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Abstract—The magnetic flux density distribution in the air-
gap of electric machines is essential for accurate prediction of
no-load eddy-current power losses. The effect of slotting can
be modelled using a simplified single-slot model or a complete
multiple-slots model. Until now there has not been a clear
and justified criterion to choose between the two models. In
this paper we propose a criterion based on the conformal
transformations used to calculate the magnetic field distribution
of single-slot and multiple-slots models. The computational
implementation of both methods produced a graph that clearly
shows which method to use as a function of the normalised
geometrical parameters of the machine. The paper presents
a case study of a high speed machine whose proportions fall
within the multiple-slot model range, according to the criterion
proposed. It is shown that using a single slot model in this case
results in significant errors in the estimation of rotor losses.
Better agreement with FEA results is achieved when a multiple-
slot model is used.

Index Terms—Analytical models, permanent magnet ma-
chines, conformal mapping, rotor eddy-current power loss
calculation.

I. INTRODUCTION

ACCURATE calculation of the magnetic field in the air-
gap of electric machines is essential when calculat-

ing rotor losses, cogging torque and similar quantities that
strongly depend on the harmonic content of the magnetic field
distribution [1]–[5]. High accuracy is crucial in the case of
rotor losses as small errors can result in designing a machine
that will run too hot if the losses are underestimated. Over-
estimating the losses could result in a decision to abandon a
good design variant and opting for expensive solutions such
as magnet segmentation or increasing the air-gap length or
the magnet and sleeve thickness.

The methods used to calculate the magnetic field in the
air-gap of electric machines can be classified into two main
groups: numerical methods or analytical methods. Numerical
methods, like Finite Element Analysis (FEA), are extremely
useful tools because they are versatile and accurate. However,
the computation time tends to be high and in general it is
difficult to gain an insight from the these solutions unless
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several geometries are analysed; some numerical solvers
provide tools for parametric analysis for this purpose [6],
[7]. Numerical methods remain very useful tools for the
validation and the refinement of the final design.

On the other hand, analytical methods are still very useful
tools for initial design and optimisation based on the insight
obtained. Carter pioneered the use of conformal mapping,
which transforms a slotted geometry of the air-gap into a
slotless one in which the field could be calculated. He defined
a coefficient to quantify the effect of slotting on the mean
value of the magnetic field waveform [8]. However, the
transformation from the slotted geometry into the slotless
one is a Schwarz-Christoffel (SC) transformation that does
not have an explicit expression for complicated domains [9]
which made the practical application of this method difficult.
Gibbs [10] extended Carter’s work by developing two dif-
ferent methods also based on conformal mapping: one is a
simplification considering infinitely wide teeth and the other
one takes into account the effect of the neighbouring slots.
Freeman [11] applied Gibbs’ methods to a range of practical
geometries and expressed the magnetic field distribution as a
Fourier series. Even though Gibbs’ method can be solved,
the SC transformation of the multiple slots model is so
complicated that in most of the cases the single slot solution
is preferred [3]–[5], [12]–[14].

The problem of neglecting the effect of the neighbouring
slots, i. e., using a single-slot model, is that when the teeth
are narrow and the air-gap is large the waveform obtained
may not be of sufficient accuracy. This is commonly the
case in PM machines which have large effective air-gaps.
In [3]–[5] for example, the machines analysed have very
large effective air-gaps with thick magnets and sleeves. In
these machines a strong influence from the adjacent slots is
expected and a multiple-slot model would be needed. But in
the literature only Freeman suggested a criterion to choose
between single-slot and the multiple-slots models, but without
any clear justification behind this assertion [11].

The aim of this paper is to understand the limitations of
the single-slot model and develop a criterion that can be used
to determine when it is valid to apply it for the calculation of
rotor eddy-current power loss calculation. The methodology
chosen for the analysis is Gibbs’ single-slot and multiple-
slots methods because they are completely analytical and the
assumptions of both models are exactly the same except for
the width of the teeth. For tooth widths that are higher than
a certain value the influence of the adjacent slots can be
neglected and the single-slot model is valid. For smaller tooth



widths there is an interaction between the neighbouring slots
and the single-slot model will be inaccurate. In theory the
multiple-slots model should always provide correct results
but in practice for geometries with very large tooth widths
the transformation is ill defined making the numerical solvers
fail to find a solution. In these cases the single-slot model
should be used.

In this paper we propose a clear and explicit criterion
for choosing between single-slot and multiple-slots methods.
This criterion is based on the properties of the confor-
mal transformations proposed by Gibbs [10]. The graphical
representation of the limits of application of each of the
methodologies allows us to know immediately which model
to use in each case.

The paper starts with a summary of methodology to
calculate rotor eddy-current power loss calculation using a
current sheet model. Then, Gibbs’ methodologies for the
single-slot and multiple-slots geometries are presented briefly.
Next, section IV shows how the limits of application of each
of the methodologies are obtained. The results are presented
in section IV-C; Fig. 5 covers the typical geometries and
clearly states which model should be used in each case. Also,
an example is presented to illustrate the significant errors
introduced when neglecting the effect of the neighbouring
slots in the calculation of rotor losses in a PM machine.
Finally, the conclusions are presented in section VI.

II. CALCULATION OF NO-LOAD ROTOR EDDY-CURRENT
POWER LOSS

No-load rotor eddy-current power loss is calculated using
a cylindrical multilayer model in which each asynchronous
harmonic is represented by a current sheet at the stator
bore of a slotless configuration of the machine; this is
represented schematically for 4 layers in Fig. 1. The non-
segmented magnet is modelled as a conducting region with
no magnetization.
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Fig. 1. Cylindrical model of the PM machine with the corresponding current
sheet at the stator bore.

The current sheet density of an asynchronous harmonic

of space order q and time order k can be expressed as

Jqk = Ĵqk cos(qθ + kωt) = Re
(
Ĵqke

jqθejkωt
)
. (1)

The amplitude of the current sheet that corresponds
to each asynchronous harmonic, Ĵqk, is effectively set to
produce the same normal flux density on the surface of the
magnet B̂qk [3]–[5]. In practice, the problem is solved by
setting Ĵqk = 1 and calculating the corresponding losses
Pqk1 from the solution of the diffusion equation in the current
sheet model. Also, the Laplace equation (no eddy currents) is
solved to find the corresponding B̂qk1 when Ĵqk = 1. Finally,
the actual losses for a given B̂qk (obtained from harmonic
analysis using conformal mapping in this case) are calculated
as

Pqk =
( B̂qk
B̂qk1

)2
Pqk1. (2)

In this paper we study the no-load rotor loss of a non-
salient PM machine. From the rotor reference frame the slots
change position with time and this variation of permeance
produces a variation of the magnetic field seen by the rotor
which induces eddy currents [1], [2]. The calculation of the
asynchronous harmonics due to tooth permeance variation is
done by calculating the magnetic field distribution in different
rotor positions spanning one pole-pitch as shown in Fig. 2.

Fig. 2. Radial component of the magnetic field on the surface of the magnet
for several rotor positions.

The amplitude of the space and time harmonics are
calculated using a two-dimensional discrete Fourier transform
on a matrix of the waveforms of the magnetic field at several
rotor positions. In this case one dimension corresponds to
time and the other one to space.

In this paper the waveforms of the magnetic field distri-
bution are obtained analytically using a complex permeance
(CP) function and from magnetostatic FEA to compare the
amplitude of the space and time asynchronous harmonics.

III. SLOTTING MODELS

Conformal mapping uses analytic complex functions to
transform one domain into another while preserving the



angles [10]. Using conformal mapping we can transform a
domain —a rectangular polygon in this case— into a new
one in which the solution is known. If we call the original
domain the z-plane and the new one the w-plane we can
find the relationship between their magnetic fields. For an
arbitrary analytic complex function w = f(z) the expression
that relates the magnetic field in both planes [13] is

Bz = Bw

(dw
dz

)∗
= Bw

(
f ′(z)

)∗
, (3)

where the asterisk denotes the complex conjugate. The
Schwarz-Christoffel (SC) transformation is commonly used
to find the suitable function f(z). By definition an SC
transformation can map the interior of an arbitrary polygon
in the upper half of the complex plane [9].

The following methods based on [10], [11] show how to
obtain the magnetic field distribution in the air-gap of electric
machines with a toothed member. The air-gap has a magnetic
permeability of µ0 and the iron permeability is assumed to
be infinity.

A. Single-Slot Model
Fig. 3 shows the geometry considered for a single slot

surrounded by infinitely wide teeth that we will call the z-
plane. The field is produced by a magneto-motive force of V
between the toothed member and the pole-face.
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Fig. 3. Geometry of a single slot and the corresponding air-gap magnetic
flux density waveform.

The magnetic flux density B on the pole-face as a
function of the intermediate variable w can be shown to be
given by

B(w) =
w − 1

(w − a)
1
2 (w − b) 1

2

Bs, (4)

with a = 1/b and b is obtained from the equation:
b− 1√
b

=
s

g
. (5)

Bs is the value of the magnetic flux density if there were no
slots:

Bs =
µ0V

g
. (6)

The distance along the pole-face,

x =
g

π

{
− log

∣∣∣1 + p

1− p

∣∣∣+ log
∣∣∣b+ p

b− p

∣∣∣
+

2(b− 1)√
b

tan−1
p√
b

}
− s

2
, (7)

with the parameter p given by the intermediate variable w:

p2 =
b− w
a− w

. (8)

To obtain the magnetic field distribution B and x are evalu-
ated as a function of w for values from −1 to 0.

B. Multiple-Slots Model

The objective is to transform the geometry shown in Fig.
4 into a rectangle to solve the Laplace equation with the same
assumptions as in the previous section. The main difference
between this method and the one that considers a single-slot
is that there is not an explicit equation for the transformation.
This is why it is necessary to operate with the intermediate
variables α and k. The parameters α and k are obtained by
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Fig. 4. Geometry of a machine with multiple slots and the corresponding
magnetic flux density waveform.

solving the following system of non-linear equations:

g

s
=

K(k)

π

{ sn(α, k) dn(α, k)

cn(α, k)
− Z(α, k)

}
, (9)

t

s
=

2 K(k′)

π

{ sn(α, k) dn(α, k)

cn(α, k)
− Z(α, k)

}
− α

K(k)
, (10)

with

k′ =
√

1− k2, (11)

where K(k) is the complete elliptic integral of the first kind.
The functions sn(α, k), cn(α, k) and dn(α, k) are the Jacobi
trigonometric functions defined as inverse elliptic integrals.
Finally, Z(α, k) is the Jacobi Zeta function defined as a
function of the elliptic integrals [15].



The expression for the magnetic flux density as a function
of the intermediate variable v is:

B(v) =
(1 + k21v

2)
1
2

(1 + k2v2)
1
2

Bmax, (12)

where

Bmax =
πg

sK(k1)

cn(α, k)

sn(α, k) dn(α, k)
Bs, (13)

with k1 = k sn(α, k).
The distance along the pole-face,

x(v) =
s

π

[{ sn(α, k) dn(α, k)

cn(α, k)
− Z(α, k)

}
β

+ tan−1
−2
∞∑
1

(−1)mqm
2

sin πmα
K(k) sinh πmβ

K(k)

1 + 2
∞∑
1

(−1)mqm2 cos πmαK(k) cosh πmβ
K(k)

]
, (14)

with

β = F
( v

(1 + v2)
1
2

, k′
)
, (15)

where F(φ, k) is the incomplete elliptic integral of the first

kind and q is called the nome, q = e−
πK(k′)
K(k) .

To obtain the flux density distribution B and x are
evaluated as a function of v for values from 0 to ∞ in a
similar way as in the previous method.

IV. LIMITS OF APPLICATION

A. Practical Limit

When the teeth are wide enough it was noted by Gibbs
and Freeman that the maximum value of the flux density,
Bmax, is almost equal to Bs. This suggests that the effect of
neighbouring slots on the field distribution in the vicinity of
a slot is negligible.

We can define the following indicator to study if the
single-slot model is going to give almost the same answer
as the multiple-slots model for a particular geometry:

rp =
Bmax
Bs

=
πg

sK(k1)

cn(α, k)

sn(α, k) dn(α, k)
, (16)

where Bmax is obtained from (13). With this indicator for any
geometry (a given t/s and g/s) we can estimate immediately
if both models give a similar answer. If the value of rp is
close to be 1 it means that the interaction between adjacent
slots is negligible and a single-slot model can be used. If it
is significantly smaller than 1 then a multiple-slot model is
needed.

B. Numerical Limit

This section shows the range of the geometrical variables
within which the multiple-slots model is valid. Theoretically,
according to the definition of the Schwarz-Christoffel trans-
formation the geometry of Fig. 4 can always be mapped into
a rectangle. However, in practice when the ratio of the tooth

width t and the air-gap length g is large, i.e., the teeth are
very wide, the numerical solution of (9) and (10) becomes
impossible.

Let us define the right hand side of (9) as Fg(α, k) and
the right hand side of (10) as Ft(α, k):

g

s
= Fg(α, k), (17)

t

s
= Ft(α, k). (18)

Considering a particular value of g
s = K, a curve ΓK of all

the points (α, k) that satisfy this equation can be defined as
the following:

(αi, ki) ∈ ΓK ⇔ Fg(αi, ki) = K. (19)

Of all the points in ΓK there is only one point (αopt, kopt)
that satisfies:

Ft(αopt, kopt) =
t

s
. (20)

To know the limits of application of the multiple-slots
methodology we need to find the maximum tooth width
within which the numerical solver can provide a solution.
To find the maximum value of t

s for a particular value of g
s

an algorithm was implemented in MATLAB. The algorithm
is divided in three stages:

(a) Choose a value of g
s = Fg(α, k) = K.

(b) Obtain the curve (family of points) ΓK .
(c) Calculate the point (αopt, kopt) that maximizes the

function Ft(α, k) and evaluate t
s |max.

The value of t
s |max will depend on the numerical precision

of the software.
For this case as the value of t

s increases k′ —see equation
(11)— tends to be close to zero. This results in k being close
to 1 and the elliptic integral of the first kind has the following
property:

lim
k′→0

K(k′) =∞ ⇒ lim
k→1

Ft(α, k) =∞. (21)

For this reason the numerical limit in which the multiple slots
method has a solution will depend on the numerical precision
of the software; for the case of MATLAB the minimum value
of k′ in which K(k′) is not infinite is k′ = 10−8.

C. Representation of the Limits

This section presents the results obtained with MATLAB
after implementing the algorithms to calculate the practical
and numerical limits. To obtain the limits the previous
methodology was applied for a range of values of g

s to
calculate the corresponding t

s |max.
Freeman [11] proposed the following criterion: if t/g >

3.3 the single-slot model should be used and if t/g < 3.3
the multiple-slots model should be used. This condition can
also be expressed using the normalised parameters t

s and g
s :

t

s
≶ 3.3

g

s
. (22)
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Fig. 5. Numerical and practical limits of the two methodologies as a function of the geometric variables. Also, representation of Freeman’s limit and the
position of the machine analysed in section V.

Fig. 5 shows the limit proposed by Freeman, the numer-
ical limit and the practical limit for 3 different values of rp
as a function of the normalised variables t

s and g
s . The figure

can be divided in three different regions. In the region above
the solid red line the single-slot model should always be used
because the multiple-slots model will fail as it was noted in
section IV-B. Below the orange line with the circular markers
ignoring the effect of the neighbouring slots can produce
significant errors because the magnetic field in the middle
of the teeth does not reach Bs as it was described in section
IV-A (here the minimum value of rp was considered to be the
99.9 %). Between these two lines both models can be used in
the sense that they will give similar answers. However, above
the magenta line with square markers that is rp of 99.99 %
the solution of both methods will be almost identical and
k′ → 0. Freeman’s limit in Fig. 5 is the dashed blue line. It
is almost the same as the practical limit with rp of 99.9 %.

V. CASE STUDY

Fig. 6 shows a quarter of the cross-section of a high speed
PM generator with a non-conductive rotor sleeve to hold the
magnets, making the effective air-gap even larger [3]. The
parameters of this machine are shown in table I.

TABLE I
PARAMETERS OF THE MACHINE

Quantity Symbol Value
Number of poles 2p 4
Number of slots Qs 24
Core length L 125 mm
Rotor radius R1 21.6 mm
Magnet outer radius R2 27.1 mm
Stator radius R3 31 mm
Magnet thickness hm 5.5 mm
Sleeve thickness tsl 2 mm
Clearance gap hg 1.9 mm
Slot opening bo 3 mm
Rotor hub permeability µr 750
Rotor hub conductivity σr 6.7 · 106 S/m
Magnet conductivity σm 0.77 · 106 S/m
Magnet material - NdFeB
Magnet remanence Br 1.07 T
Magnet coercivity Hc 851 kA/m

Fig. 6. Quarter model of the PM synchronous generator under study.

Taking into account that the permeability of the magnets
and the sleeve is close to µ0 the effective air-gap length:

g = hm + tsl + hg = 9.4mm. (23)

In the developed model of the machine t = 3.492mm and
s = 3.394mm, therefore

g

s
≈ 2.770, (24)

t

s
≈ 1.029. (25)

The position of this machine in Fig. 5 is shown with a black
cross. Clearly the machine is in the region where only the
multiple-slots model should be used. To study the limitations
of the single-slot model the CP function is obtained for a
multiple-slots and single-slot configuration for comparison.
Both methodologies include a first conformal transformation
to model the effect of curvature [16].

The no-load magnetic field distribution in the air-gap of
the slotless configuration using the rotor’s reference frame



can be expressed using complex number notation as

Bsl(θ, r) =

∞∑
n=1,3,5

Kn(r) cos(npθ)

+ j

∞∑
n=1,3,5

Dn(r) sin(npθ), (26)

where the coefficients Kn(r) and Dn(r) are calculated ac-
cording to [17] and j =

√
−1 is the pure imaginary part.

The CP function (both for the multiple-slots and single-slot
models) using the rotor’s reference frame is

λ(θ, r, t) = λa0 +

∞∑
m=1,2,3

λam(r) cos
(
mQs(θ − ωt)

)
+ j

∞∑
m=1,2,3

λbm(r) sin
(
mQs(θ − ωt)

)
, (27)

where the coefficients λa0, λam(r) and λbm(r) are calculated
using conformal mapping. Therefore, according to [13] the
magnetic field distribution of the slotted geometry is

B(θ, r, t) = Bsl(θ, r) · λ∗(θ, r, t). (28)

The radial and tangential components of the CP function
on the surface of the magnets are shown in Fig. 7. It can
be appreciated that there are similarities in waveform but
the single-slot model is ignoring the effect of the neighbour-
ing slots that is expressed mathematically as the boundary
conditions on the middle of the teeth: (a) derivative of the
radial component is zero and (b) the tangential component is
zero. These two conditions are not satisfied by the waveform
obtained with the single-slot model.

Fig. 7. Complex permeance function obtained with the multiple-slots and
single-slot models; radial and tangential components.

Fig. 8 shows the waveform of the radial component of
the no-load magnetic field distribution on the surface of the
magnet at a particular rotor position using two-dimensional
static FEA, multiple-slots model and single-slot model. It

can be appreciated that the waveforms look very similar
in Fig. 8. However, the amplitudes of the asynchronous
harmonics have some significant differences because of the
singularities and discontinuities of the single-slot CP function
shown in Fig. 7. The amplitude of the most significant
asynchronous harmonics is shown in Fig. 9. The single-
slot model overestimates significantly the amplitude of the
asynchronous harmonics.

Fig. 8. Magnetic field distribution in the air-gap obtained using two-
dimensional static FEA and the CP function.

Fig. 9. No-load amplitude of the significant magnetic induction space
harmonics of time order 12 at 90 000 rpm.

Table II shows a comparison of the no-load losses
obtained with the linear transient FEA calculations, the
multiple-slots CP function and the single-slot CP function
for the machine under study at running at 90 000 rpm.

The rotor losses obtained with the single-slot CP function
are significantly higher than the result obtained with FEA. On
the other hand, the value obtained with the multiple-slots CP
function has a good agreement (around 4 W error) compared
to the single-slot model (around 18 W error) which could in



TABLE II
NO-LOAD ROTOR POWER LOSS

Transient FEA ≈ 11.2 W
Multiple-slots model ≈ 15.5 W
Single-slot model ≈ 29.4 W

some cases make the difference as far as the feasibility of a
design variant.

The complex permeance function used in this paper
assumes rectangular slots without tooth-tips, which is valid
if there is not saturation in the tooth-tips as discussed in [4],
[13].

VI. CONCLUSION

This paper tackles the problem of deciding when is it
reasonable to use the simple single-slot model and when is it
necessary to use the more complicated multiple-slots model
to calculate the magnetic field distribution in the air-gap
and rotor losses of PM electric machines. The final criterion
proposed in this paper is based on the fundamental theory
of conformal mapping. The practical limit shows when it
is possible to use the single-slot model without incurring
significant errors and the numerical limit shows when the
multiple-slots model fails to provide an answer. With the
information of these two limits Fig. 5 presents a clear and
reasonable criterion to choose the model required for each
particular case.

The case study presented here of a high speed PM motor
illustrates the importance of using the appropriate model.
Ignoring the effect of the adjacent slots, i. e., using a single-
slot model, produces a significant error in the calculation
of rotor losses because the machine is clearly in the region
of multiple-slots method in Fig. 5. Using the multiple-slots
model improves the accuracy considerably.

This paper provides an insight about how choosing the
wrong slotting model can produce errors in the estimation of
the performance of the machine, particularly in the parame-
ters that depend on the asynchronous harmonics like the rotor
losses.
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