Modifying the infant’s diet to prevent food allergy

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Archives of Disease in Childhood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>archdischild-2015-309770.R2</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Review</td>
</tr>
<tr>
<td>Edition:</td>
<td>not in use</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Complete List of Authors: Grimshaw, Kate; University of Southampton, Clinical and Experimental Sciences and Human Development in Health Academic Unit; Southampton Children’s Hospital, Department of Nutrition and Dietetics Logan, Kirsty; Guy’s and St Thomas’ NHS Foundation Trust, O’Donovan, Sinead; University College Cork, School of Food and Nutritional Sciences Kiely, Mairead; University College Cork, School of Food and Nutritional Sciences; University College Cork, The Irish Centre for Fetal and Neonatal Translational Research Patient, Karine; INRA UIAA, van Bilsen, Jolanda; TNO, Beyer, Kirsten; Charité - Universitätsmedizin Berlin, Department of Paediatric Pneumology and Immunology Campbell, Dianne; Sydney University, Department of Allergy and Immunology Garcia-Larsen, Vanessa; Imperial College, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma Grabenhennrich, Linus; Charité - Universitätsmedizin Berlin, Germany, Institute for Social Medicine, Epidemiology and Health Economics Lack, Gideon; Guys St Thomas Hospitals NHS Foundation Trust, Paediatric Allergy; Imperial College, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma Mills, Clare; University of Manchester, Institute of Inflammation and Repair Wai, Jean-Michel; INRA AgroParisTech Roberts, Graham; Southampton University Hospital Trust, University Child Health; University Hospital Southampton NHS Foundation Trust, 13NIHR Southampton Respiratory Biomedical Research Unit

Keywords: Allergy, Infant Feeding, Nutrition, prevention
Modifying the infant’s diet to prevent food allergy

Authors:
Kate Grimshaw¹*, Kirsty Logan²*, Sinead O’Donovan³, Mairead Kiely³,⁴, Karine Patient⁶, Jolanda van Bilsen⁶, Kirsten Beyer⁷, Dianne E Campbell⁸, Vanessa Garcia-Larsen⁹, Linus Grabenhenrich¹⁰, Gideon Lack²,¹¹, Clare Mills¹², Jean-Michel Wal¹³, Graham Roberts¹,¹⁴

*Contributed equally to the manuscript

Affiliations:
¹Clinical and Experimental Sciences and Human Development in Health Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK
²Guy’s and St Thomas’ NHS Foundation Trust, London, UK
³Vitamin D Research Group, School of Food and Nutritional Science, University College Cork, Ireland,
⁴The Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Ireland,
⁵INRA_UIAA, Gif sur Yvette, France
⁶TNO, Zeist, The Netherlands
⁷Charité-Universitätsmedizin Berlin, Department of Paediatric Pneumology & Immunology, 13353 Berlin, Germany
⁸Department of Allergy and Immunology, Children’s Hospital Westmead, Sydney University, Sydney, New South Wales, Australia.
⁹Respiratory Epidemiology, Occupational Medicine and Public Health Group, National Heart and Lung Institute, Imperial College London, UK
¹⁰Charité - Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics, Berlin, Germany
¹¹King’s College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Division of Asthma, Allergy and Lung Biology, UK
12Institute of Inflammation and Repair, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
13INRA AgroParisTech_Gif sur Yvette, Paris, France

14NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.

Address for correspondence:
kecg@soton.ac.uk
Clinical Experimental Science Academic Unit, Mailpoint 803, Level F, South Academic Block, Southampton General Hospital Tremona Road Southampton SO16 6YD
Phone 02381206160 Fax 02380878847

Keywords
Allergy
Infant feeding
Nutrition

2903 words excluding abstract
Abstract (175 words)

Recommendations and guidelines on the prevention of food allergy have changed in recent decades. The aim of this review of the current evidence and ongoing studies is to provide a comprehensive picture of the current state of the art in this field for healthcare professionals. It was undertaken as part of the European Union funded iFAAM (Integrated Approaches to Food Allergy and Allergen Management) study. This is a wide-ranging project bringing together expertise across the breadth of food allergy research. Specifically, the review discusses dietary manipulation in food allergy prevention and covers the possible preventive strategies of allergen avoidance, early allergen introduction, general nutrition and supplements as well as other strategies such as pre- and probiotics. The review concludes that despite agreement that allergen avoidance strategies should not be undertaken for allergy prevention, there is currently no consensus regarding what actions should be recommended beyond exclusive breastfeeding for the first 4-6 months of life. Recent and up-coming trial results, which are detailed in this review, should help inform the debate and add clarity to the topic.
Introduction

Food allergy affects all ages and has serious health consequences.[1] There has been speculation of its pathophysiology with research focussing on prevention. Additionally, there have been numerous recommendations from groups ranging from national health bodies to mothers’ “blogs” on how to prevent food allergy. This advice has changed over time causing confusion amongst healthcare professionals and the lay public.

A further complication is the differing terminology used to define food reactions [2,3] This leads to conditions with differing immunological mechanisms being considered together under an umbrella term of ‘food allergy’ hindering identification of causative factors due to heterogeneity of cases studied.

This manuscript aims to present an up to date review of current understanding of primary and secondary IgE-mediated food allergy prevention in relation to infant feeding (Figure 1). The recent publications of important randomised controlled trials (RCTs) makes this a timely review delivering a critical and independent overview of current evidence.

Figure 1 Algorithm of the three stages of allergy prevention

Allergenic food avoidance

In 1906, the principle that an allergic reaction occurred on the second and subsequent exposures to the allergen following initial allergen priming was first proposed. This led to the concept that exposure to the food allergen early in an infant’s immunological development was important in food allergy initiation [4]. As knowledge in the field of immunology developed with
the concept of immunological sensitisation and the discovery of IgE it became clear that the first exposure could be in-utero or during breast-feeding. Consequently allergen avoidance became the primary strategy for allergy prevention with an idealised strategy for allergy prevention being published in 1983.[5] It aimed to avoid intra-uterine and post-natal sensitisation by minimising exposure to sensitising proteins during the third trimester of pregnancy, during lactation by recommending exclusive breast feeding of the infant (or fed an extensively hydrolysed infant formula) until 6 months of age. It then advocated the introduction of ‘relatively non-allergenic foods’ with milk, corn, citrus, legumes, egg, peanuts and fish introduction being delayed until 1 to 3 years of age. RCTs using this strategy initially had encouraging results[6-9] so the concept of allergen avoidance for food allergy prevention continued into the late 1990’s with national and regional guidelines supporting these recommendations.[10,11]

Early this century, allergy prevention research focussed on pregnancy,[12,13] environmental factors,[14,15] and infant feeding strategies.[16] Related research suggested acquiring tolerance to foreign (food) proteins was an active rather than a passive process.[17,18] Consequently, early introduction of allergenic foods into the diet ought not to lead to sensitisation or allergic disease.[19-21] This meant avoidance as an allergy prevention strategy was questioned. Additionally, newer publications from observational birth cohort studies[22-25] and subsequent systematic review[1] suggested evidence for recommending avoidance strategies in pregnancy and lactation was lacking and delaying solid introduction did not appear to protect against food allergy. Consequently, the latest recommendation for allergy prevention by the European Academy of Allergy and Clinical Immunology (EAACI) does not support avoidance as an allergy prevention strategy during pregnancy, lactation or complementary feeding.[26] The American Academy of Pediatrics (AAP),[27] the Australasian Society of Clinical Immunology and Allergy (ASCIA)[28] and other national bodies[29,30] have similar views. EAACI does however state that “current evidence does not justify any recommendations about
either withholding or encouraging exposure to potentially allergenic foods after 4 months once weaning has commenced”.[26]

Introduction of allergenic foods

The World Health Organisation (WHO) recommendation for exclusive breastfeeding for the first six months with complementary feeding thereafter alongside breastfeeding to two years of age remains the basis for infant feeding recommendations in the UK and around much of the world but it should be remembered that their primary aim was to reduce GI infections and allergy prevention was not considered.[31] The European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) committee recommends exclusive or full breastfeeding for about six months as a desirable goal. It also adds that complementary feeding should not start before 17 weeks but should have started by 26 weeks.[32] Meanwhile, advice from the USA and Australia states solid food introduction, including allergenic foods, may begin between four and six months.[27,28] Feeding recommendations relating to allergenic foods also differs.[33] In practice, reported feeding practices vary, for example, 4% of infants are first introduced to solids before 4 months of age in Australia and Greece compared to 43% in the UK (Table 1).
Table 1. International reported practices of food introduction in infants

<table>
<thead>
<tr>
<th>Country</th>
<th>Year Data collected</th>
<th>Reference</th>
<th>Proportion of infants introduced to solids before 4 months</th>
<th>Proportion of infants introduced to solids after 6 months</th>
<th>Proportion of infants introduced to allergenic foods before 6 months</th>
<th>Proportion of infants introduced to allergenic foods by 8-10 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>2008-2010</td>
<td>Koplin et al 2010[34]</td>
<td>4%</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>2002-2006</td>
<td>Tromp et al Arch Pediatr Adolesc Med 2011[36]</td>
<td>55%</td>
<td></td>
<td>69% Cows milk; 21% Hen’s egg; 15% Peanut; 13% Tree nuts; 29% Soy</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>2008-2012</td>
<td>O’Donovan et al (37)</td>
<td>18% (<17 weeks)</td>
<td>3% (>26 weeks)</td>
<td>57% cow’s milk; 57% gluten [Wheat (39%); Barley (13%); Rye (16%)]; 40% soy, 8% egg; 6% fish; 6% kiwi.</td>
<td>n/a</td>
</tr>
<tr>
<td>Country</td>
<td>Year Range</td>
<td>Reference</td>
<td>Prevalence</td>
<td>Allergens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>2010*</td>
<td>*Lennox et al 2011[38]; ‡McAndrew et al IFS 2010[39]; Grimshaw KE and Roberts G (40)</td>
<td>43%*</td>
<td>54% Cows milk; 42% wheat; 10% Hens egg; 19% Fish; 6% Kiwi; 0.5% Peanut‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006-2008†</td>
<td></td>
<td>36.6%†</td>
<td>1.7%‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>2005-2007</td>
<td>Luccioli et al Pediatrics 2014[41]</td>
<td>34%</td>
<td>70% Cows milk; 0.9% Hens egg; 0.5% Peanut; 0.7% Soy; 0.2% Fish</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Several observational studies have examined the association between age of complementary feeding and allergy development. Unfortunatel
y interpretation of these studies is limited by their heterogeneity, particularly regarding breastfeeding duration. This may prove to be more important than the duration of exclusive breastfeeding since there is emerging data of a possible protective effect on the development of allergy of solid introduction with concurrent breastfeeding, [44, 45]. This supports the WHO recommendation that solid introduction should ideally take place alongside continued breastfeeding. [31] Additionally, there is initial evidence that introducing allergens as complementary foods and as part of a healthy diet is also protective. [46, 47] However, even well designed observational birth cohort studies cannot determine causality, only associations. Nevertheless, anecdotal or observational evidence points to lower allergy rates in countries where consumption of dietary allergens as complementary foods starts at an earlier age. [42-44;48] Evidence from large-scale RCTs is required to assess whether there is a causal relationship between early consumption and reduced food allergy risk and a number of RCTs have been established with the aim of addressing this.

Three of these RCTs have reported fully: STAR, LEAP and EAT studies. The STAR study enrolled 86 high-risk infants aged 4 to 6 months with moderate/severe eczema. Of the infants randomised to receive egg powder, 31% had an allergic reaction to the egg powder leading to the study being stopped prematurely. At 12 months of age, there was a trend in this small study towards fewer infants randomised to the egg ingestion group being diagnosed with IgE mediated food allergy (33% versus 51%, p=0.11).

Initial findings from the LEAP study, which enrolled 530 high-risk infants with moderate/severe eczema and/or egg allergy aged 4 to 11 months, have been reported. They demonstrated that of infants randomised to open-label peanut consumption, 1.9% had peanut allergy.
determined by double-blind, placebo-controlled challenge at age 5 years compared to 13.7% in
the control group who avoided peanuts (p<0.001). In a second group of 98 high-risk infants from
the LEAP study with a 1-4mm skin prick test wheal to peanut, 10.6% of the early consumption
group developed peanut allergy compared to 35.3% in the avoidance group (p=0.004). The
findings from this study led to a consensus communication giving interim guidance on early
peanut introduction and the prevention of peanut allergy in high-risk infants.[51] Recently a
follow up to the LEAP study (“LEAP-ON” Study) has been published [52]. The participants were
reassessed for peanut allergy after all being on a peanut avoidance diet for a year. Peanut
allergy at 6 years continued to be much more prevalent in the LEAP avoiders than consumers
(18.6% versus 4.8%, p<0.001) and there was no increase in peanut allergy in the LEAP
consumption arm. These results suggest that early introduction of peanut into the diet may
induce long term tolerance.

The EAT study focused on the early introduction of six common food allergens into the diet of
1303 breastfed 3 month old infants recruited from a general (not high-risk) population. [53] In
an intention to treat analysis, 7.1% of the standard introduction group and 5.6% of the early
introduction group developed food allergy to one or more of the six intervention foods (peanut,
egg, cows milk, sesame, white fish and wheat) up to 3 years of age (p=0.32). However, when
the analysis was adjusted for adherence to early introduction, there was a statistically significant
reduction in food allergy in the early introduction group (6.4% versus 2.4%, p=0.03), suggesting
introduction of sufficient amounts of allergenic foods into the infant diet from three to six months
alongside continued breastfeeding may be effective in food allergy prevention. However, the
poor adherence to study protocol emphasises the challenges around introducing solids into the
diets of infants under six months of age.
Four of the five on-going studies have been completed but their findings have not yet been published. The final two will be completed over the next few years (Table 2). The four completed studies all looked at early introduction of egg in the general population (HEAP) and in children at moderate-risk of developing an allergy (BEAT, PETIT and STEP). They have similar study designs and large enrolment numbers. HEAP has reported limited results in a conference abstract [54] and symposium presentation with a conclusion that early consumption of hens egg was not effective in preventing hens egg allergy, but full results are awaited. BEAT and PETIT have also made preliminary reports in abstract form. PETIT reported a scheduled interim analysis which showed a significant difference in prevalence of egg allergy in the intention-to-treat analysis (37.7% in placebo group and 8.3% in egg group (p=0.0013) with no significant difference in adverse events between the groups.[55] BEAT findings showed a significant reduction in egg skin test sensitisation rates and higher egg specific IgG4/IgE in infants who had egg introduced between 4-6 months compared with those introduced after 8 months. They reported no difference in clinical egg allergy and a significant rate of egg allergic reactions on initial exposure in the infants randomised to receive egg, suggesting many at risk infants may already be allergic and not be amenable to early introduction of egg by 4-5 months of age. [56]

The PEAAD Study will look at early peanut consumption in infants with eczema and a high risk of developing a peanut allergy. Children in this study are not randomly assigned to the intervention/control groups, instead, the carer chooses whether their child will consume or avoid peanut. The age when children begin peanut consumption is wider than in the LEAP Study thus providing data on the impact of peanut introduction beyond the first year of life. Finally, the PreventADALL study will assess the impact of the introduction of four allergenic foods by 4 months, and/or emollient use to 9 months of age on food allergy development. All these studies address slightly different populations in terms of allergy risk, resulting in a broad picture across the atopic risk spectrum. Data from all these trials will be brought together in the EU-funded
1 Integrated Food Allergy and Allergen Management (iFAAM) project to provide advice on allergy prevention strategies for clinicians and families.
Table 2. Summary of current studies investigating the hypothesis that the early introduction of allergenic foods can induce oral tolerance

<table>
<thead>
<tr>
<th>Name of Trial</th>
<th>Country (institution)</th>
<th>Allergen(s) of interest</th>
<th>Population</th>
<th>Study details</th>
<th>Study status</th>
</tr>
</thead>
</table>
| Enquiring About Tolerance (EAT) | UK (Kings College, London) | Cows' milk, hens' egg, peanut, cod, sesame, wheat | General population | • Open-label RCT
• n = 1106
• Enrolled at 3 months of age then consumption of 6 allergenic foods until 6 months or exclusive breastfeeding until 6 months of age
• Outcome: prevalence of IgE-mediated food allergy to any of the 6 allergenic foods between 1 and 3 years of age | Reported |
| Learning Early About Peanut allergy (LEAP) | UK (Kings College, London) | Peanut | High-risk (infants with moderate / severe eczema and / or egg allergy) | • Open-label RCT
• n = 640
• Enrolled at 4-11 months then peanut consumption or avoidance until age 5
• Outcome: prevalence of DBPCFC confirmed peanut allergy at 5 years of age | Reported |
| Hens' Egg Allergy Prevention (HEAP) | Germany (Charite Hospital, Berlin) | Hens' egg | General population | • RCT, placebo controlled
• n ~ 800
• Enrolled at 4-6 months then consumption of egg powder or placebo until 12 months of age
• Outcome: prevalence of IgE-mediated egg allergy at 12 months of age | Completed. Abstract presented [54] |
| Preventing Peanut Allergy in Atopic Dermatitis (PEAAD) | Germany (Charite Hospital, Berlin) | Peanut | High-risk (infants with atopic dermatitis) | • Non-randomized, self-selected
• n=460
• Enrolled at 5-30 months of age then peanut consumption or avoidance for 1 year
• Outcome: prevalence of IgE-mediated peanut allergy after 1 year of enrolment | Ongoing |
| Prevention of egg allergy in infants with atopic dermatitis (PETIT) | Japan (National Center for child Health and Development, Japan) | Hens' egg | High-risk (infants with atopic dermatitis) | • RCT, placebo controlled
• n ~ 200
• Enrolled at 4-6 months then consumption of egg powder or placebo until 12 months of age
• Outcome: prevalence of IgE-mediated egg allergy at 12 months of age | Completed. Abstract presented |
| Solids Timing for Allergy Research | Australia (University of) | Hens' egg | High-risk (infants with moderate / severe eczema and / or egg allergy) | • RCT, placebo controlled
• n = 86 | Reported |
<table>
<thead>
<tr>
<th>Study Name</th>
<th>Location</th>
<th>Intervention</th>
<th>Risk Group</th>
<th>Study Design</th>
<th>Sample Size</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>(STAR) Western Australia</td>
<td>severe eczema</td>
<td>Enrolled at 4-6 months of age then consumption of egg powder or placebo until 8 months of age</td>
<td>• Outcome: prevalence of IgE-mediated egg allergy at 12 months of age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting Time for Egg Protein (STEP) Australia (University of Western Australia)</td>
<td>Hens' egg</td>
<td>Moderate-risk (infants without eczema but atopic mothers)</td>
<td>• RCT, placebo controlled</td>
<td>• n~1500</td>
<td>Enrolled at 4-6 months of age then consumption of egg powder or placebo until 12 months of age</td>
<td>Outcome: prevalence of IgE-mediated egg allergy at 12 months of age</td>
</tr>
<tr>
<td>Beating Egg Allergy (BEAT) Australia (Sydney University Children's Hospital,)</td>
<td>Hens' egg</td>
<td>Moderate-risk (sibling / parent with allergy)</td>
<td>• RCT, placebo controlled</td>
<td>• n~290</td>
<td>Enrolled at 4 months of age then consumption of egg powder or placebo until 8 months of age</td>
<td>Outcome: primary- egg white sensitisation. Secondary- prevalence of IgE-mediated egg allergy at 12 months of age</td>
</tr>
<tr>
<td>Preventing atopic dermatitis and allergies in children (PreventADALL) Norway (Oslo University Hospital)</td>
<td>Hen’s egg, milk, wheat, peanut</td>
<td>General population</td>
<td>• Open label RCT with four arms: observation, early introduction by 4 months, skin care, both early introduction and skin care</td>
<td>• N=5200</td>
<td>Outcome: food allergy, atopic dermatitis</td>
<td></td>
</tr>
</tbody>
</table>

Completed

Ongoing
Micronutrients and allergy prevention

Since most food allergens are proteins, these have usually been the focus of food allergy prevention research. However, with increased knowledge of the role of macro- and micro-nutrients in immunological processes, there is increasing interest in the relationship between dietary nutrients and the development of allergic conditions. Observational data linking delayed allergen introduction and increased allergy rates may also be explained by the reduced intake of immunologically active nutrients.[19,34,57,58] Polyunsaturated fatty acids (PUFAs), antioxidants (selenium, vitamins A, C, E and β–carotene), vitamin D, iron, zinc and folate are of particular interest for allergy prevention.[59-67]

To date, PUFAs have been the most extensively studied immuno-modulatory nutrient. Observational studies have related increased intake of omega–3-rich foods during pregnancy, lactation and infancy with decreased risk of allergic disease.[58,67] However, interventional study findings have been inconsistent, possibly due to small sample sizes and heterogeneous allergy outcomes. A recent Cochrane review looked at eight randomised control trials of omega-3 PUFA supplementation during pregnancy (5 trials), lactation (2 trials) or both (1 trial). Supplementation showed a clear reduction in any IgE mediated allergy in children aged 12-36 months but not beyond 36 months. For specific allergies there was no clear difference for food allergies at 12-36 months but a clear reduction was seen for children up to 12 months of age. The author conclude “there is limited evidence to support maternal n-3 LCPUFA supplementation during pregnancy and/or lactation for reducing allergic disease in children”. [68] Large intervention trials (completed or on-going; Table 3) may further clarify the association between PUFAs and food allergy development.[69-72]
Vitamin D has received considerable attention in recent years with a suggestion that vitamin D supplementation and/or food fortification is the cause of increasing allergic disease prevalence[73] with observed associations between high maternal and infant vitamin D status and allergic disease[74,75] supporting this theory. Conversely, latitudinal differences in auto-injector prescriptions for food-induced anaphylaxis [76] and hypoallergenic infant formula use[77] have suggested a causal link with low vitamin D status. Associations between vitamin D intake and status and allergic disease risk are from a diverse literature, including cross-sectional, case-control and cohort studies, with variable outcome definitions, analytical procedures and study quality.[74,75,78-81] However, the HealthNuts study, which used a validated food allergy outcome measure, showed that low vitamin D status may be a risk factor for infant food allergy.[82] The VITALITY trial (NCT02112734) is currently looking at the impact of infant vitamin D supplementation on food allergy prevalence at 1 year.

Lower intakes of antioxidants are suggested to reduce antioxidant defences and increase the risk of atopic disease.[83-87] In particular, vitamins A, E and C and zinc may confer some protection. However, appropriately designed controlled studies are required to establish if there is a causal relationship.[88]

Differing reports of observed associations between immune-modulatory nutrients and allergic disease may be explained by the fact that the whole diet rather than one particular nutrient modifies immunological function. This hypothesis is supported by a number of studies that have found an association between the whole diet, (including diversity), and allergic disease.[46, 47, 89-90] Additionally, recent research demonstrated that an infant diet consisting of high levels of fruits, vegetables, and home-prepared foods was associated with less food allergy by the age of 2 years.[46] This inverse association with processed foods has been observed elsewhere[89] and may be due to the higher microbial load of home processed foods compared to
commercially prepared foods[92] or that home processed fruits and vegetables are good sources of naturally occurring prebiotics. Both are thought to modify immune function.[93]

Other strategies for preventing food allergy

Hypoallergenic infant formula

In new-borns, the mucosal barrier is immature and large quantities of macromolecules cross the epithelium into systemic circulation. Intestinal permeability reduces with age but in the first few months of life when combined with the immature status of the immune system, it is considered a risk factor for food allergy development and this is the period when standard infant formula is given if breastfeeding isn’t possible. Therefore, if breastfeeding isn’t possible, it is recommended that high-risk children (parent or sibling with a history of allergy) use a hypoallergenic cow’s milk protein (HA) formula to avoid early exposure to intact milk allergens.[27,28]

HA formulas are processed to reduce the allergenicity of milk proteins by ‘snipping’ them into smaller pieces (peptides). They are differentiated into extensively and partially hydrolysed formulas (eHF and pHF respectively). eHF contain predominantly small milk-derived peptides with almost no allergenicity, whereas pHFs also contain larger milk-derived peptides. eHFs were originally produced to treat milk-allergic infants but are now also used for allergy prevention,[94,95] whereas pHFs are produced only for allergy prevention.

Studies indicate that some pHF and eHF can reduce the risk of food allergy development but other studies failed to demonstrate a protective effect.[26] Consequently, there is debate as to which is the best formula for allergy prevention as reflected by differing national and professional body recommendations[25-29] and individual clinicians’ opinions.[96,97]
However, a recent systematic review and meta-analysis, using a rigorous approach, failed to find a beneficial effect of hypoallergenic infant formulas on food allergy.[98] The authors highlighted that many studies were at uncertain or high risk of bias, they also found evidence of publication bias. They argued that earlier reviews have been influenced by the more positive results from lower quality design studies. Since it appears preventive efficacy is highly dependent on the specific formula studied, the EAACI guidelines group recommended the use of HA formulas with a documented preventive effect for high-risk children in the first 4 months of life only.[26] No studies show a preventive effect in low-risk children.

Prebiotics and probiotics

The microbiota of infants with atopic disease is both quantitatively and qualitatively different[99] from their non-atopic counterparts, with decreased populations of beneficial bacteria (bifidobacteria, bacteroides, and lactobacilli and higher numbers of coliforms and S. aureus.[100]. This has promoted research into the role of intestinal microbiota in the development of immune tolerance. Lower consumption of prebiotics (fibre/indigestible dietary components) are suggested to lead to less favourable colonization patterns which may be implicated in the loss or inability to develop oral tolerance. Neonatal prebiotic supplementation trials have failed to show any effect of prebiotics on food allergy development but have shown favourable results on other allergic outcomes such as eczema. [101] RCTs assessing the effects of probiotics in the prevention of eczema, and/or food allergy have reported differing findings.[102-10106]. The most up to date Cochrane review on the subject states that further research is needed before probiotic use can be recommended for allergy prevention.[107] However, a recent World Allergy Organisation (WAO) systematic review has suggested using probiotics in infants at high risk of allergy due to the “likely net benefit” from the prevention of
eczema seen with the use of probiotics.[108] The guideline panel did however acknowledge that
their recommendation was supported by very low quality evidence demonstrating a need for
high quality intervention trials and there a number of these ongoing (Table 3) which may provide
further insight in the future. These studies will also provide information on which strains may be
the most effective for allergy prevention and what dose is required as these are important
factors to consider and about which there is currently very little information.
Table 3. Intervention trials with food allergy as a primary or secondary outcome

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Study Name</th>
<th>Location</th>
<th>Recruitment Status</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D</td>
<td>The VITALITY trial</td>
<td>Australia</td>
<td>Recruiting</td>
<td>NCT02112734</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>Vitamin A supplementation at birth and atopy in childhood</td>
<td>Guinea Bissau</td>
<td>Active</td>
<td>NCT01779180</td>
</tr>
<tr>
<td>PUFAs</td>
<td>DHA to optimise mother infant outcomes (DOMInO) trial</td>
<td>Australia</td>
<td>Completed</td>
<td>ACTRN12605000569606</td>
</tr>
<tr>
<td>PUFAs</td>
<td>The infant fish oil supplementation (IFOS) trial</td>
<td>Australia</td>
<td>Active</td>
<td>ACTRN12606000281594</td>
</tr>
<tr>
<td>PUFAs</td>
<td>Can supplementation with Lactobacillus reuteri and Omega-3 fatty acids during pregnancy and lactation reduce the risk of allergic disease in infancy? (PROOM-3)*</td>
<td>Sweden</td>
<td>Recruiting</td>
<td>NCT01542970</td>
</tr>
<tr>
<td>Probiotics</td>
<td>Primary prevention of atopic disease by perinatal administration of probiotics</td>
<td>Netherlands</td>
<td>Completed</td>
<td>NCT00200954</td>
</tr>
<tr>
<td>Probiotics</td>
<td>Influence of probiotics on atopy, immunological responses and gut microflora, follow-up to 5 years</td>
<td>Singapore</td>
<td>Completed</td>
<td>NCT00365469</td>
</tr>
<tr>
<td>Probiotics</td>
<td>Microbiota as a potential target for food allergy</td>
<td>Italy</td>
<td>Recruiting</td>
<td>NCT02087930</td>
</tr>
<tr>
<td>Probiotics</td>
<td>Effect of lactobacillus GG on atopic march</td>
<td>Italy</td>
<td>Recruiting</td>
<td>NCT01891916</td>
</tr>
<tr>
<td>Prebiotic</td>
<td>Prebiotics in the prevention of atopy (PIPA)</td>
<td>Italy</td>
<td>Completed</td>
<td>NCT02116452</td>
</tr>
</tbody>
</table>

† atopic sensitization; Se: selenium; Fe: Iron; Zn: Zinc
Figure 2 Early factors and mechanisms that interact to prevent or favour the development of an allergic response to a food protein
Summary and conclusions

This review covered a number of approaches to prevent the development of food allergy. These are likely to interact. Figure 2 summarises how factors (including prenatal factors which have not been considered in this review) may interact to prevent or promote the food allergy development. Unlike in previous decades, national recommendations for food allergy prevention strategies now largely agree, particularly concerning hypoallergenic formula use and not delaying the introduction of allergenic foods. [26-29] However, while there is consensus that avoidance strategies are ineffective, guidelines do not provide any alternative strategies. There is a call for more high-quality data from robust RCTs. Some has already been provided and appears to support the concept that early consumption of allergenic food promotes the development of immune tolerance and a recent consensus statement supports this[47]. However, before recommendations are updated, it is important to understand how best to introduce preventive interventions in a community context, particularly since there may be significant numbers of children already sensitised by the time they are weaned. Given their different intervention strategies and populations investigated, combining the new RCT data into meta- or pooled analyses, will broaden their informational scope, and this is planned as part of the iFAAM study. However, even pooled, they may not provide data as to what dose of allergenic food should be given and for how long. Data from on-going studies on solid food introduction and nutritional supplementation may also provide a broader understanding of food allergy prevention. As studies have generally only focused on IgE mediated food allergy, their findings may not be applicable to preventing the development of non-IgE mediated food allergy conditions such as eosinophilic oesophagitis and food protein induced enterocolitis syndrome. Aetiology data for these conditions are lacking and RCTs similar to those carried out for IgE-mediated disease should be a future research priority in the field of food allergy.

Acknowledgements
We would like to acknowledge the support of our iFAAM colleagues. Also, we thank the European Academy of Allergy and Clinical Immunology (EAACI) for supporting and endorsing this paper as part of their facilitation of the activities of iFAAM Work Package 10 to improve the management of food allergy.

Authors Contributions
GR, KG and KL planned the manuscript. All the authors contributed to drafting the manuscript and reviewing the final version.

Funding Statement
'This work was supported by the European Union within the Seventh Framework Programme for research, technological development and demonstration under Grant agreement no. 312147 (iFAAM).

Competing Interests
MK, KB, GL CM and GR received funding from the European Union within the Seventh Framework Programme for research, technological development and demonstration under Grant agreement no. 312147 (iFAAM). KG provided educational material for Danone, GR provided scientific advice to Danone, ALK-Abello and ThermoFisher, ENCM has board memberships with Novartis and the UK Food Safety Agency; is a consultant for PepsiCo International, KB Kirsten Beyer has received funding for research activities from Danone, ThermoFisher, and DST Diagnostics.MK has received a grant from Danone Nutricia. All other authors declared no conflicts of interest.
Reference List

(40) Grimshaw K, Roberts G http://www.food.gov.uk/science/research/allergy-research/t07046

(56) Wei-Liang Tan J, Valerio C, Barnes, EH et al Early Introduction of dietary egg reduces egg sensitisation at 12 months of age in infants at risk of allergic disease. JACI Volume 137, Issue 2, Supplement, AB389

(67) Oien T, Storro O, Johnsen R. Do early intake of fish and fish oil protect against eczema and doctor-diagnosed asthma at 2 years of age? A cohort study. *J Epidemiol Community Health* 2010; 64(2):124-129.

2015; 8:4
190x107mm (300 x 300 DPI)
Modifying the infant’s diet to prevent food allergy

Authors:

Kate Grimshaw1*, Kirsty Logan2*, Sinead O’Donovan3, Mairead Kiely3,4, Karine Patient5, Jolanda van Bilsen6, Kirsten Beyer7, Dianne E Campbell8, Vanessa Garcia-Larsen9, Linus Grabenhenrich10, Gideon Lack2,11, Clare Mills12 Jean-Michel Wal13, Graham Roberts1,14

*Contributed equally to the manuscript

Affiliations:

1Clinical and Experimental Sciences and Human Development in Health Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK

2Guy’s and St Thomas’ NHS Foundation Trust, London, UK

3Vitamin D Research Group, School of Food and Nutritional Science, University College Cork, Ireland,

4The Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Ireland,

5INRA_UIAA, Gif sur Yvette, France

6TNO, Zeist, The Netherlands

7CharitéUniversitätsmedizin Berlin, Department of Paediatric Pneumology & Immunology, 13353 Berlin, Germany

8Department of Allergy and Immunology, Children’s Hospital Westmead, Sydney University, Sydney, New South Wales, Australia.

9Respiratory Epidemiology, Occupational Medicine and Public Health Group, National Heart and Lung Institute, Imperial College London,UK

10Charité - Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics, Berlin, Germany

11King’s College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Division of Asthma, Allergy and Lung Biology,UK
Institute of Inflammation and Repair, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK

INRA AgroParisTech Gif sur Yvette, Paris, France

NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.

Address for correspondence:
kecg@soton.ac.uk

Clinical Experimental Science Academic Unit, Mailpoint 803, Level F, South Academic Block, Southampton General Hospital Tremona Road Southampton SO16 6YD

Phone 02381206160 Fax 02380878847

Keywords
Allergy
Infant feeding
Nutrition

2903 words excluding abstract
Abstract (175 words)

Recommendations and guidelines on the prevention of food allergy have changed in recent decades. The aim of this review of the current evidence and on-going studies is to provide a comprehensive picture of the current state of the art in this field for healthcare professionals. It was undertaken as part of the European Union funded iFAAM (Integrated Approaches to Food Allergy and Allergen Management) study. This is a wide-ranging project bringing together expertise across the breadth of food allergy research. Specifically, the review discusses dietary manipulation in food allergy prevention and covers the possible preventive strategies of allergen avoidance, early allergen introduction, general nutrition and supplements as well as other strategies such as pre- and probiotics. The review concludes that despite agreement that allergen avoidance strategies should not be undertaken for allergy prevention, there is currently no consensus regarding what actions should be recommended beyond exclusive breastfeeding for the first 4-6 months of life. Recent and up-coming trial results, which are detailed in this review, should help inform the debate and add clarity to the topic.
Introduction

Food allergy affects all ages and has serious health consequences.[1] There has been speculation of its pathophysiology with research focussing on prevention. Additionally, there have been numerous recommendations from groups ranging from national health bodies to mothers’ “blogs” on how to prevent food allergy. This advice has changed over time causing confusion amongst healthcare professionals and the lay public.

A further complication is the differing terminology used to define food reactions [2,3] This leads to conditions with differing immunological mechanisms being considered together under an umbrella term of ‘food allergy’ hindering identification of causative factors due to heterogeneity of cases studied.

This manuscript aims to present an up to date review of current understanding of primary and secondary IgE-mediated food allergy prevention in relation to infant feeding (Figure 1). The recent publications of important randomised controlled trials (RCTs) makes this a timely review delivering a critical and independent overview of current evidence.

Figure 1 Algorithm of the three stages of allergy prevention

Allergenic food avoidance

In 1906, the principle that an allergic reaction occurred on the second and subsequent exposures to the allergen following initial allergen priming was first proposed. This led to the concept that exposure to the food allergen early in an infant’s immunological development was important in food allergy initiation [4]. As knowledge in the field of immunology developed with
the concept of immunological sensitisation and the discovery of IgE it became clear that the first exposure could be in-utero or during breast-feeding. Consequently allergen avoidance became the primary strategy for allergy prevention with an idealised strategy for allergy prevention being published in 1983.[5] It aimed to avoid intra-uterine and post-natal sensitisation by minimising exposure to sensitising proteins during the third trimester of pregnancy, during lactation by recommending exclusive breast feeding of the infant (or fed an extensively hydrolysed infant formula) until 6 months of age. It then advocated the introduction of ‘relatively non-allergenic foods’ with milk, corn, citrus, legumes, egg, peanuts and fish introduction being delayed until 1 to 3 years of age. RCTs using this strategy initially had encouraging results[6-9] so the concept of allergen avoidance for food allergy prevention continued into the late 1990’s with national and regional guidelines supporting these recommendations.[10,11]

Early this century, allergy prevention research focussed on pregnancy,[12,13] environmental factors,[14,15] and infant feeding strategies.[16] Related research suggested acquiring tolerance to foreign (food) proteins was an active rather than a passive process.[17,18] Consequently, early introduction of allergenic foods into the diet ought not to lead to sensitisation or allergic disease.[19-21] This meant avoidance as an allergy prevention strategy was questioned. Additionally, newer publications from observational birth cohort studies[22-25] and subsequent systematic review[1] suggested evidence for recommending avoidance strategies in pregnancy and lactation was lacking and delaying solid introduction did not appear to protect against food allergy. Consequently, the latest recommendation for allergy prevention by the European Academy of Allergy and Clinical Immunology (EAACI) does not support avoidance as an allergy prevention strategy during pregnancy, lactation or complementary feeding.[26] The American Academy of Pediatrics (AAP),[27] the Australasian Society of Clinical Immunology and Allergy (ASCIA)[28] and other national bodies[29,30] have similar views. EAACI does however state that “current evidence does not justify any recommendations about
either withholding or encouraging exposure to potentially allergenic foods after 4 months once
weaning has commenced".[26]

Early Introduction of allergenic foods

The World Health Organisation (WHO) recommendation for exclusive breastfeeding for the first
six months with complementary feeding thereafter alongside breastfeeding to two years of age
remains the basis for infant feeding recommendations in the UK and around much of the world
but it should be remembered that their primary aim was to reduce GI infections and allergy
prevention was not considered.[31] The European Society for Paediatric Gastroenterology,
Hepatology and Nutrition (ESPGHAN) committee recommends exclusive or full breastfeeding
for about six months as a desirable goal. It also adds that complementary feeding should not
start before 17 weeks but should have started by 26 weeks.[32] Meanwhile, advice from the
USA and Australia states solid food introduction, including allergenic foods, may begin between
four and six months.[27,28] Feeding recommendations relating to allergenic foods also
differs.[33] In practice, reported feeding practices vary, for example, 4% of infants are first
introduced to solids before 4 months of age in Australia and Greece compared to 43% in the UK
(Table 1).
Table 1. International reported practices of food introduction in infants

<table>
<thead>
<tr>
<th>Country</th>
<th>Year Data collected</th>
<th>Reference</th>
<th>Proportion of infants introduced to solids before 4 months</th>
<th>Proportion of infants introduced to solids after 6 months</th>
<th>Proportion of infants introduced to allergenic foods before 6 months</th>
<th>Proportion of infants introduced to allergenic foods by 8-10 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>2008-2010</td>
<td>Koplin et al 2010[34]</td>
<td>4%</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>2002-2006</td>
<td>Tromp et al Arch Pediatr Adolesc Med 2011[36]</td>
<td>55%</td>
<td>69% Cows milk; 21% Hen’s egg; 15% Peanut; 13% Tree nuts; 29% Soy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>2008-2012</td>
<td>O'Donovan et al (37)</td>
<td>18% (<17weeks)</td>
<td>3% (>26 weeks)</td>
<td>57% cow’s milk; 57% gluten [Wheat (39%); Barley (13%); Rye (16%)]; 40% soy, 8% egg; 6% fish; 6% kiwi.</td>
<td>n/a</td>
</tr>
<tr>
<td>Country</td>
<td>Years</td>
<td>Study</td>
<td>Prevalence</td>
<td>Allergens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>2010*</td>
<td>*Lennox et al 2011[38]; McAndrew et al IFS 2010[39]; Grimshaw KE and Roberts G (40)</td>
<td>43%*</td>
<td>54% Cows milk; 42% wheat; 10% Hens egg; 19% Fish; 6% Kiwi; 0.5% Peanut†</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006-2008†</td>
<td></td>
<td>36.6%†</td>
<td>1.7%†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>2005-2007</td>
<td>Luccioli et al Pediatrics 2014[41]</td>
<td>34%</td>
<td>70% Cows milk; 0.9% Hens egg; 0.5% Peanut; 0.7% Soy; 0.2% Fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8% (peanut)†</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Several observational studies have examined the association between age of complementary feeding and allergy development.[24,34,42-44] Unfortunately, interpretation of these studies is limited by their heterogeneity, particularly regarding breastfeeding duration. This may prove to be more important than the duration of exclusive breastfeeding since there is emerging data of a possible protective effect on the development of allergy of solid introduction with concurrent breastfeeding, [44, 45]. This supports the WHO recommendation that solid introduction should ideally take place alongside continued breastfeeding. [31] Additionally, there is initial evidence that introducing allergens as complementary foods and as part of a healthy diet is also protective. [46, 47] However, even well-designed observational birth cohort studies cannot determine causality, only associations. Nevertheless, anecdotal or observational evidence points to lower allergy rates in countries where consumption of dietary allergens as complementary foods starts at an earlier age.[42-44;48] Evidence from large-scale RCTs is required to assess whether there is a causal relationship between early consumption and reduced food allergy risk and a number of RCTs have been established with the aim of addressing this.

Three of these RCTs have reported fully: STAR, LEAP and EAT studies. The STAR study enrolled 86 high-risk infants aged 4 to 6 months with moderate/severe eczema[49]. Of the infants randomised to receive egg powder, 31% had an allergic reaction to the egg powder leading to the study being stopped prematurely. At 12 months of age, there was a trend in this small study towards fewer infants randomised to the egg ingestion group being diagnosed with IgE-mediated food allergy (33% versus 51%, p=0.11).

Initial findings from the LEAP study, which enrolled 530 high-risk infants with moderate/severe eczema and/or egg allergy aged 4 to 11 months, have been reported [50]. They demonstrated that of infants randomised to open-label peanut consumption, 1.9% had peanut allergy.
determined by double-blind, placebo-controlled challenge at age 5 years compared to 13.7% in the control group who avoided peanuts (p<0.001). In a second group of 98 high-risk infants from the LEAP study with a 1-4mm skin prick test wheal to peanut, 10.6% of the early consumption group developed peanut allergy compared to 35.3% in the avoidance group (p=0.004). The findings from this study led to a consensus communication giving interim guidance on early peanut introduction and the prevention of peanut allergy in high-risk infants.[51] Recently a follow up to the LEAP study (“LEAP-ON” Study) has been published [52]. The participants were reassessed for peanut allergy after all being on a peanut avoidance diet for a year. Peanut allergy at 6 years continued to be much more prevalent in the LEAP avoiders than consumers (18.6% versus 4.8%, p<0.001) and there was no increase in peanut allergy in the LEAP consumption arm. These results suggest that early introduction of peanut into the diet may induce long term tolerance.

The EAT study focused on the early introduction of six common food allergens into the diet of 1303 breastfed 3 month old infants recruited from a general (not high-risk) population. [53] In an intention to treat analysis, 7.1% of the standard introduction group and 5.6% of the early introduction group developed food allergy to one or more of the six intervention foods (peanut, egg, cows milk, sesame, white fish and wheat) up to 3 years of age (p=0.32). However, when the analysis was adjusted for adherence to early introduction, there was a statistically significant reduction in food allergy in the early introduction group (6.4% versus 2.4%, p=0.03), suggesting introduction of sufficient amounts of allergenic foods into the infant diet from three to six months alongside continued breastfeeding may be effective in food allergy prevention. However, the poor adherence to study protocol emphasises the challenges around introducing solids into the diets of infants under six months of age.
Four of the five on-going studies have been completed but their findings have not yet been published. The final two will be completed over the next few years (Table 2). The four completed studies all looked at early introduction of egg in the general population (HEAP) and in children at moderate-risk of developing an allergy (BEAT, PETIT and STEP). They have similar study designs and large enrolment numbers. HEAP has reported limited results in a conference abstract [54] and symposium presentation with a conclusion that early consumption of hens egg was not effective in preventing hens egg allergy, but full results are awaited. BEAT and PETIT have also made a preliminary reports in abstract form. PETIT reported a scheduled interim analysis which showed a significant difference in prevalence of egg allergy in the intention-to-treat analysis (37.7% in placebo group and 8.3% in egg group (p=0.0013) with no significant difference in adverse events between the groups.[55] BEAT findings showed a significant reduction in egg skin test sensitisation rates and higher egg specific IgG4/IgE in infants who had egg introduced between 4-6 months compared with those introduced after 8 months. They reported no difference in clinical egg allergy and a significant rate of egg allergic reactions on initial exposure in the infants randomised to receive egg, suggesting many at risk infants may already be allergic and not be amenable to early introduction of egg by 4-5 months of age. [56] The PEAAD Study will look at early peanut consumption in infants with eczema and a high risk of developing a peanut allergy. Children in this study are not randomly assigned to the intervention/control groups, instead, the carer chooses whether their child will consume or avoid peanut. The age when children begin peanut consumption is wider than in the LEAP Study thus providing data on the impact of peanut introduction beyond the first year of life. Finally, the PreventADALL study will assess the impact of the introduction of four allergenic foods by 4 months, and/or emollient use to 9 months of age on food allergy development. All these studies address slightly different populations in terms of allergy risk, resulting in a broad picture across the atopic risk spectrum. Data from all these trials will be brought together in the EU-funded
Integrated Food Allergy and Allergen Management (iFAAM) project to provide advice on allergy prevention strategies for clinicians and families.
Table 2. Summary of current studies investigating the hypothesis that the early introduction of allergenic foods can induce oral tolerance

<table>
<thead>
<tr>
<th>Name of Trial</th>
<th>Country (institution)</th>
<th>Allergen(s) of interest</th>
<th>Population</th>
<th>Study details</th>
<th>Study status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enquiring About Tolerance (EAT)</td>
<td>UK (Kings College, London)</td>
<td>Cows' milk, hens' egg, peanut, cod, sesame, wheat</td>
<td>General population</td>
<td>• Open-label RCT • n = 1106 • Enrolled at 3 months of age then consumption of 6 allergenic foods until 6 months or exclusive breastfeeding until 6 months of age • Outcome: prevalence of IgE-mediated food allergy to any of the 6 allergenic foods between 1 and 3 years of age</td>
<td>Reported</td>
</tr>
<tr>
<td>Learning Early About Peanut allergy (LEAP)</td>
<td>UK (Kings College, London)</td>
<td>Peanut</td>
<td>High-risk (infants with moderate / severe eczema and / or egg allergy)</td>
<td>• Open-label RCT • n = 640 • Enrolled at 4-11 months then peanut consumption or avoidance until age 5 • Outcome: prevalence of DBPCFC confirmed peanut allergy at 5 years of age</td>
<td>Reported</td>
</tr>
<tr>
<td>Hens' Egg Allergy Prevention (HEAP)</td>
<td>Germany (Charite Hospital, Berlin)</td>
<td>Hens' egg</td>
<td>General population</td>
<td>• RCT, placebo controlled • n ~ 800 • Enrolled at 4-6 months then consumption of egg powder or placebo until 12 months of age • Outcome: prevalence of IgE-mediated egg allergy at 12 months of age</td>
<td>Completed. Abstract presented [54]</td>
</tr>
<tr>
<td>Preventing Peanut Allergy in Atopic Dermatitis (PEAAD)</td>
<td>Germany (Charite Hospital, Berlin)</td>
<td>Peanut</td>
<td>High-risk (infants with atopic dermatitis)</td>
<td>• Non-randomized, self-selected • n~460 • Enrolled at 5-30 months of age then peanut consumption or avoidance for 1 year • Outcome: prevalence of IgE-mediated peanut allergy after 1 year of enrolment</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Prevention of egg allergy in infants with atopic dermatitis (PETIT)</td>
<td>Japan (National Center for child Health and Development, Japan)</td>
<td>Hens' egg</td>
<td>High-risk (infants with atopic dermatitis)</td>
<td>• RCT, placebo controlled • n ~ 200 • Enrolled at 4-6 months then consumption of egg powder or placebo until 12 months of age • Outcome: prevalence of IgE-mediated egg allergy at 12 months of age</td>
<td>Completed. Abstract presented [55]</td>
</tr>
<tr>
<td>Solids Timing for Allergy Research</td>
<td>Australia (University of)</td>
<td>Hens' egg</td>
<td>High-risk (infants with moderate / severe eczema)</td>
<td>• RCT, placebo controlled • n = 86</td>
<td>Reported</td>
</tr>
</tbody>
</table>

https://mc.manuscriptcentral.com/adc
| (STAR) | Western Australia | severe eczema | • Enrolled at 4-6 months of age then consumption of egg powder or placebo until 8 months of age
• Outcome: prevalence of IgE-mediated egg allergy at 12 months of age |
|---|---|---|---|
| Starting Time for Egg Protein (STEP) | Australia (University of Western Australia) | Hens' egg | Moderate-risk (infants without eczema but atopic mothers)
• RCT, placebo controlled
• n~1500
• Enrolled at 4-6 months of age then consumption of egg powder or placebo until 12 months of age
• Outcome: prevalence of IgE-mediated egg allergy at 12 months of age |
| Beating Egg Allergy (BEAT) | Australia (Sydney University (Children's Hospital,)) | Hens' egg | Moderate-risk (sibling / parent with allergy)
• RCT, placebo controlled
• n~290
• Enrolled at 4 months of age then consumption of egg powder or placebo until 8 months of age
• Outcome: primary- egg white sensitisation. Secondary-prevalence of IgE-mediated egg allergy at 12 months of age |
| Preventing atopic dermatitis and allergies in children (PreventADALL) | Norway (Oslo University Hospital) | Hen's egg, milk, wheat, peanut | General population
• Open label RCT with four arms: observation, early introduction by 4 months, skin care, both early introduction and skin care
• N=5200
• Outcome: food allergy, atopic dermatitis |
Micronutrients and allergy prevention

Since most food allergens are proteins, these have usually been the focus of food allergy prevention research. However, with increased knowledge of the role of macro- and micro-nutrients in immunological processes, there is increasing interest in the relationship between dietary nutrients and the development of allergic conditions. Observational data linking delayed allergen introduction and increased allergy rates may also be explained by the reduced intake of immunologically active nutrients.[19,34,57,58] Polyunsaturated fatty acids (PUFAs), antioxidants (selenium, vitamins A, C, E and β-carotene), vitamin D, iron, zinc and folate are of particular interest for allergy prevention.[59-67]

To date, PUFAs have been the most extensively studied immuno-modulatory nutrient. Observational studies have related increased intake of omega-3-rich foods during pregnancy, lactation and infancy with decreased risk of allergic disease.[58,67] However, interventional study findings have been inconsistent, possibly due to small sample sizes and heterogeneous allergy outcomes. A recent Cochrane review looked at eight randomised control trials of omega-3 PUFA supplementation during pregnancy (5 trials), lactation (2 trials) or both (1 trial). Supplementation showed a clear reduction in any IgE mediated allergy in children aged 12-36 months but not beyond 36 months. For specific allergies there was no clear difference for food allergies at 12-36 months but a clear reduction was seen for children up to 12 months of age. The author conclude “there is limited evidence to support maternal n-3 LCPUFA supplementation during pregnancy and/or lactation for reducing allergic disease in children”. [68] Large intervention trials (completed or on-going; Table 3) may further clarify the association between PUFAs and food allergy development.[69-72]
Vitamin D has received considerable attention in recent years with a suggestion that vitamin D supplementation and/or food fortification is the cause of increasing allergic disease prevalence[73] with observed associations between high maternal and infant vitamin D status and allergic disease[74,75] supporting this theory. Conversely, latitudinal differences in auto-injector prescriptions for food-induced anaphylaxis [76] and hypoallergenic infant formula use[77] have suggested a causal link with low vitamin D status. Associations between vitamin D intake and status and allergic disease risk are from a diverse literature, including cross-sectional, case-control and cohort studies, with variable outcome definitions, analytical procedures and study quality.[74,75,78-81] However, the HealthNuts study, which used a validated food allergy outcome measure, showed that low vitamin D status may be a risk factor for infant food allergy.[82] The VITALITY trial (NCT02112734) is currently looking at the impact of infant vitamin D supplementation on food allergy prevalence at 1 year.

Lower intakes of antioxidants are suggested to reduce antioxidant defences and increase the risk of atopic disease.[83-87] In particular, vitamins A, E and C and zinc may confer some protection. However, appropriately designed controlled studies are required to establish if there is a causal relationship.[88]

Differing reports of observed associations between immune-modulatory nutrients and allergic disease may be explained by the fact that the whole diet rather than one particular nutrient modifies immunological function. This hypothesis is supported by a number of studies that have found an association between the whole diet, (including diversity), and allergic disease.[46, 47, 89-90] Additionally, recent research demonstrated that an infant diet consisting of high levels of fruits, vegetables, and home-prepared foods was associated with less food allergy by the age of 2 years.[46] This inverse association with processed foods has been observed elsewhere[89] and may be due to the higher microbial load of home processed foods compared to
commercially prepared foods[92] or that home processed fruits and vegetables are good
sources of naturally occurring prebiotics. Both are thought to modify immune function.[93]

Other strategies for preventing food allergy

Hypoallergenic infant formula

In new-borns, the mucosal barrier is immature and large quantities of macromolecules cross the
epithelium into systemic circulation. Intestinal permeability reduces with age but in the first few
months of life when combined with the immature status of the immune system, it is considered a
risk factor for food allergy development and this is the period when standard infant formula is
given if breastfeeding isn’t possible. Therefore, if breastfeeding isn’t possible, it is
recommended that high-risk children (parent or sibling with a history of allergy) use a
hypoallergenic cow’s milk protein (HA) formula to avoid early exposure to intact milk
allergens.[27,28]

HA formulas are processed to reduce the allergenicity of milk proteins by ‘snipping’ them into
smaller pieces (peptides). They are differentiated into extensively and partially hydrolysed
formulas (eHF and pHF respectively). eHF contain predominantly small milk-derived peptides
with almost no allergenicity, whereas pHFs also contain larger milk-derived peptides. eHFs were
originally produced to treat milk-allergic infants but are now also used for allergy
prevention,[94,95] whereas pHFs are produced only for allergy prevention.

Studies indicate that some pHF and eHF can reduce the risk of food allergy development but
other studies failed to demonstrate a protective effect.[26] Consequently, there is debate as to
which is the best formula for allergy prevention as reflected by differing national and
professional body recommendations[25-29] and individual clinicians’ opinions.[96,97]
However, a recent systematic review and meta-analysis, using a rigorous approach, failed to find a beneficial effect of hypoallergenic infant formulas on food allergy.[98] The authors highlighted that many studies were at uncertain or high risk of bias, they also found evidence of publication bias. They argued that earlier reviews have been influenced by the more positive results from lower quality design studies. Since it appears preventive efficacy is highly dependent on the specific formula studied, the EAACI guidelines group recommended the use of HA formulas with a documented preventive effect for high-risk children in the first 4 months of life only.[26] No studies show a preventive effect in low-risk children.

Prebiotics and probiotics

The microbiota of infants with atopic disease is both quantitatively and qualitatively different[99] from their non-atopic counterparts, with decreased populations of beneficial bacteria (bifidobacteria, bacteroides, and lactobacilli and higher numbers of coliforms and S. aureus.[100]. This has promoted research into the role of intestinal microbiota in the development of immune tolerance. Lower consumption of prebiotics (fibre/indigestible dietary components) are suggested to lead to less favourable colonization patterns which may be implicated in the loss or inability to develop oral tolerance. Neonatal prebiotic supplementation trials have failed to show any effect of prebiotics on food allergy development but have shown favourable results on other allergic outcomes such as eczema. [101] RCTs assessing the effects of probiotics in the prevention of eczema, and/or food allergy have reported differing findings.[102-10106]. The most up to date Cochrane review on the subject states that further research is needed before probiotic use can be recommended for allergy prevention.[107] However, a recent World Allergy Organisation (WAO) systematic review has suggested using probiotics in infants at high risk of allergy due to the “likely net benefit” from the prevention of
eczema seen with the use of probiotics.[108] The guideline panel did however acknowledge that their recommendation was supported by very low quality evidence demonstrating a need for high quality intervention trials and there a number of these ongoing (Table 3) which may provide further insight in the future. These studies will also provide information on which strains may be the most effective for allergy prevention and what dose is required as these are important factors to consider and about which there is currently very little information.
Table 3. Intervention trials with food allergy as a primary or secondary outcome

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Study Name</th>
<th>Location</th>
<th>Recruitment Status</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D</td>
<td>The VITALITY trial</td>
<td>Australia</td>
<td>Recruiting</td>
<td>NCT02112734</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>Vitamin A supplementation at birth and atopy in childhood</td>
<td>Guinea Bissau</td>
<td>Active</td>
<td>NCT01779180</td>
</tr>
<tr>
<td>PUFAs</td>
<td>DHA to optimise mother infant outcomes (DOMInO) trial</td>
<td>Australia</td>
<td>Completed</td>
<td>ACTRN12605000569606</td>
</tr>
<tr>
<td>PUFAs</td>
<td>The infant fish oil supplementation (IFOS) trial</td>
<td>Australia</td>
<td>Active</td>
<td>ACTRN12606000281594</td>
</tr>
<tr>
<td>PUFAs</td>
<td>Can supplementation with Lactobacillus reuteri and Omega-3 fatty acids during pregnancy and lactation reduce the risk of allergic disease in infancy? (PROOM-3)*</td>
<td>Sweden</td>
<td>Recruiting</td>
<td>NCT01542970</td>
</tr>
<tr>
<td>Probiotics</td>
<td>Primary prevention of atopic disease by perinatal administration of probiotics</td>
<td>Netherlands</td>
<td>Completed</td>
<td>NCT00200954</td>
</tr>
<tr>
<td>Probiotics</td>
<td>Influence of probiotics on atopy, immunological responses and gut microflora, follow-up to 5 years</td>
<td>Singapore</td>
<td>Completed</td>
<td>NCT00365469</td>
</tr>
<tr>
<td>Probiotics</td>
<td>Microbiota as a potential target for food allergy</td>
<td>Italy</td>
<td>Recruiting</td>
<td>NCT02087930</td>
</tr>
<tr>
<td>Probiotics</td>
<td>Effect of lactobacillus GG on atopic march</td>
<td>Italy</td>
<td>Recruiting</td>
<td>NCT01891916</td>
</tr>
<tr>
<td>Prebiotic</td>
<td>Prebiotics in the prevention of atopy (PIPA)</td>
<td>Italy</td>
<td>Completed</td>
<td>NCT02116452</td>
</tr>
</tbody>
</table>

† atopic sensitization; Se: selenium; Fe: Iron; Zn: Zinc
Figure 2 Early factors and mechanisms that interact to prevent or favour the development of an allergic response to a food protein
Summary and conclusions

This review covered a number of approaches to prevent the development of food allergy. These are likely to interact. Figure 2 summarises how factors (including prenatal factors which have not been considered in this review) may interact to prevent or promote the food allergy development. Unlike in previous decades, national recommendations for food allergy prevention strategies now largely agree, particularly concerning hypoallergenic formula use and not delaying the introduction of allergenic foods. [26-29] However, while there is consensus that avoidance strategies are ineffective, guidelines do not provide any alternative strategies. There is a call for more high-quality data from robust RCTs. Some has already been provided and appears to support the concept that early consumption of allergenic food promotes the development of immune tolerance and a recent consensus statement supports this[47]. However, before recommendations are updated, it is important to understand how best to introduce preventive interventions in a community context, particularly since there may be significant numbers of children already sensitised by the time they are weaned. Given their different intervention strategies and populations investigated, combining the new RCT data into meta- or pooled analyses, will broaden their informational scope, and this is planned as part of the iFAAM study. However, even pooled, they may not provide data as to what dose of allergenic food should be given and for how long. Data from on-going studies on solid food introduction and nutritional supplementation may also provide a broader understanding of food allergy prevention. As studies have generally only focused on IgE mediated food allergy, their findings may not be applicable to preventing the development of non-IgE mediated food allergy conditions such as eosinophilic oesophagitis and food protein induced enterocolitis syndrome. Aetiology data for these conditions are lacking and RCTs similar to those carried out for IgE-mediated disease should be a future research priority in the field of food allergy.

Acknowledgements
We would like to acknowledge the support of our iFAAM colleagues. Also, we thank the European Academy of Allergy and Clinical Immunology (EAACI) for supporting and endorsing this paper as part of their facilitation of the activities of iFAAM Work Package 10 to improve the management of food allergy.

Authors Contributions
GR, KG and KL planned the manuscript. All the authors contributed to drafting the manuscript and reviewing the final version.

Funding Statement
This work was supported by the European Union within the Seventh Framework Programme for research, technological development and demonstration under Grant agreement no. 312147 (iFAAM).

Competing Interests
MK, KB, GL CM and GR received funding from the European Union within the Seventh Framework Programme for research, technological development and demonstration under Grant agreement no. 312147 (iFAAM). KG provided educational material for Danone, GR provided scientific advice to Danone, ALK-Abello and ThermoFisher, ENCM has board memberships with Novartis and the UK Food Safety Agency; is a consultant for PepsiCo International, KB Kirsten Beyer has received funding for research activities from Danone, ThermoFisher, and DST Diagnostics. MK has received a grant from Danone Nutricia. All other authors declared no conflicts of interest.
Reference List

(40) Grimshaw K, Roberts G http://www.food.gov.uk/science/research/allergy-research/t07046

(56) Wei-Liang Tan J, Valerio C, Barnes, EH et al Early Introduction of dietary egg reduces egg sensitisation at 12 months of age in infants at risk of allergic disease. JACI Volume 137, Issue 2, Supplement, AB389

(67) Oien T, Storro O, Johnsen R. Do early intake of fish and fish oil protect against eczema and doctor-diagnosed asthma at 2 years of age? A cohort study. *J Epidemiol Community Health* 2010; 64(2):124-129.

2015; 8:4