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Abstract. We solve two problems in modelling polynomial vector-exponential trajectories de-
pendent on two independent variables. In the first one we assume that the data-generating system
has no inputs, and we compute a state representation of the Most Powerful Unfalsified Model for this
data. In the second instance we assume that the data-generating system is controllable and quarter-
plane causal, and we compute a Roesser i/s/o model. We provide procedures for solving these
identification problems, both based on the factorization of constant matrices directly constructed
from the data, from which state trajectories can be computed.
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1. Introduction. We consider two problems in modelling two-dimensional (2D
in the following) continuous trajectories from data. In both cases the data consistis of
polynomial vector-exponential trajectories, and we seek state-space models explaining
it, i.e. systems of partial differential equations of first order in an auxiliary, “state”
variable, and zeroth-order in the measured, “external” variable. The two situations
differ in the model class we assume the data-generating system belongs to: in the first
case we seek an autonomous state model , i.e. a system without inputs; in the second
one we assume that an input/output partition of the external variable is given, and
we compute an input-state-output (i/s/o in the following) model.

Modelling 2D polynomial vector-exponential trajectories with autonomous sys-
tems has been considered in [32, 33], on whose results the first part of this paper on
the computation of autonomous models heavily relies. Modelling vector-exponential
trajectories with transfer-function (i.e. input-output) models is closely related to two-
variable rational interpolation; the latter has been investigated in the SISO case in
[2]. The approach taken in the present paper differs fundamentally from those: we
use data to first compute state trajectories corresponding to it, and in a second stage
we compute a state representation for the data and the identified state trajectories
by solving linear equations in the unknown state-, input- and output matrices.

Modelling methodologies where state-trajectories are computed from data and
state-equations are subsequently computed are well-known in the 1D case as subspace
identification methods (see e.g. [12]). Such ideas have been pursued much less fre-
quently in the 2D case: see [7, 19] for a pioneering subspace-identification approach
to the computation of i/s/o representations of denominator-separable 2D discrete-
systems from data. Our modelling approach differs essentially from those, in that it
does not exploit the shift-invariance properties of data trajectories, but rather the fact
that external properties- i.e. properties at the level of external variables, in our case
duality- are reflected into internal properties- i.e. at the level of state. To make the
connection between internal and external properties conceptually and computation-
ally accessible we use constant matrices associated with bilinear forms on the system
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variables and their derivatives. Our approach is related to the 1D Loewner frame-
work ; we refer to [3, 20] for an introduction to the Loewner framework close in spirit
to the ideas illustrated in this paper.

In section 2 we state two modelling problems, and we discuss some of their features
and relations with previous work. In section 3 we gather the necessary background
material. We illustrate our approach to the computation of state representations for
the autonomous case in section 4, where we also state an algorithm to compute a
minimal state representation for such models. In section 5 we discuss our framework
for the solution of the input-state-output modelling problem. Section 6 contains our
concluding remarks, including an overview of issues of current research.

Notation. We denote by Cm×n the set of all m × n matrices with entries in
C. C•×n denotes the set of matrices with n columns and an unspecified (finite)
number of rows. Given A ∈ Cm×n, we denote by A∗ its conjugate transpose, and
by A† its Moore-Penrose pseudo-inverse. If A, B are matrices with the same num-
ber of columns, col(A,B) is the matrix obtained stacking A on top of B. C[ξ1, ξ2]
is the ring of bivariate polynomials in the indeterminates ξ1, ξ2 with complex co-
efficients, and Cm×n[ξ1, ξ2] that of m × n bivariate polynomial matrices. Similarly,
Cm×n[ζ1, ζ2, η1, η2] is the ring of m×n polynomial matrices in the indeterminates ζ1,
ζ2, η1, η2. C

∞(R2,Cw) denotes the space of Cw-valued smooth functions defined on
R2. eλ1·eλ2· denotes the function from R2 to C whose value at (t1, t2) is e

λ1t1eλ2t2 .

2. Problem statement. We are given a finite set of 2D polynomial vector-
exponential trajectories wi(·, ·), whose value at (t1, t2) is

(2.1) wi(t1, t2) :=

Li
1∑

k1=0

Li
2∑

k2=0

wi
k1,k2

tk1

1 tk2

2 eλ
i
1t1eλ

i
2t2 , i = 1, . . . , N

where wi
k1,k2

∈ Cw, kℓ = 0, . . . , Li
ℓ, ℓ = 1, 2 and λi

j ∈ C, i = 1, . . . , N , j = 1, 2, and
t1 and t2 are two independent continuous variables. In the following we state two
identification problems that differ from each other in the underlying assumptions on
the model class the system generating the data (2.1) belongs to.

2.1. The autonomous case. It has been shown in [32] that the data (2.1) can
be modelled by the Most Powerful Unfalsified Model (MPUM ), i.e. the smallest linear
subspace B

∗ ⊆ C
∞(R2,Cw) closed under differentiation that contains the trajectories

(2.1). Ibid. it is shown that the MPUM for (2.1) is autonomous : there are no free
components in w, i.e. components which can take arbitrary values in C

∞(R2,Cw);
moreover, the MPUM is finite-dimensional as a subspace of C∞(R2,Cw).

In the proof of Th. 3 of [32] an algorithm ultimately based on commutative
algebra is provided to construct a state-representation of the MPUM, i.e. to compute
n ∈ N and matrices Ai ∈ C

n×n, i = 1, 2 and C ∈ C
w×n such that the MPUM is

B
∗ :=

{
w ∈ C

∞(R2,Cw) | ∃ x ∈ C
∞(R2,Cn)

s.t.
∂

∂ti
x = Aix, i = 1, 2 and w = Cx

}
.(2.2)

In [32] the matrices Ai, i = 1, 2 and C of a (generally non-minimal) representation
(2.2) are computed by inspection directly from the data (2.1). In section 4 of this
paper we pursue a different approach to compute a minimal state representation (2.2)
of the MPUM, based on the rank-revealing factorization of a constant matrix obtained
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from the trajectories wi and their derivatives at (t1, t2) = (0, 0). Such rank-revealing
factorization produces the values at (0, 0) of state trajectories x(·, ·) associated with
the data (2.1) and their partial derivatives. The matrices A1, A2, C corresponding
to a minimal state-space representation (2.2) of the MPUM can then be computed
solving a system of linear equations involving the constructed state trajectories values
and the data. An advantage of our approach over the method of [32] is that minimal
state representations of the MPUM are obtained directly from the data, without any
further computation, e.g. the reduction of a pre-computed representation to a Kalman
observability form suggested in sect. 2 of [32].

2.2. The input-output case. The second problem considered in this paper
arises when an input-output partition w = col(u, y) of the variables is known, and
moreover the data-generating system is controllable (see [31] for a definition) and
quarter-plane causal (see sect. III of [27]). It is well-known that such a system can be
represented by a Roesser i/s/o representation (introduced in [28] in the discrete-case):

[
∂

∂t1
x1

∂
∂t2

x2

]
= A

[
x1

x2

]
+

[
B1

B2

]
u

y =
[
C1 C2

] [x1

x2

]
+Du ,(2.3)

where A ∈ Cn×n, B := col(B1, B2) ∈ Cn×m, C :=
[
C1 C2

]
∈ Cp×n, D ∈ Cp×m, and

the external variable w := col(u, y).
In sect. 5 of this paper we show how to compute matrices A, B, C such that (2.3)

are satisfied for some trajectories xi and the data wi = col(ui, yi), i = 1, . . . , N in (2.1).
Our approach to this identification problem is based on rank-revealing factorizations of
constant matrices obtained from the data (2.1) and their dual trajectories, i.e. external
trajectories of the dual system1. Such factorizations produce the values at (0, 0) of
state trajectories xi corresponding to the data wi in some Roesser representation
(2.3). Once the xi(0, 0), i = 1, . . . , N are known, the matrices A, B, C and D can
be computed in a straightforward way. In our approach an essential role is played
by the calculus of bilinear differential forms, and their representation as four-variable
polynomial matrices.

3. Background material. We give only the minimum amount of information
needed; see [10, 17, 18] for more information, and [11, 13, 14, 21, 23] for important
details and for applications of 2D bilinear- and quadratic differential forms.

3.1. Two-dimensional systems. A subset B of the space C
∞(R2,Cw) of in-

finitely differentiable trajectories in two independent variables is called a 2D linear
differential behavior if it is the solution set of a system of linear, constant-coefficient
partial differential equations (in the following PDEs) in two independent variables.
That is, B is the subset of C∞(R2,Cw) consisting of all solutions to

(3.1) R

(
∂

∂t1
,
∂

∂t2

)
w = 0

where R is a polynomial matrix in the indeterminates ξi, i = 1, 2. We call (3.1) a
kernel representation of B, and we denote the set consisting of all linear differential
2D-systems with w external variables with Lw

2.

1We show in Rem. 5 that dual trajectories do not need to be measured from the dual system,
but can be computed directly from the primal data (2.1) via a technique called mirroring.
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If B is controllable (see Def. 1 of [18]) then it admits an image representation

(3.2) w = M

(
∂

∂t1
,
∂

∂t2

)
ℓ

where w ∈ C
∞(R2,Cw), the latent variable ℓ ∈ C

∞(R2,Cl), and M is a polynomial
matrix in the indeterminates ξi, i = 1, 2 with a suitable number of columns. Such set
of PDEs represents the full behavior Bf ∈ Lw+l

2 defined by

Bf := {(w, ℓ) ∈ C
∞(R2,Cw+l) | (3.2) are satisfied}

and the external behavior B

B := {w ∈ C
∞(R2,Cw) | ∃ℓ ∈ C

∞(R2,Cl) s.t. (3.2) are satisfied}

It can be shown that B belongs to Lw
2, in other words, it can be described by a set of

kernel equations such as (3.1) (see [17]).
In the following we need the notion of (weakly) autonomous 2D-behavior. In

order to formalize such concept we need to define the characteristic ideal and char-
acteristic variety associated with a kernel representation (3.1). Let R ∈ Rr×w[ξ1, ξ2];
its characteristic ideal is the ideal of R[ξ1, ξ2] generated by the determinants of all
w× w minors of R, and the characteristic variety is the set of solutions common to all
polynomials in the ideal. A behavior represented in kernel form by (3.1) is (weakly)
autonomous if its characteristic ideal is not the zero ideal; or equivalently, if its char-
acteristic variety is not all of C2. The characteristic variety is finite iff the behavior is
finite-dimensional, i.e. it consists only of polynomial vector-exponential trajectories.

Finally, we introduce the notion of dual of a linear differential behavior. We
denote by D(R2,Cw) the set of infinitely differentiable trajectories from R2 to Cw with
compact support. Let J ∈ Rw×w be an involution, i.e. J2 = Iw; given a controllable
behavior B ∈ Lw

2, we define its J-dual as

B
⊥J :=

{
w′ ∈ C

∞(R2,Cw) |

∫ +∞

−∞

∫ +∞

−∞

w′∗Jw dt1dt2 = 0

for all w ∈ B ∩D(R2,Rw)
}

.(3.3)

Using an integration-by-parts argument it can be shown (see also sect. 5 of [16]) that

if B = ker R
(

∂
∂t1

, ∂
∂t2

)
= im M

(
∂
∂t1

, ∂
∂t2

)
, then

(3.4) B
⊥J = ker M

(
−

∂

∂t1
,−

∂

∂t2

)⊤

J = im JR

(
−

∂

∂t1
,−

∂

∂t2

)⊤

.

If J = I, we denote B
⊥J by B

⊥.

3.2. 2D bilinear differential forms. In order to simplify the notation, de-
fine the vector t := (t1, t2), the multi-indices k := (k1, k2) and l := (l1, l2), and
the notation ζ := (ζ1, ζ2) and η := (η1, η2). Thus Rw1×w2 [ζ, η] denotes the ring
Rw1×w2 [ζ1, ζ2, η1, η2] of real polynomial w1 × w2 matrices in the four indeterminates
ζi and ηi, i = 1, 2; and ζkηl = ζk1

1 ζk2

2 ηl11 ηl22 .
An element of Rw1×w2 [ζ, η] is of the form Φ(ζ, η) =

∑
k,lΦk,lζ

kηl, where Φk,l ∈

Rw1×w2 ; the sum ranges over all nonnegative multindices k and l, and is assumed to
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be finite. Such matrix induces a bilinear differential form (BDF in the following) LΦ

LΦ : C∞(R2,Cw1)× C
∞(R2,Cw2) −→ C

∞(R2,C)

(v, w) −→
∑

k,l

(
∂kv

∂tk

)∗

Φk,l

∂lw

∂tl

where the k-th derivatives ∂k

∂tk
and ∂l

∂tl
are defined by ∂k

∂tk
:= ∂k1+k2

∂t
k1
1

∂t
k2
2

, ∂l

∂tl
:= ∂l1+l2

∂t
l1
1
∂t

l2
2

.

Given Bi ∈ Lw
2, i = 1, 2, two BDFs LΦi

, i = 1, 2 are equivalent along B1 ×B2,

denoted by LΦ1

B1×B2= LΦ2
or by Φ1

B1×B2= Φ2, if LΦ1
(v, w) = LΦ2

(v, w) for all
(v, w) ∈ B1 ×B2. In the following result we characterize equivalence of BDFs along
behaviors in terms of properties of the associated polynomial matrices.

Proposition 3.1. Let B1 = ker R1

(
∂
∂t

)
∈ Lw1

2 , B2 = ker R2

(
∂
∂t

)
∈ Lw2

2 , and
let Φ1 ∈ Rw1×w2 [ζ1, ζ2, η1, η2], Φ2 ∈ Rw1×w2 [ζ1, ζ2, η1, η2].

LΦ1

B1×B2= LΦ2
if and only if there exist Yi ∈ R•×•[ξ1, ξ2], i = 1, 2 such that

Φ1(ζ1, ζ2, η1, η2) = Φ2(ζ1, ζ2, η1, η2) +R1(ζ1, ζ2)
⊤Y1(η1, η2) + Y2(ζ1, ζ2)

⊤R2(η1, η2) .

Proof. The proof of sufficiency is straightforward. To prove necessity, an argument
analogous to that of Prop. 10 in [10] can be used.

In the following we often differentiate a BDF with respect to one of the indepen-
dent variables, i.e. from LΦ we define for i = 1, 2:

∂

∂ti
LΦ : C∞(R2,Cw1)× C

∞(R2,Cw2) −→ C
∞(R2,C)

(v, w) −→
∂

∂ti
LΦ(v, w) .

It is easy to see that the partial derivative of a BDF is also a BDF. Using Leibniz’s

rule for the expression ∂
∂ti

(∑
k,l(

∂kv
∂tk

)∗Φk,l
∂lw
∂tl

)
, it can be verified in a straightforward

way that the polynomial matrix representing ∂
∂ti

LΦ is

(3.5) (ζi + ηi)Φ(ζ1, ζ2, η1, η2) , i = 1, 2 .

We also consider vectors Ψ ∈ (Rw1×w2 [ζ1, ζ2, η1, η2])
2, i.e. Ψ = (Ψ⊤

1 ,Ψ
⊤
2 )

⊤ with
Ψi ∈ Rw1×w2 [ζ1, ζ2, η1, η2], i = 1, 2. Ψ induces a vector of BDFs (VBDFs) defined by

LΨ : C∞(R2,Cw1)× C
∞(R2,Cw2) −→ (C∞(R2,C))2

LΨ(v, w) −→ col


∑

k,l

(
∂kv

∂tk

)∗

Ψi,k,l

∂lw

∂tl




i=1,2

where Ψi,k,l is the (k, l)-coefficient of the i-th component of Ψ.
Finally, we introduce the notion of divergence of a VBDFs, the counterpart of the

derivative of a BDF in the 1D case. Given a VBDFs LΨ = col (LΨi
)i=1,2,we define

its divergence as the BDF defined by

(3.6) (div LΨ)(w1, w2) :=

(
∂

∂t1
LΨ1

)
(w1, w2) +

(
∂

∂t2
LΨ2

)
(w1, w2)
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for all infinitely differentiable trajectories w1, w2. In terms of the 4-variable polyno-
mial matrices associated with the BDF’s, the relationship between a VBDFs and its
divergence is expressed as (see Th. 4 of [18]):

div col(Ψ1(ζ1, ζ2, η1, η2),Ψ2(ζ1, ζ2, η1, η2)) = (ζ1 + η1)Ψ1(ζ1, ζ2, η1, η2)

+ (ζ2 + η2)Ψ2(ζ1, ζ2, η1, η2) .(3.7)

4. State representations of the MPUM. We recall the following definition
from p. 1160 of [32].

Definition 4.1. A state-representation (2.2) is observable if for every w ∈ B

there exists a unique x0 ∈ Rn such that (w, x) satisfies (2.2) =⇒ x(0, 0) = x0.

Using the fact that ∂k1+k2

∂t
k1
1

∂t2
k2
w = CAk1

1 Ak2

2 x for all k1, k2 ∈ N, it can be veri-

fied in a straightforward way that a representation (2.2) is observable if and only if⋂
(k1,k2)∈N2 ker CAk1

1 Ak2

2 = {0}. Any finite-dimensional behavior B ∈ Lw
2 admits an

observable state representation (2.2), see Th. 4 p. 1160 of [32].

Our approach is based on the analysis of two infinite matrices computed from the
data (2.1), which we now introduce. Given {wi}i=1,...,N and (k1, k2) ∈ N2, we first
define the matrix of the (k1, k2)-th derivative of the data trajectories by

Hk1,k2
:=

[
∂k1+k2

∂t
k1
1

∂t
k2
2

w1 . . . ∂k1+k2

∂t
k1
1

∂t
k2
2

wN

]
.

Now define the matrix of jets by

H :=




H0,0 H1,0 H0,1 H2,0 H1,1 H0,2 . . .

H1,0 H2,0 H1,1 H3,0 H2,1 H1,2 . . .

H0,1 H1,1 H0,2 H2,1 H1,2 H0,3 . . .

H2,0 H3,0 H2,1 H4,0 H3,1 H2,2 . . .
...

...
...

...
...

...
. . .




.(4.1)

The matrix H(0, 0) of jets at (0, 0) is defined by

Hk1,k2
(0, 0) :=

[
∂k1+k2

∂t
k1
1

∂t
k2
2

w1(0, 0) . . . ∂k1+k2

∂t
k1
1

∂t
k2
2

wN (0, 0)
]
,

and

H(0, 0) :=




H0,0(0, 0) H1,0(0, 0) H0,1(0, 0) . . .

H1,0(0, 0) H2,0(0, 0) H1,1(0, 0) . . .

H0,1(0, 0) H1,1(0, 0) H0,2(0, 0) . . .

H2,0(0, 0) H3,0(0, 0) H2,1(0, 0) . . .
...

...
...

. . .




.(4.2)

The following theorem is the main result of this section.
Theorem 4.2. Let (2.1) be given, and define H and H(0, 0) by (4.1) and (4.2),

respectively. Then rank(H) = n = dim B
∗, and rank(H(0, 0)) = n = dim B

∗.
Moreover, let H = SX be such that S ∈ C∞×n and X ∈ Cn×N , and denote the
i-th column of X by xi, i = 1, . . . , N . There exists a minimal state representation
(2.2) of B∗ with xi the state trajectory corresponding to wi, i = 1, . . . , N , such that
xi(0, 0) = xi, i = 1, . . . , N .
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Proof. Recall that B
∗ = lin span

{
∂k1+k2

∂t
k1
1

∂t
k2
2

wi | (k1, k2) ∈ N2 , i = 1, . . . , N

}
.

Consequently, B∗ coincides with the image of the submatrix H′ of H consisting of its
first w rows, and n = dim B

∗ = rank H′. Now choose a set of n linearly independent
columns of H′ that generate im H′, and consider the corresponding n columns of H.
Linearity of the operation of partial differentiation implies that any other column of
H is linearly dependent on the selected set. Consequently dim H = n.

To prove the second statement, let (2.2) be a minimal state representation of B,
and denote by xi the state trajectory associated with wi in such state representation.

Recall that ∂k1+k2

∂t
k1
1

∂t2k2
wi = CAk1

1 Ak2

2 xi for all k1, k2 ∈ N, i = 1, . . . , N . Define

O :=
[
C⊤ (CA1)

⊤
(CA2)

⊤ (
CA2

1

)⊤
(CA1A2)

⊤
. . .

]⊤
,

where the powers of Ai, i = 1, 2 in the j-th block row of O are ordered in the same
way as the partial derivatives in the j-th block row of H. Now define

Xk1,k2
:=

[
∂k1+k2

∂t
k1
1

∂t
k2
2

x1 . . . ∂k1+k2

∂t
k1
1

∂t
k2
2

xN

]

Xk1,k2
(0, 0) :=

[
∂k1+k2

∂t
k1
1

∂t
k2
2

x1(0, 0) . . . ∂k1+k2

∂t
k1
1

∂t
k2
2

xN (0, 0)
]
,

and observe that

H = O
[
X0,0 X1,0 X0,1 X2,0 X1,1 . . .

]

= O
[
X0,0 A1X0,0 A2X0,0 A2

1X0,0 A1A2X0,0 . . .
]

︸ ︷︷ ︸
=:X

,

H(0, 0) = O
[
X0,0(0, 0) X1,0(0, 0) X0,1(0, 0) X2,0(0, 0) . . .

]

= O
[
X0,0(0, 0) A1X0,0(0, 0) A2X0,0(0, 0) A2

1X0,0(0, 0) . . .
]

︸ ︷︷ ︸
=:X (0,0)

.

Since the chosen state-representation is minimal, it is also observable, and conse-
quently rank(O) = n. From this and statement 1) it follows that rank X = n. We
now prove that rank X (0, 0) = n; this will prove the second statement of the Theorem.

Select n linearly independent columns of H′, the submatrix consisting of the first
n rows of H. Consider the submatrix X ′(0, 0) consisting of the columns of X (0, 0)
corresponding to this selection of columns of H′; denote its j-th column by X ′

j(0, 0).
Now assume by contradiction that there exist αj ∈ C, j = 1, . . . , n, not all zero, such
that

∑n

j=1 αjX
′
j(0, 0) = 0. Then the trajectory of B∗ obtained by combining linearly

the columns of H′ with the coefficients αj , j = 1, . . . , n is zero, since its corresponding
state trajectory is

∑n

j=1 αjX
′
j(·, ·) and it is zero at (0, 0). This leads to a contradiction:

the chosen columns of H′ were linearly independent by assumption.
To prove the last part of the theorem, consider that given any two factorizations

H = OX = O′X ′, it holds that row span H = row span X = row span X ′, and
consequently there exists a nonsingular matrix T ∈ R

•×• such that X ′ = TX . Thus
the columns of any matrix X obtained from a rank-revaling factorization of H are
related by a nonsingular transformation to the vectors xi(0, 0) corresponding to the
value at (0, 0) of the state trajectories xj corresponding to the wj .

It follows from Th. 4.2 that any factorization H(0, 0) = OX of the matrix H(0, 0)
such that rank O = rank X = rank H(0, 0) yields a set of vectors associated with
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the values at (0, 0) of state trajectories associated with ∂k1+k2

∂k1 t1∂k2 t2
wi. We call such a

factorization a rank-revealing factorization of H(0, 0). We now show how to exploit
rank-revealing factorizations of H(0, 0) to obtain a state-representation of B∗.

Let H(0, 0) = OX be a rank-revealing factorization of H(0, 0), and let X be any
finite submatrix of X of rank n = rank(X ). It follows from Th. 4.2 that there exist
matrices Ai, i = 1, 2 and C of a minimal state-representation of B∗ such that each
column of X is of the form Ak1

1 Ak2

2 xj(0, 0) for some k1, k2 ∈ N and j ∈ {1, . . . , N},
where xj is the state trajectory corresponding to wj . Now denote by ∂1X , respectively

∂2X , the n × n submatrix of X whose columns are Ak1+1
1 Ak2

2 xj(0, 0), respectively

Ak1

1 Ak2+1
2 xj(0, 0); we call these matrices the shifts of X in the i-th direction.

Proposition 4.3. Let H(0, 0) = OX be a rank-revealing factorization, and let X
be any finite submatrix of X of rank n = rank(X ). Denote by ∂1X, respectively ∂2X,
the shifts of X in the first, respectively second direction; and by X† a right-inverse of
X. Define Ai := (∂iX)X†, i = 1, 2 and the matrix C as that consisting of the first w
rows of the matrix O. Then (A1, A2, C) is a minimal state realization of B∗.

Proof. It follows from Th. 4.2 that given ∂iX and X , there exist matrices Ai of a
realization of B such that the equations ∂iX = AiX , i = 1, 2 are satisfied. Now use
the assumption that X has full row rank n to conclude that Ai = (∂iX)X†, i = 1, 2.
The last part of the proof follows in a straightforward way.

We now state an algorithm for computing a representation (2.2) of B∗.

Algorithm 1
Input: Vector-exponential trajectories wieλ

i
1·eλ

i
2·, i = 1, . . . , N ;

Output: Minimal representation (2.2) of B∗ for lin span {wieλ
i
1·eλ

i
2·}i=1,...,N .

Compute H(0, 0);
Compute a rank-revealing factorization H(0, 0) = OX ;
Select submatrix X of X such that rank(X) = rank(X );
Define ∂iX to be the i-th shift of X , i = 1, 2;
Define Ai := ∂iXX†, i = 1, 2
Define C :=submatrix consisting of the first w rows and n columns of H(0, 0).
Return A1, A2 and C.

We illustrate the application of Algorithm 1 with an example.

Example 1. Consider trajectories whose value at (t1, t2) is w1(t1, t2) := e2t1 ,
w2(t1, t2) := t1e

3t1e5t2 . The matrix obtained from w1, w2 and their derivatives, with
columns and rows ordered in the total degree lexicographic ordering up to (0, 2) is

H′(0, 0) =




1 0 2 1 0 0 4 6 0 5 0 0
2 1 4 6 0 5 8 27 0 30 0 25
0 0 0 5 0 0 0 30 0 25 0 0
4 6 8 27 0 30 16 108 0 135 0 150
0 5 0 30 0 25 0 135 0 150 0 125
0 0 0 25 0 0 0 150 0 125 0 0




,

and it has rank 3. The rank does not increase adding columns and rows of H(0, 0);
consequently, the minimal dimension of the state space is 3. A rank-revealing factor-
ization of H′(0, 0) is H′(0, 0) = O′X ′, where

O′⊤ =




−0.363 −2.49 −1.78 −11.7 −12.4 −8.89
−0.321 0.393 −1.78 5.28 1.61 −8.90
1.23 1.92 0.115 1.68 −2.44 0.575



⊤
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and

X ′ :=




−0.138 0.191 0.823
−0.356 0.355 −0.0127
−0.276 0.382 1.65
−2.47 −0.341 −0.00574

0 0 0
−1.78 1.77 −0.0635
−0.551 0.763 3.29
−11.6 −5.24 0.0798

0 0 0
−12.4 −1.70 −0.0287

0 0 0
−8.90 8.87 −0.317




⊤

.

A full row-rank submatrix of X ′ is that consisting of the first, second, and fourth
column. The corresponding ∂1X

′ consists of the third, fourth, and eighth column of
X ′; ∂2X

′ consists of columns 5,6 and 10 of X ′. Solving ∂iX = AiX , i = 1, 2 in the
least-squares sense yields

A1 =




4.97 −1.95 0.948
1.97 1.04 0.553

−0.0391 0.0158 1.99


 , A2 =




4.99 0.0244 0.831
0.00733 4.97 −1.15
0.0316 −0.146 0.0391


 ,

while the first row of O′ gives C =
[
−0.363 −0.321 1.23

]
. The norm of A1A2 −

A2A1 is of the order of 10−14, suggesting that if the factorizations could be performed
in infinite precision, the commutativity of state matrices for state-representations (2.2)
of the MPUM would be verified. �

5. Roesser state models from i/o data. This section is divided in three
parts. In the first one we show that an inner product of external primal- and dual
trajectories is the divergence of a field whose components are the inner products of
the first- and second state variables of the primal- and dual Roesser models. In sect.
5.2 we characterize zero-divergence fields, also along a pair of behaviors. In sect.
5.3 we show how to compute a Roesser model interpolating given vector-exponential
trajectories on the basis of the decomposition of a constant matrix derived from the
data in the sum of two lower-rank matrices. Finally, in sect. 5.4 we illustrate our
procedure with a numerical example, and comment on several issues.

5.1. Duality and divergence of fields of state variables. We associate to
a Roesser representation (2.3) its dual one, defined by the equations:

[
∂
∂t1

x′
1

∂
∂t2

x′
2

]
= −A⊤

[
x′
1

x′
2

]
+

[
C⊤

1

C⊤
2

]
u′

y′ =
[
B⊤

1 B⊤
2

] [x′
1

x′
2

]
−D⊤u′ .(5.1)

The adjective “dual” is justified by the following result.
Proposition 5.1. Assume that the external behaviors B, respectively B

′, of
(2.3) and (5.1), respectively, are controllable. Then B

′ = B
⊥ defined by (3.3).

Proof. We show that the transfer functions H ′(ξ1, ξ2) of B′ and H(ξ1, ξ2) of B
satisfy H ′(ξ1, ξ2) = −H(ξ1, ξ2)

⊤. This leads straightforwardly to the claim. Partition
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A =:

[
A11 A12

A21 A22

]
accordingly to the partitions of x and x′; it is a matter of verification

using 2D-Laplace transforms to check that

H(ξ1, ξ2) = C

[
ξ1In1 −A11 −A12

−A21 −ξ2In2 −A22

]−1

B +D

H ′(ξ1, ξ2) = B⊤

[
ξ1In1 +A⊤

11 A⊤
21

A⊤
12 ξ2In2 +A⊤

22

]−1

C⊤ −D⊤ ,

from which it follows that H ′(ξ1, ξ2) = −H(−ξ1,−ξ2)
⊤. Now let N(ξ1, ξ2)D(ξ1, ξ2)

−1

be a right-coprime factorization of H(ξ1, ξ2); then −D(−ξ1,−ξ2)
−⊤N(−ξ1,−ξ2)

⊤ is a
left-coprime factorization of H ′(ξ1, ξ2). Consequently the external behavior of (2.3) is

im

[
D( ∂

∂t1
, ∂
∂t2

)

N( ∂
∂t1

, ∂
∂t2

)

]
and that of (5.1) is ker

[
N(− ∂

∂t1
,− ∂

∂t2
)⊤ −D(− ∂

∂t1
,− ∂

∂t2
)⊤

]
.

To conclude the proof use (3.4).
In the computation of i/s/o representations from vector-exponential data, an

important role is played by the following result.

Proposition 5.2. Let B ∈ Lw
2 be controllable, and let B = ker R

(
∂
∂t1

, ∂
∂t2

)
=

im M
(

∂
∂t1

, ∂
∂t2

)
. Define Φ(ζ1, ζ2, η1, η2) := R(−ζ1,−ζ2)M(η1, η2) ∈ Rp×m[ζ1, ζ2, η1, η2].

Then there exist Ψ1,Ψ2 ∈ R
p×m[ζ1, ζ2, η1, η2] such that

Φ(ζ1, ζ2, η1, η2) = div (col(Ψ1(ζ1, ζ2, η1, η2),Ψ2(ζ1, ζ2, η1, η2)))

= (ζ1 + η1)Ψ1(ζ1, ζ2, η1, η2) + (ζ2 + η2)Ψ2(ζ1, ζ2, η1, η2) .

Proof. Recall that R(ξ1, ξ2)M(ξ1, ξ2) = 0, and apply Th. 4 p. 1411 of [18].
From Prop. 5.1 and Prop. 5.2 it follows that there exists a vector col(LΨ1

, LΨ2
)

of bilinear differential forms acting on the external variables of the primal and dual
system, such that for every w ∈ B and w′ ∈ B

⊥ the following equality holds:

(5.2) w′∗w = div (LΨ1
(w,w′), LΨ2

(w,w′)) .

We show that w′∗w is the divergence of a VBDFs acting respectively on the first- and
second state variables associated to w and w′ in the primal and the dual system.

Theorem 5.3. Let B,B⊥ ∈ Lw
2, with state representations (2.3) and (5.1),

respectively. Let w = col (u, y) ∈ B and w′ = col (u′, y′) ∈ B
′, with associated state

trajectories x = col(x1, x2) and x′ = col(x′
1, x

′
2), respectively. Then

[
u∗ y∗

] [0m×p Im
Ip 0p×m

] [
u′

y′

]
= div (x∗

1x
′
1, x

∗
2x

′
2) =

∂

∂t1
(x∗

1x
′
1) +

∂

∂t2
(x∗

2x
′
2) .(5.3)

Proof. The claim follows from the following chain of equalities:

y∗u′ + u∗y′ =
(
x∗C⊤ + u∗D⊤

)
u′ + u∗

(
B⊤x′ −D⊤u′

)
= x∗

(
C⊤u′

)
+
(
u∗B⊤

)
x′

= x∗

(
A⊤x′ +

[
∂
∂t1

x′
1

∂
∂t2

x′
2

])
+

([
∂

∂t1
x1

∂
∂t2

x2

]
−A

[
x1

x2

])∗

x′ .
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Remark 1. If (w, x) and (w′, x′) are full trajectories of two 1D behaviors B,
respectively B

⊥, then w′∗w = d
dt

(
x′⊤x

)
(see Prop. 10.1 p. 1730 of [30]). Such

relation is at the basis of the 1D Loewner approach to rational interpolation, see [3].
Th. 5.3 provides an analogous result in the 2D case. �

Remark 2. From Th. 5.3 follows an alternative proof of Prop. 5.1. Indeed,
for any pair consisting of a compact support trajectory w = col(u, y) ∈ B and w′ =
col(u′, y′) ∈ B

′ and associated state trajectories x, x′, equation (5.3) implies that

∫ ∫ +∞

−∞

u∗y′ + y∗u′dt1dt2 =
∂

∂t1
(x∗

1x
′
1) |

t1=+∞
t1=−∞ +

∂

∂t2
(x∗

2x
′
2) |

t2=+∞
t2=−∞= 0 ,(5.4)

where the last equality is justified by the fact that since the external trajectories have
compact support, also x has compact support. �

In the rest of the paper we assume that the data is purely vector-exponential, i.e.
Li
1 = 0 = Li

2, i = 1, 2 in (2.1). For the moment we also assume that a set of N dual
trajectories is known; we show in Rem. 5 that such assumption is of little import,
since dual trajectories are readily computed from primal ones. Consequently, for the
time being we assume that the following data is available:

wi(·, ·) = col(u, y)(·, ·) =

[
ui

yi

]
eλ

i
1·eλ

i
2· ∈ B , i = 1, . . . , N(5.5)

w′
i(·, ·) = col(u′, y′)(·, ·) =

[
u′
i

y′i

]
eµ

i
1·eµ

i
2· ∈ B

⊥J , i = 1, . . . , N .

To such trajectories correspond vector-exponential state trajectories

(5.6) xie
λi
1·eλ

i
2· , xj

′eµ
i
1·eµ

i
2·

(where xi
′, xi ∈ Cn), i = 1, . . . , N ′, j = 1, . . . , N satisfying equations (5.1) and (2.3),

respectively. We partition xi
′ =: col(xi,1

′, xi,2
′) and xi =: col(xi,1, xi,2) according to

the partition of the state trajectories in (5.1) and (2.3).
Define from (5.5), (5.6) the matrices

L :=
[
w′

1 . . . w′
N

]
∈ C

w×N , R :=
[
w1 . . . wN

]
∈ C

w×N

Λi := diag(λk
i )k=1,...,N , Mi := diag(µk

i )k=1,...,N , i = 1, 2(5.7)

X ′ :=
[
x1

′ . . . xN ′

]
=:

[
X ′

1

X ′
2

]
, X :=

[
x1 . . . xN

]
=:

[
X1

X2

]
∈ C

n×N .

The following result, a straightforward consequence of Th. 5.3, establishes the con-
nection between matrices computed from the external data and matrices computed
from the internal (i.e. state) ones.

Proposition 5.4. Define the matrices L, R, Λi, Mi, X
′, X by (5.7). Then

L∗JR = M∗
1X

′∗
1 X1 +X ′∗

1 X1Λ1 +M∗
2X

′∗
2 X2 +X ′∗

2 X2Λ2 .(5.8)

Proof. The claim follows in a straightforward way considering the value at (0, 0)
of equation (5.3) on the external data and their associated state trajectories.

We now give sufficient conditions under which the matrices X and X ′ defined in
(5.6) have rank equal to the dimension of the state variables xi, x

′
i, i = 1, 2.
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Proposition 5.5. Let B,B⊥ ∈ Lw
2 be controllable. Let (5.5) be given, and denote

by xi(·, ·), respectively x′
j(·, ·), a state trajectory corresponding to wi(·, ·), respectively

w′
j(·, ·), in a Roesser representation (2.3), respectively (5.1).

Assume that N > n1 + n2, and that there exist n = n1 + n2 linearly independent
trajectories among those in {wi}i=1,...,N and {w′

i}i=1,...,N , respectively. Then

rank
[
xi,1(0) . . . xi,N (0)

]
= ni = rank

[
x′
i,1(0) . . . x′

i,N (0)
]
, i = 1, 2 .

Proof. We prove the first and third equalities; the other two follow in an analogous

manner. Assume by contradiction that rank X := rank

[
x1,1(0) . . . x1,N (0)
x2,1(0) . . . x2,N (0)

]
<

n1 + n2. Reordering the trajectories wi if needed, we can assume that the first n of

them are linearly independent. Since rank X < n, the submatrix X
′
of X consisting

of its first n columns is such that there exist αi ∈ C, i = 1, . . . , n, not all zero, such

that X
′
col(αi)i=1,...,n1+n2 = 0. The MPUM for the set {col(wi, xi)}i=1,...,n1+n2 is

autonomous and finite dimensional; moreover, since such behavior is a subset of the
set of full (external, state)-trajectories of a state representation of B, x is a state

variable also for it. Now define ŵ(·, ·) :=
∑n1+n2

k=1 αkwke
λk
1 ·eλ

k
2 ·; its associated state

trajectory is x̂(·, ·) :=
∑n1+n2

k=1 αkxk(0, 0)e
λk
1 ·eλ

k
2 ·. Since X

′
col(αi)i=1,...,n1+n2 = 0, the

value at (0, 0) of such state trajectory is zero. Given that the MPUM is autonomous,
this implies that ŵ is also zero. This however is in contradiction with the linear
independence of the first n external trajectories and the assumption that not all αi’s
are equal to zero. Consequently X has rank n1 + n2. This is readily seen to imply
that rank

[
x1,1(0) . . . x1,N (0)

]
= n1 and rank

[
x2,1(0) . . . x2,N (0)

]
= n2.

Remark 3. A sufficient condition for the external vector-exponential trajectories

to be linearly independent is that
(
λk
1 , λ

k
2

)
6=

(
λ
j
1, λ

j
2

)
for j 6= k, j, k = 1, . . . , N , and

(
µi
1, µ

i
2

)
6=

(
µℓ
1, µ

ℓ
2

)
, for i 6= ℓ, i, ℓ = 1, . . . , N .

5.2. Zero-divergence fields and their characterization. Given two con-
trollable behaviors B,B⊥ ∈ Lw

2 described by equations (2.3) and (5.1), the ni ∈ N,
matrices Xi ∈ Rni×N , X ′

i ∈ Rni×N , i = 1, 2, defined by (5.7) satisfy (5.8). If such
Xi, X

′
i can be computed from the LHS of (5.8) and a “sufficiently informative” set

of data is available, then matrices (A,B,C,D) of a Roesser model for the primal
system can be computed solving a system of linear equations. However, given L∗JR

the solutions Xi, X
′
i, i = 1, 2 to (5.8) are non-unique, since the homogeneous matrix

equation in X1,X2 ∈ RN×N

(5.9) 0 = M∗
1X1 + X1Λ1 +M∗

2X2 + X2Λ2 ,

has nonzero solutions Xi, i = 1, 2. Such non-uniqueness arises since the divergence
operator appearing on the right-hand side of (5.3), from which (5.8) derives, is non-
invertible: given a 2D function f , there are many fields F : R × R → R2 such that
∇F = f . See also sect. 27-4 of [29] on the issues arising in Maxwell’s equations from
the non-injectivity of the divergence operator.

The following result is a characterization of zero-divergence fields in terms of
properties of the corresponding polynomial matrices.

Proposition 5.6. Let Ψi ∈ Rw×w[ζ1, ζ2, η1, η2], i = 1, 2. The following three
statements are equivalent:
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1. div col(LΨ1
, LΨ2

) = 0;
2. (ζ1 + η1)Ψ1(ζ1, ζ2, η1, η2) + (ζ2 + η2)Ψ2(ζ1, ζ2, η1, η2) = 0;
3. There exists Ψ ∈ Rw×w[ζ1, ζ2, η1, η2] such that

Ψ1(ζ1, ζ2, η1, η2) = (ζ2 + η2)Ψ(ζ1, ζ2, η1, η2)

Ψ2(ζ1, ζ2, η1, η2) = −(ζ1 + η1)Ψ(ζ1, ζ2, η1, η2) .

Moreover, let Bi = ker Ri

(
∂
∂t

)
∈ Lw

2, i = 1, 2. The following two statements are
equivalent:

4. div col(LΨ1
, LΨ2

)
B1×B2= 0;

5. (ζ1 + η1)Ψ1(ζ1, ζ2, η1, η2) + (ζ2 + η2)Ψ2(ζ1, ζ2, η1, η2)
B1×B2= 0;

6. There exist Yi ∈ Rw×w[ζ1, ζ2, η1, η2], i = 1, 2 such that

(ζ1 + η1)Ψ1(ζ1, ζ2, η1, η2) + (ζ2 + η2)Ψ2(ζ1, ζ2, η1, η2)

= R1(ζ1, ζ2)
⊤Y1(ζ1, ζ2, η1, η2) + Y2(ζ1, ζ2, η1, η2)

⊤R2(η1, η2)

Proof. The equivalence of statements 1) and 2) follows from (3.7).
That 3) =⇒ 2) holds is a matter of straightforward verification.
The implication 2) =⇒ 3) follows observing that if (ζ1 + η1)Ψ1(ζ1, ζ2, η1, η2) =

−(ζ2 + η2)Ψ2(ζ1, ζ2, η1, η2), then Ψ1 is divisible by (ζ2 + η2), and Ψ2 by (ζ1 + η1).
Consequently, there exist Ψ′

j(ζ1, ζ2, η1, η2), j = 1, 2 such that Ψj(ζ1, ζ2, η1, η2) = (ζi+
ηi)Ψ

′
j(ζ1, ζ2, η1, η2), i, j = 1, 2, i 6= j. Statement 3) follows readily from such equality.
To prove the second part of the claim: the equivalence of 4) and 5) follows from

(3.7). The equivalence of 5) and 6) follows from (3.7) and Prop. 3.1.

The identifiability issues raised by the non-invertibility of the divergence operator
will be considered elsewhere (see Prop. 5.5 below for a preliminary result); in the next
section we present a procedure to compute Roesser models for the data (5.5).

5.3. Computing Roesser unfalsified models. The following result follows
from Prop. 5.4.

Theorem 5.7. Let B,B⊥ ∈ Lw
2 be controllable and quarter-plane causal. Let

data (5.5) be given and define L,R, Λi,Mi, i = 1, 2 by (5.7). Define

U :=
[
u1 . . . uN

]
∈ C

m×N , Y :=
[
y1 . . . yN

]
∈ C

p×N

U ′ :=
[
u′
1 . . . u′

N

]
∈ C

p×N , Y ′ :=
[
y′1 . . . y′N

]
∈ C

m×N .(5.10)

There exist ni ∈ N, matrices Xi, X
′
i ∈ Cni×N i = 1, 2, such that (5.8) holds. Moreover,

there exist Aij ∈ Rni×nj , i = 1, 2, Ci ∈ Rp×ni , Bi ∈ Rni×m, i = 1, 2 such that the
following equations hold:

[
X1Λ1

X2Λ2

]
=

[
A11 A12

A21 A22

] [
X1

X2

]
+

[
B1

B2

]
U

Y =
[
C1 C2

] [X1

X2

]
+DU ,

[
X ′

1M1

X ′
2M2

]
= −

[
A⊤

11 A⊤
21

A⊤
12 A⊤

22

] [
X ′

1

X ′
2

]
+

[
C⊤

1

C⊤
2

]
U ′

Y ′ =
[
B⊤

1 B⊤
2

] [X ′
1

X ′
2

]
−D⊤U ′ .(5.11)
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Given such matrices Aij , Bi, Ci, i, j = 1, 2, equations (2.3) and (5.1) define unfalsified
Roesser models for the data (5.5).

Proof. Since B,B⊥ ∈ Lw
2 are controllable, they admit Roesser state representa-

tions (2.3) and (5.1), respectively. Denote by xi = col(x1,i, x2,i), x
′
i = col(x′

1,i, x
′
2,i),

the state trajectories associated in such representations with wi, respectively w′
i,

i = 1, . . . , N . Now consider the value at (0, 0) of (2.3) and (5.1) with such external-
and state trajectories. This argument proves the first part of the theorem and the
equations (5.11). The last part of the claim is straightforward.

From Th. 5.7 it follows that the crucial issue in computing unfalsified models for
the primal data is finding matrices Si, i = 1, 2 solving the Sylvester-type equation

(5.12) L∗JR = M∗
1S1 + S1Λ1 +M∗

2S2 + S2Λ2 ,

from which matricesXi, X
′
i, i = 1, 2 can be computed such that the first two equations

in (5.11) are satisfied. The following result gives sufficient conditions on S1, S2 and
the data for this to happen.

Theorem 5.8. Let B,B⊥ ∈ Lw
2 be controllable. Let data (5.5) be given and

define L,R, Λi,Mi, i = 1, 2 by (5.7) and U , Y , U ′, Y ′ by (5.10).
Assume that im Y ′∗ ∩ im U ′∗ = {0}. Assume also that S1, S2 ∈ C

N×N solve
(5.12) and moreover that

1. im S1 ∩ im S2 = {0};
2. im

[
S1 S2

]
∩ im U ′∗ = {0} .

Let Si = X ′∗
i Xi, i = 1, 2 be rank-revealing factorizations. There exist a left inverse[

X ′∗
1 X ′∗

2

]†
of

[
X ′∗

1 X ′∗
2

]
and F ∈ Cp×N such that

[
X ′∗

1 X ′∗
2

]†
U ′∗ = 0N×p and F

[
Y ′∗ U ′∗

]
=

[
0p×m Ip

]
.(5.13)

Let
[
X ′∗

1 X ′∗
2

]†
, F satisfy (5.13), and define

A := −
[
X ′∗

1 X ′∗
2

]† [
M∗

1X
′∗
1 M∗

2X
′∗
2

]
, B :=

[
X ′∗

1 X ′∗
2

]†
Y ′∗

C := F
(
IN −

[
X ′∗

1 X ′∗
2

] [
X ′∗

1 X ′∗
2

]†) [
M∗

1X
′∗
1 M∗

2X
′∗
2

]

D := F
[
X ′∗

1 X ′∗
2

] [
X ′∗

1 X ′∗
2

]†
Y ′∗ .(5.14)

Then A, B, C, D define an unfalsified Roesser model for the data.
Proof. From Si = X ′∗

i Xi, i = 1, 2 being rank-revealing factorizations we conclude
that im

[
S1 S2

]
= im

[
X ′∗

1 X ′∗
2

]
. From this and assumption 1) it follows that[

X ′∗
1 X ′∗

2

]
admits a left inverse. From assumption 2) conclude that such a left-inverse

can be chosen satisfying the first equation in (5.13).
Now multiply both sides of (5.12) by such left-inverse to conclude that

(5.15)

[
X1Λ1

X2Λ2

]
= A

[
X1

X2

]
+BU ,

where A and B are defined by the first two equations in (5.14). Use the assumption
im Y ′∗ ∩ im U ′∗ = {0} to conclude that an F exists such that the second equation in
(5.13) holds. Multiply both sides of (5.12) by such F and use (5.15) to conclude that

(5.16) Y = C

[
X1

X2

]
+DU ,
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where C and D are defined by the last two equations in (5.14). The fact that A, B, C
and D define an unfalsified model for the primal data follows from (5.15) and (5.16).
This concludes the proof of the Theorem.

Based on the results of Th.s 5.7 and 5.8 , to compute a Roesser model for data
(5.7) we can proceed as follows. Assume that the condition im Y ′⊤ ∩ im U ′⊤ = {0},
with Y ′, U ′ defined by (5.10) is satisfied. Beginning with (n1, n2) := (1, 0), and
following the total degree lexicographic ordering in N×N, we check the existence of a
solution

[
S1 S2

]
to (5.12) with rank Si = ni, i = 1, 2 satisfying conditions 1)− 2) of

Th. 5.8. Such check can be performed as follows: let
[
S1 S2

]
be a solution of (5.12);

note that a solution always exists, since the data belongs to a controllable model and
consequently equation (5.3) is satisfied. Now define

(5.17) G := {(G1, G2) | G1, G2 solve (5.9)} ,

and note that since (5.9) is a linear matrix equation, a parametrization of G is straight-
forward to obtain. We can now check whether there exist (G1, G2) ∈ G such that
S1 := S1+G1, S2 := S2 +G2 satisfy conditions 1)− 2) of Th. 5.8; a mixed symbolic-
numerical method is illustrated in Example 2 below. If such G1, G2 exist, then
rank-revealing factorizations of Si +Gi, i = 1, 2 together with (5.13)-(5.14) yield an
unfalsified model. If they do not, we can update (n1, n2) to the next element of N×N

in the total degree lexicographic order and start over. The model identified in this
way is also of minimal complexity (state dimension) n1 + n2 among the unfalsified
Roesser models for the data satisfying the conditions of Th. 5.8.

5.4. Example and comments. We give an example of the application of our
procedure, and some comments and remarks addressing important issues.

Example 2. Consider the Roesser model associated with the matrices A =[
1 1
1 2

]
, B =

[
1
2

]
and C =

[
2 1

]
, corresponding to the transfer function

G(ξ1, ξ2) =
2ξ1+2ξ2−1

ξ1ξ2−2ξ1−ξ2+1 , and the image- and kernel representations

M(ξ1, ξ2) =

[
ξ2ξ1 − 2ξ1 − ξ2 + 1

2ξ1 + 2ξ2 − 1

]

R(ξ1, ξ2) =
[
2ξ1 + 2ξ2 − 1 −ξ2ξ1 + 2ξ1 + ξ2 − 1

]
.

We generate from such primal system vector-exponential data at the frequencies (4, 3),

(5, 4) and (9, 1
4 ), namely

[
2
13

]
e4t1e3t2 ,

[
7
17

]
e5t1e4t2 , and

[
6
−7

]
e9t1e

1
4
t2 . Using the

representation (3.4) of the dual system, we generate dual trajectories at the frequencies

(3, 1), (19 , 2), and (7, 1
3 ), namely

[
−9
−11

]
e3t1et2 ,

[
−47
−31

]
e

1
9
t1e2t2 ,

[
−47
−53

]
e7t1e

1
3
t2 . It

follows that L∗JW =




−161 −250 23
−497 −856 −65
−783 −1230 89


. It can be verified that the condition

im Y ′∗ ∩ im U ′∗ = {0} of Th. 5.8 is satisfied by such data.

To compute a solution
[
S1 S2

]
to (5.12), we solve the Sylvester equations

M∗
i Si + SiΛi =

1

2
L∗JW ,(5.18)
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i = 1, 2, obtaining

S1 =




− 23
2 − 125

8
23
24

− 4473
74 − 1926

23 − 585
164

− 783
22 − 205

4
89
32


 , S2 =




− 161
8 −25 46

5
− 497

10 − 214
3 − 130

9
− 2349

20 − 1845
13

534
7


 .

The following two matrices are solutions to (5.9):

G1 =




4g11 5g12
5g13
4

5g21 6g22
9g23
4

10g31
3

13g32
3

7g33
12


 , G2 =




−7g11 −8g12 −12g13
− 37g21

9 − 46g22
9 − 82g23

9
−11g31 −12g32 −16g33


 ,

where gij ∈ R is a free parameter, i, j = 1, . . . , 3.
To check for the existence of parameters gij for which Si = Si + Gi satisfy the

conditions of Th. 5.8, we proceed as follows. Beginning with (n1, n2) = (1, 0), we
compute the Gröbner bases of the ideals generated by the minors of Si of order ni+1,
i = 1, 2. It can be verified that for the minors of order 1 such bases consist only of the
polynomial 1; consequently there exist no parameters gij for which S1 and S2 have
ranks 1 and 0 or 0 and 1, respectively. This implies that no state models exist with
n1 = 1 and n2 = 0 or n1 = 0 and n2 = 1. The Gröbner bases of the minors of order
2 do not consist of the unit polynomial only; moreover, the sum of the two ideals
consisting of the order 2 minors also has a nontrivial Groebner basis; this implies that
values of the parameters exist such that the matrices S1 and S2 have both rank 1.

Using Mathematica it can be computed that one set of values gij for which the
minors of order 2 of S1 and S2 simultaneously annihilate, i.e. for which rank S1 and
rank S2 both have rank 1 is

(gij)i,j=1,...,3 =




−3.02377 −2.71645 6.25416
−12.9249 −11.8467 22.2606
−11.5443 −9.33238 42.4618


 .

The corresponding S1 and S2 are

S1 = S1 +G1 =




−23.5951 −29.2072 8.77604
−125.071 −154.819 46.5192
−74.072 −91.6903 27.5506




S2 = S2 +G2 =




1.04137 −3.26841 −65.8499
3.43585 −10.7837 −217.263
9.53762 −29.9345 −603.103


 .

For such matrices, conditions 1) − 2) of Th. 5.8 hold. Computing rank-revealing
factorizations Si = X ′∗

i Xi, i = 1, 2 via a SVD yields

X1 =
[
−9.49275 −11.7506 3.53077

]

X ′
1 =

[
2.48559 13.1754 7.80301

]

X2 =
[
−0.401179 1.25913 25.3682

]

X ′
2 =

[
−2.59577 −8.5644 −23.774

]
.

Via a SVD of
[
X ′⊤

1 X ′⊤
2 U ′⊤

]
we compute a left inverse of

[
X ′∗

1 X ′∗
2

]
satisfying

the first equation in (5.13):

[
X ′∗

1 X ′∗
2

]†
=

[
−0.344338 0.150758 −0.0167127
0.555166 −0.0558363 −0.0825641

]
.
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The state and input matrices computed from the first two formulas (5.14) are

A′ =

[
3.25981 1.55603
0.451739 −0.169619

]
, B′ =

[
−3.20108
1.50833

]
.

Via a SVD of
[
U ′∗ Y ′∗

]
we compute F satisfying the second condition in (5.13):

F =
[
−0.0115895 0.0450062 −0.0427869

]
.

The last two equations in (5.14) yield C′ =
[
−1.30788 −0.155653

]
and D′ =

0.261076. Such matrices correspond to the transfer function

G(ξ1, ξ2) =
−1.69695− 0.190492ξ1 + 3.33557ξ2 + 0.261076ξ1ξ2

ξ1ξ2 + 0.169619ξ1 − 3.25981ξ2 − 1.25585
,

which satisfies the interpolation conditions G(4, 3) = 13
2 , G(5, 4) = 17

7 , G(9, 1
4 ) = − 7

6

derived from the primal data directions

[
2
13

]
,

[
7
17

]
,

[
6
−7

]
. �

We conclude this section discussing several issues. Firstly, we examine alternative
approaches to the procedure used in Ex. 2. We then show how dual trajectories can be
constructed from primal ones. Subsequently, we discuss the relation of our approach
to the 2D Loewner one, and to the solution to the bi-variate Nevanlinna interpolation
problem of Agler and co-authors. Finally, we consider applying duality ideas to the
identification of Fornasini-Marchesini i/s/o models.

Remark 4 (Computational issues). In Ex. 2 we used a mixed symbolic-numerical
approach to compute Roesser models. Anecdotal evidence obtained dealing with only
a few more interpolation points suggests that such approach is impractical for larger
scale problems, since verifying the parametric rank conditions 1)−2) in Th. 5.8 using
Gröbner bases is computationally rather intensive. The bottleneck is the calculation
of minimal rank solutions S1 and S2 to (5.12); checking whether such solutions satisfy
the additional conditions of Th. 5.8 is a matter of standard computations.

One pair of solutions to (5.12) is straightforward to compute, see eq. (5.18); and
the set G in (5.17) is described by linear equations. Thus the computation of Si can
be reduced to an affine rank minimization problem:

Minimize rank S1 + rank S2

subject to A(S1, S2) = b ,

where A is a linear map, b is a vector obtained from L∗JR, and A(S1, S2) = b is a
vector-formulation of (5.12). Several algorithms to solve this NP-hard problem are
known, see e.g. [26]. �

Remark 5 (Data dualization via mirroring). In general it is difficult to obtain
data from the dual system, and only data coming from the primal one are available
(unless of course the two systems coincide- see [22, 24] for examples in the 1D case).
We now describe the mirroring technique, already used in the 1D case (see [8, 9, 25]),
to obtain dual data on the basis of primal ones.

Proposition 5.9. Let B ∈ Lw
2 be controllable, and J ∈ Rw×w be an involution.

Let weλ1·eλ2· ∈ B, and let v ∈ Cw satisfy v∗w = 0. Then Jve−λ∗

1 ·e−λ∗

2· ∈ B
⊥J .

Proof. Let M ∈ Rw×m[ξ1, ξ2] and R ∈ Rp×w[ξ1, ξ2] with w = p + m induce an
image, respectively kernel representation ofB. Since R(ξ1, ξ2)M(ξ1, ξ2) = 0p×m, for all
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(λ1, λ2) ∈ C2, im M(λ1, λ2) = (im R(λ1, λ2)
∗)

⊥
, with orthogonality in the Euclidean

sense in Cw. It follows that Jve−λ∗

1·e−λ∗

2 · ∈ im JR
(
− ∂

∂t1
,− ∂

∂t2

)⊤

= B
⊥J . �

Remark 6 (Bivariate rational interpolation in the Loewner approach). In [2] a
Loewner approach to bi-variate rational interpolation is developed for SISO systems,
based on the Loewner matrix of the data, which we now introduce through BDFs. Let
M ∈ Rw×m[ξ1, ξ2], R ∈ Rp×w[ξ1, ξ2] induce an image, respectively kernel representation
of B ∈ Lw

2. The multi-variable representation of equation (5.2) is

(5.19) R(−ζ1,−ζ2)M(η1, η2) = (ζ1+η1)Ψ1(ζ1, ζ2, η1, η2)+(ζ2+η2)Ψ2(ζ1, ζ2, η1, η2) ,

from which it follows that

(5.20)
R(−ζ1,−ζ2)M(η1, η2)

(ζ1 + η1)(ζ2 + η2)
=

Ψ1(ζ1, ζ2, η1, η2)

ζ2 + η2
+

Ψ2(ζ1, ζ2, η1, η2)

ζ1 + η1
.

Since wi ∈ im M
(

∂
∂t1

, ∂
∂t2

)
and w′

i ∈ im R
(
− ∂

∂t1
,− ∂

∂t2

)⊤

in (5.5), it follows that

there exist latent variable trajectories ℓi(·, ·) = ℓie
λi
1·eλ

i
2· and ℓ′i(·, ·) = ℓ′ie

µi
1·eµ

i
2· such

that wi =

[
ui

yi

]
= M(λi

1, λ
i
2)ℓi and w′

i =

[
u′
i

y′i

]
= R(−µi

1,−µi
2)ℓ

′
i. Now substitute the

values (λi
1, λ

i
2) and (µj

1, µ
j
2) in place of (η1, η2) and (ζ1, η2), respectively in (5.20) and

multiply on the right by ℓi and the left by ℓ′i, respectively, obtaining L = P1 + P2,

where the Loewner matrix L and Pi, i = 1, 2 are Li,j =
w′

i

⊤

wj

(−µ
j
1
+λ

j
1
)(−µ

j
2
+λ

j
2
)
, (P1)n,m =

ℓ′n
⊤
Ψ1(−µn

1 ,−µn
2 ,λ

m
1 ,λm

2 )ℓm
−µn

2
+λm

2

, (P2)n,m =
ℓ′n

⊤
Ψ2(−µn

1 ,−µn
2 ,λ

m
1 ,λm

2 )ℓm
−µn

1
+λm

1

, i, j, n,m = 1, . . . , N . If

all frequencies lie on the same side of the imaginary axis, e.g. the right-hand side
one, such matrices are Gramians obtained integrating the corresponding BDFs on the
external, respectively latent variables, from −∞ to 0, and (5.20) is the integral version
of (5.2). In [2] bi-variate Lagrange interpolation polynomial bases and kernels of
appropriate submatrices of the Loewner matrix L are used to obtain generalized state-
space models corresponding to bi-directional interpolating functions, i.e. satisfying the

left- and right interpolation conditions G(λi
1, λ

i
2) =

yi

ui
and G(µi

1, µ
i
2) =

y′

i

ui′
. �

Remark 7 (Operator-theoretic approaches to bivariate interpolation). Agler,
McCarthy and others worked on discrete nD metric interpolation problems (see [1,
4, 6]) using operator-theoretic techniques, see also [5]. Interesting similarities exist
between their formulas and ours, compare e.g. Th. 11.49 of [1] with (5.19). A
thorough investigation of the connections of such approaches with ours is a matter of
pressing research, especially in view of the usefulness of BDF techniques in solving
similar interpolation problems in the 1D case (see [8, 9, 25]). �

Remark 8 (Fornasini-Marchesini i/s/o models). The Roesser model is more
advantageous than other classes of 2D quart-plane causal i/s/o representations to
the application of our methodology; we examine the case of second-order Fornasini-
Marchesini models

∂2

∂t1∂t2
x = A1

∂

∂t1
x+A2

∂

∂t2
x+A3x+Bu

y = Cx+Du .(5.21)
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It is a matter of straightforward verification to check that the dual of (5.21) is

∂2

∂t1∂t2
x′ = −A⊤

1

∂

∂t1
x′ −A⊤

2

∂

∂t2
x′ +A⊤

3 x
′ + C⊤u′

y′ = B⊤x′ −D⊤u′ .(5.22)

With tedious but straightforward manipulations it can be verified that if col(u, y, x)
satisfies (5.21) and col(u′, y′, x′) satisfies (5.22), then

y′⊤u+ u′⊤y = div



x′⊤A1x+ 1

2x
′⊤

(
∂
∂t2

x
)
− 1

2

(
∂
∂t2

x′
)⊤

x

x′⊤A2x+ 1
2x

′⊤
(

∂
∂t1

x
)
− 1

2

(
∂
∂t1

x′
)⊤

x


 .(5.23)

Given Th. 5.3 and the equivalence of Roesser and Fornasini-Marchesini models, it
is not surprising that the external bilinear form is the divergence of a field involving
the primal and the dual state. However, partial derivatives of the state are present,
and thus the right-hand side of the matrix equation obtained from (5.23) for vector-
exponential trajectories is more involved than the right-hand side of (5.12). �

6. Conclusions. We considered two versions of the problem of modelling vector-
exponential trajectories dependent on two independent variables with state-space
models, and we provided two procedures to solve it, both essentially based on the
factorization of constant matrices directly constructed from the data. Current re-
search is aimed in several directions. Firstly, we want to establish identifiability
conditions based only on properties of the external data, since Prop. 5.5 falls short
of being completely satisfactory (see [15] on identifiability of nD systems). Secondly,
we need to develop a computationally efficient and numerically sound approach to
the implementation of our procedure to compute Roesser models (see Rem. 4). A
third research direction is the identification problem from general (i.e. not polynomial
vector-exponential) discrete data; cf. [22] for a BDF approach to such problem in the
1D case. On a longer horizon and a broader perspective, we want to investigate the
application of our duality-based approach to model reduction. Finally, Roesser models
only describe quarter-plane causal systems, and we need to generalise our results to
more general notions of “causality” (e.g. those considered in [27] in the discrete case).

REFERENCES

[1] J. Agler and J.E. McCarthy. Pick interpolation and Hilbert function spaces, volume 44 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, R.I., 2002.

[2] A.C. Antoulas, A.C. Ionita, and S. Lefteriu. On two-variable rational interpolation. Linear
Algebra and its Applications, 436(8):2889 – 2915, 2012.

[3] A.C.A. Antoulas and P. Rapisarda. Bilinear differential forms and the Loewner framework for
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