

passively mode-locked system discussed above depends heavily on the value of the fibre

problem of repetition rate instability should also be dealt with. Hence, in a similar
fashion with soliton pulse production, future work aimed at solving these problems should
consider the use of a fast, low-loss fibre modulator and PM fibres to ensure repetition

rate and environmental st
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