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Abstract—We propose the novel concept of Expanded Constel-
lation Mapping (ECM) for maximising the received signal power,
while cancelling the Far-End-Cross-Talk (FEXT) in copper based
wireline communications. The goal of ECM is to beneficially map
the transmitted symbol vector to its expanded constellation set by
carefully exploiting the copper channels’ specific characteristics.
To elaborate, ECM is comprised of the control entity and of the
match entity, where the former determines how ECM would be
applied, while the latter searches for the best mapping of the
transmitted symbol vector to the expanded constellation set. Our
numerical results demonstrate that with the aid of ECM, more
than 25 dB power efficiency gain may be achieved over linear
vectoring. Similarly, about 20 dB gain may be achieved over non-
linear vectoring. From an implementation point of view, ECM
imposes minimal structural changes on G.fast, whilst exhibiting
beneficial reconfigurability and compatibility.

I. INTRODUCTION

To fulfil the ambition of Gb/s speeds over copper, the
latest Digital Subscriber Line (DSL) standard of G.fast [1],
[2] further extends the copper bandwidth up to around 200
MHz. However, this bandwidth expansion inevitably increases
the Far-End-Cross-Talk (FEXT) between copper lines. Hence,
linear vectoring is employed in G.fast to pre-compensate the
downstream FEXT [3]. Unfortunately, the FEXT becomes
even higher than the received signal power at higher fre-
quencies. In this scenario, applying linear vectoring signifi-
cantly reduces the useful received signal power, when pre-
compensating the detrimental FEXT, hence leading to an
eroded performance.

A promising technique of improving linear vectoring is
the non-linear vectoring [4], which relies on applying math-
ematical transformations so that the first copper line is free
from FEXT and any other copper line is only affected by
the FEXT from its previous copper lines. Hence, instead of
completely eliminating the FEXT as in linear vectoring, non-
linear vectoring aims for recursively pre-cancelling the FEXT.
Nevertheless, several drawbacks exist in non-linear vectoring.
Structurally, non-linear vectoring is not backwards compatible
with the linear vectoring module of G.fast. Algorithmically,
the attainable performance of non-linear vectoring heavily
depends on the specific ordering during the successive FEXT
decontamination of the copper lines.

Against this background, we propose the novel concept
of Expanded Constellation Mapping (ECM), which aims for
maximising the received signal power, while still maintaining
perfect FEXT pre-cancellation as in linear vectoring, at a
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minimal structural change imposed on G.fast. In the following,
we formulate the problem in Section II and provide the
proposed solution in Section III. Our numerical results are
discussed in Section IV and we finally conclude in Section V.

II. PROBLEM DESCRIPTION

Let us firstly introduce the principle of linear vectoring and
its deficiencies. The DSL system is operated on a tone-by-
tone basis, relying on the so-called Digital Multi-Tone (DMT)
technique. Our forthcoming elaborations will be based on a
particular tone, but for simplicity we dropped the tone index
without loss of generality. Explicitly, on a particular tone, the
downstream system can be described as yyy =HHHsss+nnn, where HHH
represents the channel matrix of K copper lines, characterising
the input and output relationship between the K transmitted
symbols sss at the Distribution Point Unit (DPU) side and the
K received symbols yyy at the Network Termination (NT) side.
Furthermore, nnn represents the Additive White Gaussian Noise
(AWGN) with each entry having a zero mean and a variance
of σ2, which is independent of the transmitted symbols.

It is widely recognised that the off-diagonal entries of
the copper channel matrix HHH generate FEXT, which may
be pre-cancelled at the transmitter with the aid of linear
vectoring by multiplying the transmitted symbols sss with the
inverse of the copper channel matrix HHH at the DPU-side.
Mathematically, we transmit xxx =

√
1/βHHH−1DDDsss, where DDD is

a diagonal matrix, representing the conventional Zero-Forcing
(ZF) based linear vectoring whenDDD = III and the Diagonalising
based linear vectoring when DDD = diag(HHH). Furthermore,
β = Esss[||HHH−1DDDsss||2] is the normalisation factor introduced
for avoiding transmit power amplification after pre-cancelling
the FEXT 1, although we can alternatively impose a more strict
instantaneous normalisation. Consequently, the downstream
system model becomes

yyy =HHHxxx+nnn =
√

1/βDDDsss+nnn, (1)

which is now completely free from FEXT, albeit this is
achieved at the cost of reducing the received signal power
by a factor of β.

Conventional method to alleviate the received signal power
reduction requires the design of an extra beamforming vec-
tor [5]. However, this approach would violate the condition for
maintaining complete FEXT cancellation. Hence, we treat the

1Although sum power constraint for K copper lines is considered here, our
discussion is also applicable to per-line power constraint with its performance
included in Section IV. However, the optimal power allocation obeying per-
line power constraint for K copper lines will need further investigation.
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transmitted symbol vector as the beamforming vector, where
the design degree-of-freedom comes from the mapping of the
transmitted symbols to their expanded constellation sets. This
is true, since any integer expansion on symbol constellations
made at the transmitter may be recovered by simple modulo
operation at the receiver. In this way, the received signal power
reduction is minimised on a per transmitted symbol vector
basis, which guarantees the minimisation on β. As an example,
let HHH−1 = [1, 1; 0.5, 1] and DDD = III , then the transmitted
symbols sss = [0.25 + 0.25j; 0.25− 0.25j] would result in the
received signal power reduction by a factor of 0.4062, while
an integer remapping to s̃̃s̃s = [1.25 + 0.25j,−0.75 − 0.25j]
would bring the factor down to 0.2812.

III. EXPANDED CONSTELLATION MAPPING

Let us now introduce the proposed ECM for maximising
the received signal power, while still attaining complete FEXT
pre-cancellation. Structurally, ECM is comprised of the match
entity and of the control entity, both preceding the linear
vectoring module of G.fast, with minimal modifications of the
current architecture, as seen in Fig. 1.

1) Match Entity: The match entity of Fig. 1 is operated
on a per-tone basis. The transmitted symbols sss of a particular
tone are mapped to a newly formed collection of expanded
constellation sets Ae, whilst aiming for best matching the
FEXT pre-cancellation matrix HHH−1, in order to minimise
the received signal power reduction. In a nutshell, the match
entity of Fig. 1 determines the best mapping s̃̃s̃s by solving the
optimisation problem of

s̃̃s̃s = arg min
sss∈Ae

||HHH−1DDDsss||2 s.t. Ae = {Arkk }k=1...K , (2)

where Arkk represents the expanded constellation set for the
kth transmitted symbol sk and the superscript rk represents the
corresponding range of the expanded constellation set. In order
to find s̃̃s̃s, we firstly have to perform constellation expansion
and then carry out the mathematical optimisation of (2).

Expansion: The construction of the expanded constellation
set Arkk is as follows. Let A0

k be the original constellation
set corresponding to rk = 0, which is normalised within
(±1 ± j)/2. Given any positive integer value of rk, the
original constellation set A0

k is firstly expanded along the real
dimension to arrive at R(Arkk ) = {A0

k,A0
k ± 1, · · · A0

k ± rk},
which is then further expanded along the imaginary dimension
to arrive at Arkk = {R(Arkk ),R(Arkk )± j, · · ·R(Arkk )± rkj}.
Repeat the construction of Arkk for all transmitted symbols,
the collection of expanded constellation sets Ae is formed.
An example of the above expansion is shown in Fig. 1.

Optimisation: After obtaining Ae, optimisation is carried
out to solve the problem defined in (2) in order to find s̃̃s̃s.
There are numerous ways of solving this problem, but the
classic Lattice Aided Search (LAS) algorithms [6] will be
used in Section IV. In general, a larger expansion range will
result into a better performance, but at the cost of an increased
complexity 2 and an increased Peak to Average Power Ratio

2The exact complexity is very difficult to quantify, since it depends on the
underlying lattice basis, problem space, search strategy, etc. But according
to [7], the expected complexity is exalted from a polynomial to an exponential
trend, when increasing the size of the search space.

(PAPR) of the resultant expanded constellations. In particular,
when the expansion tends to infinity and all the original
constellation sets are identical, then ECM becomes reminiscent
of the vector perturbation concept of [8], which suffers from
a high complexity and an unpredictable PAPR.

Detection: Once s̃̃s̃s is found, it is used instead of sss and we
transmit xxx =

√
1/βminHHH

−1DDDs̃̃s̃s in conjunction with βmin =
Esss[||HHH−1DDDs̃̃s̃s||2]. Hence, (1) becomes ỹ̃ỹy =

√
1/βminDDDs̃̃s̃s + nnn.

Plausibly, since βmin is the minimum value of β, the received
signal power after applying ECM is maximised, while still
maintaining complete FEXT pre-cancellation. At the kth NT,
the equivalent system model may be written as γk = αkỹk =
s̃k +wk in conjunction with αk =

√
βmind

∗
k/|dk|2, where dk

is the kth diagonal entry of DDD and the superscript ∗ stands for
the conjugate operator. Since s̃k is the integer expansion of sk,
in order to demodulate sk, γk has to be returned to the original
constellation set A0

k by simply applying the modulo operation
of ∧ζ over the per-dimensional range of ζ = [−1/2, 1/2].
Hence, we have

yk = ∧ζ(γk) = ∧ζ(sk + wk), (3)

where wk is the equivalent AWGN having a zero mean and a
variance of σ2

wk
= σ2βmin/|dk|2.

2) Control Entity: The match entity of Fig. 1 is operated
on a per-tone basis, while an extra control entity of Fig. 1 is
introduced to determine the specific subset of tones that the
match entity are activated. The activation process is described
as follows. Firstly, calculate the values of β as if linear
vectoring was used for all tones. Secondly, sort all these values
according to descending order. Finally, apply the match entity
on me out of all M tones associated with the first me values
of β, where the choice of me depends on the specific system
requirements.

In addition to per-tone based match entity activation, the
control entity can also determine how the match entity would
be applied. On a particular tone which is activated, the control
entity can determine the range of the expanded constellation
set for all K transmitted symbols. The control entity may
also select a subset of the lines to apply the match entity,
resulting into partial or group ECM. Furthermore, the control
entity may determine the optimisation methods depending on
the affordable complexity. Owing to space limitation, these
possibilities are not exploited in this letter.

3) Finite Alphabet Capacity: Let us now consider the
modulation-mode-specific finite alphabet capacity of ECM. In
this letter, we consider symmetric real and imaginary parts
for A0

k. Based on (3), the mutual information between the
received signal yk and the transmitted symbol sk may be
formulated as I(sk; yk) = I(sk,r; yk,r) + I(sk,i; yk,i) due to
the independence between the real and the imaginary parts of
sk and yk. Hence, we only elaborate on the real dimension
as an example, when sk,r belongs to a specific constellation
A0
k,r, where A0

k,r stands for the real part of A0
k. Formally, the

mutual information I(sk,r; yk,r) may be expressed as

I(sk,r; yk,r) =

max
p(sk,r)

∑
sk,r

∫
yk,r

p(yk,r, sk,r) log2

(
p(yk,r|sk,r)
p(yk,r)

)
dyk,r, (4)
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Fig. 1. The transmitter architecture of G.fast with both the match entity and the control entity of ECM (left). An example of ECM on the 400th tone of the
BT copper lines having 0.5mm width, 100m length and 10 pairs (right). In this example, 10 symbols are going to be transmitted with 8 symbols from 16
QAM (s1, . . . , s8) and 2 symbols from 4 QAM (s9, s10). Their original constellation sets may be seen in the center dashed block, e.g. A0

1 is the original
constellation set for s1 in triangle. In addition to original constellation set, expanded constellation set is also constructed with an unity range for each of the
10 symbols, e.g. A1

1 = {A0
1,A0

1 + 1,A0
1 − 1,A0

1 + j,A0
1 + 1+ j,A0

1 − 1 + j,A0
1 − j,A0

1 + 1− j,A0
1 − 1− j} is the expanded constellation set for s1

in triangle. Hence, for each of the 10 symbols, there are a total of 9 positions to map to, e.g. |A1
1| = 9, where | · | stands for the cardinality of a set. After

applying ECM, 2 symbols remain fixed in position (s5 in cross and s7 in asterisk), while 8 symbols are mapped to their respective new positions in larger
legends, e.g. s1 in triangle is mapped from A0

1 to A0
1 + 1.

where the summation in (4) is carried out over A0
k,r. Further-

more, (4) is maximised, when sk,r obeys uniform distribution,
namely when we have p(sk,r) = 1/|A0

k,r|. This is because the
uniform distribution maximises the entropy for discrete input.
After some manipulations, (4) may be further expressed as

I(sk,r; yk,r) =

log2(|A0
k,r|)−

1

|A0
k,r|

∑
sk,r

Eyk,r

log2∑
s′k,r

p(yk,r|s′k,r)
p(yk,r|sk,r)

 , (5)

where numerical evaluation is required to obtain (5) and the
likelihood function p(yk,r|sk,r) may be expressed as

p(yk,r|sk,r) ∝
∑
z∈Z

e−(yk,r−sk,r−z)2/σ2
wk , yk,r ∈ ζ. (6)

IV. NUMERICAL PERFORMANCE

Let us now provide numerical results for characterising the
proposed ECM. For all simulations, we use realistic measure-
ments from 10 pairs of British Telecom (BT) copper lines
having 0.5mm width and 100m length together with 400 tones
spanning from 517.5 kHz to 207 MHz. We use equal power
allocation for all tones and employ the same modulation on all
tones and for every lines, where the noise power is set to -100
dBm per tone. We employ ECM with unity range. Finally, we
adopt the Blockwise Korkine Zolotarev (BKZ) algorithm [9]
for optimisation in the match entity. Note that, 4096 QAM
is considered corresponding to the maximum number of bits
defined in the standard, which is 12.

Fig. 2 shows the received signal power gain in dB across
all 400 tones as a benefit of applying ECM. Observe that a
beneficial gain starts to appear from around the 100th tone,
which is then dramatically increased to an average (maximum)
gain of about 12 dB (30 dB) in received signal power.
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Fig. 2. The received signal power gain in dB across all 400 tones.

Fig. 3 compares the average symbol error probability of
ECM with unity range and of the two benchmarks, i.e. of the
linear vectoring and of the non-linear vectoring, for both 16
QAM (solid) and 4096 QAM (dash). It is clear that for 16
QAM, ECM (hollow square) exhibits more than 25 dB gain
in power efficiency over the linear vectoring (diamond) and
around 20 dB gain over the non-linear vectoring (triangle).
Substantial gains can also be observed for 4096 QAM. Fur-
thermore, considering the intercept point ‘A’ between ECM
with 4096 QAM (12 bits) and linear vectoring with 16 QAM
(4 bits), 3-fold gain in bandwidth efficiency is achievable as a
benefit of applying ECM. Finally, despite the 5 dB in power
efficiency reduction of ECM observed under a per-line power
constraint (filled square) for both modulations, a substantial
gain still exists.
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Fig. 4 shows the average symbol error probability of ECM
with unity range relying on partial tone-activation of the match
entity. Three tone-activation settings were included, namely
50/400 tones (cross), 100/400 tones (asterisk) and 150/400
tones (plus). It is clear that for both 16 QAM (solid) and
4096 QAM (dash), activating 150/400 tones exhibits negligible
performance degradation, when compared to full activation
(square), while activating 50/400 tones still maintains a sub-
stantial gain over both the linear vectoring (diamond) and over
the non-linear vectoring (triangle).

Fig. 5 shows the modulation-mode-specific finite alphabet
capacity of ECM with unity range when compared to that of
the linear vectoring, for both 16 QAM (solid) and 4096 QAM
(dash). Furthermore, the capacity achieved by dirty paper cod-
ing is used as the upper bound. It is clear that ECM (square)
is capable of achieving a significantly higher finite alphabet
capacity than that of the linear vectoring (diamond) for both
modulations. Furthermore, the finite alphabet capacity of ECM
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for 4096 QAM approaches the upper bound capacity (dot)
before reaching its maximum, demonstrating the optimality of
ECM.

V. CONCLUSIONS

In this letter, we proposed the novel ECM for enhanced
FEXT cancellation in G.fast. We found that ECM is capable
of offering substantial gains over the operational benckmarks.
Practically, ECM imposes a minimal structural change at the
G.fast transmitter with near-zero-modifications at the receiver.
It also exhibits beneficial per-tone based reconfigurability and
backward compatibility, since it constitutes an enhancement
preceding the linear vectoring module of G.fast, which can be
simply turned off to revert back to the current solution.
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