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Abstract. Detailed knowledge of vegetation structure is required for accurate modelling
of terrestrial ecosystems, but direct measurements of the three dimensional distribution
of canopy elements, for instance from LiDAR, are not widely available. We investigate
the potential for modelling vegetation roughness, a key parameter for climatological
models, from directional scattering of visible and near-infrared (NIR) reflectance
acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We
compare our estimates across different tropical forest types to independent measures
obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser
Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our
results showed linear correlation between MODIS-derived anisotropy to ALS-derived
entropy (r>= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships
were also obtained between MODIS-derived anisotropy and GLAS-derived entropy
(0.52< r?< 0.61; p<0.05), with similar slopes and offsets found throughout the season,
and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the
MODIS-derived  anisotropy and  backscattering measurements  (c°)  from
SeaWinds/QuikSCAT presented an r? of 0.59 and a RMSE of 0.11. We conclude that
multi-angular MODIS observations are suitable to extrapolate measures of canopy
entropy across different forest types, providing additional estimates of vegetation

structure in the Amazon.

Keywords: canopy roughness, multi-angle, MODIS, MAIAC, LiDAR, anisotropy
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1. Introduction

Terrestrial vegetation plays a significant role in the re-distribution of moisture and
heat in the surface boundary layer, as well as in the energy balance of the planet
(Bastiaanssen et al., 1998a). Land-atmosphere interactions are driven by the three-
dimensional structure of vegetated land cover, including surface roughness, leaf area
and canopy volume (Vourlitis et al., 2015; Domingues et al., 2005). Canopy roughness,
defined as vertical irregularities in the height of the canopy (Chapin et al., 2011), plays a
key role in earth system modelling. For instance, evapotranspiration is controlled much
more by canopy roughness (and therefore aerodynamic conductance) than by canopy
leaf area or maximum stomatal conductance (Chapin et al., 2011).

At stand level scales, significant advances have been made measuring canopy
vegetation structure from Light Detection and Ranging (LIiDAR). LiDAR allows direct
measurements of the three-dimensional distribution of vertical vegetation elements from
ground-based (Strahler et al., 2008), airborne (Wulder et al., 2012) and orbital platforms
(Sun et al., 2008). To date, most vegetation related LiDAR applications rely on airborne
platforms for data acquisition, with measurements acquired at altitudes between 500 and
3000 m (Hilker et al., 2010). Due to cost and practical considerations, the availability of
airborne LIDAR is currently limited to specific research sites and data are not available
across the landscape.

The Geoscience Laser Altimeter System (GLAS), onboard the Ice, Cloud, and land
Elevation Satellite (ICESat), has provided certain capability to map vegetation
characteristics across broader areas from space (Zwally et al., 2002). GLAS is a large-
footprint, waveform-recording LiDAR that measures the timing and power of the 1064
nm laser energy returned from illuminated surfaces (Schutz et al., 2005). While not

configured for vegetation characterization, the GLAS instrument allows quantification
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of the vertical distribution of plant components relative to the ground over vegetated
terrain (Harding, 2005; Yu et al., 2015, Morton et al., 2014). GLAS data has been
successfully used to discriminate forest structure across various biome types (Boudreau
et al., 2008; Goncalves, 2014; Lefsky et al., 2005; Pang et al., 2008) and to estimate
canopy light environments and forest productivity (Stark et al., 2014; Rap et al., 2015;
Morton et al., 2016). While GLAS provides larger spatial coverage, its footprint is still
spatially discrete and importantly a lack of repeated measurements prevents its use for
estimation of climate related responses of vegetation.

Perhaps complimentary to structural observations, optical remote sensing available
from satellite data, provide global coverage at frequent time steps but can generally not
deliver accurate information on the vertical organization of plant canopies. For instance,
vegetation indices provide general information on canopy “greenness” but their ability
to detect changes in high-biomass areas is limited due to a well-documented saturation
effect (Carlson and Ripley, 1997). Although VIs have been employed as proxies for
vegetation structure, including roughness lengths for turbulent transfer, field estimates
of vegetation structure attributes are often only moderately correlated with VIs and their
derivatives (Glenn et al., 2008).

As an alternative to conventional, mono-angle observations, the combination of
multiple view angles may provide new opportunities for modelling the structure of
vegetated land surfaces (Breunig et al., 2015; Shaw & Pereira, 1982) from optical
remote sensing. Changes in canopy structure including changes in tree crown size,
shape, density and spatial distribution of leaves, affect the directional scattering of light
(Chen et al., 2005). Multi-angle observations of this scattering may therefore allow us to
describe the three-dimensional structure of vegetation (Chen and Leblanc, 1997;

Strahler & Jupp, 1990). Multi-angular scattering of surface reflectance (anisotropy) has
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been linked to optical properties and geometric structure of the target (Widlowski et al.,
2004; Widlowski et al., 2005), including canopy roughness (Strahler, 2009), leaf angle
distribution (Roujean, 2002), leaf area index (LAI) (Walthall, 1997) and foliage
clumping (Chen et al., 2005; Chopping et al., 2011). Such estimates may even be made
in dense canopies (Moura et al., 2015), as observations acquired from multiple view
angles decrease the dispersion and saturation effect in geometrically complex vegetation

(Zhang et al., 2002).

With the advent of multi-angular sensors such as the Multi-angle Imaging
SpectroRadiometer (MISR) (Breunig et al., 2015) and POLDER (Roujean, 2002), the
dependence of reflectance on observation angles has been documented (Barnsley et al.,
2004) and modelled (Roujean et al., 1992; Wanner et al., 1995). Recent progress using
the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC) has
allowed the acquisition of multi-angle reflectance across large areas and at high
observation frequencies by combining satellite imagery obtained from NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua platforms
during a few overpasses (Lyapustin et al., 2012a; Moura et al., 2015). Such observations
could potentially allow periodic and spatially contiguous estimates of vegetation
structure and its response to changes in climate variables. When correlated with more
direct measurements of canopy structure by other instruments, such as LiDAR, this may
then allow us to extrapolate canopy roughness and other structural estimates in space
and time, thereby filling key data gaps for improving our understanding of ecosystem
structure and functioning. Further validation may be provided by scatterometer
observations over dense forests. For instance, the SeaWinds microwave radar, onboard
NASA’s QuikSCAT satellite, was primarily designed to measure near-surface wind

speed and direction over the oceans. However, due to its high sensitivity to water
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content that drives canopy dielectric properties, it has been also used to study canopy
structure (Frolking et al., 2011; Saatchi et al., 2013).

In this study, we used estimates of canopy roughness obtained from 1) airborne
laser scanning (ALS), 2) spaceborne LIDAR GLAS, and 3) the spaceborne SeaWinds
scatterometer, to evaluate the potential of multi-angular MODIS observations for
modelling vegetation roughness from directional scattering of visible and near-infrared
(NIR) reflectance. We implemented a spatial scaling approach, from airborne to orbital
levels of data acquisition, to model continuous coverage of roughness across tropical
forests of the Xingu basin area in the Brazilian Amazon. Our objective was to test
whether multi-angle MODIS reflectance can be used as a proxy for canopy roughness
over Amazonian tropical forests, including different forest types such as Dense and

Open ombrophilous Forests, and Semi-Deciduous Forest.

2. Methods
2.1. Study area

The study area is located in the southeast part of the Amazon, including the Xingu
basin and adjacent areas (Figure 1). Figure 1 also shows the GLAS transects for the
study area (Schutz et al., 2005) as well as the ALS and the field data plots. The study
area presents a south-north gradient with respect to climate. Following the Koppen
classification, the southern portion of the study area is dominated by tropical wet and
dry climate (Aw), while the north portion is characterized by tropical monsoon climate
(Am). Length and duration of the dry season, defined as months with rainfall less than
100 mm or less than one third of precipitation range (Asner & Alencar, 2010; Myneni et
al., 2007), also varies across the study area. In the southern parts, the dry season lasts

about five months, from May to September (Moura et al., 2012). In the northern parts, a
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drier climate prevails between July and November (Vieira et al., 2004). The area is
characterized by three predominant forest types: Dense Ombrophilous Forest (Dse),

Open Ombrophilous Forest (Asc) and Semi-Deciduous Forest (Fse) (IBGE, 2004).

(Figure 1)

2.2. Field inventory data

Estimates of vegetation structure were derived for each of the three different forest
types using available inventory plots across the region. For two vegetation types, Open
Ombrophilous Forest (Asc) and Semi-decidiuous Forest (Fse), surveys were provided
by the Sustainable Landscapes Brazil project in collaboration with the Brazilian
Agricultural Research Corporation (EMBRAPA), the US Forest Service, the USAID,
and the US Department of State (http://mapas.cnpm.embrapa.br/paisagenssustentaveis/).
The Asc forest type was represented by 22 plots of 40 m x 40 m each. All the trees with
a diameter at breast height (DBH) equal to or greater than 10 cm were measured within
each plot. For Fse, 10 sample plots (20 m x 500 m) were used. The field data for the
Dense Ombrophilous Forest (Dse) were obtained in 2012 and are described in Silva et
al. (2015). The floristic and structural surveys included seven sample plots of 25 m x
100 m over mature forests. Trees with DBH equal to or greater than 10 cm were

measured within each plot.

2.3. Airborne Laser Scanning (ALS) data
ALS data were acquired by GEOID Ltd. using an Altm 3100/Optech instrument
and provided by the Sustainable Landscapes Brazil project. The positional accuracy (10c)

of the LIiDAR measurements was approximately 0.10 m horizontally and 0.12 m
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vertically (http://mapas.cnpm.embrapa.br/paisagenssustentaveis/). We focussed our
analysis on undisturbed, non-degraded research plots. Structural information was
obtained in the Tapajos National Forest, Para State (September to November 2012), in
Sao Félix do Xingu municipality, Para state (August 2012) and in Canarana/Queréncia
municipality, Mato Grosso State (August 2012), to represent Dse, Asc and Fse,
respectively. Table 1 shows the specifications of LIDAR data for each site.

(Table 1)

ALS data were delivered as classified LAS-formatted point clouds, along with 1-m
resolution bare earth digital terrain models (DTM). For comparison with GLAS,
discrete-return data were aggregated produce pseudo-waveforms. Coops et al. (2007)
demonstrated that canopy profiles, analogue to those derived from full waveform
systems, can be derived from discrete return LiDAR when aggregating returns into three
dimensional voxel spaces and comparing the amount of discrete returns contained in
each voxel layer to the voxel layers below and above. In this study, waveforms were
synthesized by sub-setting the LIDAR point cloud co-located with each field plot and
counting the number of points observed in vertical bins of 50 cm and at a horizontal
resolution of 100 x100m. 10 by 10 pixels of LiDAR metrics were then averaged to
match the 1x1km MODIS pixel size. ALS based entropy was then computed to
determine canopy structural diversity and approximate canopy roughness (Palace et al.,
2015; Stark et al., 2012). The method is described in detail in the next section (2.4) and
is analogue to that applied from GLAS observations. In addition to ALS entropy, we
also calculated canopy volume models (CVMs) to quantify the three-dimensional
structure of the forest canopies based on the incident radiation levels and photosynthetic

potential (Coops et al., 2007; Hilker et al., 2010). The method is described in detail in
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(Lefsky et al., 2005). CVMs divide the canopy space into sunlit and shaded vegetation

elements as well as gap spaces enclosed within.

2.4. GLAS/ICESat data and structural metrics from vertical profiles

GLAS profiles were obtained across the Xingu basin (Figure 1) between 2006 and
2008 (laser operating periods 3E through 2D) (Gongalves, 2014). Each GLAS footprint
is elliptical in shape, spaced at approximately 170-m intervals along-track. GLAS
LiDAR profiles characteristics varied between the campaigns across the study area. The
near-infrared elliptical footprint and eccentricity varied between 51.2 (+1.7) to 58.7
(x0.6), and 0.48 (+0.02) to 0.59 (x0.01), respectively. The horizontal and vertical
geolocation accuracy varied between 0.00 (£3.41) to 1.72 (x£7.36), and 0.00 (x2.38) to

1.2 (x5.14), depending on the campaign and respective data product.

Because GLAS observations are able to penetrate optically thin clouds (Schulz et
al., 2005), processing of the GLAS profiles included additional cloud screening to
improve the data quality. The technique is described in detail in Smith et al. (2005).
Briefly, the approach takes advantage of the fact that returns unaffected by saturation or
forward scattering resemble narrow Gaussian pulses that are similar to the transmitted
pulse (Smith et al., 2005). To process GLAS waveforms, we used parameters reported
in the GLAOL1, GLAO5, and GLA14 data products following methods described by
(Goncalves, 2014). First, the waveforms were filtered by convolution with a discrete
Gaussian kernel with the same standard deviation as the transmitted laser pulse. This
procedure reduced the background noise, while preserving an adequate level of detail
for characterization of the canopy (Sun et al., 2008). Second, GLAS waveforms used in
this study were calibrated and digitized into 1000 discrete bins at a time resolution of 1

ns (~15 cm). The locations of the highest (signal start) and lowest (signal end) detected
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surfaces within the 150-m waveform were determined, respectively, as the first and last
elevations at which the amplitude exceeded a threshold level, for a minimum of n
consecutive bins. The peak of the ground return was determined as the lowest peaks in
the smoothed waveforms with at least the same width as the transmitted laser pulse,
after taking into account the mean noise level. In order to minimize the effect of
different output energy levels of the 2E and 3E Laser flight campaigns, all profiles were
then normalized to unity by dividing by the maximum amplitude. This correction
approach assumes that differences in measurement campaigns affect the overall amount
of energy but do not significantly change the waveforms (i.e. the vertical scale of energy
output) of our entropy calculation (Gongalves, 2014).

We utilized GLAS estimates of entropy (S;), a measure of canopy structural
diversity sensitive to crown depth and leaf area (Palace et al., 2015; Stark et al., 2012),
as a proxy of canopy roughness. S; was calculated using Equations 1 and 2 (Harding &

Carabajal, 2005, Nelson et al., 2009, Treuhaft et al., 2009, Gongalves, 2014):

S, == ) pw) In(wy)), with

(1

w;(2)

foHlOO w;(z) dz

p(w;) =

(2)
where ny is the number of vertical bins from the ground peak to the signal start defined
as the vertical distance between the ground peak and the signal start; w(z) is the laser

power received from the 1m bin centered at height z; H100 is the maximum canopy
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height, defined as the vertical distance between the ground peak and the signal start

(Goncalves, 2014).

2.5. SeaWinds/QuikSCAT data

Estimates of canopy structure were independently also obtained from SeaWinds
Scatterometer data, provided by NASA’s Scatterometer Climate Record Pathfinder
project. The SeaWinds Scatterometer operates at microwave frequency of 13.4 GHz
(Ku-band) with mean incidence angle of 54° for V-polarization and 46° for H-
polarization. The sensitivity of radar data to variations in vegetation canopy structure
can be explained by the dependence of radar backscatter to surface dielectric properties,
which are strongly dependent on the liquid water content of the canopy constituents
(Frolking et al., 2006). Given that the SeaWinds instrument operates at a higher
frequency and higher incidence angle than other similar sensors, it has lower penetration
into forest canopy, and therefore almost no interference from soil moisture variations in
densely vegetated forested areas (Saatchi et al., 2013).

The backscatter product (c°) used in this study combines ascending (morning) and
descending (evening) orbital passes, and is based on SeaWinds "egg" images (Frolking
et al., 2006). The nominal image pixel resolution for egg images is 4.45 km/pixel. Only
backscatter data for horizontal (H) polarization were used, as previous assessments had
indicated that results using vertical (V) polarization show no significant differences
(Saatchi et al., 2013). We used data obtained from January 2001 to November 20009,
when the sensor stopped collecting data due to failure in the scanning capability. To
match the spatial resolution of the SeaWinds instrument, we averaged the corresponding
anisotropy  observations from the MODIS instrument to match the

SeaWinds/QuikSCAT pixels.
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2.6. Determination of surface anisotropy from multi-angle MODIS data

MODIS observations are acquired at different solar and view zenith angles,
depending on the orbital overpass and time of the year. Pixel-based algorithms often
assume a Lambertian reflectance model, which reduces the anisotropy of the derived
surface reflectance (Lyapustin, 1999; Wang et al., 2010), thus decreasing the ability to
detect directional scattering (Hilker et al., 2009). In this study, we use the MAIAC
algorithm because it preserves the multi-angle character of MODIS observations,
providing a means to estimate the anisotropy of surface reflectance (Chen et al., 2005),
a surrogate for structure of vegetation and shaded parts of the canopy (Myneni et al.,
2002; Chen et al., 2003; Gao et al., 2003). MAIAC is a cloud screening and atmospheric
correction algorithm that uses an adaptive time series analysis and processing of groups
of pixels to derive atmospheric aerosol concentration and surface reflectance. A detailed
description of the technique can be found in Lyapustin et al. (2011) and Lyapustin et al.
(2012). Previous results (Hilker et al., 2012, 2015) have shown that while the MAIAC
cloud mask is less conservative, it is also more accurate, improving the number of

observations and data quality in tropical environments.

For retrieval of the surface bi-directional reflectance distribution function (BRDF),
MAIAC accumulates data over 4-16 days (Lyapustin et al., 2011, 2012). Assuming that
vegetation is relatively stable during this period, the surface directional scattering can be
characterized using the Ross-Thick Li-Sparse (RTLS) bidirectional reflectance

distribution function (BRDF) model (Roujean, et al., 1992).

Using the RTLS model (Wanner et al., 1995), we characterized the BRDF of each 1
km x 1 km grid cell of MODIS data. Based on the RTLS BRDF model, we derived
MODIS backscatter (Solar Zenith Angle (SZA) = 45°, View Zenith Angle (VZA) = 35°,

Relative Azimuth Angle (RAA) = 180°) and forward scatter (SZA = 45°, VZA = 35°,
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RAA = 0°) observations (4-16 days of observations) for a fixed view and sun angle. The
advantage of using the RTLS model rather than reflectance directly is to keep constant
sun-observer geometry and extrapolate measurements to the principal plane. In addition,
the modelled reflectance can be based on all multi-angle MODIS data, which should
yield a more representative characterization of the reflectance properties. We selected a
VZA of 35° rather than the hotspot location at VZA = 45° in order to keep the modelled
reflectance closer to the actual range of angles observed by MODIS, thereby
minimizing potential errors resulting from extrapolation of the BRDF.

We used estimates of anisotropy (defined as the difference between BRDF
modelled backscattering (SZA = 45°, VZA = 35°, RAA = 180°) and BRDF modelled
forward scattering (SZA = 45°, VZA = 35°, RAA = 0°) based on the Enhanced
Vegetation Index (EVI) to describe roughness of the surface for different vegetation
types across the study area (Moura et al., 2015). The objective of using EVI rather than
surface reflectance of a given band was to minimize the effect of non-photosynthetically
active elements (i.e. soil fraction component) while optimizing the sensitivity to green

canopy structure (Moura et al., 2015).

MODIS-derived anisotropy values were then regressed against ALS-derived
entropy, GLAS-derived entropy and SeaWinds/QuikSCAT backscatter (c° Frolking et
al., 2006), which were estimated on a per-pixel-basis to generate time series profiles of

entropy for each forest type in the study area.

3. Results
The Xingu basin contains a number of different forest types. However, vegetation is

dominated by Asc and Dse forest types in the north, and by Fse vegetation in the south,
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as illustrated in Figure 2. The GLAS tracks are also shown in this figure to highlight the
sampling density of the spaceborne LiDAR over each forest type. An illustration of the
mean canopy height (MCH) derived from ALS for three sample areas of 1 ha each is
provided in Figure 2. Airborne ALS measurements showed, on average, the largest tree
heights in the Dse class with values up to 40 meters tall (red color in the inset of Figure
2). Asc and Fse vegetation types reached up to 30 m and 25 meters in height,
respectively. Field measurements showed that mean canopy heights from forest
inventories were 19.8 m, 17.4 m and 17.0 m for Dse, Asc and Fse, respectively (Table
2). When compared to Asc and Fse, Dse presented larger metrics of diversity (i.e.
species richness (S) and Shannon index (H’)) and structure (mean height (Ht), mean
diameter at breast height (DBH), basal area (BA), aboveground biomass (AGB) and leaf

area index (LAI)) (Table 2).

(Figure 2)

(Table 2)

Differences in canopy structure were also evident from the analysis of canopy
volume models (CVMs) (Figure 3). While gap spaces were relatively small in all three
vegetation types, Asc showed a notably higher proportion of sunlit vegetation that
reached down deep into the canopy, suggesting a higher spatial variability of tree
heights compared to the other two vegetation types. Similarly, gaps in the upper canopy
were mostly present in Asc, as expected for open forest types. Fse showed gaps
predominantly in lower height levels, and a higher overall proportion of shaded crown.

Full canopy closure (100% of the canopy space filled by either sunlit or shaded canopy
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elements or fully enclosed gap space) was reached at about 15 m height for both Asc
and Dse, and at about 20 m height for Fse.

(Figure 3)

Differences in vegetation structure derived from ALS data were confirmed also
with spaceborne GLAS observations. GLAS-derived seasonal profiles of entropy for
2006 showed spatial averages that differed over time between the three vegetation types
(Figure 4). Even though there were differences in the years of data acquisition (2006 for
GLAS and 2012 for ALS), the shaded area in Figure 4 was plotted to provide a seasonal
reference between the airborne and spaceborne data. GLAS derived seasonal profiles
varied between different forest types. The lowest values of entropy were consistently
found for Fse. In contrast, Asc for Dse showed GLAS entropy higher throughout the
measurement period. All forest types showed strong seasonality with increasing entropy
from February to September, and decreasing values thereafter with predominance of

higher entropy during the dry season.

(Figure 4)

Examples of MODIS anisotropy during March, June and October of 2006
illustrated seasonal and spatial changes in multi-angle reflectance across the Xingu
basin (Figure 5). The MODIS derived anisotropy was consistently higher in the northern
part of the study area, and its spatial distribution coincided well with the forest types
indicated in Figure 2. A clear limit between forested (high MODIS anisotropy) and non-
forested (low anisotropy) areas was evident in the southern part of the map.
Furthermore, higher values of anisotropy were found for the Asc and Dse vegetation

compared to Fse. While MAIAC observations allowed a notable number of
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measurements of anisotropy between June (Figure 5b) and October (Figure 5c¢), some

data gaps were observed in March (Figure 5a) due to cloud cover in the rainy season.

(Figure 5)

MODIS-derived anisotropy was linearly correlated to ALS-derived entropy
(Figure 6). The coefficient of determination (r?) of the relationship between all 828
MODIS pixels that coincided with existing ALS observations was 0.54 with an RMSE
of 0.11 units of entropy. Much of the scattering presented in Figure 3 was limited to
lower values of entropy, while residuals were notably smaller for the higher entropy
range.

(Figure 6)

Significant relationships were also found between MODIS anisotropy and
GLAS measured entropy using all observations that contained five or more GLAS shots
within the 1 km x 1 km MODIS pixels (Figure 7). In order to examine seasonal
variability in the relationship, we performed the regressions separately for March
(Figure 7a), June (Figure 7b) and October (Figure 7c) of 2006. The r? varied between
0.52 for March and 0.61 for June (p<0.05) with similar slopes and offsets found
throughout the observation period. RMSE varied between 0.26 and 0.30 units of entropy.
The highest noise levels were observed in March, which is corresponding also to the
larger amount of data gaps during the rainy season (Figure 5). The availability of GLAS
data was somewhat limited during June, but the relationships were still highly
significant and consistent with those observed during other months of the year. A
comparison between conventional VI estimates using directionally normalized EVI
from MAIAC and LiDAR derived Entropy is shown in the appendix (Figure Al).

(Figure 7)
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A strong relationship between the MODIS-derived anisotropy and the
backscattering measurements (c%) from SeaWinds/QuikSCAT was also observed
(Figure 8). The relationship was obtained for 10.000 randomly sampled MODIS pixels
and corresponding SeaWinds/QuikSCAT (c°) observations across the Xingu basin for
all available QuikSCAT data between 2001 and 2009. Note, however, that when using
radar observations, the relationship to MODIS-derived anisotropy was non-linear
(r’=0.59, RMSE=0.11).

(Figure 8)

Time series profiles of MODIS-derived entropy estimated from the regression
model of Figure 7c and of MODIS-derived QuikSCAT-c° estimated from model of
Figure 8 were plotted as spatial averages for Dse, Asc and Fse (Figure 9). All three
forest types displayed notable seasonal cycles. The Ombrophilous Forests (Dse and Asc)
consistently showed high values of entropy with less seasonal variation. In contrast, the
seasonal cycles were much more pronouced in the Fse, as expected for semi-decidous
vegetation. Both models (GLAS-derived entropy and QScat-derived c°) yielded very
similar seasonal patterns, in terms of temporal variation as well as in terms of
differences between vegetation types. The results presented in Figure 9 were consistent
also with those shown in Figure 5. A small negative trend in both entropy and ¢ was
observed from 2000 until 2009 and a positive trend in all three vegetation types was
found from 2010 onwards. This trend was especially pronounced for the canopy entropy
based on GLAS observations.

(Figure 9)
4. Discussion
This study investigated the potential of multi-angle reflectance obtained from

MODIS to derive estimates of vegetated surface roughness as an important structural
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parameter of land atmosphere interactions. Aside from field observations, airborne laser
scanning is arguably the most comprehensive tool to describe the three-dimensional
vegetation structure at the stand level to date (Coops et al., 2007; Lim et al., 2003;
Wulder et al., 2012). Recent initiatives such as the ‘“Sustainable Landscapes

Brazil“ project (http://mapas.cnpm.embrapa.br/paisagenssustentaveis/) seek to improve

upon existing deficiencies of data availability and provide new opportunities to generate
structural metrics across discrete locations within the Amazon basin.

LiDAR based characterization of vegetation structure (Figures 2, 3, and Table 1)
exposed a large heterogeneity across the Xingu basin, both spatially and seasonally.
ALS-observed structural differences between vegetation types were detectable also
from space using photon counting LIDAR (GLAS/IceSat) and microwave
backscattering (SeaWinds/QuikSCAT) (Figures 4 and 9b). This is an important finding,
as it opens an opportunity for scaling spatially discrete observations of canopy structure
across larger areas from space (Popescu et al., 2011).

Spatial and temporal heterogeneity in Amazonian vegetation (Silva et al., 2013;
Townsend et al., 2008) is not easily obtained from conventional vegetation indices
(Hilker et al., 2015), as VIs cannot adequately capture differences in canopy structure
among different vegetation types (Glenn et al., 2008; Lagouarde et al., 2002). Findings
presented in this study (Figures 6 to 9) suggest that such canopy structural variation may
be better determined from multi-angular reflectance. Our estimates of anisotropy
showed considerable improvements over estimates using mono-observation vegetation
indices (Figure Al). The ability of multi-angle observation to derive vegetation
structural attributes is well supported by previous results (Chen & Leblanc, 1997; Chen,
2003; Gao, 2003; Strahler & Jupp, 1990; Yu et al., 2015; Zhang et al., 2002). While

these authors have focused on smaller study areas using specialized sensors, our
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findings confirm such multi-angle potential to be acquired from the MODIS instrument
and across the Amazon basin (Moura et al., 2015). Our previous work also confirmed
the consistency of monthly anisotropy measurements and its statistical significance for
estimating seasonal changes in vegetation structure across the Amazon (Moura et al.,
2015). This is an important advancement, as it allows structural estimates over large
areas and at high temporal frequencies from space, complementing the data analysis of
orbital LIDAR data.

Anisotropy derived from multiple overpasses of MODIS imagery may therefore
provide new insights into structural variability of Amazon forests as it increases the
sensitivity to changes in vegetation structure across dense vegetation types. As
demonstrated in previous work (Moura et al., 2015), seasonal changes in observed
anisotropy cannot be explained by bi-directional effects, as all observations have been
normalized to a fixed forward and backscatter geometry (Lyapustin et al., 2012b). In
addition, Moura et al. (2015) demonstrated that standard deviations between observed
and modelled MAIAC reflectance were about 10% of the observed variation in
anisotropy, thus confirming the ability of our approach to detect seasonal and inter-
annual changes. Differences between forward and backscatter observations as utilized in
this paper are largely driven by the different directional scattering behaviour of red and
NIR reflectance (Moura et al., 2015, Hilker et al., 2015). The modelled near hotspot and
near darkspot locations were designed to maximize the range of resulting anisotropy,
thereby seeking to increase the sensitivity with respect to changes in vegetation
structure.

While the range of view angles acquired by MODIS is relatively small, as the
instrument was not specifically designed for multi-angle acquisitions, MODIS-derived

anisotropy still provided an effective means to characterize vegetation structure across
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large areas from space. Within the Amazon basin (or tropics in general), this is partially
facilitated by the fact that MODIS view geometry comes very close to the principal
plane twice a year. As a result, our BRDF model is representative of the angles used in
this study. Consequently, modelled anisotropy is close to its maximum range of possible
values. The contrary occurs in mid-latitudes where observations are further from the
principal plane. In these cases, other geometric configurations might be preferable.

Modelling MODIS anisotropy using the RTLS BRDF model further allowed us to
derive anisotropy independent of the sun-observer geometry (Roujean et al., 1992). As a
limitation to this approach, changes in sun-sensor configuration over the year do not
always allow modelling of forward and backscattering observations within the sampling
range of the MODIS instruments. Therefore, higher uncertainties may be observed
during some times of the year than during others.

The strong, positive correlation found between GLAS-measured entropy and
MODIS anisotropy (Figure 6) may be explained by geometric scattering of individual
tree crowns (Chopping et al., 2011; Li, X., Strahler, 1986). For instance, a large
variability in canopy heights (high canopy roughness) will increase the geometric
scattering component, especially of NIR reflectance. Other structural changes may,
however, also influence seasonal patterns of anisotropy. In addition to canopy
roughness, anisotropy is also affected by leaf angle distribution (Roujean, 2002) and
foliage clumping (Chen et al., 2005) among other variables related to the floristic
variability, which tends to be high in tropical forests. The interaction between these
variables and multi-angle scattering is not straightforward, requiring further
investigation, especially in the components of scattering determined in the RTLS model.
For example, increases in leaf area may increase the volumetric scattering component

(Ross, 1981; Roujean, et al., 1992) of multi-angle reflectance, but at the same time
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decrease the surface roughness, at least within a certain range of values. Therefore, the
results presented in here should be understood as a first demonstration of the technique.
Due to the complexities described as well as other limitations in terms of footprint
size, and range of angular sampling, MODIS-derived estimates of canopy structure
should not be understood as a replacement for direct 3D measures of vegetation, but
rather as a complimentary approach for scaling such observations in space and time.
The consistency in the modelled relationship obtained from GLAS LiDAR and
SeaWinds/QuikSCAT backscattering is encouraging in this respect, as it suggests that
such scaling approaches may be built on opportunistically sampled observations across
platforms. For instance, MODIS data can help interpret estimates of canopy roughness
in between GLAS footprints, as well as fill missing observations in time, enabling more
comprehensive seasonal and spatial analysis. Upcoming new LIiDAR instruments, such
as the Global Ecosystem Dynamics (GEDI) mission (Dubayah et al., 2014; Stysley et al.,
2015), will allow further improvements in the measures of canopy structure as well as

biomass.

5. Conclusions

Our analysis has demonstrated that multi-angular MODIS observations are suitable
to determine canopy entropy at different scales of LIDAR measurements across the
study area in the Amazon. The sparseness of existing, highly detailed LIiDAR
observations currently imposes severe restriction on accuracy of modeled carbon and
water fluxes, particularly in remote regions such as the Amazon basin. Complementary
measures of vegetation structure from optical satellites are therefore highly desirable to

extrapolate spatially or temporally sparse estimates of canopy structure across the
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landscape. Such approaches will be crucial for improving our understanding of climate

tolerance and responses to Amazonian forests to extreme events.
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Table 1. Characteristics of the airborne laser scanning (ALS) data acquired over Dense

Ombrophilous (Dse), Open Ombrophilous (Asc) and Semi-Deciduous (Fse) Forests in

the Brazilian Amazon.

Forest Total area Max Flightline | Average | Average Field of
Type (ha) flight overlap return first view (°)
altitude (%) density return
(m) (ppm?) density
(ppm?)
Dse 1049 850 65 25.1 15.28 11.1
Asc 1004 850 65 24.1 15.20 11.0
Fse 1005 850 65 13.7 7.05 11.0

Table 2. Floristic and structural metrics calculated from field inventory data for Dense

Ombrophilous Forest (Dse), Open Ombrophilous Forest (Asc) and Semi-Deciduous

Forest (Fse). The mean leaf area index (LAI), determined from Airborne Laser

Scanning (ALS), is indicated in the last column of the table.

Forest Plots S H’ Htm) BAm’m? | LAI (aLs)
Type
Dse 7 181 4.61 18.1 30.63 6.05
Asc 22 1595 3.67 17.4 11.36 4.32
Fse 10 802 2.20 17.0 12.83 5.33
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Figure 1. Location of the study within the Amazon basin. The inset shows the
Geoscience Laser Altimeter System (GLAS) coverage (strings), airborne laser scanning

(ALS) data acquisition and the available field inventory plots across the Xingu basin.

Figure 2. Vegetation cover map adapted from IBGE (2004) in the left, and diagrams of
height estimates from ALS LiDAR data in the right, to illustrate structural variation
between the three predominant forest types in the study area (Dse, Asc and Fse). Each
Airborne Laser Scanning (ALS) plot represents an area of 100 m x100 m to describe the

heights in the three different forests.

Figure 3. Canopy volume models (CVMs) based on the Airborne Laser Scanning (ALS)
for (a) Dense ombrophilous forest (Dse); (b) Open ombrophilous Forest (Asc); and (c)

Semi-deciduous forest (Fse).

Figure 4. Seasonal profiles of GLAS-derived entropy for the three different forest types
of the study area. GLAS data were obtained only for the months indicated in the x-axis.
Just for reference, the shaded area represents the quarter when the Airborne Laser

Scanning (ALS) data were collected in 2012.

Figure 5. MODIS-derived anisotropy images during (a) March, (b) June and (c) October
of 2006 to illustrate seasonal and spatial changes in multi-angle reflectance across the

Xingu basin.

Figure 6. Relationship between MODIS-derived anisotropy and ALS-derived entropy

(or canopy roughness).
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Figure 7. Relationship between MODIS-derived anisotropy and GLAS-derived entropy

using observations for (a) March, (b) June and (c) October of 2006.

Figure 8. Relationship between MODIS-derived anisotropy and backscattering (c°)
measurements from SeaWinds/QSCAT over Amazonian tropical forests considering the

period 2001 to 2009.

Figure 9. Time series profiles of MODIS-derived (a) GLAS entropy estimated using the
regression model of Figure 7c, and (b) MODIS-derived SeaWinds/QuikSCAT
backscattering (c°) from the model of Figure 8. Results are shown as spatial average for
Dense (Dse) and Open (Asc) Ombrophilous Forests and the Semi-Deciduous Forest

(Fse) between 2000 and 2012 for the Xingu basin.

Figure Al. Comparison between MODIS-MAIAC EVI (normalized for directional
effects) and estimates of canopy entropy derived from ALS (a), GLAS (b) and
QUIKSCAT (c). The vegetation index was significantly less suited to describe canopy

structural parameters than Anisotropy.
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