The University of Southampton
University of Southampton Institutional Repository

Active neodymium and erbium doped fibre devices

Active neodymium and erbium doped fibre devices
Active neodymium and erbium doped fibre devices
In this thesis a number of rare-earth-doped fibre devices are described including fluorescent and superfluorescent sources as well as several laser configurations. The laser configurations are all-fibre and include a neodymium-doped ring laser and recirculating delay line, a novel tunable neodymium-doped fibre laser and a single-frequency travelling-wave erbium-doped ring laser. The latter device has been the first description of a travelling-wave fibre laser device.

Theory describing general fibre amplifier and laser devices is incorporated. A novel lumped element approach to fibre laser theory has been given applicable to 3 and 4-level laser devices which, under certain conditions, allows single pass gain of a fibre device to be described simply by the absorbed pump power.

Numerical modelling of the erbium-doped fibre amplifier has been described which allows for analysis of a general device showing pump excited-state absorption. Results from the analysis have shown a difference in gain characteristics between co-propagating and counter-propagating signal/pump schemes when subject to pump excited-state absorption. In addition, the effect of pump direction on the noise figure is characterised in both small and large signal operating regimes.

Characterisation of neodymium-doped fibres has shown a number of effects which will affect their use in amplifier and oscillator configurations. These include observation of sensitivity of the fluorescence characteristics to pump wavelength, observation of excited state absorption and polarisation of fluorescence. Additionally, the spectral gain-saturation characteristics have been investigated.
Morkel, Paul Roos
0a1f4ac4-796e-40b2-bc5c-19cd09d6c062
Morkel, Paul Roos
0a1f4ac4-796e-40b2-bc5c-19cd09d6c062
Payne, David
4f592b24-707f-456e-b2c6-8a6f750e296d

Morkel, Paul Roos (1990) Active neodymium and erbium doped fibre devices. University of Southampton, Faculty of Engineering and Applied Science, Doctoral Thesis, 293pp.

Record type: Thesis (Doctoral)

Abstract

In this thesis a number of rare-earth-doped fibre devices are described including fluorescent and superfluorescent sources as well as several laser configurations. The laser configurations are all-fibre and include a neodymium-doped ring laser and recirculating delay line, a novel tunable neodymium-doped fibre laser and a single-frequency travelling-wave erbium-doped ring laser. The latter device has been the first description of a travelling-wave fibre laser device.

Theory describing general fibre amplifier and laser devices is incorporated. A novel lumped element approach to fibre laser theory has been given applicable to 3 and 4-level laser devices which, under certain conditions, allows single pass gain of a fibre device to be described simply by the absorbed pump power.

Numerical modelling of the erbium-doped fibre amplifier has been described which allows for analysis of a general device showing pump excited-state absorption. Results from the analysis have shown a difference in gain characteristics between co-propagating and counter-propagating signal/pump schemes when subject to pump excited-state absorption. In addition, the effect of pump direction on the noise figure is characterised in both small and large signal operating regimes.

Characterisation of neodymium-doped fibres has shown a number of effects which will affect their use in amplifier and oscillator configurations. These include observation of sensitivity of the fluorescence characteristics to pump wavelength, observation of excited state absorption and polarisation of fluorescence. Additionally, the spectral gain-saturation characteristics have been investigated.

Full text not available from this repository.

More information

Published date: August 1990
Organisations: University of Southampton

Identifiers

Local EPrints ID: 399485
URI: https://eprints.soton.ac.uk/id/eprint/399485
PURE UUID: c84fa37d-00ab-4d0a-a365-5772f0e38736

Catalogue record

Date deposited: 19 Sep 2016 14:05
Last modified: 17 Jul 2017 18:22

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×