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Abstract

Alkali basaltic diatremes such as Elie Ness (Fife, Scotland) expose a range of volcanic
lithofacies that points to a complex, multi-stage emplacement history. Here, basan-
ites contain phenocrysts including pyrope garnet and sub-calcic augites from depths
of ~60 km. Volcanic rocks from all units, pyroclastic and hypabyssal, are charac-
terised by rare earth element (REE) patterns that show continuous enrichment from
heavy REE (HREE) to light REE (LREE), and high Zr/Y that are consistent with
retention of garnet in the mantle source during melting of peridotite in a garnet lher-
zolite facies. Erupted garnets are euhedral and unresorbed, signifying rapid ascent
through the lithosphere. The magmas also transported abundant pyroxenitic clasts,
cognate with the basanite host, from shallower depths (~35-40 km). These clasts
exhibit wide variation in texture, mode and mineralogy, consistent with growth
from a range of compositionally diverse melts. Further, clinopyroxene phenocrysts
from both the hypabyssal and pyroclastic units exhibit a very wide compositional
range, indicative of polybaric fractionation and magma mixing. This is attributed
to stalling of earlier magmas in the lower crust—principally from ~22-28 km—
as indicated by pyroxene thermobarometry. Many clinopyroxenes display chemical
zoning profiles, occasionally with mantles and rims of higher magnesium number
(Mg#) suggesting the magmas were mobilised by juvenile basanite magma. The
tuffs also contain alkali feldspar megacrysts together with Fe-clinopyroxene, zircon
and related salic xenoliths, of the ‘anorthoclasite suite’—inferred to have crystallised
at upper mantle to lower crustal depths from salic magma in advance of the mafic
host magmas. Despite evidence for entrainment of heterogeneous crystal mushes, the
rapidly ascending melts experienced negligible crustal contamination. The complex
association of phenocrysts, megacrysts and autoliths at Elie Ness indicates thor-
ough mixing in a dynamic system immediately prior to explosive diatreme-forming
eruptions. DOI: 10.1016/j.lithos.2016.08.001

Key words: Alkali basalt, diatreme, clinopyroxene, pyroxenite, magma, eruption
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1 Introduction

Basaltic volcanism takes place in all tectonic settings and accounts for an
estimated 80% of all igneous activity at the Earth’s surface (Parfitt, 2004).
Basaltic magmas are generated as a consequence of partial melting of mantle
peridotite (see Hirose and Kushiro, 1993). Such low degree melts then segre-
gate from the refractory residue, and mobilised by thermochemical processes,
ascend through the lower lithosphere. Many batches of basaltic melt stall in
the ‘deep crustal hot zone’ (sensu Annen et al., 2006), where prolonged inter-
action with crustal rocks can occur, yet others ascend rapidly from the source
experiencing negligible crustal interaction (e.g. Cortés et al., 2015). One possi-
ble explanation for this contrasted behaviour is that progressive melt accretion
to the conduit walls results in later magmas becoming increasingly shielded
from crustal contamination (cf. Tepley et al., 2000).

Maar-diatreme volcanoes—an important class of basaltic landform—are formed
as a consequence of rapid magma ascent and explosive eruptions (see Sparks
et al., 2006; White and Ross, 2011). Typically these consist of a diverging
tephra-filled pipe linking a syn-eruptive crater floor to a hypabyssal ‘feeder’
system at depth (e.g. Lorenz and Kurszlaukis, 2007; Gernon et al., 2013; Elliott
et al., 2015). Ascending basaltic melts are liable to exploit crustal weaknesses,
commonly resulting in diatreme localisation along major structural features
(e.g. Kurszlaukis and Barnett, 2003; Jelsma et al., 2009; White and Ross,
2011; Son et al., 2012; Brown and Valentine, 2013).

Most maar-diatremes contain lithic fragments (‘xenoliths’) entrained from the
feeder dyke or conduit walls at a range of crustal levels, and occasionally from
the upper mantle. Such xenoliths commonly disaggregate during ascent or
eruption, liberating crystal fragments or ‘xenocrysts’ into the host magma.
The study of xenoliths, xenocrysts and other crystal fragments from deeply
eroded maar-diatremes can yield crucial evidence on the origin, interactions
and ascent mechanisms of their parent melts (e.g. Zajacz et al., 2007; Ashchep-
kov et al., 2011; Yiicel et al., 2014).

Geochemical and mineralogical constraints are even more powerful when com-
bined with a physical volcanological understanding of diatreme emplacement,
thus yielding insights into the spatio-temporal evolution of the magmas. Here
we present data from crystal and lithic inclusions in dykes and pyroclastic
deposits of the well-exposed Elie Ness diatreme, SE Scotland (Fig. 1), which
records a transition from an initially magmatic eruption style to a dominantly
phreatomagmatic mode of eruption (Gernon et al., 2013). We examine and
discuss the geochemistry of the different igneous rock units confined to the

* Corresponding author
Email address: Thomas .Gernon@noc.soton.ac.uk (T. M. Gernon).
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diatreme, together with the origin and significance of associated (diverse) cog-
nate xenoliths (i.e. autoliths) and lithic inclusions. Our data and observations
indicate that the parental magmas originated by low-degree partial melting
of a garnet lherzolite source and ascended rapidly, mixing magma batches ar-
rested at various depths, yet experiencing negligible crustal contamination.
Our study highlights the complexity of the pre-eruptive magma plumbing sys-
tem fuelling maar-diatreme volcanism.

2 Geological setting

The Elie Ness diatreme, erupted at ~290 Ma (Monaghan and Pringle, 2004),
is one of >100 diatremes and associated intrusions in Fife and the Lothians,
SE Scotland (Fig. 1la—b). These were emplaced during a major phase of Permo-
Carboniferous rifting and magmatism across Europe (see Wilson et al., 2004,
and references therein). Elie Ness, together with neighbouring diatremes at
Elie Harbour, Ardross, Coalyard Hill, Ruddon’s Point and Newark, lies along
the NE-SW trending Ardross Fault (Fig. 1b)—a right-lateral strike-slip fault,
active throughout the late Palaeozoic—inferred to have been exploited by
basanitic magmas (Francis and Hopgood, 1970).

The Elie Ness diatreme exposes a stratigraphic thickness of >250 m of tuffs
and lapilli tuffs (see Fig. 1c). The deposits are subdivided into three lithofacies
associations (LFA, see Gernon et al., 2013). LFA1 is confined to the eastern
part of the diatreme (Fig. 1c), and dominantly consists of massive lapilli tuffs,
locally containing abundant pyroclastic autoliths and country rock breccias.
The tuffs are structureless and poorly to moderately sorted, consisting mainly
of juvenile vesicular ash and scoria. Locally, the tuffs comprise sub-vertical
lapilli pipes and pod-like accumulations of lapilli. LFA1 is interpreted to rep-
resent a pyroclastic deposit formed within the diatreme, mixed with subsided
and disrupted pyroclastic material, likely sourced from the overlying (now-
eroded) tephra ring (Gernon et al., 2013).

LFA2 dominates most of the pipe-fill at current levels (Fig. 1c), and forms a
repetitive succession of massive and well-stratified lapilli tuffs and basalt tuff
breccias. The massive lapilli tuffs (on average 0.5-2 m thick) typically infill
scour channels developed in underlying strata, and contain abundant angular
lithic clasts and blocks. Typically these are overlain by well-bedded (lapilli-)
tuffs with diffuse parallel and low-angle cross-stratification, bomb sag struc-
tures and rare accretionary lapilli. LFA2 is interpreted to represent a sequence
of dilute pyroclastic density current deposits, representing a protracted phase
of highly pulsatory phreatomagmatic eruptions, many of which were poten-
tially sourced from a neighbouring vent to the east (Gernon et al., 2013).
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LFA3 comprises a series of minor discordant intrusions, including a 500 m wide
basanitic breccia pipe to the west (Fig. 1¢), and a number of volcaniclastic and
magmatic dykes of basaltic and trachybasaltic composition. The breccia pipes
are thought to relate to debris-jet emplacement, linked to a feeder dyke that
interacted with groundwater at some level within the diatreme. The dykes
signify an episode of passive magma intrusion during the waning phase of
volcanism at Elie Ness (Gernon et al., 2013).

3 Analytical methods

The Elie Ness diatreme was mapped at a scale of 1:2,270 (Fig. 1c). The litho-
facies were recorded on graphic logs of a cumulative total of ~250 m strata,
enabling correlation of beds based on grain-size, texture, composition and
sedimentary structures (Gernon et al., 2013). Representative samples were
collected from regular intervals across the diatreme (Fig. 1c¢), capturing the
different lithofacies and intrusives bodies. A total of twenty polished thin sec-
tions were analysed using optical and scanning electron microscopy (SEM:
Leo 1450 VP, operated at 25 keV using energy-dispersive X-ray spectroscopy
(EDS)).

Whole-rock major elements were analysed using X-ray fluorescence (XRF)
(Panalytical Magix-Pro WD-XRF fitted with a 4kW Rh X-ray tube) at the
University of Southampton. Calibration was via 20+ international geochemi-
cal reference samples. Solution inductively coupled plasma mass spectrometry
(ICP-MS) was performed to determine the concentration of incompatible el-
ements using a ThermoScientific XSeries2 at the University of Southampton;
samples were prepared following the standard procedure of silicate rock dis-
solution by HF digest (adapted from Beauchemin, 2008).

Major element analysis of zoned and unzoned pyroxene crystals from selected
samples (5, 10, 14 & 17) was carried out using a Cameca SX-100 electron probe
micro-analyser (EPMA) in the School of Earth Sciences at the University of
Bristol. Analyses were performed using operating conditions of 15 kV and 80
nA and a focused spot size of 1 um. Earlier analyses by B.G.J.U. on sample
1L were performed at the Department of Geology and Geophysics, University
of Edinburgh, on a Cambridge Scientific Instruments Microscan 5 electron-
probe micro-analyser using the wavelength dispersive method. Pure elements,
oxides and simple silicate compositions were used as standards. The operating
conditions were 200 kV, using a sample current of 30 nA.



148

149

150

151

152

153

154

155

156

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

4 Results | Erupted rocks of the Elie Ness diatreme

4.1 Alkali basalts, trachybasalts and basanites

The rocks investigated in this study are classified as basalts, trachybasalts and
basanites (Fig. 2a; see Table 1). Together with a suite of similar, albeit older
(i.e. Lower Carboniferous) volcanics in Scotland (Smedley, 1988), the rocks
are classified as alkaline basalts (Fig. 2b) on the basis of their Nb/Y versus
Zr/TiOy compositions (sensu Winchester and Floyd, 1977), and as within-
plate alkali basalts based on Nb-Zr-Y (Meschede, 1986). Whole-rock analyses
of representative tuffs and minor intrusives at Elie Ness show a limited compo-
sitional range with MgO between 8.7 and 10.8 wt.% (Table 1; see also Table 5.1
in Wallis, 1989). Indeed, the total alkali and silica contents are broadly com-
parable to other Permo-Carboniferous volcanics in Scotland (Fig. 2a), which
include the Passage Group lavas, Ayrshire sills, Mauchline group, Fife and
Lothian sills and basanite lavas, and the Highland dykes (Wallis, 1989).

All LFA samples have Zr/Nb < 5 (Fig. 3a; Tables 1-2), and Zr/Y-Nb/Y that
place the samples above the MORB field in the mantle plume array (Fig.
3b). The Nb-Zr-Y contents (Figs. 2a-3) are again comparable to those of the
aforementioned Permo-Carboniferous volcanics described by Wallis (1989).
The chondrite-normalised rare earth element (REE) patterns for all samples
are characterised by a progressive enrichment from Lu through to La (Figs.
4a—c) with La,, /YD, typically in the range 14-27. Abundances of La are around
80-200 times chondrite. Primitive mantle-normalised trace elements (Figs. 4d—
f) also reflect an enrichment towards the more incompatible elements. This
is particularly apparent in the progressively higher normalised abundances
between Y and Nb. Sr is an exception in that it generates a dip relative to
Ce-Nd in LFA1 and LFA2 (Figs. 4d—e).

The strongly negative Ba anomaly observed in one sample (S4, Fig. 4d) is most
readily explained by Ba mobility during basalt alteration; indeed this sample
shows evidence of sericitic alteration, which is a potential sink for Ba and may
lead to erratic barium abundances (Du Bray et al., 1995). Similarly, the fact
that Pb concentrations are scattered, yet are dispersed around the Ce,, and
Nd,, values (Figs. 4d—f), is consistent with hydrothermal alteration. For exam-
ple, the porous breccia pipe (S10)—more susceptible to fluid flow—exhibits a
positive Pb anomaly, whereas the coherent dyke (S17) lies directly between
Ce,, and Nd,, (Fig. 4f) presumably as it was less accessible to hydrothermal
fluids.
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4.2 Xenoliths and crystals | observations and review

The basalts, trachybasalts and basanites—pyroclastics and intrusives—contain
abundant xenoliths and crystals (xenocrysts and phenocrysts), akin to many
Permo-Carboniferous volcanics in Scotland (e.g. Chapman, 1976; Upton et al.,
1998, 2003, 2009). The diatreme contains two categories of highly contrasted
cognate materials: (a) pyrope garnets (colloquially referred to as ‘Elie rubies’)
and sub-calcic augites that are likely representative of a high-pressure (~2
GPa) phenocyst assemblage, and (b) a suite of pyroxenite and related au-
toliths, together with alkali feldspar megacrysts and co-magmatic felsic rocks.
This second category is thought to represent products that crystallised in
the vicinity of the crust-mantle discontinuity at ~35-40 km depth (Bam-
ford et al., 1978; Upton et al., 1983). In the intrusive bodies (LFA3, Fig.
1c), accidental xenoliths are rare and generally restricted to metagabbro and
quartz-feldspathic gneiss probably of lower to mid-crustal derivation.

In this section, we summarise the pertinent characteristics of xenolith and
crystal assemblages recorded at Elie Ness, combining empirical observations
of these fragments in thin section, and drawing extensively on published ac-
counts, including exhaustive studies by Chapman (1976) and Upton et al.
(2003).

4.2.1 Garnet crystals and their significance

The pyrope garnet crystals are typically <1 mm but up to ~50 mm in diameter
(Fig. ba), commonly exhibiting euhedral form (i.e. rhombic dodecahedron with
bevelled edges, occasionally with faces of the octahedron; see Upton et al.,
2003). The garnets are titaniferous (~0.4 wt.% TiOs) and have low CryOj
contents (0.01-0.19 wt.%) (Chapman, 1976; Upton et al., 2003). Sub-calcic
augites also occur, and their compositional similarity to those co-crystallised
with titanian pyrope in the Kakanui diatreme (New Zealand; Dickey, 1968)
suggest that these might similarly have been in equilibrium with garnet. The
pressure at which the pyrope and sub-calcic augite were in equilibrium with
melt is inferred to have been approximately 2 GPa (Colvine, 1968; Chapman,
1974a, 1976; Upton et al., 2003).

4.2.2  Pyrozenite zenoliths: a synthesis

Lustrous black ultramafic xenoliths, with diameters up to ~50 mm occur in
the tuffs and intrusions (Fig. 5b-c), and are interpreted as cognate cumulates
(see Chapman, 1976). Most are hornblende pyroxenites, composed largely of
salitic augite and pseudomorphs after olivine (carbonated or serpentinised),
enveloped by kaersutite oikocrysts up to 10 mm across. Minor accessories
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include biotite, apatite and opaque oxides. The pyroxenites display a wide va-
riety of textures and modes, ranging from olivine-kaersutite clinopyroxenites
through olivine-free hornblende pyroxenites via hornblende pyroxenites with
late sodic feldspar to amphibole-free varieties with biotite and /or sodic plagio-
clase. On textural and mineralogical criteria, the cumulate nodules have been
subdivided into five types, collectively thought to represent a differentiation
series (refer to Chapman, 1974a, 1976).

Olivine and clinopyroxene are inferred to represent cumulus phases, whilst
kaersutitic amphibole, biotite and sodic feldspar were intercumulus. The kaer-
sutite oikocrysts (Fig. 6a) constitute up to 40 modal%. Chlorite in some pyrox-
enites (Fig. 6b) is presumed to be pseudomorphous after intercumulus glass,
and—if so—indicates that these pyroxenites were still above their solidus at
the time of entrainment. Calcitic ocelli, typically chlorite-rimmed (Fig. 6¢),
also occur in both late-stage amphiboles and the inferred glassy residues (Fig.

6b).

With loss of olivine and then pyroxene, this suite of xenoliths is inferred to
grade into less frequent biotite-rich ultramafic xenoliths (Fig. 6d). Olivine py-
roxenites and clinopyroxenites lacking hydrous phases also occur, but again
are rare. Some pyroxenites contain pseudomorphs after idiomorphic olivine
enclosed in well-equilibrated mosaics of equigranular augite and hornblende
showing 120° triple junctions. In other pyroxenites, larger augite crystals are
surrounded by smaller pyroxene neoblasts (Fig. 6e), whilst elsewhere the py-
roxenes have been partially replaced by secondary amphibole along cleavage
planes and grain boundaries (Chapman, 1976). The hornblendites in some of
the basanites may have grown as metasomatised pyroxenites in which the py-
roxenes were wholly replaced by kaersutite. Some pyroxenes and olivines are
idiomorphic and occasionally euhedral. Pyroxenes in the Elie Ness autoliths
commonly show oscillatory zonation and some exhibit hourglass zoning (Fig.
6f).

4.2.83  Anorthoclasite xenoliths and zircon

Feldspars (anorthoclase, K-albite and sanidine) occur as discrete crystals,
and as xenoliths dominated by Na-rich feldspar. Anorthoclase megacrysts,
up to several cm across, occur in the tuffs and minor intrusives. Scarce zir-
con megacrysts (>10 mm diameter) are regarded as co-magmatic with the
anorthoclasite/albitite xenoliths (see Irving and Frey, 1984; Hinton and Up-
ton, 1991). Oscillatory zoning in the zircons corresponds to abrupt changes
in REE, Th and U contents, suggesting dynamic growth conditions in these
melts, as recorded in other Scottish megacrysts (Hinton and Upton, 1991;
Upton et al., 1999). Similar zircons in the neighbouring Coalyard Hill vent ex-
hibit quasi-euhedral morphologies, and their association with ‘anorthoclasite’
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xenoliths suggest they grew in a felsic magma, which subsequently mixed with
the basanite (Chapman and Powell, 1976). The Elie Ness tuffs also contain
(rare) coarse-grained polycrystalline anorthoclasite and albitite clasts com-
posed mainly of sodic feldspar, comparable to those in other diatremes along
the Ardross Fault.

4.2.4  Alkali feldspar megacrysts: observations and review

Alkali feldspar cleavage fragments are presumed to be derivative from coarse
anorthoclasite rocks comparable to those found as xenoliths (Aspen et al.,
1990; Upton et al., 2009). Electron microprobe analysis of the feldspars yield
a composition of ~ Any gAbgg10r177Cng 1; however, these megacrysts span the
broadest compositional range yet seen in any of the Scottish localities, ranging
from K-albite via sodic anorthoclase, to nearly pure sanidine (i.e. Orz 5—Orgg).
Commonly there is a patchy replacement of ‘primary’ anorthoclase by more
potassic feldspar, and late high-K feldspar veinlets. These bilaterally symmet-
rical veinlets (nearly pure KAIlSizOg) are similar to those described from an
anorthoclasite xenolith in the Southern Uplands (Upton et al., 1999, 2011).
Most of the discrete feldspar crystals are likely to represent cleavage fragments
from (pegmatitic) anorthoclasite veins or dykes, although through analogy
with the neighbouring Coalyard Hill diatreme, some might represent high-
pressure phenocrysts in evolved melts that were intercepted by the basanitic
host magmas (Chapman and Powell, 1976; Aspen et al., 1990; Upton et al.,
2011).

5 Clinopyroxene and alkali feldspar analysis

Clinopyroxenes and some alkali feldspars from the tuffs, breccias and dykes
(Fig. 1c) were analysed by electron-microprobe (see methods). Whilst some
pyroxenes retain idiomorphic form, the majority of the pyroxene crystals (and
alkali feldspars) were cleavage fragments. According to the International Min-
eralogical Association (Morimoto et al., 1988) the pyroxenes (Table 3) are
subdivided mainly as diopsides and augites (Fig. 7), with magnesium numbers
(Mg# = Mg/(Mg + Fey)) ranging from 0.49 to 0.84. Some clinopyroxenes
have high Wo contents (>Wos), and a few extreme compositions with high
Fe/Mg and NayO are hedenbergite (Fig. 7).

Zoned clinopyroxenes are abundant in LFA3, and of comparatively low abun-
dance in both pyroclastic lithofacies associations (LFAs 1-2), where they are
more fragmented. In many cases, the clinopyroxenes are strongly zoned (see
Table 3; Fig. 8; Supplementary Fig. 1), with discrete crystals showing normal
and reverse zonation. Although numerous crystals exhibit cores with more
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primitive compositions (i.e. relatively high Mg# and Cry03, e.g. S10-34, Table
3; Supplementary Fig. 2), in some cases the mantles and rims of the clinopy-
roxenes exhibit higher Mg# (dark areas in the BSE images) relative to their
cores (e.g. S17-40, Fig. 8, and S10-71, S10-73 & S17-81, see Supplementary
Fig. 2).

The wide range of clinopyroxene compositions is shown in plots of CaO vs.
Al,O3 and NayO vs. Al,O3 (Figs. 9a,d) with CaO ranging from ~16 to >24
wt.%, Al,O3 from ~1 to >15 wt.% and Nay,O from ~0.5-3.4 wt.%. Wide
scatter is seen in plots of TiOy vs. AlbO3 and AlyO3 vs. SiO, (Figs. 9b,c)
with crude positive and negative correlations respectively (TiOs contents vary
from ~0.1->4 wt.%). A closer (negative) correlation is shown for MgO vs. FeO
(Fig. 9e) with MgO ranging from ~7-17 wt.% and total iron (as FeO) from
~3-17 wt.%. The few clinopyroxenes exhibiting comparatively high Fe/Mg
and Na contents are comparable to those of megacrysts and anorthoclasites
described from other Scottish localities (refer to p. 948 of Upton et al., 2009).
Indeed, they are also compositionally similar to clinopyroxene megacrysts and
xenoliths from Highland intrusions of comparable age (i.e. Colonsay, Stob a’
Ghrianain and Streap Comlaidh, see Wallis, 1989).

The clinopyroxenes are subdivided further using Mg# vs. CryO3 (Fig. 10a),
Mg# vs. TiO4 (Fig. 10b), and Ti (apfu) vs. Al (apfu) (Fig. 10c). High Cr,03
and Mg# reflect more primitive compositions (Fig. 10a), and it can be seen
that the majority of these correspond to crystal cores (Fig. 10d). They display
negative trends in Mg# vs. TiOs but positive trends in Aly, vs. Ti (apfu)
(Fig. 10 b—c) from the most primitive to the most evolved compositions (cf.
Jankovics et al., 2012).

In general, the rims to zoned clinopyroxene have comparably low CryOj3 (typ-
ically <0.1 wt.%, Fig. 10d), high Mg# (typically of the order 0.7-0.8; Fig.
10d—e), high TiO, (typically >2 wt.%, Fig. 10e), and high Al,O3 (Table 3),
with Ti:Al values typically in the range 0.25-0.4. In contrast, the majority of
cores generally exhibit higher CryO3 (~50% >0.1 wt.%), lower TiOy (most
<2 wt.%), moderate to high Mg# (Fig. 10d—e; Supplementary Fig. 2) and
Ti:Al values mostly of the order 0.125-0.25 (Fig. 10f). Some crystals exhibit
ragged cores (e.g. S10-57), whereas other cores resemble euhedral phenocrysts
(S17-12, Fig. 10e).

Finally, the feldspar cleavage fragments have compositions ranging from albite
and anorthoclases to sanidines (NayO: ~0-11.5 wt.%: KoO: ~1-~17 wt.%;
Fig. 9f).
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5.1 Pyroxene thermobarometry

The temperature and pressure, and hence crystallisation depth of volcanic
rocks can be estimated using clinopyroxene compositions (Nimis, 1995; Nimis
and Ulmer, 1998; Nimis and Taylor, 2000) and clinopyroxene-liquid equilibria
(Putirka et al., 1996, 2003). More quantitative P-T estimates using clinopy-
roxene composition have been re-evaluated by Putirka (2008); by using Fe-Mg
exchange and Kp(Fe-Mg)cpu—iiq, this yielded an equilibrium constant = 0.27
+ 0.03.

Quantitative pressure and temperature estimates for the Elie Ness pyroxenes
were obtained using the clinopyroxene-only and clinopyroxene-liquid baromet-
ric and thermometric equations of Putirka (2008). The parent liquid compo-
sitions were approximated using whole-rock (XRF) compositions. The equi-
librium constants were calculated for clinopyroxene compositions from the
basanitic breccia pipe (sample 10) and trachybasaltic dyke (sample 17): two
clinopyroxene compositions were identified as being in equilibrium with the
melt, according to the Putirka equilibrium constant (0.27 £ 0.3) (Table 4).
In contrast, clinopyroxene crystals from the tuffs were found not to be in
equilibrium with the melt; this is perhaps not surprising given that the tuffs
comprise a complex mixture of pyroclastic and magmatic deposits from a va-
riety of sources (e.g. mass wasting of crater walls; Gernon et al., 2013). The
calculated results of clinopyroxenes from the breccia pipe (Table 4) reveal high
mean pressures of 0.7 £ 0.16 GPa and temperatures of 1166 + 43 °C. The P
and T estimates for the dyke are within error of this at 0.9 + 0.27 GPa and
1188 + 72 °C (Table 4), corresponding to approximate crystallisation depths
of 22-28 km.

6 Discussion | Complexity of the magma ‘supply chain’

6.1 Petrogenesis

The Elie Ness parental magmas are assumed to have an asthenospheric origin
(>70 km Wallis, 1989). The high MgO contents (> 8 wt.%) of all sampled
basaltic hosts (Table 1; see Wallis, 1989) indicate that they represent relatively
primitive magmas that have not experienced significant fractionation and are
close to parental melt compositions. High Zr/Y and Nb/Y (Fig. 3), alongside
the generally high incompatible element contents, provide evidence for small
degrees of partial melting (<5%). The REE patterns, progressively enriched
from Lu to La, and the high Zr/Y are consistent with retention of garnet in the
mantle source. As garnet is considered to be a phenocryst phase in Elie Ness,
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it is inferred that the HREE were retained either during garnet crystallisation
and accumulation during magma ascent, or were held in garnet during melting
of peridotite in a garnet lherzolite facies.

Negative Sr in the trace element patterns (Figs. 4d—f) is extremely unlikely
to relate to plagioclase fractionation, given the absence of feldspar as a crys-
tallising phase in the basanitic magmas (with their low Ca/Al ratios), and
the absence of a negative Eu anomaly (Fig. 4a—c). Hence the Sr concentra-
tion may be a feature of the mantle source (akin to kimberlites; e.g. Le Roex
et al., 2003) or crustal contamination (e.g. Elburg and Soesoo, 1999). Given
the primitive nature of the samples and the lack of any other indications
of crustal contamination such as Th/La 2 0.15, coupled with relatively low
87Sr /86Sr ratios (0.7032-0.7049) and high *3Nd/*4Nd ratios (0.5122-0.5126)
(see Wallis, 1989), the low Sr is most likely a mantle characteristic. Pb concen-
trations are not systematically enriched relative to equivalently incompatible
REE (Fig. 4), indicating a negligible role for crustal contamination.

The pyrope garnets and low-Ca augites are inferred to represent high-pressure
phenocrysts that crystallised from basaltic melts deep in the lithospheric man-
tle (~50-60 km; Fig. 11) (Colvine, 1968; Chapman, 1976; Upton et al., 2003).
The survival of garnet (Donaldson, 1984) points to very rapid ascent rates,
which for alkali basaltic magmas containing peridotite xenoliths, is estimated
to be of the order of 10 ms™! (Kuo and Kirkpatrick, 1985)—broadly compara-
ble to rates obtained from studies of garnet dissolution in kimberlites (Canil
and Fedortchouk, 1999). Rapid ascent of such crystal-laden magmas invokes
the presence of an exsolved fluid phase, perhaps linked to decompression-
induced COs exsolution during magma ascent (cf. Stoppa, 1996; Stoppa et al.,
2003; Mattsson and Tripoli, 2011).

6.2 Clinopyrozene variability

The very broad compositional range exhibited by clinopyroxenes (Figs. 9a—e
& 10) indicates a wide range of pressures, temperatures and magma composi-
tions, and in summary, can be considered in three categories:

(1) Crystals derived from fragmentation of pyroxenitic cumulates. From the
petrographic indications that some pyroxenites were above their solidus
temperatures at the time of entrainment, they are assumed to be cognate
to the host magma (cf. Chapman, 1976). The comparative abundance of
pyroxenite autoliths at different stratigraphic levels in the tuffs implies
energetic pulses of magma through the protolith sequence.

(2) Discrete Na-rich pyroxene crystals (Fig. 9d), known from other Scot-
tish xenolith/megacryst suites, compositionally resemble those found in
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anorthoclase-pyroxene-magnetite-apatite associations. Accordingly these
are regarded as part of the ‘anorthoclasite suite’ (sensu Upton et al.,
1999).

(3) Phenocrysts crystallised under a variety of conditions ranging from deep
lithospheric to near surface. Pyroxene thermobarometry suggests that
crystallisation of a subset of these pyroxenes (i.e. late effusive eruptive
phase of LFA3) commenced in lower-crustal magma reservoirs at ~22-28
km, broadly equivalent to the depth of mafic reservoirs in modern-day
rift settings (e.g. Ronga et al., 2009).

The clinopyroxene crystal fragments exhibit a very wide compositional range
in both the intrusive and extrusive rocks (Fig. 9a—e), pointing to extremely
thorough mixing of magma batches from various depths, probably within a
lower-crustal reservoir prior to eruption (cf. Montagna et al., 2015). Fractional
crystallisation of magmas is indicated by the Fe/Mg variation (Fig. 9e), whilst
the variation in Ca-Tschermak’s molecule, suggested by the variance in SiOs,
CaO and Al,O3 (Figs. 9a—c), points to a polybaric evolution. This can be
explained by the presence of a stock-work of semi-independent magma reser-
voirs beneath the diatreme (cf. Yiicel et al., 2014), which were disturbed and
entrained by the rapidly ascending basanite magma.

Elsewhere, high Mg and Cr clinopyroxenes have been interpreted as xenocrysts
that formed in the mantle or deep crust (e.g. Barton and van Bergen, 1981; Zhu
and Ogasawara, 2004; Akinin et al., 2005; Zhang et al., 2007), or as reflecting
high-pressure fractionation and mixing processes during the same magmatic
episode (e.g. Wass, 1979; Duda and Schmincke, 1985; Fodor et al., 1995). Com-
positional changes observed within individual clinopyroxene crystals (Figs. 8,
10d—f, Supplementary Figs. 1-2) can be interpreted as step zoning and show
multiple growth events in some cases from more mafic magmas (e.g. Duda and
Schmincke, 1985; Streck et al., 2007; Streck, 2008), probably indicting periodic
replenishment of the shallower magma reservoir by primitive basaltic melts (cf.
Streck et al., 2002). However, several clinopyroxene crystals show complex os-
cillatory zoning and many also record a shift from primitive to more evolved
melts (see Figs. 10d—f & Supplementary Figs. 1-2). Further, the presence of
both normally and reversely zoned clinopyroxenes within the same rock sam-
ple is consistent with magma mixing and/or an increase in temperature and

Mg/Fe*" ratio (Anderson, 1974; Pe-Piper, 1984).

6.3 Regional variability in diatreme composition

It is noteworthy that the nearby basanitic Elie Harbour diatreme (see Fig. 1b)
did not erupt any xenoliths, autoliths or high-pressure phenocrysts. Further,
the absence of upper mantle lherzolite xenoliths at Elie Ness is enigmatic since
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these are present in several neighbouring basanitic diatremes that also contain
analogous pyroxenitic xenoliths and anorthoclasite debris (e.g. Coalyard Hill;
Chapman, 1974b, and Ruddon’s Point). One possible explanation is that the
Elie Ness magmas crystallising garnet and sub-calcic augite did not have the
erosive capability to entrain pieces of their sidewalls, but were sufficiently
energised at near-Moho levels (possibly due to copious CO, exsolution) to
disaggregate and transport pyroxenite and ‘anorthoclasite suite’ fragments to
surface levels.

Significant mineralogical differences within the East Fife cluster may suggest
that eruptions sampled the deep lithosphere on length-scales of individual
diatremes, as documented in monogenetic volcanoes in modern rift systems,
where the distribution of melt is similarly controlled by large-scale lithospheric
structures (Rooney et al., 2011). Speculatively, movement along major struc-
tures such as the Ardross Fault might have provided a pathway for magmas to
traverse the lithospheric mantle, without tearing peridotite from the conduit
margins. Nonetheless, evidence for negligible crustal contamination is most
readily explained by rapidly ascending magmas exploiting the same pathway—
at least from mid to upper crustal levels—with accreted material insulating
magmas from crustal contamination (cf. Tepley et al., 2000).

6.4 Implication for physical volcanological emplacement

Our data and petrological constraints provide a ‘cradle-to-grave’ insight into
the deep and shallow magma plumbing systems fuelling alkali basaltic maar-
diatreme eruptions. Accordingly, the three lithofacies associations (Fig. 1c)
capture different stages in the life-cycle of a maar-diatreme volcano (Fig. 12).
For instance, LFA1 constitutes vent-filling massive lapilli tuffs, inferred to rep-
resent an early eruptive phase driven primarily by magmatic volatiles (Gernon
et al., 2013). Given that LFA1 represents progressive infilling and mixing of
the diatreme through repetitive eruptive bursts and subsidence of pyroclastic
material (cf. Gernon et al., 2009), it is not surprising that these samples show
significant variation in chondrite-normalised REE patterns (Figs. 4a—c) and
primitive mantle-normalised trace element patterns (Figs. 4d—f).

In contrast, LFA2 (overlying LFA1) shows very little variation in REE and
trace element patterns (Fig. 4), which is surprising, given the samples were
collected through a sequence of >50 bedded tuffs and lapilli tuffs (Fig. 1c)
with a cumulative thickness of >65 m (Gernon et al., 2013). The assemblage
of structures and nature of pyroclasts (Gernon et al., 2013) are consistent
with small pulsatory phreatomagmatic eruptions (see Lorenz, 1986; White and
Ross, 2011), resulting from high-level interactions between ascending magmas
and external water. However, volcanism was necessarily driven by magmatic
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volatiles (see Sparks et al., 2006) to explain the preservation of unstable min-
eral phases. Geochemical similarities between a neighbouring vent to the east
(S8, Fig. 1c) and the majority of tuff packages from LFA2 supports the hy-
pothesis that many flows were derived from an external source ~200 m to the
east (Gernon et al., 2013).

The late-stage coherent trachybasaltic and basanitic dykes of LFA3 (Fig. 1c)
exhibit the most considerable variability in REE and trace element concen-
trations (Tables 1-2, Fig. 4). These relatively shallow magmas (i.e. ~22-28
km), containing abundant zoned clinopyroxenes (e.g. Fig. 8), were likely desta-
bilised by deep-sourced basanite magma involved in the eruption of LFAs
1-2 (Fig. 12). Given the abundance of mafic phases including clinopyroxene
and amphibole in the LFA3 intrusives, the observed chemical heterogeneity is
very likely due to the accumulation of entrained mafic phases—a process in-
voked to explain similar patterns in Spanish lamprophyres (Ubide et al., 2014).
The shift towards effusive activity recorded by LFA3 reflects a lesser role for
phreatomagmatism during the waning stages of eruption (Gernon et al., 2013).

7 Concluding remarks

Elie Ness is remarkable for the complex assemblage of lithic inclusions, crystals—
and inferentially former melts—signifying a wide range of pressures, temper-
atures and melt compositions. For all of these components to have been evac-
uated in the explosive tuff-forming eruptions requires a culminating flux of
basanite magma through the subvolcanic plumbing system, that evacuated
magmas in differing stages of evolution. We propose that energetic magma
flows transport the deep crystals, disaggregate and entrain earlier-formed
‘anorthoclasite suite’ xenoliths approximately at Moho levels (produced from
several previous replenishments of ‘underplated’ chambers, Fig. 11), and then
flush out minor pockets in which preexisting magma batches had been equi-
librating at lower pressures (i.e. depths of ~22-28 km; Fig. 11). Based on
the euhedral, unresorbed form of garnets—combined with the preservation
state of alkali feldspars and ‘anorthoclasite suite’ inclusions—transport from
the lithospheric mantle to the surface was necessarily very rapid (order of
hours to days) (cf. Canil and Fedortchouk, 1999). An initially explosive phase
driven by magmatic volatiles, involving diatreme excavation and pyroclastic
infill processes, was followed by pulsatory phreatomagmatic eruptions and a
final effusive stage (Fig. 12), with remarkably little bulk geochemical variation
occurring throughout the eruptive life-cycle.
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Figure Captions

Figure 1 | a. Inset map of Scotland showing location of east Fife. b. Simplified
geological map of east Fife showing the main diatremes and intrusions, includ-
ing Elie Ness (EN) and Elie Harbour (EH) (Lst.: limestone; Sst.: sandstone).
c. Geological map of the Elie Ness diatreme showing stratigraphy and three
lithofacies associations (modified after Gernon et al., 2013). Sample numbers,
shown in circles, correspond to sampled locality; note that blue circles signify
sampled dykes; numbers shown in red signify samples also used for pyroxene
analysis; these were collected from pyroclastic deposits (1L, 5, 14), a basanitic
breccia pipe (10) and a trachybasaltic dyke (17). Sample 8 is a tuff from a
small neighbouring diatreme ~150 m to the east (not shown). Location of
sample 1L is approximate.

Figure 2 | a. TAS classification of selected volcanic rocks from Elie Ness (Ta-
ble 1), plotted alongside published compositions of similar alkaline volcanic
rocks in Scotland, of Lower Carboniferous (Smedley, 1988), Upper Carbonif-
erous (Macdonald et al., 1981), and Permo-Carboniferous* (Wallis, 1989) age,
and nearby diatremes in east Fife (Chapman, 1976). b. Classification of the
Elie Ness volcanic rocks using the Nb/Y vs. Zr/TiO, diagram of Winchester
and Floyd (1977), plotted alongside other Scottish volcanics (Smedley, 1988;
Wallis, 1989). *Please note that these represent mean values (see Table 5.1 of
Wallis, 1989).

Figure 3 | a. Zr-Nb plot (sensu Leat et al., 1986) showing the composition
of all Elie Ness volcanic rocks (Tables 1 & 2) determined in this study. For
comparison, the compositions of similar diatremes in Limerick, Ireland (Elliott,
2015) and Permo-Carboniferous alkaline volcanics in Scotland (Smedley, 1988;
Wallis, 1989) are also shown. b. Zr/Y vs. Nb/Y plot (sensu Fitton et al.,
1997) comparing Elie Ness basalts with alkali basalts from the Scottish and
Irish Carboniferous (see (a) for key to symbols). Fractional melting curves are
shown for spinel and garnet lherzolite according to Fitton et al. (1997).

Figure 4 | a—c.: C1 chondrite normalised (McDonough and Sun, 1995) REE
plots for LFAs 1-3. d—f.: Primitive mantle-normalised (McDonough and Sun,
1995) multi-trace element distribution diagrams.

Figure 5 | Field photographs of (a) a pyrope megacryst from Elie Ness ((©
BGS); (b) pyroxenitic cumulate, and (c) pyroxenite megacryst coated in a
thin layer of juvenile vesicular basalt. All these features occur within a ~65
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m thick sequence of pyroclastic (lapilli) tuffs of the Elie Ness diatreme (see
Gernon et al., 2013).

Figure 6 | Photomicrographs of cumulate nodules from the Elie Ness dia-
treme (photomicrographs are ~2.2 mm wide). a. Coarse kaersutite (Kt) py-
roxenite comprising idiomorphic augite (Au) prisms up to 3 mm with patchy
zonation; b. amphibole pyroxenite comprising ~50% idiomorphic to subhedral
amphibole (<2 mm), augite (pale dull green and present as small “granulated”
crystals) and interstitial chlorite (Ch) (after glass) with quench feldspar and
spherical globules of calcite surrounded by chlorite; c. sub-spherical ‘ocelli’
of calcite (Ca) with chloritic rims within a coarse amphibole pyroxenite; d.
coarse-grained biotite pyroxenite comprising colourless augite and subhedral
biotite (Bt); e. amphibole pyroxenite containing large (up to 3 mm) subhe-
dral pyroxenes with oscillatory zoning, neoblast-type augites, anhedral kaer-
sutite, possible pseudomorphs after olivine, and anhedral late-stage oligoclase
(Anjg2AbgssOrs0—Anis 5Abgs 20ry 3); f. Idiomorphic augite exhibiting hour-
glass zoning within a coarse amphibole pyroxenite (same sample as (c¢) above).

Figure 7 | Clinopyroxene classification diagram (Morimoto et al., 1988) of
sampled volcanic rocks from Elie Ness (see Fig. 1c for locations).

Figure 8 | Zoning profiles showing compositional variations within a clinopy-
roxene crystal (S17-40) from a trachybasaltic dyke (S17, see Fig. 1c); back-
scattered electron image; note: ¢ = core, r = rim.

Figure 9 | Plots a.—e. correspond to pyroxene analyses (n = 634); a. CaO
vs. Al;O3 plotted for pyroxenes from three samples of pyroclastic lapilli tuffs
from different locations across the diatreme (see Fig. 1¢), a basanite dyke and
a breccia pipe (see Fig. 1c); also plotted are the compositions of pyroxenitic cu-
mulates and clinopyroxene crystals from Chapman (1974b), and clinopyroxene
megacrysts and xenoliths from Highland intrusions described by Wallis (1989);
b. TiO; vs. Al;O3; c. Al,O3 vs. SiOs; d. NasO vs. Al,O3; e. MgO vs. FeO.
Plot f. showing NayO vs. K5O, is from alkali feldspars in a sample of lapilli
tuff (S1L; Fig. 1b).

Figure 10 | Clinopyroxene compositions of selected volcanic rocks from Elie
Ness (see Fig. 1¢); a. Mg# vs. Cry03 (wt.%) and b. TiOs (wt.%), and c. Ti
(apfu) vs. Al (apfu); d.—f. plot the same variables as a.—c., above, however
discriminate the cores (filled symbols, N = 33) and rims (empty symbols, N =
33) of all zoned clinopyroxene crystals (note the change in symbols); e. pro-
vides several examples of zoned clinopyroxene crystals and their corresponding
compositions. Note that for S5, N = 2; S10, N = 17, S14, N = 5; and S17, N
=9.

Figure 11 | Cartoon illustrating the deep crustal structure beneath the
Midland Valley of Scotland during late Carboniferous to Permian times. (1)
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Basaltic parent melt rises from the asthenospheric mantle (~60-70 km), crys-
tallising high-pressure phenocrysts including pyrope garnets, and rapidly as-
cends to the surface, possibly exploiting lithospheric structures. (2) These
magmas then incorporate trapped ‘anorthoclasite suite’ pegmatites, represent-
ing small fraction melts from large volumes of mantle peridotite. (3) Fuelled by
COg exsolution, the ‘mixed’ magma rises rapidly entraining xenoliths of lower
crustal granulite facies metabasic lithologies, whilst also flushing out pockets
of magma that had been equilibrating at lower pressures—principally between
22-28 km. (4) The magma erupts explosively forming a maar-diatreme, driven
by magmatic volatiles and later influenced by interaction with meteoric water
giving rise to phreatomagmatic explosions. Note GM: geophysical Moho; PM:
petrological Moho.

Figure 12 | Schematic summary of the structure and lithofacies associations
of the Elie Ness maar-diatreme, highlighting the key depositional processes
and geochemical relationships between the major units; modified after Gernon
et al. (2013).

Supplementary Figure Captions

Figure S1 | Backscattered electron (BSE) images (taken with a Cameca
SX100 electron microprobe) of zoned clinopyroxene crystals from samples 5,
10 and 17 (sample numbers shown, see Fig. 1c for locations); note the zoning
traverses shown correspond to Mg# profiles in Fig. S2. The horizontal scale
bar beneath each image is 100 pm.

Figure S2 | Normalised zoning profiles showing variations in Mg# across
clinopyroxene crystals depicted in Fig. S1 (note there are no images for S10-
18 and S17-81).
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Tables

Sample No. s1 S5 S8 §10 517 JA-2 JA-2 BRR-1 BRR-2
Lithofacies Lapilli tuff Lapilli tuff Lapilli tuff Breccia Pipe Dyke Measured Recom. value Measured (Murton et al. 2002)
(Wt.%) LFA1 LFA2  Vent to east LFA3 LFA3

Sio2 50.19 46.33 48.86 45.29 46.72 - - 49.28 49.82
Tio2 2.16 2.26 227 277 2.39 - - 1.02 1.03
Al203 13.56 14.74 12.23 14.07 13.54 - - 14.37 14.37
Fe203 12.39 14.37 12.33 13.45 13.29 - - 11.67 11.88
MnO 0.25 0.20 0.17 0.47 0.37 - - 0.19 0.18
MgOo 9.96 8.75 9.39 9.38 10.86 - - 8.49 8.57
Ca0 6.32 6.97 10.50 8.70 7.08 - - 11.74 11.95
Na20 1.98 1.33 2.00 1.26 192 - - 1.92 197
K20 2.80 3.32 137 4.09 337 - - 0.05 0.05
P205 0.47 0.69 0.59 0.62 0.53 - - 0.08 0.09
Total 100.07 98.97 99.70 100.09 100.07 - - - -
Lol 9.52 9.54 12.41 4.23 4.57 - - - -
(ppm)

Li 325 20.1 313 17.7 21.7 28.9 27.3 5.16 5.40
Sc 19.6 19.4 17.4 225 211 17.9 19.6 43.98 45.87
Rb 49.0 50.6 34.0 253 46.6 76.7 729 0.56 0.60
Sr 260 418 156 504 486 243 248 69.00 71.20
Y 26.7 320 26.5 25.1 21.4 17.4 183 27.71 27.40
Zr 2335 304.1 230.1 2385 215.0 119.3 116.0 55.22 54.90
Nb 50.6 70.4 50.9 59.6 53.4 8.8 9.5 1.05 1.19
Cs 2.34 2.10 118 181 132 5.16 4.60 0.01 0.01
Ba 490 340 278 703 942 319 321 6.85 6.55
La 45.40 51.27 46.94 37.62 33.78 16.03 15.80 154 1.62
Ce 87.60 104.70 90.08 74.12 66.56 3331 32.70 5.10 5.39
Pr 10.23 11.81 10.40 8.93 7.99 3.82 3.84 0.98 1.01
Nd 39.25 44.95 39.83 35.68 31.76 14.41 13.90 571 5.68
Sm 7.63 8.64 7.80 7.54 6.61 3.14 3.11 2.29 217
Eu 2.19 2.54 233 2.40 2.10 0.91 0.93 0.86 0.81
Gd 6.58 7.51 6.87 6.87 5.94 3.05 3.06 3.43 3.25
Th 0.94 1.10 0.97 0.96 0.83 0.48 0.44 0.64 0.63
Dy 5.10 6.03 5.14 5.09 4.42 2.92 2.80 4.35 4.26
Ho 0.95 112 0.93 0.91 0.78 0.60 0.50 0.97 0.98
Er 2.44 2.83 231 2.23 1.89 1.70 1.48 2.88 2.86
Tm 0.34 0.38 0.31 0.29 0.25 0.25 0.28 0.44 0.43
Yb 2.08 2.34 1.81 1.75 1.49 1.70 1.62 291 2.79
Lu 0.30 0.33 0.25 0.25 0.20 0.26 0.27 0.45 0.44
Hf 5.29 6.09 5.13 5.16 4.60 294 2.86 1.56 1.55
Ta 3.20 4.57 343 3.95 3.47 0.75 0.80 2.50 0.06
Pb 14.09 7.73 9.60 12.73 4.56 22.28 19.20 0.34 0.38
Th 8.02 8.00 5.61 4.76 4.24 4.88 5.03 0.07 0.05
u 1.80 2.04 1.74 1.26 1.20 224 221 0.04 0.04

Table 1

Major and trace element data for selected Elie Ness volcanics, samples 1, 5, 8,
10 & 17 (see Fig. 1c for locations). Major elements measured by XRF and trace
elements by ICP-MS at the University of Southampton (see methods). Analyses of
International standard JA-2 (Imai et al., 1995) and Southampton internal basalt
standard BRR-1 (Murton et al., 2002) are presented with consensus values for these
rocks. Further whole-rock analyses of comparable volcanics in this area are reported
in Table 5.1 (and the appendix) of Wallis (1989).
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Sample Lithofacies Analysis Cpx-only Cpx-liquid Thermometer KD(Fe

ref. barometer barometer (32d); °C -Mg)
(32a); GPa (32c); GPa
E10 LFA3, breccia pipe E10-16 0.65 1.36 1208.8 0.284
E10 LFA3, breccia pipe E10-23a 0.98 2.07 0.283
E10 LFA3, breccia pipe E10-36 0.61 1.70 11215  0.287
E10 LFA3, breccia pipe E10-37c 0.66 1.34 11979 0.289
E10 LFA3, breccia pipe E10-41 0.59 1.51 1137.5 0.288
Mean 0.7 1.60 1164.4
STD 0.16 0.30 43.4
E17 LFA3, dyke E17-003 0.71 1.45 12384 0.287
E17 LFA3, dyke E17-081 1.08 1.03 1136.8  0.296
Mean 0.9 1.24 1187.6
STD 0.27 0.3 71.9

Table 4
Quantitative pressure and temperature estimates for selected clinopyroxene crystals
from Elie Ness, using the barometric and thermometric equations of Putirka (2008).
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Figure 5
Click here to download high resolution image
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Figure 11
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