
1 
 

Development of geopolymer mortar under ambient temperature for in situ 

applications 

 

Mohammed Haloob Al-Majidi a, Andreas Lampropoulos a, Andrew Cundy a, Steve Meikle b  

 
a  School of Environment and Technology, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK 
b School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, 

UK 

 

ABSTRACT  

Geopolymer concrete technology involves production of more environmentally friendly 

waste material-based concrete which could be a viable solution for conventional concrete 

replacement. Typical fly ash-based geopolymer concrete however requires high temperature 

curing treatment in order to develop sufficient early strength properties, which is considered 

a severe limitation for cast-in-place concrete applications. Most previous studies on 

geopolymer concrete have focused on the properties of concretes pre-hardened by heat 

curing and/ or by aggressive chemical treatment (e.g. alkali activation using concentrated 

sodium hydroxide (NaOH)). The current study presents an extensive experimental 

investigation on the mechanical and microstructural properties of geopolymer concrete mixes 

prepared with a combination of fly ash and slag cured under ambient temperature. ‘User 

friendly’ geopolymer mixes were produced using fly ash (FA) and Ground Granulated Blast 

furnace Slag (GGBS) mixed together with potassium silicate with molar ratio equal to 1.2 (as 

the activator) and water. The results indicated that heat curing treatment can be avoided by 

partial replacement of fly ash with slag. The compressive strength of the examined mixes was 

found to be in the range of 40-50MPa for 40 % and 50 % GGBS replacement mixtures 

respectively. Moreover, the flexural and direct tensile strengths of geopolymer mixes are 

considerably improved as the GGBS content is increased. Based on FTIR and SEM/EDS 

analysis, the inclusion of a higher content of GGBS resulted in a denser structure by formation 

of more hydration products. 
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1  Introduction 

 There are many environmental issues associated with the production of Ordinary 

Portland cement (OPC), such as consumption of 5% of natural resources, and generation of 

5-7 % of total global anthropogenic carbon dioxide emissions [1-4]. This has led to an urgent 

need for the development of alternative materials that may provide technically viable 

alternative solutions to conventional cementitious concrete, with more favourable 

environmental credentials. Geopolymer concrete manufacture is one of the most promising 

techniques which has been developed in the last few years. Utilization of geopolymer 

materials can reduce 80% of greenhouse gas emissions associated with material production, 

and overcome issues related to cement production and unregulated disposal of industrial 

materials by recycling these materials in geopolymer manufacture [5-7]. 

  Geopolymers are inorganic by-product materials, rich in silicon (Si) and aluminium (Al) 

that react with alkaline activators to form three dimensional polymeric chains of sialate and 

poly(sialate) (Si–O–Al–O) [8-11]. Previous research indicates that the chemical reactions and 

strength development of geopolymer concrete are affected by number of parameters such 

as chemical activator composition and dosage, raw materials, and curing conditions [10, 12]. 

Al-Otaibi [13] noted that the type and dosage of activator used are particularly important in 

slag-based geopolymer concrete production. According to this study, the strength of 

geopolymer concrete is improved as dosage and silicate modulus of the activator are 

increased. Davidovits [14] reported that a metakaolinite-based geopolymer with potassium-

containing alkaline activator showed double the compressive strength of the same 

geopolymer mix with sodium alkaline activating solution. Lloyd et al., [15] also noted that, 

based on microstructural observations, the use of silicate-based activators resulted in a more 

homogeneous microstructure compared to the mixes activated with a sodium hydroxide 

(NaOH) based solution, and improved compressive strength. 

 Fly ash (FA) and Ground Granulated Blast furnace Slag (GGBS) are two types of calcium 

aluminosilicate solid waste materials commonly used in geopolymer concrete. The main 

reaction product of alkali-activated cements for GGBS is calcium silicate hydrate (C–S–H) 

while for FA it is amorphous hydrated alkali-aluminosilicate [16]. Alkali activated slag has high 

strength but issues related to rapid 



3 
 

setting and insufficient workability along with high values of dry shrinkage have been 

reported [17]. In contrast, FA based geopolymer mortars cured under ambient temperatures 

usually exhibit slower early strength development and setting time, which is likely to be due 

to a low content of iron oxide, calcium hydroxide (Ca(OH)2), and reactive silica [18]. These 

mortars however showed identical compressive strength (62–66 MPa) after 24 hour curing at 

60–75 °C [19]. High temperature curing for at least 6 hours is typically recommended for FA 

based geopolymer concrete in order to accelerate the pozzolanic reaction and develop the 

mechanical properties [20, 21]. Van Jaarsveld et al., [22] studied the effect of various curing 

temperatures on the compressive strength of FA geopolymer concrete, and based on this 

study, double strength was achieved when the curing temperature was increased to between 

50°C and 80°C compared to the respective value at 30°C. However, heat curing treatment 

leads to increased cost and practical issues, preventing in situ application of geopolymer 

concrete at large scale. 

There are a few published studies on geopolymer mixes with a variant combination of 

FA and GGBS in the mixture [9, 16, 17, 23-25] and in most of these studies promising results 

were achieved. However, in these studies high volumes and concentrations of corrosive 

sodium silicate and/or sodium hydroxide have been used leading to geopolymer products 

with potential health and worker safety issues during application [14]. Davidovits et al [26], 

propose a user friendly geopolymeric method in order to improve the strength of geopolymer 

cement as well as reduce costs by avoiding thermal activation and promoting easier handling 

applications. To date, there are not any published studies on the mechanical performance of 

‘user friendly’ geopolymer mortars, and only mineralogical and microstructural analyses of 

the geopolymer cement paste of these mixes have been conducted. 

The current study aims to investigate the main parameters affecting the behaviour of 

this material and to optimize its mechanical performance. An extensive experimental study 

has been conducted on FA and GGBS based user friendly geopolymer mortars cured under 

ambient temperature with mechanical properties comparable to FA-only based mixtures 

cured under elevated temperature. Fresh geopolymer mortar properties were examined 

through workability and setting time tests, while the mechanical performance of the 

hardened mortar was evaluated by compressive, direct tensile and flexural strength tests. 

Moreover, the microstructure of the examined mixes was assessed by Scanning Electron 
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Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared 

Spectroscopy (FTIR), thermal analysis Differential Scanning Calorimetry (DSC), and porosity 

measurements. 

2  Experimental Program 

2.1  Materials and mix-design 

FA conforming to BS EN 450 – 1 [27] fineness category S was used as the main binder in 

this study. This was partially replaced by GGBS in order to produce FA and GGBS based 

geopolymer materials. Silica sand with particle size less than 0.5 mm and chemical 

composition as shown in Table1 was used as fine aggregate. A particle size analyser (Malvern 

mastersizer 2000) was used to determine the particle size distribution. Polycarboxylate- 

based superplasticizer meeting the requirements of BS EN 934-2 [28] was also used. 

Five different mixtures of geopolymer mortar proportions were examined with various 

ratios of GGBS to total binder (10%, 20%, 30%, 40% and 50 %, Table 2). Based on preliminary 

experimental studies undertaken during the current project, the optimum mix design (in 

terms of mechanical strength and workability) was achieved using water, alkaline activator 

and superplasticizer contents equal to 25%, 12%, and 1% of the total binder respectively. The 

examined mixtures were designed based on a previously published study on FA based 

geopolymer mortars, with total binder content kept constant for all mixtures at 775 kg/m3 

[29]. The molar ratio of potassium silicate solution (K2SiO3-used as a chemical activator) 

remained at the same level for all mixtures at 1.25. 

2.2 Mixing procedure and specimens preparation 

Potassium hydroxide pearl (85 % purity) and commercially available potassium silicate 

solution (Molar ratio SiO2/K2O equal to 2.23, water content equal to 45-65 wt.%, specific 

gravity 1.6 g/mL) were used as alkali activators. The alkali activator solution was prepared by 

the dilution of potassium hydroxide pellets in distilled water in a fume cupboard. The solution 

was left for 24 hours to cool down to room temperature before mixing with potassium silicate 

solution (mass of Potassium silicate solution/Potassium hydroxide solution equal to 2.5), to 

form a solution modulus equal to 1.25.   
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For the trial mixing of geopolymer mortars, a 5 L Hobart mixer was used, while for the 

mixing of the examined specimens a Zyklos 75 L mixer was used (Pan Mixer ZZ 75 HE). The 

mixing procedure proposed by GEOASH [26] was used in this study. Alkali activator potassium 

silicate solution was prepared in advance and mixed with water and superplasticizer 5 

minutes before addition to the solid materials. The binder (FA and GGBS) was dry mixed for 5 

minutes at low speed (140±5rpm) to ensure adequate mixing. The alkali activator potassium 

silicate solution was then added to the powder and the mixer run at medium speed for 5 

minutes. Finally, sand was added to the mixer, and the mixer run for a further 3 minutes to 

give a total mixing time of 13 minutes. For the current study the following specimens were 

examined: 

• Forty-eight cubic specimens with 50 mm side, twelve specimens for each mixture, for 

compressive tests. 

• Thirty-six prismatic specimens having dimensions 75 mm x 75 mm x 285 mm, nine 

specimens for each mixture, for flexural test (Fig. 1a). 

• Thirty-six dog bone shape specimens having 25 x 25 mm2 mid-cross section, for direct 

tensile tests (Fig.1b and 1c). 

• Eight cylindrical specimens having dimensions 20 mm diameter and 50 mm length, 

two specimens for each mixture, for porosity measurement. 

Table 3 shows the number and types of specimens prepared. Flowability and setting 

time tests on fresh geopolymer mortars were also conducted. All the examined specimens 

were de-molded twenty-four hours after casting, and the specimens were covered with 

plastic film to avoid evaporation of water. The specimens were stored at room temperature 

for curing (21-23°C) until the day of testing. 

3 Experimental equipment and test procedures 

3.1 Fresh geopolymer concrete  

Two different tests were used for fresh state mortar: setting time and workability. 
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3.1.1 Setting time 

The setting times (initial and final) of the fresh geopolymer mortar were evaluated 

using a vicat needle as described in BS EN 480-2:2006 [30]. Penetration distances were 

measured every 5 minutes due to rapid setting of the examined mixes. The determined values 

were calculated as the average of two separate tests under room temperature curing 

conditions (21-23°C). 

3.1.2 Flowability test  

This test was conducted according to EN 1015-3 [31] and ASTM C 1437-07 [32]. Flow 

tests were conducted immediately after mixing, and the cone lifted straight vertically to allow 

free flow of the mixture without any jolting. Details of the mini slump measurements have 

been reported in previous studies [33, 34] . Each mix was tested twice. 

3.2 Hardened geopolymer concrete  

To evaluate strength characteristics of hardened geopolymer mortar, compression, 

direct tensile and flexural strengths tests were carried out.  

Compressive strength tests were performed under a loading rate of 45 KN per minute 

according to ASTM C109 [35]. 

Flexural strength tests were performed according to ASTM C 293 – 02 [36] using a 

simple beam with centre loading. An Instron universal test machine was used and the setup 

is presented in Fig. 1a.  

Geopolymer tensile performance was evaluated through direct tensile tests according 

to AASHTO T132 [37]. The examined dog bone-shaped briquettes had a thickness of 25 mm, 

a length of 76 mm and a mid-length cross sectional area of 625 mm2 (Fig. 1b). Special self-

aligning grips were used for the direct tensile tests to ensure uniform stress distribution (Fig. 

1b). The extension of the specimens during the testing was monitored using Linear Variable 

Differential Transformers (LVDTs) attached to the specimens in order to exclude any induced 

slip at the grips (Fig. 1c). The direct tensile tests were performed under a displacement rate of 

0.4 mm per minute. 
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3.3 Microstructural analysis  

Microstructural analyses were performed on geopolymer paste and mortar samples 

via porosity, SEM, FTIR and thermal analysis. For porosity measurements cylindrical 

specimens with 20 mm diameter and 50 mm height were used. Two specimens for each of 

the examined mixes were tested at 28 days after casting following the procedure described 

in previously published studies [38, 39]. 

For SEM analysis, geopolymer mortar samples were coated with carbon after 7 and 28 

days curing and imaged using a Leo S420 stereoscan scanning electron microscope with an 

accelerating voltage range of 1-30 kV. FTIR analysis was carried out on fine powder generated 

by grinding the 28 days geopolymer paste sample to reduce its particle size. Measurements 

were conducted using a Mettler Toledo spectrometer. For thermal analysis, tests were 

conducted using a Mettler Toledo differential scanning calorimeter. During this test the 

binder percentage was kept constant as in the mixtures and total sample mass was around 

20 g; mixing was performed manually; and sample loading time was around 20 minutes. 

4 Results and discussion 

4.1 Primary particle size and agglomerate size 

FA consists predominantly of spherical primary particles, whereas GGBS particles are 

more angular (Fig. 2). The geometry and the size of the FA and GGBS particles was analysed 

with a laser particle size analyser and the results are presented in Fig. 3. Table 4 shows the 

most common statistics used to analyse the particle size of the material: the mean of the particle 

size (d (0.5)), 10% (d (0.1)) and 90% (d (0.9)) of the total volume of particle size smaller than 

particular size diameter. The volume-mean particle sizes (d (0.5)) of the FA and GGBS are 10.6 

and 14.3 μm, respectively. FA particles give a finer particle size distribution than slag, which 

could improve mortar formation. 

 

4.2 Setting time 

Setting time tests were performed to investigate the effects of GGBS content on FA 

and GGBS based geopolymer mortar. Geopolymer mixes with GGBS to binder ratios of 10%, 

20%, 30%, 40% and 50% were examined. In this test, two measurements were taken for the 

initial and final setting time as proposed by BS EN480-2:2006 [30]. Initial setting time was 

measured from completion of mixing until the time at which the needle penetrated to a 
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distance of 4mm from the base of the plate. Final setting time was measured at the point at 

which the needle penetrated to a respective distance of 2.5 mm [30]. 

The results of Fig. 4 indicate that the setting time was considerably affected by the GGBS 

content in the mix. Based on a previous study [24], the setting time for FA based geopolymer 

without GGBS has been found to be around 1500 minutes. Setting time was significantly 

reduced by incorporating GGBS in the mixture, e.g. the initial and final setting times of 

mixtures having 10 % GGBS were reduced to 80 minutes and 150 minutes respectively. As the 

GGBS content in the mix was increased, the total setting time was considerably reduced. The 

initial and final setting times for 20 % GGBS content were 58 minutes and 120 minutes while 

for 30 % GGBS these reduced to 42 minutes and 80 minutes. The setting time further slightly 

decreased when increasing GGBS over total binder ratio from 30 % to 40 %. This is in 

agreement with previous investigations on the effect of GGBS content on setting times of FA 

geopolymer mortar with sodium silicate activator. Lee and Lee [23] found that the hydration 

reaction of FA based geopolymer materials was accelerated as the GGBS, and subsequently 

CaO content, was increased in the mix. Also, Nath and Sarker [25] reported that the use of 

slag resulted in an acceleration of the setting time of geopolymer mixes. 

4.3 Flowability of geopolymer mortar 

The relative slump of the geopolymer mortar using varying GGBS to FA ratios is 

presented in Fig.5. The measurements indicate that the 10S mixture was very fluid and 

exceeded the flow table limit of 255mm. The workability of the geopolymer mixture was 

reduced as GGBS content increased. The reduction in relative slump was 36%, 55%, 62%, and 

65% for the 20S, 30S, 40S and 50S mixtures compared to the experimental results for the 10S 

mixture. This is likely a consequence of differences in the physical properties and chemical 

reactions of the mixtures. As the GGBS content is increased, the number of angular particles 

is increased and the spherical particles of FA are reduced (e.g. Fig. 2). The spherical shape can 

help to improve the Flowability of the mortar mixture. Also, admixing GGBS and FA offers 

more reactive material, giving fast setting and reducing the workability. 
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4.4 Compressive strength  

4.4.1 Curing at ambient temperature 

As the GGBS content in the mix was increased, the compressive strength was 

improved even at early curing ages (Fig. 6). The three day mean compressive strengths were 

2.9 MPa, 10.4 MPa, 13.7 MPa, 18.6 MPa and 25.9 MPa for 10S, 20S, 30S, 40S and 50S mixtures 

respectively. At 28 days, mixtures having 20, 30, 40 and 50 % wt. ratio of GGBS to the total 

binder achieved 65, 133, 140 and 162 % higher strength compared to the strength of the 10S 

mixture, respectively. This is due to infilling of the porous microstructure of the geopolymer 

mortar by formation of more hydration products, following the inclusion of the highly reactive 

slag particles (discussed further in section 4.8). Weiguo et al. [40] examined varying GGBS/FA 

ratios by weight (0, 30, 40, 50, 60, 70 and 100 %), with sodium silicate and sodium hydroxide 

as the alkaline activator. The main findings of this study indicated that as the GGBS content 

was increased, the compressive and flexural strength of the mix was improved. 

4.4.2 Comparisons with heat treated specimens   

In this section the effect of curing temperature on the compressive strength of 

geopolymer mixes with FA and GGBS has been investigated. The compressive strength results 

of 50S mixture samples cured under elevated temperature have been compared with 

respective results of specimens made of the same mix and cured under room temperature 

(Fig. 7). The elevated temperature curing process involved resting of the samples for 24 h at 

room temperature after casting, followed by heat curing at 60°C for 24 h, and then storage at 

room temperature until testing. At early age, heat curing treatment has a great effect on the 

strength of FA and GGBS based geopolymer. The 3 day compressive strength of the 

geopolymer sample cured under elevated temperature is almost double that of the ambient 

temperature cured sample. This finding is in agreement with the results of a previous study 

[41] where curing under elevated temperature was found to be beneficial in accelerating 

strength development. Görhan et al. [42] highlighted that curing under elevated temperature 

leads to an increment of the compressive strength without significant effect on the physical 

characteristics. 
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Based on the results of the current study (Fig. 7), it can also be observed that the 28-

days compressive strength of the specimens cured under room temperature is very close to 

the respective results of the heat cured specimens. 

4.5 Direct tensile test 

The direct tensile strength of geopolymer mixes with varying GGBS content (10 % to 40 

% wt. of the total binder) cured under ambient temperature was determined at 7 and 28 

curing days as shown in Fig. 8. Increasing the GGBS content had a positive effect on the tensile 

strength at both ages. The results indicated that the specimens with 40 % GGBS had the 

highest direct tensile strength which was around 3 MPa at 28 days. There are no published 

studies in the literature performing similar tests of direct tensile strength on geopolymer 

samples, and there are only a few other studies where splitting tensile strength results of 

geopolymer concrete are presented. Rashad [43] studied the mechanical strength of 

geopolymer concretes with varying ratios of FA to total binder (FA and GGBS) (100%, 95% and 

85%) using a mixture of NaOH and sodium silicate as an activator. The results indicated that 

the split tensile strength was increased as the slag content increased, which is in agreement 

with the findings of the current study. 

4.6 Flexural Strength  

Flexural strength tests were performed using prismatic specimens (Fig. 1a) with span 

length (between the supports of the specimens) of 225 mm. For each mix, three specimens 

were tested at each age, and the flexural strength is calculated using the average value.  

Variations in flexural strength with increasing GGBS content (at curing ages of 7, 14 

and 28 days) are shown in Fig. 9. The ultimate flexural strength of geopolymer mortar was 

considerably increased by increasing the GGBS content, at all ages. At 7 days, the flexural 

strength of the 10S mix was 0.93 MPa. The flexural strength was improved by 0.6 MPa, 1.3 

MPa and 2MPa as the GGBS content was increased from 10% to 20%, 30% and 40%, 

respectively. Flexural strength developed further with longer curing times, with the flexural 

strength increasing at 14 and 28 days by 100 %-245 %, 94 %-206 %, 48 %-121 % and 26 %-99 

% for 10S, 20S, 30S and 40S mixtures respectively, compared to the flexural strength values 

at 7 days.  
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4.7 Porosity  

Fig. 10 plots the porosity of the geopolymer mortars at 28 days. The results show that 

increasing GGBS content leads to a reduction in apparent porosity in the geopolymer mortar 

cured at room temperature. Total porosity after 28 days curing of the 10S mixture was around 

30 %. As the GGBS content was increased, the porosity was reduced to 23 %, 21 % and 18.3 

% for 20S, 30S and 40S mixtures, respectively. The reduction in porosity identified in 

specimens with higher contents of GGBS can be attributed to the nature of the gel type 

forming in the binder. The calcium ions present in GGBS particles (see Table 1) may enter into 

the FA-rich system (with Si-O-Al-O structure) to form a calcium aluminium silicate hydrate gel 

(C-(A)-S-H), also unreacted finer GGBS particles act as a reinforcing agent. This infills the 

geopolymer matrix, reduces the porosity and improves the mechanical strength.  

4.8 Scanning Electronic Microscopy (SEM) and Energy Dispersive Spectroscopy 

(EDS) 

 

 Sub-samples taken from 50 mm3 cubes were used to examine sample microstructure 

after 7 and 28 days. EDS microanalysis on specific sample areas was used to provide semi-

quantitative Si, Al, Ca, Na, O, Mg and Fe data from an average of three different areas in the 

sample, and data are given in Table 5. 

Based on the EDS analysis the main contributors to the geopolymer matrix are the 

glassy FA particles (supplying Si and Al), the GGBS (supplying Ca) and the alkali-activation 

solution (potassium silicate) (Fig.11). To compare the microstructure of different GGBS to 

binder ratios of geopolymer, two mixes of 10 % and 40 % GGBS to total binder were imaged 

(Fig. 12 and 13). Figure 12 shows the area on a surface of 10 % GGBS at curing ages of 7 days 

and 28 days at x3000, x10000 and x20000 magnification. The micrographs of the 10S mixture 

show a high proportion of un-reacted FA spheres, and agglomerated GGBS particles 

remaining in the early age matrix. After 28 days curing, the geopolymer microstructure shows 

amorphous microspheres, and partially reacted FA spheres appear in the matrix (Fig. 12). At 

higher magnification, geopolymer samples show different microstructures with an increasing 

slag content, which forms a denser matrix than using 10 % GGBS. Glassy crusts covering FA 

particles can be observed, as a result of reactions on the surface of the particles (Fig.13 (a-e)). 

In the geopolymerization method, the development of the geopolymer matrix depends on 

reactions at the external rim of the particles, producing reaction products which surround and 
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cement the particles, rather than dissolution of the particles [44]. The presence of calcium in 

the GGBS is confirmed by the EDS analysis (at around 38 wt. %, Table 6), showing that 

increasing the amount of GGBS significantly increased the calcium content in the mixture, 

leading to the formation of a calcium alumino-silicate hydrate (C–A–S–H) gel [25].  

Therefore, inclusion of GGBS introduced additional calcium bearing compounds and 

contributed to additional binding products, which improved the compressive strength, 

reduced porosity and modified the setting behaviour of geopolymeric gels at early ages. This 

enabled the formation of a more compact gel structure and consequently improved 

mechanical properties. 

 

4.9 Fourier Transform Infrared Spectroscopy (FTIR) 

 Fourier Transform Infrared Spectroscopy (FTIR) is a chemical analysis method which 

searches for the reaction zones of Si-O and Al-O in order to identify the degree of 

geopolymerization and formation of reaction products in the various geopolymer mixtures 

[10]. The current study focuses on specific spectral zones: the bands at 1200-900 cm-1 

corresponding to the asymmetric stretching vibration of (Si-O-Si) and (Si-O-Al); the bands 

assigned around 3350 cm-1 corresponding to the stretching vibrations of H-O–H bonds; and 

the band around 1645 cm-1 which relates to the bending vibration of the –OH groups of the 

hydrated reaction products associated with water [45, 46]. 

The infrared spectroscopic results for the raw materials (FA and GGBS) are presented 

in Fig.14a. The stretching vibration mode of Si-O-T (T represents Si or Al) was found at 903 

cm-1 for GGBS and at 1007 cm-1 for FA, and are consistent with (a) the variations in the 

chemical structure as indicated in the EDS analysis and (b) the glassy structure of these 

materials. The reduction of the wavenumber of this band corresponds to lower degrees of 

crosslinking of the amorphous phase of the raw materials, induced by increased calcium 

content [47] 

The FTIR spectra of the geopolymer paste samples show clear differences compared 

to the respective spectrum of the FA and GGBS. Fig.14b plots the FT-IR results after 28 days 

for varying GGBS to binder weight ratios (10 %-40 %). The Si-O-Si stretching vibration of FA 

occurred at 1007 cm-1. However, the corresponding stretching vibration of geopolymer paste 

has shifted to 959 cm-1, 952 cm-1, 951 cm-1 and 947 cm-1 for 10S, 20S, 30S and 40S mixtures, 

respectively. Based on these values, increasing the GGBS content causes structural changes 
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in the examined mixes, which is attributed to the formation of C-S-H with N-A-S-H type gels 

and to a subsequent reduction of the amount of Al. These changes lead to accelerated 

geopolymerization, strengthen the structure of the geopolymer and improve the mechanical 

strength.  

In all geopolymer mixtures, the broad bands present around 3350-3370 cm-1 are due 

to the stretching vibrations of H-O–H bonds, while those at 1640-1646 cm-1 are related to the 

bending vibration of –OH group of the products of the hydrated reaction associated with 

water. These bands do not exist in the unreacted FA and GGBS samples and indicate the 

geopolymerization reaction of alkaline activation products and water into geopolymer pastes 

[21]. 

4.10 Thermal Analysis (DSC) 

 Thermal analysis was used to evaluate the effect of GGBS content on the 

geopolymerisation reaction of the geopolymer paste mixtures using differential scanning 

calorimetry, 24 h after mixing the dry binder with the alkali activator solution. 

Isothermal conduction data indicate that the activation process of the geopolymer 

paste was highly affected by the GGBS content of the total binder (Fig. 15). Thermal power is 

an indicator of the rate of the chemical reactions occurring between cementitious materials 

and water and admixtures. The main hydration peak (associated mainly with hydration 

reactions) is an indicator of setting and early strength development of the mixture [48, 49]. 

The heat flow peaks were variable with different GGBS/binder ratio mixtures: the main 

thermal peaks of the geopolymer pastes were 0.0129 mW/mg, 0.02 mW/mg, 0.0414 mW/mg 

and 0.034 mW/mg for 20 %, 30 %, 40 % and 50 % GGBS to binder ratios. The initial peak 

related to the degree of the material particles’ reaction and then the heat flow declined to a 

negative peak followed by small peaks corresponding to the formation of primary C-S-H [45]. 

In the case of the 30S mixture, the maximum peaks appeared earlier, possibly because loading 

the samples in the thermal analyser took a slightly longer time than the other mixtures. The 

time to reach the main peaks was reduced as the GGBS content was increased, although the 

time between the lower point and the first inflection point in the main maximum peak was 

increased from 58 to 145 minutes (by increasing GGBS from 20 % to 50 % of the total binder). 

Yu et al. [34] examined the effect of mixing GGBS and FA with Portland cement, and showed 
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that GGBS can react quickly with Ca(OH)2 and generate a C-S-H gel, while the generation of 

this gel is delayed by the reaction of FA with portlandite. Therefore, increasing the dosage of 

slag strongly effects (accelerates) the hydration process of FA geopolymer composite, and the 

time to reach thermal peaks is subsequently reduced. Such a change reduces the setting time 

of the fresh geopolymer and improves early strength.  

The weight loss of the geopolymer samples between the initial sample weight and final weight 

measurement after removing the samples from the furnace is presented in Table 6. The 

results show that the weight loss increases from 15.5 to 20 % by increasing GGBS content in 

the binder from 10-50 %. This loss of weight is an indication of liquid loss and the amount of 

gel formed during geopolymerization [46]. 

5 Conclusions 

The present study investigated the mechanical and (micro) structural properties of ‘user 

friendly’ geopolymer mortar cured under ambient temperatures. These geopolymer mixes were 

produced using 12% potassium silicate with 1.25 molar ratio which leads to a noncorrosive 

cement free material. The geopolymer specimens were prepared by dry mixing FA and GGBS 

at five different ratios in order to optimize the mechanical properties, in a user friendly 

geopolymer system. Fresh geopolymer mortar properties were examined through workability 

and setting time, while the mechanical performance and physical and chemical characteristics 

of the hardened mortar were evaluated by compressive, direct tensile, flexural strength tests, 

SEM-EDS, porosity and FTIR analysis, and thermal heating. The following conclusions can 

be drawn from the results outlined here. 

Fresh geopolymer mortar characteristics 

• Increasing the GGBS content in the fly ash-based geopolymer mortar decreases the 

workability and accelerates the setting times (initial and final) and hardening. 

Hardened geopolymer mortar characteristics 

• Compressive strength was considerably affected by blend composition. Improvements 

in compressive strength have been observed by increasing the GGBS to total binder 

ratio in geopolymer mortar mixtures. Increasing GGBS content from 10% to 50 % of 

the total binder increased the compressive strength from 18.45 to 48MPa at 28 days. 
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• Hardened geopolymer materials can be produced without elevated heat curing. The 

28day compressive strength of the specimens cured at room temperature is close to 

the strength of the respective specimens cured under heat treatment. 

• The effect of GGBS content on the development of flexural and direct tensile strengths 

in ambient temperature cured geopolymer mortar was similar to that observed in the 

development of compressive strength. The 40S mixture showed optimum results for 

flexural and tensile strength, at 6 MPa and 3MPa respectively. 

• The addition of GGBS lowered the total porosity of the FA and GGBS based 

geopolymer mixture. 

• SEM/EDS analysis enabled assessment of microstructural evolution and reaction 

product formation in the geopolymer samples. The images show a less dense structure 

and non-reacted FA particles with low contents of GGBS. However, the compactness 

of the geopolymer matrix increased when GGBS content was increased.  

• FTIR analysis allowed assessment of the degree of geopolymerization and the 

formation of reaction products. The addition of slag affected the structural 

reorganisation by increasing C-S-H gel formation and reducing the amount of 

aluminosilicate gel related to FA, which in turn accelerates geopolymerisation. 

• Thermal analysis (DSC) showed that the addition of GGBS increased the heat flow in 

the samples and reduced the time to achieve the main thermal (reaction) peak due to 

accelerated formation of cementitious gels, leading to a reduction in the setting time. 

The overall conclusion of the current study is that the examined ‘user friendly’ 

geopolymer mixes with increased GGBS content had considerably improved flexural and 

direct tensile strength, even without any heat curing treatment which makes the proposed 

method suitable for in situ applications.  Further improvement of the mechanical properties 

of the examined mixes could be achieved by the addition of silica fume, fibres or nanoparticles 

[50]. 
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List of Tables 

 

 

Table 1. Chemical compositions of FA, GGBS and Silica Sand. 

Chemical compositions (%) Fly 

ash  

Slag Silica Sand 

Silicon Dioxide, SiO2 59 35 99.73 

Aluminium Oxide, Al2O3 23 12 0.1 

Calcium Oxide, CaO 2.38 40 -- 

Ferric Oxide, Fe2O3 8.8 0.2 0.051 

Sulphur Trioxide, SO3 0.27 -- -- 

Sodium Oxide, Na2O 0.74 -- <0.05 

Potassium Oxide, K2O 2.81 -- 0.01 

Magnesium Oxide, MgO 1.39 10 -- 

Loss on ignition, LOI 6.7 -- 0.09 

 

 

Table 2 Mixture compositions of fly ash / slag based geopolymer mortar used in the present 

study. 

Mixture 

ID 

Fly 

Ash 

Slag K2SiO3/ binder 

(k/b) 

Water /binder (w/b) Polycarboxylate /binder 

(p/b) 

10S 0.9 0.1 0.12 0.25 0.01 

20S 0.8 0.2 0.12 0.25 0.01 

30S 0.7 0.3 0.12 0.25 0.01 

40S 0.6 0.4 0.12 0.25 0.01 

50S 0.5 0.5 0.12 0.25 0.01 

 

 

Table 3. Number and type of specimens for each mixture. See Table 3 for mixture ID. 

N.O.S Type Dimensions 

(mm) 

Experimental test Mixture  

12 Cubic 50 x 50 x 50 Compression 10S, 20S, 30S, 40S & 50S 

9 Prismatic 75 x 75 x 285 3-Point-bending 10S, 20S, 30S & 40S 

9 Dog bone 

shape 

25 x 25 x 76 Direct tensile 10S, 20S, 30S & 40S 

2 Cylinder 20dia  x 50L Porosity 10S, 20S, 30S & 40S 
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Table 4. Particle size analysis by Malvern mastersizer 2000. 

 Fly ash Slag 

d(0.1) 1.8 1.85 

d(0.5) 10.6 14.3 

d(0.9) 44.4 45 

 

 

Table 5. Atomic weight components (wt. %) slag and fly ash. 

Element Slag Fly ash  

Si 12.3 22.5 

Al 5.1 12.9 

O 38 57.93 

Na 0.3 0.5 

Mg 3.4 0.9 

Ca 37.7 1.0 

Fe 0.4 4.7 

 

 

 

Table 6. Weight loss and time of heat flow peaks. 

Mix 

no.  

Slag 

(%) 

Heat flow (mW/mg) Time (min) 

Weight 

loss (%) 

Max 

peak 

Min 

peak 

Max 

peak 

Min 

peak 
Equilibrium  

1 10 13.69 0.04191 0.015 14 72 923 

2 20 15.52 0.0129 0.0117 29 87 995 

3 30 19.08 0.02 0.016 0 288 620 

4 40 20.09 0.04147 0.0173 14 159 634 

5 50 --- 0.034 0.00943 14 159 678 
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List of figures’ captions 

  

Fig.1. Layout of the specimens employed (a) for the three-point bending test and (b) for direct 

tensile test. (c) Shows the direct tensile test setup.  

Fig.2. SEM images of (a) fly ash (b) GGBS. 

Fig.3. Summary results from laser diffraction particle size analysis. 

Fig.4. Effect of slag content on the setting time of geopolymer mortar. 

Fig. 5. Effect of differing slag contents on the workability (determined via relative slump testing) of 

the fly ash / slag based geopolymer paste. 

Fig.6. Effect of slag content on the compressive strength of geopolymer mortar samples cured at 

ambient temperature.  

Fig. 7. Effect of curing temperature on the compressive strength of 50S geopolymer mortar.  

Fig. 8. Effect of slag content on the tensile strength of geopolymer mortar samples cured at ambient 

temperature.  

Fig. 9. Effect of slag content on the ultimate flexural strength of geopolymer mortar samples cured 

at ambient temperature.  

Fig. 10. Porosity results for different mixing ratios of geopolymer mortar. 

Fig. 11. EDS Analysis of (a) fly ash (left) and (b) slag (right).  

Fig. 12. SEM analysis of a 10% slag sample after (a) 7 days curing, x3, 000 magnification (b) 7days 

curing, x10, 000 magnification (c) 28 days curing, x3, 000 magnification (d) 28 days curing, x10, 000 

magnification and (e) 28 days curing, x20, 000 magnification.  

Fig. 13. SEM analysis of a 40% slag sample after (a) 7 days curing, x3, 000 magnification (b) 7days 

curing, x10, 000 magnification (c) 28days curing, x3, 000 magnification (d) 28 days curing, x10, 000 

magnification and (e) 28 days curing, x20, 000 magnification.  

Fig. 14. FTIR analysis of (a) fly ash and slag, and (b) geopolymer paste (10S, 20S, 30S and 40S 

samples). 

Fig. 15. Heat flow vs. time curves for various slag/ binder geopolymer mixes, obtained using DSC. All 

samples contain identical amounts of binder and alkaline liquid. 
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Fig. 11b 

 

 



31 
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