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Abstract. Detailed knowledge of vegetation structure is required for accurate modelling 24 

of terrestrial ecosystems, but direct measurements of the three dimensional distribution 25 

of canopy elements, for instance from LiDAR, are not widely available. We investigate 26 

the potential for modelling vegetation roughness, a key parameter for climatological 27 

models, from directional scattering of visible and near-infrared (NIR) reflectance 28 

acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We 29 

compare our estimates across different tropical forest types to independent measures 30 

obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser 31 

Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our 32 

results showed linear correlation between MODIS-derived anisotropy to ALS-derived 33 

entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships 34 

were also obtained between MODIS-derived anisotropy and GLAS-derived entropy 35 

(0.52≤ r2≤ 0.61; p<0.05), with similar slopes and offsets found throughout the season, 36 

and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the 37 

MODIS-derived anisotropy and backscattering measurements (σ0) from 38 

SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that 39 

multi-angular MODIS observations are suitable to extrapolate measures of canopy 40 

entropy across different forest types, providing additional estimates of vegetation 41 

structure in the Amazon. 42 

 43 
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1. Introduction 47 

 48 

Terrestrial vegetation plays a significant role in the re-distribution of moisture and 49 

heat in the surface boundary layer, as well as in the energy balance of the planet 50 

(Bastiaanssen et al., 1998a). Land-atmosphere interactions are driven by the three-51 

dimensional structure of vegetated land cover, including surface roughness, leaf area 52 

and canopy volume (Vourlitis et al., 2015; Domingues et al., 2005). Canopy roughness, 53 

defined as vertical irregularities in the height of the canopy (Chapin et al., 2011), plays a 54 

key role in earth system modelling. For instance, evapotranspiration is controlled much 55 

more by canopy roughness (and therefore aerodynamic conductance) than by canopy 56 

leaf area or maximum stomatal conductance (Chapin et al., 2011).  57 

At stand level scales, significant advances have been made measuring canopy 58 

vegetation structure from Light Detection and Ranging (LiDAR). LiDAR allows direct 59 

measurements of the three-dimensional distribution of vertical vegetation elements from 60 

ground-based (Strahler et al., 2008), airborne (Wulder et al., 2012) and orbital platforms 61 

(Sun et al., 2008). To date, most vegetation related LiDAR applications rely on airborne 62 

platforms for data acquisition, with measurements acquired at altitudes between 500 and 63 

3000 m (Hilker et al., 2010). Due to cost and practical considerations, the availability of 64 

airborne LiDAR is currently limited to specific research sites and data are not available 65 

across the landscape.   66 

The Geoscience Laser Altimeter System (GLAS), onboard the Ice, Cloud, and land 67 

Elevation Satellite (ICESat), has provided certain capability to map vegetation 68 

characteristics across broader areas from space (Zwally et al., 2002). GLAS is a large-69 

footprint, waveform-recording LiDAR that measures the timing and power of the 1064 70 

nm laser energy returned from illuminated surfaces (Schutz et al., 2005). While not 71 

configured for vegetation characterization, the GLAS instrument allows quantification 72 
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of the vertical distribution of plant components relative to the ground over vegetated 73 

terrain (Harding, 2005; Yu et al., 2015, Morton et al., 2014). GLAS data has been 74 

successfully used to discriminate forest structure across various biome types (Boudreau 75 

et al., 2008; Gonçalves, 2014; Lefsky et al., 2005; Pang et al., 2008) and to estimate 76 

canopy light environments and forest productivity (Stark et al., 2014; Rap et al., 2015; 77 

Morton et al., 2016). While GLAS provides larger spatial coverage, its footprint is still 78 

spatially discrete and importantly a lack of repeated measurements prevents its use for 79 

estimation of climate related responses of vegetation.  80 

Perhaps complimentary to structural observations, optical remote sensing available 81 

from satellite data, provide global coverage at frequent time steps but can generally not 82 

deliver accurate information on the vertical organization of plant canopies. For instance, 83 

vegetation indices provide general information on canopy “greenness” but their ability 84 

to detect changes in high-biomass areas is limited due to a well-documented saturation 85 

effect (Carlson and Ripley, 1997). Although VIs have been employed as proxies for 86 

vegetation structure, including roughness lengths for turbulent transfer, field estimates 87 

of vegetation structure attributes are often only moderately correlated with VIs and their 88 

derivatives (Glenn et al., 2008).  89 

As an alternative to conventional, mono-angle observations, the combination of 90 

multiple view angles may provide new opportunities for modelling the structure of 91 

vegetated land surfaces (Breunig et al., 2015; Shaw & Pereira, 1982) from optical 92 

remote sensing. Changes in canopy structure including changes in tree crown size, 93 

shape, density and spatial distribution of leaves, affect the directional scattering of light 94 

(Chen et al., 2005). Multi-angle observations of this scattering may therefore allow us to 95 

describe the three-dimensional structure of vegetation (Chen and Leblanc, 1997; 96 

Strahler & Jupp, 1990). Multi-angular scattering of surface reflectance (anisotropy) has 97 
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been linked to optical properties and geometric structure of the target (Widlowski et al., 98 

2004; Widlowski et al., 2005), including canopy roughness (Strahler, 2009), leaf angle 99 

distribution (Roujean, 2002), leaf area index (LAI) (Walthall, 1997) and foliage 100 

clumping (Chen et al., 2005; Chopping et al., 2011). Such estimates may even be made 101 

in dense canopies (Moura et al., 2015), as observations acquired from multiple view 102 

angles decrease the dispersion and saturation effect in geometrically complex vegetation 103 

(Zhang et al., 2002). 104 

 105 

With the advent of multi-angular sensors such as the Multi-angle Imaging 106 

SpectroRadiometer (MISR) (Breunig et al., 2015) and POLDER (Roujean, 2002), the 107 

dependence of reflectance on observation angles has been documented (Barnsley et al., 108 

2004) and modelled (Roujean et al., 1992; Wanner et al., 1995). Recent progress using 109 

the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC) has 110 

allowed the acquisition of multi-angle reflectance across large areas and at high 111 

observation frequencies by combining satellite imagery obtained from NASA’s 112 

Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua platforms 113 

during a few overpasses (Lyapustin et al., 2012a; Moura et al., 2015). Such observations 114 

could potentially allow periodic and spatially contiguous estimates of vegetation 115 

structure and its response to changes in climate variables. When correlated with more 116 

direct measurements of canopy structure by other instruments, such as LiDAR, this may 117 

then allow us to extrapolate canopy roughness and other structural estimates in space 118 

and time, thereby filling key data gaps for improving our understanding of ecosystem 119 

structure and functioning. Further validation may be provided by scatterometer 120 

observations over dense forests. For instance, the SeaWinds microwave radar, onboard 121 

NASA’s QuikSCAT satellite, was primarily designed to measure near-surface wind 122 

speed and direction over the oceans. However, due to its high sensitivity to water 123 
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content that drives canopy dielectric properties, it has been also used to study canopy 124 

structure (Frolking et al., 2011; Saatchi et al., 2013).  125 

In this study, we used estimates of canopy roughness obtained from 1) airborne 126 

laser scanning (ALS), 2) spaceborne LiDAR GLAS, and 3) the spaceborne SeaWinds 127 

scatterometer, to evaluate the potential of multi-angular MODIS observations for 128 

modelling vegetation roughness from directional scattering of visible and near-infrared 129 

(NIR) reflectance. We implemented a spatial scaling approach, from airborne to orbital 130 

levels of data acquisition, to model continuous coverage of roughness across tropical 131 

forests of the Xingu basin area in the Brazilian Amazon. Our objective was to test 132 

whether multi-angle MODIS reflectance can be used as a proxy for canopy roughness 133 

over Amazonian tropical forests, including different forest types such as Dense and 134 

Open ombrophilous Forests, and Semi-Deciduous Forest.  135 

 136 

2. Methods 137 

2.1. Study area 138 

The study area is located in the southeast part of the Amazon, including the Xingu 139 

basin and adjacent areas (Figure 1). Figure 1 also shows the GLAS transects for the 140 

study area (Schutz et al., 2005) as well as the ALS and the field data plots. The study 141 

area presents a south-north gradient with respect to climate. Following the Kӧppen 142 

classification, the southern portion of the study area is dominated by tropical wet and 143 

dry climate (Aw), while the north portion is characterized by tropical monsoon climate 144 

(Am). Length and duration of the dry season, defined as months with rainfall less than 145 

100 mm or less than one third of precipitation range (Asner & Alencar, 2010; Myneni et 146 

al., 2007), also varies across the study area. In the southern parts, the dry season lasts 147 

about five months, from May to September (Moura et al., 2012). In the northern parts, a 148 
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drier climate prevails between July and November (Vieira et al., 2004). The area is 149 

characterized by three predominant forest types: Dense Ombrophilous Forest (Dse), 150 

Open Ombrophilous Forest (Asc) and Semi-Deciduous Forest (Fse) (IBGE, 2004). 151 

 152 

(Figure 1) 153 

 154 

2.2. Field inventory data 155 

Estimates of vegetation structure were derived for each of the three different forest 156 

types using available inventory plots across the region. For two vegetation types, Open 157 

Ombrophilous Forest (Asc) and Semi-decidiuous Forest (Fse), surveys were provided 158 

by the Sustainable Landscapes Brazil project in collaboration with the Brazilian 159 

Agricultural Research Corporation (EMBRAPA), the US Forest Service, the USAID, 160 

and the US Department of State (http://mapas.cnpm.embrapa.br/paisagenssustentaveis/). 161 

The Asc forest type was represented by 22 plots of 40 m x 40 m each. All the trees with 162 

a diameter at breast height (DBH) equal to or greater than 10 cm were measured within 163 

each plot. For Fse, 10 sample plots (20 m x 500 m) were used. The field data for the 164 

Dense Ombrophilous Forest (Dse) were obtained in 2012 and are described in Silva et 165 

al. (2015). The floristic and structural surveys included seven sample plots of 25 m x 166 

100 m over mature forests. Trees with DBH equal to or greater than 10 cm were 167 

measured within each plot. 168 

 169 

2.3. Airborne Laser Scanning (ALS) data 170 

ALS data were acquired by GEOID Ltd. using an Altm 3100/Optech instrument 171 

and provided by the Sustainable Landscapes Brazil project. The positional accuracy (1σ) 172 

of the LiDAR measurements was approximately 0.10 m horizontally and 0.12 m 173 

http://mapas.cnpm.embrapa.br/paisagenssustentaveis/
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vertically (http://mapas.cnpm.embrapa.br/paisagenssustentaveis/). We focussed our 174 

analysis on undisturbed, non-degraded research plots. Structural information was 175 

obtained in the Tapajós National Forest, Pará State (September to November 2012), in 176 

São Félix do Xingu municipality, Pará state (August 2012) and in Canarana/Querência 177 

municipality, Mato Grosso State (August 2012), to represent Dse, Asc and Fse, 178 

respectively. Table 1 shows the specifications of LiDAR data for each site. 179 

(Table 1) 180 

ALS data were delivered as classified LAS-formatted point clouds, along with 1-m 181 

resolution bare earth digital terrain models (DTM). For comparison with GLAS, 182 

discrete-return data were aggregated produce pseudo-waveforms. Coops et al. (2007) 183 

demonstrated that canopy profiles, analogue to those derived from full waveform 184 

systems, can be derived from discrete return LiDAR when aggregating returns into three 185 

dimensional voxel spaces and comparing the amount of discrete returns contained in 186 

each voxel layer to the voxel layers below and above. In this study, waveforms were 187 

synthesized by sub-setting the LiDAR point cloud co-located with each field plot and 188 

counting the number of points observed in vertical bins of 50 cm and at a horizontal 189 

resolution of 100 x100m. 10 by 10 pixels of LiDAR metrics were then averaged to 190 

match the 1x1km MODIS pixel size. ALS based entropy was then computed to 191 

determine canopy structural diversity and approximate canopy roughness (Palace et al., 192 

2015; Stark et al., 2012). The method is described in detail in the next section (2.4) and 193 

is analogue to that applied from GLAS observations. In addition to ALS entropy, we 194 

also calculated canopy volume models (CVMs) to quantify the three-dimensional 195 

structure of the forest canopies based on the incident radiation levels and photosynthetic 196 

potential (Coops et al., 2007; Hilker et al., 2010). The method is described in detail in 197 

http://mapas.cnpm.embrapa.br/paisagenssustentaveis/
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(Lefsky et al., 2005). CVMs divide the canopy space into sunlit and shaded vegetation 198 

elements as well as gap spaces enclosed within.  199 

 200 

2.4. GLAS/ICESat data and structural metrics from vertical profiles 201 

GLAS profiles were obtained across the Xingu basin (Figure 1) between 2006 and 202 

2008 (laser operating periods 3E through 2D) (Gonçalves, 2014). Each GLAS footprint 203 

is elliptical in shape, spaced at approximately 170-m intervals along-track. GLAS 204 

LiDAR profiles characteristics varied between the campaigns across the study area. The 205 

near-infrared elliptical footprint and eccentricity varied between 51.2 (±1.7) to 58.7 206 

(±0.6), and 0.48 (±0.02) to 0.59 (±0.01), respectively. The horizontal and vertical 207 

geolocation accuracy varied between 0.00 (±3.41) to 1.72 (±7.36), and 0.00 (±2.38) to 208 

1.2 (±5.14), depending on the campaign and respective data product.  209 

Because GLAS observations are able to penetrate optically thin clouds (Schulz et 210 

al., 2005), processing of the GLAS profiles included additional cloud screening to 211 

improve the data quality. The technique is described in detail in Smith et al. (2005). 212 

Briefly, the approach takes advantage of the fact that returns unaffected by saturation or 213 

forward scattering resemble narrow Gaussian pulses that are similar to the transmitted 214 

pulse (Smith et al., 2005). To process GLAS waveforms, we used parameters reported 215 

in the GLA01, GLA05, and GLA14 data products following methods described by 216 

(Gonçalves, 2014). First, the waveforms were filtered by convolution with a discrete 217 

Gaussian kernel with the same standard deviation as the transmitted laser pulse. This 218 

procedure reduced the background noise, while preserving an adequate level of detail 219 

for characterization of the canopy (Sun et al., 2008). Second, GLAS waveforms used in 220 

this study were calibrated and digitized into 1000 discrete bins at a time resolution of 1 221 

ns (~15 cm). The locations of the highest (signal start) and lowest (signal end) detected 222 



10 
 

surfaces within the 150-m waveform were determined, respectively, as the first and last 223 

elevations at which the amplitude exceeded a threshold level, for a minimum of n 224 

consecutive bins. The peak of the ground return was determined as the lowest peaks in 225 

the smoothed waveforms with at least the same width as the transmitted laser pulse, 226 

after taking into account the mean noise level. In order to minimize the effect of 227 

different output energy levels of the 2E and 3E Laser flight campaigns, all profiles were 228 

then normalized to unity by dividing by the maximum amplitude. This correction 229 

approach assumes that differences in measurement campaigns affect the overall amount 230 

of energy but do not significantly change the waveforms (i.e. the vertical scale of energy 231 

output) of our entropy calculation (Gonçalves, 2014).  232 

We utilized GLAS estimates of entropy (Sz), a measure of canopy structural 233 

diversity sensitive to crown depth and leaf area (Palace et al., 2015; Stark et al., 2012), 234 

as a proxy of canopy roughness. Sz was calculated using Equations 1 and 2 (Harding & 235 

Carabajal, 2005, Nelson et al., 2009, Treuhaft et al., 2009, Gonçalves, 2014): 236 

 237 

𝑆𝑧 = − ∑ 𝑝(𝑤𝑖) ln(𝑝(𝑤𝑖))

𝑛𝑏

𝑖=1

,   𝑤𝑖𝑡ℎ 238 

           (1) 239 

𝑝(𝑤𝑖) =
𝑤𝑖(𝑧)

∫ 𝑤𝑖(𝑧) 𝑑𝑧
𝐻100

0

           240 

           (2) 241 

where nb is the number of vertical bins from the ground peak to the signal start defined 242 

as the vertical distance between the ground peak and the signal start; w(z) is the laser 243 

power received from the 1m bin centered at height z; H100 is the maximum canopy 244 
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height, defined as the vertical distance between the ground peak and the signal start 245 

(Gonçalves, 2014).  246 

 247 

2.5. SeaWinds/QuikSCAT data 248 

Estimates of canopy structure were independently also obtained from SeaWinds 249 

Scatterometer data, provided by NASA’s Scatterometer Climate Record Pathfinder 250 

project. The SeaWinds Scatterometer operates at microwave frequency of 13.4 GHz 251 

(Ku-band) with mean incidence angle of 54º for V-polarization and 46º for H-252 

polarization. The sensitivity of radar data to variations in vegetation canopy structure 253 

can be explained by the dependence of radar backscatter to surface dielectric properties, 254 

which are strongly dependent on the liquid water content of the canopy constituents 255 

(Frolking et al., 2006). Given that the SeaWinds instrument operates at a higher 256 

frequency and higher incidence angle than other similar sensors, it has lower penetration 257 

into forest canopy, and therefore almost no interference from soil moisture variations in 258 

densely vegetated forested areas (Saatchi et al., 2013). 259 

The backscatter product (σ0) used in this study combines ascending (morning) and 260 

descending (evening) orbital passes, and is based on SeaWinds "egg" images (Frolking 261 

et al., 2006). The nominal image pixel resolution for egg images is 4.45 km/pixel. Only 262 

backscatter data for horizontal (H) polarization were used, as previous assessments had 263 

indicated that results using vertical (V) polarization show no significant differences 264 

(Saatchi et al., 2013). We used data obtained from January 2001 to November 2009, 265 

when the sensor stopped collecting data due to failure in the scanning capability. To 266 

match the spatial resolution of the SeaWinds instrument, we averaged the corresponding 267 

anisotropy observations from the MODIS instrument to match the 268 

SeaWinds/QuikSCAT pixels.  269 
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2.6. Determination of surface anisotropy from multi-angle MODIS data 270 

MODIS observations are acquired at different solar and view zenith angles, 271 

depending on the orbital overpass and time of the year. Pixel-based algorithms often 272 

assume a Lambertian reflectance model, which reduces the anisotropy of the derived 273 

surface reflectance (Lyapustin, 1999; Wang et al., 2010), thus decreasing the ability to 274 

detect directional scattering (Hilker et al., 2009). In this study, we use the MAIAC 275 

algorithm because it preserves the multi-angle character of MODIS observations, 276 

providing a means to estimate the anisotropy of surface reflectance (Chen et al., 2005), 277 

a surrogate for structure of vegetation and shaded parts of the canopy (Myneni et al., 278 

2002; Chen et al., 2003; Gao et al., 2003). MAIAC is a cloud screening and atmospheric 279 

correction algorithm that uses an adaptive time series analysis and processing of groups 280 

of pixels to derive atmospheric aerosol concentration and surface reflectance. A detailed 281 

description of the technique can be found in Lyapustin et al. (2011) and Lyapustin et al. 282 

(2012). Previous results (Hilker et al., 2012, 2015) have shown that while the MAIAC 283 

cloud mask is less conservative, it is also more accurate, improving the number of 284 

observations and data quality in tropical environments.  285 

For retrieval of the surface bi-directional reflectance distribution function (BRDF), 286 

MAIAC accumulates data over 4-16 days (Lyapustin et al., 2011, 2012). Assuming that 287 

vegetation is relatively stable during this period, the surface directional scattering can be 288 

characterized using the Ross-Thick Li-Sparse (RTLS) bidirectional reflectance 289 

distribution function (BRDF) model (Roujean, et al., 1992). 290 

Using the RTLS model (Wanner et al., 1995), we characterized the BRDF of each 1 291 

km x 1 km grid cell of MODIS data. Based on the RTLS BRDF model, we derived 292 

MODIS backscatter (Solar Zenith Angle (SZA) = 45°, View Zenith Angle (VZA) = 35°, 293 

Relative Azimuth Angle (RAA) = 180°) and forward scatter (SZA = 45°, VZA = 35°, 294 
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RAA = 0°) observations (4-16 days of observations) for a fixed view and sun angle. The 295 

advantage of using the RTLS model rather than reflectance directly is to keep constant 296 

sun-observer geometry and extrapolate measurements to the principal plane. In addition, 297 

the modelled reflectance can be based on all multi-angle MODIS data, which should 298 

yield a more representative characterization of the reflectance properties. We selected a 299 

VZA of 35° rather than the hotspot location at VZA = 45° in order to keep the modelled 300 

reflectance closer to the actual range of angles observed by MODIS, thereby 301 

minimizing potential errors resulting from extrapolation of the BRDF.  302 

We used estimates of anisotropy (defined as the difference between BRDF 303 

modelled backscattering (SZA = 45°, VZA = 35°, RAA = 180°) and BRDF modelled 304 

forward scattering (SZA = 45°, VZA = 35°, RAA = 0°) based on the Enhanced 305 

Vegetation Index (EVI) to describe roughness of the surface for different vegetation 306 

types across the study area (Moura et al., 2015). The objective of using EVI rather than 307 

surface reflectance of a given band was to minimize the effect of non-photosynthetically 308 

active elements (i.e. soil fraction component) while optimizing the sensitivity to green 309 

canopy structure (Moura et al., 2015). 310 

MODIS-derived anisotropy values were then regressed against ALS-derived 311 

entropy, GLAS-derived entropy and SeaWinds/QuikSCAT backscatter (σ0
, Frolking et 312 

al., 2006), which were estimated on a per-pixel-basis to generate time series profiles of 313 

entropy for each forest type in the study area.  314 

 315 

3. Results 316 

The Xingu basin contains a number of different forest types. However, vegetation is 317 

dominated by Asc and Dse forest types in the north, and by Fse vegetation in the south, 318 
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as illustrated in Figure 2. The GLAS tracks are also shown in this figure to highlight the 319 

sampling density of the spaceborne LiDAR over each forest type. An illustration of the 320 

mean canopy height (MCH) derived from ALS for three sample areas of 1 ha each is 321 

provided in Figure 2. Airborne ALS measurements showed, on average, the largest tree 322 

heights in the Dse class with values up to 40 meters tall (red color in the inset of Figure 323 

2). Asc and Fse vegetation types reached up to 30 m and 25 meters in height, 324 

respectively. Field measurements showed that mean canopy heights from forest 325 

inventories were 19.8 m, 17.4 m and 17.0 m for Dse, Asc and Fse, respectively (Table 326 

2). When compared to Asc and Fse, Dse presented larger metrics of diversity (i.e. 327 

species richness (S) and Shannon index (H’)) and structure (mean height (HT), mean 328 

diameter at breast height (DBH), basal area (BA), aboveground biomass (AGB) and leaf 329 

area index (LAI)) (Table 2). 330 

 331 

(Figure 2) 332 

 333 

 (Table 2) 334 

Differences in canopy structure were also evident from the analysis of canopy 335 

volume models (CVMs) (Figure 3). While gap spaces were relatively small in all three 336 

vegetation types, Asc showed a notably higher proportion of sunlit vegetation that 337 

reached down deep into the canopy, suggesting a higher spatial variability of tree 338 

heights compared to the other two vegetation types. Similarly, gaps in the upper canopy 339 

were mostly present in Asc, as expected for open forest types. Fse showed gaps 340 

predominantly in lower height levels, and a higher overall proportion of shaded crown. 341 

Full canopy closure (100% of the canopy space filled by either sunlit or shaded canopy 342 
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elements or fully enclosed gap space) was reached at about 15 m height for both Asc 343 

and Dse, and at about 20 m height for Fse.  344 

(Figure 3) 345 

  346 

Differences in vegetation structure derived from ALS data were confirmed also 347 

with spaceborne GLAS observations. GLAS-derived seasonal profiles of entropy for 348 

2006 showed spatial averages that differed over time between the three vegetation types 349 

(Figure 4). Even though there were differences in the years of data acquisition (2006 for 350 

GLAS and 2012 for ALS), the shaded area in Figure 4 was plotted to provide a seasonal 351 

reference between the airborne and spaceborne data. GLAS derived seasonal profiles 352 

varied between different forest types. The lowest values of entropy were consistently 353 

found for Fse. In contrast, Asc for Dse showed GLAS entropy higher throughout the 354 

measurement period. All forest types showed strong seasonality with increasing entropy 355 

from February to September, and decreasing values thereafter with predominance of 356 

higher entropy during the dry season.  357 

 358 

(Figure 4) 359 

Examples of MODIS anisotropy during March, June and October of 2006 360 

illustrated seasonal and spatial changes in multi-angle reflectance across the Xingu 361 

basin (Figure 5). The MODIS derived anisotropy was consistently higher in the northern 362 

part of the study area, and its spatial distribution coincided well with the forest types 363 

indicated in Figure 2. A clear limit between forested (high MODIS anisotropy) and non-364 

forested (low anisotropy) areas was evident in the southern part of the map. 365 

Furthermore, higher values of anisotropy were found for the Asc and Dse vegetation 366 

compared to Fse. While MAIAC observations allowed a notable number of 367 
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measurements of anisotropy between June (Figure 5b) and October (Figure 5c), some 368 

data gaps were observed in March (Figure 5a) due to cloud cover in the rainy season.   369 

(Figure 5) 370 

  MODIS-derived anisotropy was linearly correlated to ALS-derived entropy 371 

(Figure 6). The coefficient of determination (r2) of the relationship between all 828 372 

MODIS pixels that coincided with existing ALS observations was 0.54 with an RMSE 373 

of 0.11 units of entropy. Much of the scattering presented in Figure 3 was limited to 374 

lower values of entropy, while residuals were notably smaller for the higher entropy 375 

range.  376 

(Figure 6) 377 

Significant relationships were also found between MODIS anisotropy and 378 

GLAS measured entropy using all observations that contained five or more GLAS shots 379 

within the 1 km x 1 km MODIS pixels (Figure 7). In order to examine seasonal 380 

variability in the relationship, we performed the regressions separately for March 381 

(Figure 7a), June (Figure 7b) and October (Figure 7c) of 2006. The r2 varied between 382 

0.52 for March and 0.61 for June (p<0.05) with similar slopes and offsets found 383 

throughout the observation period. RMSE varied between 0.26 and 0.30 units of entropy. 384 

The highest noise levels were observed in March, which is corresponding also to the 385 

larger amount of data gaps during the rainy season (Figure 5). The availability of GLAS 386 

data was somewhat limited during June, but the relationships were still highly 387 

significant and consistent with those observed during other months of the year. A 388 

comparison between conventional VI estimates using directionally normalized EVI 389 

from MAIAC and LiDAR derived Entropy is shown in the appendix (Figure A1). 390 

(Figure 7) 391 
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A strong relationship between the MODIS-derived anisotropy and the 392 

backscattering measurements (σ0) from SeaWinds/QuikSCAT was also observed 393 

(Figure 8). The relationship was obtained for 10.000 randomly sampled MODIS pixels 394 

and corresponding SeaWinds/QuikSCAT (σ0) observations across the Xingu basin for 395 

all available QuikSCAT data between 2001 and 2009. Note, however, that when using 396 

radar observations, the relationship to MODIS-derived anisotropy was non-linear 397 

(r2=0.59, RMSE=0.11). 398 

(Figure 8) 399 

Time series profiles of MODIS-derived entropy estimated from the regression 400 

model of Figure 7c and of MODIS-derived QuikSCAT-σ0 estimated from model of 401 

Figure 8 were plotted as spatial averages for Dse, Asc and Fse (Figure 9). All three 402 

forest types displayed notable seasonal cycles. The Ombrophilous Forests (Dse and Asc) 403 

consistently showed high values of entropy with less seasonal variation. In contrast, the 404 

seasonal cycles were much more pronouced in the Fse, as expected for semi-decidous 405 

vegetation. Both models (GLAS-derived entropy and QScat-derived σ0) yielded very 406 

similar seasonal patterns, in terms of temporal variation as well as in terms of 407 

differences between vegetation types. The results presented in Figure 9 were consistent 408 

also with those shown in Figure 5. A small negative trend in both entropy and σ0 was 409 

observed from 2000 until 2009 and a positive trend in all three vegetation types was 410 

found from 2010 onwards. This trend was especially pronounced for the canopy entropy 411 

based on GLAS observations.    412 

(Figure 9) 413 

4. Discussion 414 

This study investigated the potential of multi-angle reflectance obtained from 415 

MODIS to derive estimates of vegetated surface roughness as an important structural 416 
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parameter of land atmosphere interactions. Aside from field observations, airborne laser 417 

scanning is arguably the most comprehensive tool to describe the three-dimensional 418 

vegetation structure at the stand level to date (Coops et al., 2007; Lim et al., 2003; 419 

Wulder et al., 2012). Recent initiatives such as the “Sustainable Landscapes 420 

Brazil“ project (http://mapas.cnpm.embrapa.br/paisagenssustentaveis/) seek to improve 421 

upon existing deficiencies of data availability and provide new opportunities to generate 422 

structural metrics across discrete locations within the Amazon basin. 423 

LiDAR based characterization of vegetation structure (Figures 2, 3, and Table 1) 424 

exposed a large heterogeneity across the Xingu basin, both spatially and seasonally. 425 

ALS-observed structural differences between vegetation types were detectable also 426 

from space using photon counting LiDAR (GLAS/IceSat) and microwave 427 

backscattering (SeaWinds/QuikSCAT) (Figures 4 and 9b). This is an important finding, 428 

as it opens an opportunity for scaling spatially discrete observations of canopy structure 429 

across larger areas from space (Popescu et al., 2011). 430 

Spatial and temporal heterogeneity in Amazonian vegetation (Silva et al., 2013; 431 

Townsend et al., 2008) is not easily obtained from conventional vegetation indices 432 

(Hilker et al., 2015), as VIs cannot adequately capture differences in canopy structure 433 

among different vegetation types (Glenn et al., 2008; Lagouarde et al., 2002). Findings 434 

presented in this study (Figures 6 to 9) suggest that such canopy structural variation may 435 

be better determined from multi-angular reflectance. Our estimates of anisotropy 436 

showed considerable improvements over estimates using mono-observation vegetation 437 

indices (Figure A1). The ability of multi-angle observation to derive vegetation 438 

structural attributes is well supported by previous results (Chen & Leblanc, 1997; Chen, 439 

2003; Gao, 2003; Strahler & Jupp, 1990; Yu et al., 2015; Zhang et al., 2002). While 440 

these authors have focused on smaller study areas using specialized sensors, our 441 

http://mapas.cnpm.embrapa.br/paisagenssustentaveis/
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findings confirm such multi-angle potential to be acquired from the MODIS instrument 442 

and across the Amazon basin (Moura et al., 2015). Our previous work also confirmed 443 

the consistency of monthly anisotropy measurements and its statistical significance for 444 

estimating seasonal changes in vegetation structure across the Amazon (Moura et al., 445 

2015). This is an important advancement, as it allows structural estimates over large 446 

areas and at high temporal frequencies from space, complementing the data analysis of 447 

orbital LiDAR data.  448 

Anisotropy derived from multiple overpasses of MODIS imagery may therefore 449 

provide new insights into structural variability of Amazon forests as it increases the 450 

sensitivity to changes in vegetation structure across dense vegetation types. As 451 

demonstrated in previous work (Moura et al., 2015), seasonal changes in observed 452 

anisotropy cannot be explained by bi-directional effects, as all observations have been 453 

normalized to a fixed forward and backscatter geometry (Lyapustin et al., 2012b). In 454 

addition, Moura et al. (2015) demonstrated that standard deviations between observed 455 

and modelled MAIAC reflectance were about 10% of the observed variation in 456 

anisotropy, thus confirming the ability of our approach to detect seasonal and inter-457 

annual changes. Differences between forward and backscatter observations as utilized in 458 

this paper are largely driven by the different directional scattering behaviour of red and 459 

NIR reflectance (Moura et al., 2015, Hilker et al., 2015). The modelled near hotspot and 460 

near darkspot locations were designed to maximize the range of resulting anisotropy, 461 

thereby seeking to increase the sensitivity with respect to changes in vegetation 462 

structure.  463 

While the range of view angles acquired by MODIS is relatively small, as the 464 

instrument was not specifically designed for multi-angle acquisitions, MODIS-derived 465 

anisotropy still provided an effective means to characterize vegetation structure across 466 
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large areas from space. Within the Amazon basin (or tropics in general), this is partially 467 

facilitated by the fact that MODIS view geometry comes very close to the principal 468 

plane twice a year. As a result, our BRDF model is representative of the angles used in 469 

this study. Consequently, modelled anisotropy is close to its maximum range of possible 470 

values. The contrary occurs in mid-latitudes where observations are further from the 471 

principal plane. In these cases, other geometric configurations might be preferable.  472 

Modelling MODIS anisotropy using the RTLS BRDF model further allowed us to 473 

derive anisotropy independent of the sun-observer geometry (Roujean et al., 1992). As a 474 

limitation to this approach, changes in sun-sensor configuration over the year do not 475 

always allow modelling of forward and backscattering observations within the sampling 476 

range of the MODIS instruments. Therefore, higher uncertainties may be observed 477 

during some times of the year than during others. 478 

The strong, positive correlation found between GLAS-measured entropy and 479 

MODIS anisotropy (Figure 6) may be explained by geometric scattering of individual 480 

tree crowns (Chopping et al., 2011; Li, X., Strahler, 1986). For instance, a large 481 

variability in canopy heights (high canopy roughness) will increase the geometric 482 

scattering component, especially of NIR reflectance. Other structural changes may, 483 

however, also influence seasonal patterns of anisotropy. In addition to canopy 484 

roughness, anisotropy is also affected by leaf angle distribution (Roujean, 2002) and 485 

foliage clumping (Chen et al., 2005) among other variables related to the floristic 486 

variability, which tends to be high in tropical forests. The interaction between these 487 

variables and multi-angle scattering is not straightforward, requiring further 488 

investigation, especially in the components of scattering determined in the RTLS model.  489 

For example, increases in leaf area may increase the volumetric scattering component 490 

(Ross, 1981; Roujean, et al., 1992) of multi-angle reflectance, but at the same time 491 
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decrease the surface roughness, at least within a certain range of values. Therefore, the 492 

results presented in here should be understood as a first demonstration of the technique.  493 

Due to the complexities described as well as other limitations in terms of footprint 494 

size, and range of angular sampling, MODIS-derived estimates of canopy structure 495 

should not be understood as a replacement for direct 3D measures of vegetation, but 496 

rather as a complimentary approach for scaling such observations in space and time. 497 

The consistency in the modelled relationship obtained from GLAS LiDAR and 498 

SeaWinds/QuikSCAT backscattering is encouraging in this respect, as it suggests that 499 

such scaling approaches may be built on opportunistically sampled observations across 500 

platforms. For instance, MODIS data can help interpret estimates of canopy roughness 501 

in between GLAS footprints, as well as fill missing observations in time, enabling more 502 

comprehensive seasonal and spatial analysis. Upcoming new LiDAR instruments, such 503 

as the Global Ecosystem Dynamics (GEDI) mission (Dubayah et al., 2014; Stysley et al., 504 

2015), will allow further improvements in the measures of canopy structure as well as 505 

biomass.  506 

 507 

5. Conclusions 508 

Our analysis has demonstrated that multi-angular MODIS observations are suitable 509 

to determine canopy entropy at different scales of LiDAR measurements across the 510 

study area in the Amazon. The sparseness of existing, highly detailed LiDAR 511 

observations currently imposes severe restriction on accuracy of modeled carbon and 512 

water fluxes, particularly in remote regions such as the Amazon basin. Complementary 513 

measures of vegetation structure from optical satellites are therefore highly desirable to 514 

extrapolate spatially or temporally sparse estimates of canopy structure across the 515 
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landscape. Such approaches will be crucial for improving our understanding of climate 516 

tolerance and responses to Amazonian forests to extreme events. 517 
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 772 

Table 1. Characteristics of the airborne laser scanning (ALS) data acquired over Dense 773 

Ombrophilous (Dse), Open Ombrophilous (Asc) and Semi-Deciduous (Fse) Forests in 774 

the Brazilian Amazon. 775 

 776 

Forest 

Type 

Total area 

(ha) 

Max 

flight 

altitude 

(m) 

Flightline 

overlap 

(%) 

Average 

return 

density 

(ppm2) 

Average 

first 

return 

density 

(ppm2) 

Field of 

view (°) 

Dse 1049 850 65 25.1 15.28 11.1 

Asc 1004 850 65 24.1 15.20 11.0 

Fse 1005 850 65 13.7 7.05 11.0 

 777 

 778 

Table 2. Floristic and structural metrics calculated from field inventory data for Dense 779 

Ombrophilous Forest (Dse), Open Ombrophilous Forest (Asc) and Semi-Deciduous 780 

Forest (Fse). The mean leaf area index (LAI), determined from Airborne Laser 781 

Scanning (ALS), is indicated in the last column of the table.  782 

Forest 

Type 

Plots S H’ Ht(m) BA(m
2

m
-2

) LAI (ALS) 

Dse 7 181 4.61 18.1 30.63 6.05 

Asc 22 1595 3.67 17.4 11.36 4.32 

Fse 10 802 2.20 17.0 12.83 5.33 

 783 

 784 

 785 

 786 

 787 
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 789 

Figure 1. Location of the study within the Amazon basin. The inset shows the 790 

Geoscience Laser Altimeter System (GLAS) coverage (strings), airborne laser scanning 791 

(ALS) data acquisition and the available field inventory plots across the Xingu basin. 792 

Figure 2. Vegetation cover map adapted from IBGE (2004) in the left, and diagrams of 793 

height estimates from ALS LiDAR data in the right, to illustrate structural variation 794 

between the three predominant forest types in the study area (Dse, Asc and Fse). Each 795 

Airborne Laser Scanning (ALS) plot represents an area of 100 m x100 m to describe the 796 

heights in the three different forests.  797 

Figure 3. Canopy volume models (CVMs) based on the Airborne Laser Scanning (ALS) 798 

for (a) Dense ombrophilous forest (Dse); (b) Open ombrophilous Forest (Asc); and (c) 799 

Semi-deciduous forest (Fse).   800 

Figure 4. Seasonal profiles of GLAS-derived entropy for the three different forest types 801 

of the study area. GLAS data were obtained only for the months indicated in the x-axis. 802 

Just for reference, the shaded area represents the quarter when the Airborne Laser 803 

Scanning (ALS) data were collected in 2012.  804 

Figure 5. MODIS-derived anisotropy images during (a) March, (b) June and (c) October 805 

of 2006 to illustrate seasonal and spatial changes in multi-angle reflectance across the 806 

Xingu basin. 807 

Figure 6. Relationship between MODIS-derived anisotropy and ALS-derived entropy 808 

(or canopy roughness). 809 
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Figure 7. Relationship between MODIS-derived anisotropy and GLAS-derived entropy 810 

using observations for (a) March, (b) June and (c) October of 2006. 811 

Figure 8. Relationship between MODIS-derived anisotropy and backscattering (σ0) 812 

measurements from SeaWinds/QSCAT over Amazonian tropical forests considering the 813 

period 2001 to 2009.   814 

Figure 9. Time series profiles of MODIS-derived (a) GLAS entropy estimated using the 815 

regression model of Figure 7c, and (b) MODIS-derived SeaWinds/QuikSCAT 816 

backscattering (σ0) from the model of Figure 8. Results are shown as spatial average for 817 

Dense (Dse) and Open (Asc) Ombrophilous Forests and the Semi-Deciduous Forest 818 

(Fse) between 2000 and 2012 for the Xingu basin.  819 

 820 

Figure A1. Comparison between MODIS-MAIAC EVI (normalized for directional 821 

effects) and estimates of canopy entropy derived from ALS (a), GLAS (b) and 822 

QuikSCAT (c). The vegetation index was significantly less suited to describe canopy 823 

structural parameters than Anisotropy.  824 
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