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Abstract

This paper presents efforts to improve the boundary efficiency and accu-

racy of a compact finite difference scheme, based on its composite template.

Unlike precursory attempts the current methodology is unique in its quan-

tification of dispersion and dissipation errors, which are only evaluated after

the matrix system of equations has been rearranged for the derivative. This

results in a more accurate prediction of the boundary performance, since the

analysis is directly based on how the derivative is represented in simulations.

A genetic algorithm acts as a comprehensive method for the optimisation

of the boundary coefficients, incorporating an eigenvalue constraint for the

linear stability of the matrix system of equations. The performance of the

optimised composite template is tested on one-dimensional linear wave con-

vection and two-dimensional inviscid vortex convection problems, with uni-

form and curvilinear grids. In all cases, it yields substantial accuracy and
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efficiency improvements while maintaining stable solutions and fourth-order

accuracy.

Keywords: Compact finite difference; Boundary closure; Optimization;

Genetic algorithm; Composite template

1. Introduction

Compact finite differences are numerical schemes used to accurately cal-

culate derivatives. They are implicit in nature, based upon a banded Hermi-

tian matrix system of equations. Although inverting such a system requires

a higher computational cost, they can offer vastly superior resolution for a

given stencil size compared to their explicit counterparts. This quality has

made them increasingly popular in the fields of computational aeroacoustics

(CAA) [1, 2], large eddy simulation (LES) [3–5], and direct numerical simu-

lation (DNS) [6–8], particularly when high resolution is a necessity in order

to properly resolve the relevant physical scales.

Typically, central differences are used to construct compact schemes for

use at interior nodes. However, such schemes are not always applicable at do-

main boundaries, and therefore in order to properly close the matrix system

of equations non-central differences are often a necessity. This unfortunately

will have a detrimental effect on accuracy; introducing additional dissipa-

tion as well as dispersion, if the boundary schemes are not sufficiently opti-

mised. Consequently, to ensure that the same level of accuracy is achieved

throughout the entire domain, grid refinements are regularly made to the

boundary regions. This will inevitably reduce computational efficiency due

to the decreased time step required by the smaller grid cells. The objective
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of this paper is to build upon past attempts to maximise boundary scheme

performance, and thereby minimise efficiency losses, while also ensuring the

combination of interior and boundary schemes meets requirements for linear

stability.

As well as changes in formal order of accuracy, enhancements to compact

schemes can also be achieved through coefficient optimisation based on res-

olution characteristics. A previous attempt at this was undertaken by Kim

[1]. Kim introduced a highly optimised fourth-order pentadiagonal compact

scheme and set of boundary closures particularly for CAA applications. Op-

timisations were based on an integral error measure between the exact and

modified wavenumber solutions (similar to Kim and Lee [9]). Very low res-

olution errors were obtained with this method, in particular for the interior

scheme, which remains below 0.1% over the grid spaced scaled wavenumber

range 0 ≤ ω ≤ 0.839π. The boundary schemes were designed to maintain

the same stencil size and order of accuracy as the interior schemes, which

was accomplished by employing extrapolation functions based on both poly-

nomial and trigonometric series for solutions outside of the domain. After

some algebraic manipulation, these were then converted into a set of non-

central differences for use at the domain boundaries. The resultant boundary

schemes were optimised by means of control variables left open in the trigono-

metric series of each extrapolation function. As in Carpenter et al. [10] the

linear stability of the matrix system was investigated using eigenvalue anal-

ysis. Kim [1] found that with a coarse grid the schemes contained some

slightly positive eigenvalue components. Although, after some grid refine-

ment it was demonstrated that these will tend towards zero, hence implying
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neutral stability.

Liu et al. [11] expanded on the optimisation strategy of Kim [1] by intro-

ducing a sequential quadratic programming technique (SQP). This iteratively

increased the upper limit of the optimisation range (r), establishing optimal

values for both interior and boundary schemes. Furthermore, they showed

that scheme stability is heavily dependent on the chosen error tolerances, as

well as the formal order of accuracy, implying that the optimisation process

can often be detrimental to the numerical stability. To compensate for this,

Liu et al. [11] reduced the order of accuracy of their first and third boundary

schemes by one stage. Such stability issues were also recognised by Carpenter

et al. [10], who suggested that a scheme’s numerical stability and its spectral

resolution do not always coincide.

Jordan [12] introduced an alternative approach for analysing spectral res-

olution properties through composite templates. Unlike the more traditional

decoupled Fourier approach where the resolution of each differencing stencil

is studied separately, this consists of Fourier analysis of the whole matrix

system of equations, consisting of both the interior and boundary stencils.

The result is a set of pseudo-wavenumber curves for each point in the grid,

dependent on the number of grid points used in the analysis. Jordan applied

this analysis to tridiagonal systems, employing a least squares optimisation

strategy to minimise the total resolution error across the whole template. In

a later paper by Jordan [13] the same technique was applied to pentadiagonal

systems producing a set a of boundary closure schemes to be used alongside

the interior scheme of Kim [1]. Although the modified wavenumber curves

produced by this technique are dependent on the number of grid points used
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in the analysis, they appear to be much more representative of the perfor-

mance we achieve once schemes are applied to actual simulations. Despite

this, it is still unclear how to best optimise the resolution properties of a

given composite template, making it far from a trivial task. For instance one

could prioritise minimising the relative resolution error between neighbouring

points in the composite template, or perhaps the aggregate resolution error

of the whole template with respect to the exact wavenumber.

This paper aims to extend the composite template strategy of Jordan

[12] by redefining how the composite template modified wavenumber is eval-

uated. Unlike the original approach, Fourier analysis will not be conducted

until the matrix system of equations has already been rearranged for the

derivative. This should lead to better predictions of the resolution prop-

erties attained in simulations because this is a closer depiction of how the

derivative is represented numerically. The chosen optimisation method is a

Genetic Algorithm (GA) containing both an objective function for the com-

posite template’s resolution characteristics, and a non-linear constraint for

eigenvalue stability. In this paper, the optimisation procedure is applied to

the pentadiagonal finite-difference system outlined by Kim [1], although a

similar approach would be applicable to other systems if desired. The newly

optimised boundary closure coefficients are successful in producing large ac-

curacy improvements while maintaining stable solutions in all test problems.

In addition to the primary optimisation which focuses on the aggregate res-

olution error of the composite template, further accuracy enhancements are

attempted by introducing pseudo-boundary schemes. Essentially these are

tuned central schemes applied as intermediate steps between the boundary
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and interior regions, with the aim of reducing the relative resolution error be-

tween consecutive points. They are successful in achieving further accuracy

improvements, albeit with some penalty to numerical stability.

The paper is organised as follows. Section 2 introduces the compact

finite-difference system, and outlines the new composite template modified

wavenumber analysis. Section 3 provides details of the boundary closure

scheme coefficient optimisation procedure. Including the optimisation plat-

form, objective function and stability constraints. Section 4 presents the

optimisation results, including the resultant wavenumber characteristics and

eigenvalue distribution. In section 5 the performance of the newly optimised

finite-difference system is tested in three benchmark problems, designed to

analyse their performance in a variety of scenarios. In section 6 pseudo-

boundary schemes are introduced and their performance analysed. Finally

concluding remarks are given in section 7.

2. Compact Finite Difference Schemes and Composite Template

Modified Wavenumber Analysis

We consider the following general compact finite difference template,

based on a pentadiagonal Hermitian matrix. It is constructed from one cen-

tral interior and three non-central boundary closure schemes, each in conser-

vative form and utilising a seven-point stencil [1].

Pf̄ ′ =
1

h
Qf (1)

where P and Q are the following (N + 1)× (N + 1) matrices
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P =




1 γ01 γ02 0 · · · 0 0 0 0
γ10 1 γ12 γ13 0 · · · 0 0 0
γ20 γ21 1 γ23 γ24 0 · · · 0 0
0 β α 1 α β 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 β α 1 α β 0
0 0 · · · 0 γ24 γ23 1 γ21 γ20
0 0 0 · · · 0 γ13 γ12 1 γ10
0 0 0 0 · · · 0 γ02 γ01 1




Q =




b00 b01 b02 b03 b04 b05 b06 0 0 · · · 0
b10 b11 b12 b13 b14 b15 b16 0 0 · · · 0
b20 b21 b22 b23 b24 b25 b26 0 0 · · · 0
−a3 −a2 −a1 0 a1 a2 a3 0 0 · · · 0
0 −a3 −a2 −a1 0 a1 a2 a3 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −a3 −a2 −a1 0 a1 a2 a3 0
0 · · · 0 0 −a3 −a2 −a1 0 a1 a2 a3
0 · · · 0 0 −b26 −b25 −b24 −b23 −b22 −b21 −b20
0 · · · 0 0 −b16 −b15 −b14 −b13 −b12 −b11 −b10
0 · · · 0 0 −b06 −b05 −b04 −b03 −b02 −b01 −b00




and

f̄ ′ = (f̄ ′
0, f̄

′
1, f̄

′
2, · · · , f̄ ′

N)
T , f = (f0, f1, f2, · · · , fN)T

where f̄ ′
i is a finite difference approximation to the exact spatial derivative

f ′
i at a nodal point i and bii = −

∑6
j=0, 6=i bij . The three boundary closure

schemes are applied at the i = {0, N}, {1, N − 1} and {2, N − 2} nodes.

They comprise of 27 unique coefficients:

γij for i = {0, 1, 2} j = {0, · · · , i+ 2}, 6= i

bij for i = {0, 1, 2} j = {0, · · · , 6}, 6= i.
(2)
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The central interior scheme consists of five coefficients (α, β, a1, a2, a3), and

is applied throughout the remainder of the domain (3 ≤ i ≤ N − 3). The

template we will consider in the current paper is fourth-order accurate in

the interior and at the boundaries. For the interior nodes we implement the

optimised fourth-order coefficients suggested by Kim [1]. (Full details of the

interior scheme performance, including its modified wavenumber character-

istics can be found in [1].)

Fourier series decomposes a dependent function f into a number of os-

cillatory functions also known as Fourier coefficients f̂(k). For a domain of

N + 1 points (0, · · · , N) the discrete Fourier series can be expressed as

f(x) =

N/2∑

k=−N/2

f̂(k) exp

(
2πkx

L

)
(3)

where  =
√
−1, L is the domain length, x is spatial coordinate, and k is the

wavenumber. This may be simplified by substituting for a scaled coordinate

x∗ = x/h and a scaled wavenumber ω = 2πkh/L, where h is the grid spacing:

f(x) =

N/2∑

k=−N/2

f̂(k) exp (ωx∗). (4)

After realising that fi±m ≡ f(x∗ ±m)), where m ∈ Z, it is possible to derive

an expression for a scaled modified wavenumber ω̄ by applying the Fourier

transform to each term in a differencing scheme. This differs from the exact

wavenumber ω due to numerical approximation, specifically f ′ = ωf , while

f̄ ′ = ω̄f (using Eq.(4)).

Dispersion and dissipation errors of differencing schemes are commonly
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quantified using Fourier analysis, applied to each differencing stencil on an

individual basis (this procedure is described in detail in [14]). However, this

fails to take into account the fact that during actual simulations schemes are

not evaluated separately. Rather, they are implemented in a matrix system of

equations, as in Eq.(1). By inverting the matrix P, the following expression

for the spatial derivative at each nodal point can be obtained:

f̄ ′ =
1

h
Tf (5)

where T = P−1Q. Consequently it seems appropriate to define a modified

wavenumber based on the spectral resolution of the whole composite tem-

plate, by analysing each finite difference stencil in a coupled fashion. This

was first suggested by Jordan [12] whose composite template approach con-

sists of taking the Fourier transform of each row of the matrix system in

Eq.(1). This results in a pseudo-wavenumber curve for each grid point, with

properties dependent on each other point used in the analysis. In the cur-

rent paper we expand upon this approach by alternatively considering the

inverted matrix system given by Eq.(5). Applying the Fourier transform

sequentially to each row of this system result in the following:




jω̄f̂(k) exp(jωx∗)

jω̄f̂(k) exp(jω(x∗ + 1))

jω̄f̂(k) exp(jω(x∗ + 2))
...

jω̄f̂(k) exp(jω(x∗ +N))




= T




f̂(k) exp(jωx∗)

f̂(k) exp(jω(x∗ + 1))

f̂(k) exp(jω(x∗ + 2))
...

f̂(k) exp(jω(x∗ +N))




(6)
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After some algebraic manipulation this leads to an expression for the

coupled modified wavenumber of the composite template:

jω̄ =




T00 + T01 exp(jω) + T02 exp(2jω) + · · ·+ T0N exp(Njω)

T10 exp(−jω) + T11 + T12 exp(jω) + · · ·+ T1N exp((N − 1)jω)
...

TN0 exp(−Njω) + TN1 exp(−(N − 1)jω)

+TN2 exp(−(N − 2)jω) + · · ·+ TNN




(7)

Here ω̄ is a vector of length N+1, representing the scaled modified wavenum-

ber at each nodal point (0 · · ·N). Each nodal element of ω̄ may also be

expressed in a more compact summation form as:

ω̄i = −j
N∑

m=0

Tim exp(jω(m− i)) where i = 0, 1, 2, · · · , N (8)

where i and m represent the rows and columns of the matrix T. The disper-

sion and dissipation errors approximated by Eq.(8) should provide a truer

depiction of the performance of the finite difference schemes, since the mod-

ified wavenumber characteristics are now directly linked to the numerical

representation of the derivative.

3. Boundary Scheme Optimisation Framework

The chosen optimisation technique for the boundary scheme coefficients is

a genetic algorithm (GA) from the Matlab optimisation toolbox. This tech-

nique is chosen over more traditional gradient based methods for its ability
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to efficiently and robustly explore nonconvex objective functions and con-

straints. The Matlab implementation of the GA conveniently handles the se-

lection, crossover and mutation procedures of the optimisation. Additionally

it enables simple implementation of nonlinear inequality constraints which

prove useful for ensuring numerical stability of the resulting coefficients. For

an in-depth discussion of evolutionary optimisation techniques see [15].

3.1. Formulation of Genetic Algorithm Independent Variables

The boundary closure schemes are constructed such that they preserve

both the truncation error and stencil size of the main interior scheme. Kim [1]

achieved this by introducing extrapolation functions based on both trigono-

metric and fourth-order polynomial series to estimate function values beyond

the domain boundaries. By employing a series of constraints for the extrap-

olation functions to match interior field values and derivatives, the originally

central schemes could then be rewritten as a set of non-central differences.

The new boundary closure coefficients could then be tuned by use of free

control variables left open in the trigonometric series. Similarly, in the cur-

rent procedure the control variables are selected as the independent variables

for the GA, opposed to directly optimising each of the 27 unique boundary

closure coefficients. This approach reduces the number of GA independent

variables, reducing the complexity of the search task. Furthermore, it ensures

the resulting coefficients will obtain the desired fourth-order accuracy. This

is specified by the accuracy of the central scheme applied to the boundary

nodes and the order of the extrapolation function polynomial series. Origi-

nally, Kim [1] proposed an individual extrapolation function for each bound-

ary closure scheme resulting in a total of 11 control variables for optimisation.
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Alternatively, we choose to further simplify the procedure by applying the

i = 0 function to each boundary point (i = 0, 1, 2) resulting in just 3 control

variables. The three control variables used for optimisation in the GA are

herein referred to as φ1, φ2 and φ3. Each boundary closure coefficient can

be constructed as a non-linear function of these variables. Full details of the

extrapolation function and the constraints required to convert φ1−3 into the

boundary scheme coefficients can be found in [1].

3.2. Genetic Algorithm Objective Function

The purpose of the objective function is to quantify the resolution prop-

erties of the composite template so that it may be optimised. Ideally we

would like a composite template which produces no dispersion or dissipation

errors such that its modified wavenumber curves perfectly match the exact

wavenumber:

Re(ω̄) → ω (9)

Im(ω̄) → 0. (10)

Here ω̄ is determined by Eq.(8) and ω is the exact scaled wavenumber. We

can represent this requirement as an integral error measure E
A
i which we

require to tend to zero:

E
A
i |r0 =

{∫ r

0

[Re(ω̄i − ω) + Im(ω̄)]2dω

}1

2

for i = {0, 1, 2} (11)

An appropriate value for the integration range (r) is obtained by util-

ising Eq.(11) as an initial objective function in the GA. A bisection type
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trial and error is then conducted to determine which r value produces the

most successful optimisation output. This is judged by the performance the

newly optimised schemes attain in the one-dimensional scalar wave bench-

mark problem (section 5.1). This process resulted in a value of r = 0.52π.

Ideally we would like the modified wavenumber to match the exact wavenum-

ber over the full range of scales from 0 − π, and would therefore select r to

reflect this. However, this tends to result in very large overshoots at higher

wavenumbers. Additionally due to the dependence between each schemes

coupled modified wavenumber curves, a high integration range often results

in the improvement of one schemes resolution characteristics at the expense

of another. One possible solution would be to remove high frequencies with

filtering operations, however the low cut-off frequency required would greatly

degrade the solution obtained. Alternatively, by selecting a more moderate

r, the characteristics of each scheme tend to remain comparable over at least

a intermediate wavenumber range, resulting in far superior aggregate resolu-

tion characteristics. The consequence of ignoring the higher wavenumbers in

the optimisation is a lack of control over wavenumber characteristics at high

frequencies. Despite this, the i = 1 and i = 2 schemes remained relatively

well behaved. The i = 0 scheme on the other hand was found to exhibit

a fairly large overshoot relative to the exact wavenumber between roughly

0.8π ≤ ω ≤ π, albeit reduced compared to an r = π case. To compensate

for this, an additional error measure E
B is included, which aims to damp the

i = 0 overshoots over the appropriate range.

E
B|π0.8π =

{∫ π

0.8π

[Re(ω̄0 − ω) + Im(ω̄)]2dω

}1

2

(12)
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Combining E
A and E

B results in a final blended error measure E used as

the objective function in the GA

E = η

(
2∑

i=0

E
A
i |0.52π0

)
+ (1− η)E B|π0.8π (13)

where η is the weighting factor between the two error measures. If η is too

large, the overshoots at i = 0 are not sufficiently damped, however if η is

too small the aggregate resolution characteristics of the composite template

begin to suffer. A suitable value for η was selected through an equivalent

trial and error procedure as outlined for the integration range r, eventually

yielding a value of η = 0.948.

3.3. Linear Stability Constraint

In addition to exhibiting good resolution properties, and maintaining a

desired order of accuracy, a successful numerical scheme must also consis-

tently provide stable solutions. In past procedures the numerical stability is

often treated as an afterthought, and is only considered after the wavenum-

ber optimisation of the finite difference coefficients is completed ([1, 11–13]).

This usually results in the use of trial and error routines to obtain a re-

sult which both achieves good performance and meets the desired stability

criteria. In the current work a more consistent optimisation strategy is es-

tablished by integrating a non-linear constraint for eigenvalue stability into

the GA, ensuring the optimisation output is always satisfactory.

As pointed out by Liu et al. [11] and Carpenter et al. [10], the optimisation

process can often be detrimental to numerical stability, limiting the number

of feasible solutions. For this reason the authors suggests that the finite
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difference schemes are used in conjunction with a stabilising technique. In

this case we use the 6th order compact filters provided by Kim [16]. Compact

filters improve numerical stability by introducing a cut-off frequency. This

effectively removes unresolved wavenumber components from the solution at

the end of each time step. They are including via the following modifications

to Eq.(1):

Pf̄ ′ =
1

h
Q(f + ∆̃f) (14)

and

∆̃f = (∆̃f0, ∆̃f1, ∆̃f2, · · · , ∆̃fN )T , (15)

where ∆̃fi = f̃i − fi represents the difference between filtered and unfiltered

values. A solution for ∆̃f can be obtained by solving the following matrix

system of equations

R∆̃f = Sf (16)

where

R =




1 γF
01

γF
02

0 · · · 0 0 0 0
γF
10 1 γF

12 γF
13 0 · · · 0 0 0

γF
20

γF
21

1 γF
23

γF
24

0 · · · 0 0
0 βF αF 1 αF βF 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 βF αF 1 αF βF 0
0 0 · · · 0 γF

24 γF
23 1 γF

21 γF
20

0 0 0 · · · 0 γF
13

γF
12

1 γF
10

0 0 0 0 · · · 0 γF
02

γF
01

1



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S =




0 0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 0 0 · · · 0
bF
20

bF
21

bF
22

bF
23

bF
24

bF
25

0 0 0 · · · 0
aF
3

aF
2

aF
1

aF
0

aF
1

aF
2

aF
3

0 0 · · · 0
0 aF3 aF2 aF1 aF0 aF1 aF2 aF3 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 aF
3

aF
2

aF
1

aF
0

aF
1

aF
2

aF
3

0
0 · · · 0 0 aF

3
aF
2

aF
1

aF
0

aF
1

aF
2

aF
3

0 · · · 0 0 0 bF25 bF24 bF23 bF22 bF21 bF20
0 · · · 0 0 0 0 0 0 0 0 0
0 · · · 0 0 0 0 0 0 0 0 0




superscript F denotes a filter coefficient, aF0 = −2(aF1 + aF2 + aF3 ), and

bF22 = −(bF20 + bF21 + bF23 + bF24 + bF25).

The filter coefficients for each point are calculated by a global cut-off

frequency Ωc, and individual boundary weighting factors wi (for the exact

relations see [16]). Cut-off frequencies for each point are calculated as follows:

Ωc
i =





Ωc for i ∈ [3, . . . , N − 3],

(1− w2)Ω
c for i = {2, N − 2},

(1− w1)Ω
c for i = {1, N − 1},

(1− w0)Ω
c for i = {0, N},

(17)

For his boundary finite difference schemes Kim [16] suggested weighting fac-

tors of w0/3 = w1/2 = w2 = 0.085. In the current approach the same linear

relationship is maintained with w2 implemented as a fourth independent vari-

able (φ4) in the GA. This allows us to determine optimal boundary weighting

factors for the new template when a given cut-off frequency is used, in this

case Ωc = 0.88π.

Stability of a finite-difference systems is usually verified through eigen-
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value analysis of a 1D linear scalar wave problem, identified by the following

equation
∂f

∂t
+ c∞

∂f

∂x
= 0 (18)

where c∞ is the wave convection speed. The domain spans from x ∈ [0, L],

and is discretised into N + 1 points, with the only boundary condition

f(x = 0, t) = 0, applied at the inlet. The spatial derivative (∂f/∂x) can

be numerically approximated by substituting Eq.(14) and (16) into Eq.(18),

resulting in the following system of ODEs [16]:

P
df

dt
= −c∞

h
Q(I+R−1S)f . (19)

The solution to this problem is simply f = v exp(at) where a controls the

decay/growth rate. Substituting for f in Eq.(19) yields

Q(I+R−1S)v = −λPv (20)

where λ = ah/c∞ represent the eigenvalues and v the eigenvectors of the

system. For stability it is required that a ≤ 0 such that Re(λmax) ≤ 0.

Using a Heaviside step function this could be implemented as a non-linear

constraint in the GA by: H(Re(λmax))−1/2 ≤ 0. However the issue with this

formulation is a discontinuity close to zero. To resolve this we can employ

the following relation

H(x) =
1

2
lim
s→∞

(1 + tanh(sx)) (21)

where s determines the gradient near zero. When s = 1 this leads to the
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following continuous non-linear constraint:

1

2
tanh(Re(λmax)) ≤ 0 (22)

A solution generated by the GA is only considered feasible if it satisfies this

constraint over 3 grid levels, N = 50, 100 and 200.

4. Optimisation Output

The first step in the optimisation process is to randomly generate a popu-

lation of 50 chromosomes (potential solutions) which satisfy the optimisation

constraints in the GA. Each individual contains four genes, three represent-

ing potential values for the control variables (φ1, φ2, φ3) and one representing

a value for the boundary weighting factor (w2 = φ4). Each chromosome is

then ranked according to its fitness score produced by the fitness/objective

function. Pairs of chromosomes are selected by a stochastic uniform strat-

egy for reproduction. Eighty percent of new solutions are generated via a

scattered crossover function assigning genes from the two parents based on

a random binary vector. For example a bit string of [110] means the first

and second genes should be inherited from the first parent, and the third

gene from the second. The further twenty percent of new solutions are cre-

ated by random mutation. Finally the two most promising individuals are

guaranteed to progress to the next iteration. This process is continued until

the average weighted change in the objective function falls below a certain

tolerance, set to 10−6. The resultant values for φ1−φ4 can be found in Table

1, and the corresponding boundary scheme coefficients in Table 2.
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φ1 φ2 φ3 φ4

0.3319 0.1932 1.7329 0.0485

Table 1: Optimisation output

Coefficient i = 0 i = 1 i = 2
γi0 - 0.11737546726594537 -0.067477420334188354
γi1 9.2793108237360826 - -0.1945509344676567
γi2 9.8711877434133051 0.92895849448052303 -
γi3 - -0.067839996199150834 1.279565347145571
γi4 - - 0.20842348769505742
bi0 - -0.4197688256685424 0.20875393530974462
bi1 -9.9196421679170452 - -0.36722447739446801
bi2 10.088151775649886 1.1593253854830003 -
bi3 4.1769460418803268 0.31685797023808876 0.98917602108458036
bi4 -0.82222305192207212 -0.096453054902842381 0.63518969715000262
bi5 0.14757709267988142 0.015579947274307879 0.0042145635666246068
bi6 -0.014332365879513103 -0.0014553614585464077 0.0010111910030585999

Table 2: Optimised boundary coefficients appearing in section 2.

4.1. Composite Template Modified Wavenumber Characteristics

The coupled modified wavenumber properties of a composite template are

dependent on the number of grid points we choose to analyse. To precisely

represent its resolution characteristics we would need to include the effect

of every grid point we plan to use in our simulation. Clearly this becomes

impractical for simulations of any meaningful size due to cost constraints.

For this reason optimisations are based on the simplest scenario, a 7 by 7

matrix system consisting of 3 boundary schemes on either side of the domain

and 1 central interior point. Additionally since the modified wavenumber

characteristics of the template will be symmetrical about the centre point we

will only analyse the first 4 points. Although this is the most fundamental

system we can examine it is found to be more than sufficient at demonstrating

the effectiveness of the new optimisation approach, with the resulting schemes
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producing substantial accuracy gains in section 5.
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Figure 1: Real wavenumber errors produced by the the new finite difference template and
that of Kim [1] at the three boundary nodes (i = 0, 1, 2) based on a N = 7 matrix system
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Figure 2: Imaginary wavenumber errors produced by the the new finite difference template
and that of Kim [1] at the three boundary nodes (i = 0, 1, 2) based on a N = 7 matrix
system

Since the resolution properties of each point in Eq.(8) are coupled, it

is possible that optimising one point in the composite template can have

a detrimental effect on others. For this reason resolution errors tend to

be higher than if each scheme were analysed individually. This makes it

very hard to draw comparisons between resolution errors obtained in studies

based on a decoupled approach. Consequently comparisons are made with

the schemes provided by Kim [1], based solely on the new approach. Figures 1
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Figure 3: Real wavenumber errors produced by the the new finite difference template
at the three boundary nodes (i = 0, 1, 2) with an increasing number of points analysed
(N = 7, 9, 11)

0 0.2 0.4 0.6 0.8 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ω/π

ǫ
I
(ω

)

i = 0

 

 

N = 7
N = 9
N = 11

0 0.2 0.4 0.6 0.8 1
ω/π

i = 1

0 0.2 0.4 0.6 0.8 1
ω/π

i = 2

Figure 4: Imaginary wavenumber errors produced by the the new finite difference template
at the three boundary nodes (i = 0, 1, 2) with an increasing number of points analysed
(N = 7, 9, 11)
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Figure 5: Real wavenumber error produced by the the new finite difference template and
that of Kim [1] at the first interior node (i = 3) with an increasing number of points
analysed (N = 7, 9, 11)
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Figure 6: Imaginary wavenumber error produced by the the new finite difference template
and that of Kim [1] at the first interior node (i = 3) with N = 9 and N = 11. N = 7 is
not shown as the dissipation error is zero due to the i = 3 being located at the centre of
the composite template.

and 2 describe the respective dispersion and dissipation properties produced

by Kim’s template and the current study. Differences between ω and ω̄ at

each nodal point i are measured by means of a relative error for both real

and imaginary components [1]:

ǫR,i(ω) =

∣∣∣∣
Re(ω̄i)− ω

ω

∣∣∣∣ (23)

ǫI,i(ω) =

∣∣∣∣
Im(ω̄i)

ω

∣∣∣∣ (24)

The wavenumber range for which the dispersion and dissipation errors are

below a specified tolerance σ, can be identified by the critical wavenumbers

ωσ
Rc,i and ω

σ
Ic,i, such that ǫR,i < σ for 0 ≤ ω ≤ ωσ

Rc,i and ǫI,i < σ for 0 ≤ ω ≤
ωσ
Ic,i, with 0 ≤ ω ≤ π. Table 3 shows a comparison of the critical wavenum-

bers attained using σ = 0.01, 0.05 and 0.1. Overall the newly optimised

template offers greatly reduced resolution errors. The only exception is the

dissipation error of the i = 2 scheme, which is increased outside of the range
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0.41 ≤ ω ≤ 0.61. This occurs because the objective function (Eq.(13)) aims

to reduce the resolution error of the composite template as a whole. In the

case of the i = 2 scheme this results is some increase to the dissipation error

relative to Kim’s scheme [1], but a more substantial reduction to dispersion

error.

Figures 3 and 4 show the influence of the number of grid points (N) used

in the modified wavenumber analysis on the boundary scheme dispersion and

dissipation errors. Each matrix system implements 6 boundary nodes, and an

increasing number of interior nodes (N −6). The wavenumber errors quickly

converge as N is increased, with only small changes observed between the

N = 7 and N = 9, 11 cases.

Although the coefficients of the first interior point is fixed its resolution

properties will be altered by the adjacent boundary schemes due to the fully

coupled nature of the modified wavenumber formulation. Figure 5 shows the

dispersion error of the new template and that of Kim [1] obtained at the i = 3

node with increasing values of N . For N = 7 the new template offers some

improvement to the critical wavenumber based on the stricter σ = 0.01 error

tolerance. As N increases a much larger improvement is revealed. At N = 11

the new schemes achieve a critical wavenumber of ω0.01
Rc,3 = 0.651π compared

to 0.277π for those of Kim [1]. This highlights how the reductions made to

the resolution error at the boundaries has a positive knock-on effect at the

near boundary interior nodes. The dissipation errors for the i = 3 node are

compared in Figure 6 for N = 9 and N = 11. (N = 7 is not included in

this case as its dissipation error is zero due to the i = 3 node being located

at the centre of the composite template.) Similar to the dispersion errors,
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the new template obtains an improved critical wavenumber of ω0.01
Ic,3 = 0.593π

compared to 0.341π for the template of Kim [1].

New schemes Kim [1]
σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.01 σ = 0.05 σ = 0.1

ωσ
Rc,0 0.223π 0.269π 0.306π 0.123π 0.203π 0.308π

ωσ
Ic,0 0.142π 0.217π 0.504π 0.134π 0.183π 0.210π

ωσ
Rc,1 0.354π 0.534π 0.565π 0.174π 0.267π 0.342π

ωσ
Ic,1 0.219π 0.593π 0.623π 0.207π 0.278π 0.317π

ωσ
Rc,2 0.319π 0.660π 0.703π 0.217π 0.329π 0.398π

ωσ
Ic,2 0.307π 0.566π 0.609π 0.373π 0.518π 0.610π

ωσ
Rc,3 0.293π 0.579π 0.626π 0.247π 0.626π 0.662π

Table 3: Critical wavenumbers obtained by the the new template and that of Kim [1]
based on an N = 7 matrix system at the i = 0, 1, 2 and 3 nodes utilising various tolerances
(σ)

4.2. Stability Analysis

As shown in Table 1 the outcome of the GA stability constraint for the

filter cut-off was the boundary weighting factor w2 = 0.0485. The eigenvalue

distribution for these settings is shown in Figure 7. As desired the real parts

of all eigenvalues have been restricted into the left half plane. The optimised

boundary weighting obtains stable eigenvalues over the filter cut-off range

0.74π ≤ Ωc ≤ 0.88π, despite the constraint focusing only on the upper

stability limit Ωc = 0.88π. If a lower cut-off value is desired a stable solution

can still be obtained by reverting to the default value w2 = 0.085. In order

to obtain the largest magnitude negative real eigenvalues over the longest

stability range the authors suggest implementing the following strategy for

w2
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Figure 7: Eigenvalues at various grid sizes for the newly optimised finite difference template
with compact filtering

w2 =




0.0850 for 0.59π ≤ Ωc < 0.86π,

0.0485 for 0.86π ≤ Ωc ≤ 0.88π.

(25)

By adopting this strategy a stable eigenvalue distribution is attainable

over the filter cut-off range 0.59π ≤ Ωc ≤ 0.88π. Figure 8 shows the maxi-

mum real eigenvalues obtained over this range utilising both weighting factors

accordingly.

A more extensive stability analysis can be preformed through application

of a test function to a scalar linear wave convection problem, again described

by Eq.(18). In this particular instance a modulated wave described by the

following initial and boundary conditions is considered:
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Figure 8: Maximum real eigenvalues for the new schemes with compact filtering over the
stable range 0.59π ≤ Ωc ≤ 0.88π. (w2 = 0.0485 for 0.86π ≤ Ωc ≤ 0.88π and w2 = 0.085
for 0.59π ≤ Ωc < 0.85π) N = 200

f(x, t = 0) = f∞

[
1 + A cos

(
k1x

L

)]
sin

(
k2x

L

)
, (26)

f(x = 0, t) = f∞

[
1 + A cos

(−c∞k1t
L

)]
sin

(−c∞k2t
L

)
. (27)

Here the frequency and amplitude of the carrier wave component are

represented by k2 = 25k1 and f∞ respectively. Equivalently, k1 = 2π and

A = 1.5 represent the frequency and amplitude of the modulating component.

The boundary schemes are implemented at both the inlet and outlet to the

domain. To obtain the exact solution to this problem x is substituted for

x̂ = x− c∞t in Eq.(26). Stability of the new template and filters is tested by

monitoring errors produced in the simulation for an extended duration. For
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Figure 9: Mean ℓ2-norm errors produced by the current schemes in calculation of a mod-
ulated linear wave for CFL=0.25, CFL=0.5 and CFL=1.0

coarser grid sizes the calculation is continued until t = 150L/c∞, while for the

finest grid (N = 800) it is run until t = 10L/c∞ to minimise computational

cost. Temporal discretisation is achieved with classical 4th order Runge-

Kutta. To quantify numerical errors the following ℓ2-norm error is defined:

Eℓ2 =

{
N∑

i=1

[fi − fexact]
2/(Nf 2

∞)

} 1

2

(28)

Figure 9 shows the time averaged ℓ2-norm errors produced during calculation

of the linear modulated wave for various CFL numbers. Stable solutions with

a high-order accurate convergence rate are achieved for all cases.
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4.3. Comparison to Classical Methods

The accuracy enhancements made available by utilising pentadiagonal

compact schemes including the newly optimised boundaries is shown in Fig-

ure 10. It displays the ℓ2-norm error time history (Eq.(28)) obtained during

calculation of a 1D linear scalar wave convection problem utilising different

spatial discretisation schemes and N = 400 grid cells. Temporal discretisa-

tion is conducted with classical 4th order Runge-Kutta with a value of 0.5

for the Courant-Friedrichs-Lewy condition (CFL). A full description of this

problem is given in section 5.1. The classical explicit method (4th order

central interior and 3rd order boundaries) is capable of obtaining a stable

solution, albeit with a very large peak error. This highlights the requirement

for grid refinement in order to obtain a more acceptable accuracy, inevitably

increasing the computational cost. Adopting an implicit method can be an

effective way to reduce the level of error for a given grid spacing. This is ap-

parent over the region tc∞/L < 0.4, where the standard 4th order tridiagonal

Padé scheme, used here with 2nd order implicit boundaries [17] achieves no-

tably better performance. However such methods often suffer from stability

issues, as shown by the divergence at a later time step. This demonstrates

the requirement for scheme optimisation to achieve higher levels of accuracy

and computational efficiency, without neglecting numerical stability. In the

case of the current pentadiagonal system, error reductions in excess of two

orders of magnitude are achieved relative to the explicit method, while still

maintaining a stable solution.
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Figure 10: Comparison of ℓ2-norm error time histories obtained during the 1D scalar
wave convection problem described in section 5.1. Results shown for a classical 4th order
explicit finite difference scheme with 3rd order explicit boundaries, a classical 4th order
Padé scheme with 2nd order implicit boundaries [17], and the current numerical setup.
The simulation is conducted with N = 400 grid cells, using CFL= 0.5 with Runge-Kutta
as the time stepping algorithm
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5. Benchmark Problems

5.1. One-dimensional Scalar Wave

The first benchmark problem we consider is the convection of a one-

dimensional scalar wave. This problem was first proposed by Tam [18] at the

Fourth Computational Aeroacoustics Workshop on Benchmark Problems. It

consists of the simulation of a wave pulse as it travels from its initial location

within the domain through a computational exit boundary. Unlike the wave

convection problem used to analyse the long term linear stability of the finite

difference schemes in section 4, the wave in this problem will entirely leave

the domain, resulting in a final solution of zero. This allows us to analyse

the capability of the proposed schemes at minimising error reflections at

computational boundaries. The initial wave pulse is defined as
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Figure 11: 1D scalar wave at three instances of time — = exact solution, • = numerical
solution for N = 1000 and CFL=0.5

f(x, t = 0) = f∞

(
2 + cos

(
k1x

L

))
exp

(
−k2 ln(2)x

2

L2

)
(29)
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where k2 = 100 and k1 = 1.7k2. The wave is convected via Eq.(18) over the

range −0.5L ≤ x ≤ L. The exact solution is obtained by

fexact(x, t) = f∞

(
2 + cos

(
k1x̂

L

))
exp

(
−k2 ln(2)x̂

2

L2

)
(30)

where x̂ = x − c∞t. Since the wave pulse is initialised within the domain,

nothing will pass through the inlet boundary. For this reason the interior

schemes can be applied at the inlet boundary points (i = {0, 1, 2}) with the

following boundary condition [1]:

f(x < −0.5L, t) = f ′(x < −0.5L, t) = 0 for t ≥ 0 (31)

0 0.25 0.5 0.75 1 1.25 1.5
10

−8

10
−7

10
−6

10
−5

10
−4

tc∞/L

E
ℓ 2

 

 

New
Kim [1]
Liu [11]
Jordan [13]

Figure 12: Time history of ℓ2-norm error produced by various schemes in calculation of
the 1D scalar wave, N = 1000, CFL=0.5

The boundary schemes can then be applied and tested at the outlet
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boundary nodes (i = {N,N − 1, N − 2}) by measuring the error as the

wave pulse leaves the domain at the non-dimensional time tc∞/L = 1.0. Er-

rors produced by the current schemes are compared to those produced by the

schemes of Kim [1], Jordan [13] and Liu et al. [11]. Results are firstly pre-

sented without the assistance of compact filters, then comparisons are made

to their filtered counterparts, thus demonstrating each templates sensitivity

to the filtering process. The newly optimised schemes use the new boundary

weighting factors suggested in section 4.2 with a filter cut-off of Ωc = 0.88π,

while the other schemes maintain the original filter coefficients suggested in

[16].
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Figure 13: Maximum ℓ2-norm errors produced in the 1D scalar wave convection problem
by various schemes at different grid levels, CFL=0.5

Figure 11 shows a comparison of the wave produced by the current

schemes and the analytical solution at three instances of time for a CFL=0.5
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and N = 1000. The numerical result contains no perceivable errors, even as

the wave leaves the domain exit boundary at tc/L = 1.0. Figure 12 show the

time histories of the ℓ2-norm error at a grid size of N = 1000. The present

schemes exclusively exhibit no overshoot as the wave leaves the domain. This

corresponds to peak error reductions of 38.4%, 66.1% and 84.1% compared

to that produced by the coefficients of Kim [1], Jordan [13] and Liu et al.

[11], respectively. Another important quality, particularly for aeroacoustic

simulations is that the final error tends to zero after the wave has left the

domain. In this regard the result provided by the current schemes again out-

performs that of previous studies resulting in a final error reduction of 97.8%

compared to Kim [1], 98.9% compared to Jordan [13] and 96.9% compared

to Liu et al. [11]. Figure 13 shows the maximum ℓ2-norm errors produced

by each scheme at various grid levels. This confirms that the new schemes

maintain the desired fourth-order convergence rate, while also achieving the

lowest errors on all grid levels.

A Comparison between the ℓ2-norm error histories produced with and

without compact filtering is shown in Figure 14 for N = 1000. After filtering

a comparable peak error level is achieved by the newly optimised schemes,

Kim’s schemes and Jordan’s schemes. Liu’s schemes on the other hand still

manifests a significant overshoot at tc∞/L = 1.0. The most robust perfor-

mance is attained by the new schemes, which maintain similar error levels

with and without filtering. In fact, they are the only schemes for which the

peak error is slightly increased by filtering, suggesting that they are success-

ful in resolving a broader range of scales. Conversely the schemes of Kim and

Jordan prove to be highly susceptible to the filtering operations, therefore
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Figure 14: Comparison between ℓ2-norm error histories with and without filtering, N =
1000, CFL=0.5. When filtering is implemented similar performance is obtained by the
new schemes and those of Kim [1] and Jordan [13]

34



extra caution should be exercised while selecting the filter cut-off wavenum-

ber. The maximum ℓ2-norm errors produced by the new schemes with and

without filtering is shown in Figure 15. Demonstrating that the similarity

between filtered and unfiltered solutions is consistent over a range of grid

levels.
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Figure 15: Comparison of maximum ℓ2-norm errors produced in the 1D scalar wave con-
vection problem by the current scheme, with and without filtering, CFL=0.5

5.2. Two-dimensional Inviscid Vortex Convection

In this problem the 2D compressible Euler equations are solved in full

conservative form, in order to simulate the convection of an inviscid 2D vor-

ticity wave in a supersonic flow. This problem was originally proposed by

Yee et al. [19] to validate their high-order shock capturing scheme and filters.
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The governing equations are described as follows

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= 0, (32)

where Q, E and F represent the following:

Q =




ρ

ρu

ρv

ρet



, E =




ρu

ρu2 + p

ρuv

ρ(et + p)u




and F =




ρv

ρuv

ρv2 + p

ρ(et + p)v



. (33)

where ρ, u, v and p are the primitive variables (density, streamwise velocity,

vertical velocity and pressure), and subscript ∞ represents free-stream condi-

tions. The total energy per unit mass is given by et = p/[(γ−1)ρ]+(u2+v2)/2,

and γ = cp/cv is the ratio of specific heats, set to γ = 1.4 for air. The calcu-

lation is carried out with the following initial conditions

ρ(x, y)

ρ∞
=

(
1− γ − 1

2
ψ2(x, y)

) 1

γ−1

u(x, y)

a∞
=M∞ +Kyψ(x, y)

v(x, y)

a∞
= −Kxψ(x, y)

p(x, y)

p∞
=

(
ρ

ρ∞

)γ





, for





−0.5L ≤ x ≤ 2.5L

−0.75L ≤ y ≤ 0.75L,

(34)
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with

ψ(x, y) =
ǫ

2π
exp

(
1

2
(1−K2(x2 + y2))

)
, (35)

where K = 1/R and R = 0.08L, which represents the radius of the vortex.

The vortex strength is controlled by the parameter ǫ. ǫ = 0.1 corresponds

to a linear case, while higher values correspond to more non-linear cases.

The free stream velocity is defined as u∞ = M∞a∞, with the Mach number

M∞ = 2, and the ambient speed of sound a∞ =
√
γp∞/ρ∞. As there

is a supersonic free stream velocity, downstream disturbances will have no

influence on upstream flow properties. Therefore boundary conditions need

not be applied at the domain outlet. Furthermore this advocates the use

of interior schemes at the first three inlet boundary points, since the x-

derivatives in Eq.(32) may be set to zero prior the inlet boundary. In addition

to the domain outlet, boundary schemes are applied to the top (j = {N −
2, N − 1, N}) and bottom edges (j = {0, 1, 2}) of the grid with the non-

reflective boundary conditions suggested in [20]. The compact filter cut-off

frequency of Ωc = 0.88π is used with the boundary weighting factors to ensure

a numerical stable solution is obtained. As before time integration is carried

out with classical fourth-order Runge-Kutta method, until a non-dimensional

time of u∞t/L = 1.5 using CFL=0.5.

In order to identify the errors generated at the exit boundary the solu-

tion generated on the domain −0.5L ≤ x ≤ 2.5L, −0.75L ≤ y ≤ 0.75L is

treated as a reference solution. This is compared to the result obtained on a

grid truncated by a factor of 2 in the streamwise direction (−0.5L ≤ x ≤ L,

−0.75L ≤ y ≤ 0.75L). At u∞t/L = 1.0 the core of the propagating vortex

will have reached the truncated domain exit boundary, but will still be well
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within the interior region of the full length domain. By comparing solutions

at this instant of time the accuracy of the boundary schemes can be deter-

mined. Further justification for this approach is provided in Appendix A.

A two-dimensional equivalent of the ℓ2-norm error, based on corresponding

grid points of the truncated and full length domains can be defined as follows

Eℓ2(ts) =

(
L2

[(N + 1)ǫu∞]2

N∑

i=0

N∑

j=0

(νFi,j − νTi,j)
2

)1/2

(36)
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Figure 16: Left: Contours of normalised pressure for the vortex convection problem ob-
tained by the new schemes at three instances of time with ǫ = 5. The domain is truncated
by a factor of 2 in the streamwise direction such that a computational exit boundary exists
at x = 1.0L, where boundary schemes are applied. A total of 60 × 60 grid cells are used
for the computation with a uniform grid spacing of ∆x = 0.025L. Right: Comparison of
normalised pressure contours around x = 1.0L for the truncated domain and a full length
domain where the exit boundary is further downstream. The full length domain maintains
the same grid spacing and hence consists of 120× 60 grid cells

where ν is a normalised primitive variable (u/a∞, v/a∞, ρ/ρ∞, p/(ρ∞a
2
∞)),

(N + 1)2 is the number of grid points contained within the truncated grid,

ts is the current time step and superscripts F and T correspond to the full
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length and truncated domains. All numerical errors are compared to those

produced using the coefficients suggested by Kim [1, 16].

Figure 16 show contours of normalised pressure obtained at three in-

stances of time u∞t/L = 0, 0.5, 1.0 on a truncated 60×60 grid. There are no

observable deformations as the vortex leaves the exit boundary at x = 1.0L.

Also shown is a comparison of the solution produced on both the truncated

(60×60 grid) and reference grids (120×60 grid) at u∞t/L = 1.0. Despite the

fact that this result is obtained on a very coarse grid with the most non-linear

vortex strength (ǫ = 5), the two results remain consistent.
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Figure 17: ℓ2-norm errors based on p/(ρ∞a2
∞
) produced at u∞t/L = 1.0 by the new

schemes during the vortex convection problem. Results shown with ǫ = 0.1, 1, 3 and 5 at
various grid levels

Figure 17 shows the convergence rates of the normalised pressure ℓ2-

norm error produced at u∞t/L = 1.0 with various values of ǫ. For each grid
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level the grid spacing is kept uniform in both the streamwise and vertical

directions. The current schemes successfully exceed the desired fourth-order

convergence rate for both linear and non-linear vortex cases. Comparisons

to the previous study [1, 16] are also given in Figure 18 for each primitive

variable and ǫ = 5. Large error reductions are achieved by the new schemes
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Figure 18: Primitive variable ℓ2-norm errors generated by the new schemes and those of
Kim [1, 16] during the vortex convection problem with an increasing number of nodes.
Errors calculated at u∞t/L = 1.0 with ǫ = 5

for all primitive variables and grid levels, in some cases in excess of to an order
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of magnitude. On average errors are reduced by a factors of 8.31, 7.72, 5.42

and 8.58 for u/a∞, v/a∞, ρ/ρ∞ and p/(ρ∞a
2
∞) respectively across the five

grid levels tested. This clearly demonstrates that the present schemes are

also capable of large accuracy improvements in multidimensional problems.

Further comparisons for the error based on normalised pressure are shown

in Figure 19 for u∞t/L = 1.0 obtained with different vortex strengths. Using

a 60×60 grid error reductions range from 60.1%−82.2%, while for a 300×300

grid they fall between 88.6% − 91.3%. In Figure 20 comparisons are also

made with the schemes of Liu et al. [11] and Jordan [13] for the error time

history using a 60 × 60 grid and ǫ = 5. For each case compact filtering is

employed to ensure stable solutions. The results are shown firstly with a filter

cut-off of Ωc = 0.88π utilising the boundary weighting strategy in Eq.(17).

The new schemes are successful in obtaining the lowest errors during the

simulation. A similar performance is also achieved for the schemes of Jordan

[13], however as demonstrated in the previous one-dimensional benchmark

problem the low errors produced by Jordan’s template were not maintained

when the filter cut-off was increased. With a higher filter cut-off (globally set

to Ωc = 0.95π) the error produced by Jordan’s schemes increases, whereas

for the new schemes it is reduced, thus resulting in a more substantial error

reduction offered by the new schemes.

5.3. Deformed Grid Two-dimensional Inviscid Vortex Convection

In this benchmark problem the performance of the current schemes on

curvilinear grids is analysed by revisiting the two-dimensional inviscid vortex

convection problem. The original uniform grid is deformed by implementing

the following equations [21]
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Figure 19: Comparison of ℓ2-norm errors based on p/(ρ∞a2
∞
) produced during the vortex

convection problem. Obtained at u∞t/L = 1.0, with various vortex strengths (ǫ). Left:
60× 60 grid. Right: 300× 300 grid
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Figure 20: Time history of ℓ2-norm errors based on p/(ρ∞a2
∞
) produced during the vortex

convection problem withN×N = 60×60 and ǫ = 5. Left: filter cut-off Ωc = 0.88π utilising
the boundary weighting strategy in Eq.(17) (w2 = 0.085 previous schemes, w2 = 0.0485
new schemes). Right: global filter cut-off Ωc = 0.95π, w2 = 0
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xi,j = −L
2
+

3L

2

[
i

N
+ µ sin

(
4πj

N

)]

yi,j = −3L

4
+

3L

2

[
j

N
+ µ sin

(
4πi

N

)] (37)

where µ determines the amount of grid deformation. µ = 0 would revert

the grid to the uniform case analysed in the previous section. As before the

problem consists of solving the compressible two-dimensional Euler equa-

tions, although this time in a generalised coordinate system

∂Q̂

∂t
+
∂Ê

∂ξ
+
∂F̂

∂η
= 0, (38)

with

Q̂ = Q/J, Ê = (ξxE+ ξyF)/J, F̂ = (ηxE+ ηyF)/J (39)

where ξx,y and ηx,y are the grid metrics, and J−1 = (xξyη = xηyξ) is the Jaco-

bian determinant of the transformation. Since the finite-difference template

is also required to calculate the grid metric this represents a more thorough

test of their performance. The calculations are run using the most non-linear

vortex case (ǫ = 5), CFL = 0.5, and M∞ = 2.0. The compact filtes are also

implemented utilising Ωc = 0.88π and the appropiate boundary weighting

factors. The ℓ2 norm errors are once again evaluated based on Eq.(36) as

the vortex leaves the exit boundary at x = 1.0L. Figure 21 shows contours

on normalised spanwise vorticity (ωzL/(a∞ǫ) where ωz = ∂v/∂x−∂u/∂y) at
three instances of time (u∞t/L = 0, 0.5 and 1.0). The truncated domain grid

consists of N × N = 100 × 100 grid cells and utilises µ = 0.05 (1 in 2 grid
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points shown). At u∞t/L = 1.0 the vortex is halfway through the truncated

domain exit boundary. At this point there is no noticable deformation to the

vortex or disimilarity with the full domain solution.
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Figure 21: Contours of normalised spanwise vorticity magnitude for the vortex convection
problem utilising a curvilinear (deformed) grid. The grid (generated by Eq.(37)) consists
of 100× 100 grid cells with a uniform spacing and µ = 0.05 (1 in 2 grid lines shown)

The maximum ℓ2 norm error convergence is shown in Figure 22 for the new

schemes and those of Kim [1, 16] based on normalised pressure (p/(ρ∞a
2
∞).

This demonstrates that the new schemes are able to maintain the desired

4th-order convergence rate on heavily deformed curivlinear grids. The er-

ror reduction produced by the new schemes increases with N ranging from

52.16% for the coarsest grid, to 94.63% for the finest. Figure 23 shows the ℓ2

norm error time history produced by the new schemes and those of Kim [1],

Liu Liu et al. [11] and Jordan Jordan [13]. Each scheme is used in conjuction
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with the compact filtering [16], with results shown for the 100×100 grid. The

new schemes achieve a 12.6, 7.2 and 3.0 times improvement to the maximum

error produced during the calculation compared to the schemes of Liu et al.

[11], Kim [1] and Jordan [13] respectively.

10
1

10
2

10
3

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

N

E
ℓ 2
o
f
p
/
(ρ

∞
a
2 ∞
)

 

 
4th Order
New
Kim [1,16]

Figure 22: ℓ2-norm errors based on p/(ρ∞a2
∞
) produced at u∞t/L = 1.0 by the new

schemes and those of Kim [1, 16] during the deformed grid vortex convection problem
with µ = 0.05. Results shown with ǫ = 5 at various grid levels

6. Pseudo-boundary Schemes

Thus far we have concentrated on reducing the total resolution error

between the composite template and exact differentiation. Another potential

target for improvement is the relative error between consecutive points in the

composite template. This is a particular concern between the final central

interior node and the first non-central boundary node, where typically a
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sharp degradation in the spectral properties are observed. The approach

taken in this section is to retune the coefficients of the first few interior

nodes, such that they ease this performance discontinuity, and thus achieve

a higher accuracy. The retuned interior schemes are herein referred to as

pseudo-boundary schemes. The coefficient matrices P and Q are updated to

include the pseudo-boundary schemes at nodes i = {3, N−2}, i = {4, N−1}
and i = {5, N} are displayed below. Hatted variables denote the pseudo-

boundary coefficients.
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Figure 23: Time history of ℓ2-norm errors based on p/(ρ∞a2
∞
) produced by various schemes

during the deformed grid vortex convection problem using ǫ = 5. The grid consists of
N ×N = 100× 100 grid cells with µ = 0.05. Ωc = 0.88π
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P =




1 γ01 γ02 0 · · · 0 0 0 0 0 0 0 0 0 0
γ10 1 γ12 γ13 0 · · · 0 0 0 0 0 0 0 0 0
γ20 γ21 1 γ23 γ24 0 · · · 0 0 0 0 0 0 0 0

0 β̂3 α̂3 1 α̂3 β̂3 0 · · · 0 0 0 0 0 0 0

0 0 β̂4 α̂4 1 α̂4 β̂4 0 · · · 0 0 0 0 0 0

0 0 0 β̂5 α̂5 1 α̂5 β̂5 0 · · · 0 0 0 0 0
0 0 0 0 β α 1 α β 0 · · · 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 · · · 0 β α 1 α β 0 0 0 0

0 0 0 0 0 · · · 0 β̂5 α̂5 1 α̂5 β̂5 0 0 0

0 0 0 0 0 0 · · · 0 β̂4 α̂4 1 α̂4 β̂4 0 0

0 0 0 0 0 0 0 · · · 0 β̂3 α̂3 1 α̂3 β̂3 0
0 0 0 0 0 0 0 0 · · · 0 γ24 γ23 1 γ21 γ20
0 0 0 0 0 0 0 0 0 · · · 0 γ13 γ12 1 γ10
0 0 0 0 0 0 0 0 0 0 · · · 0 γ02 γ01 1




Q =




b00 b01 b02 b03 b04 b05 b06 0 0 0 0 0 0 · · · 0
b10 b11 b12 b13 b14 b15 b16 0 0 0 0 0 0 · · · 0
b20 b21 b22 b23 b24 b25 b26 0 0 0 0 0 0 · · · 0
−â33 −â23 −â13 0 â13 â23 â33 0 0 0 0 0 0 · · · 0
0 −â34 −â24 −â14 0 â14 â24 â34 0 0 0 0 0 · · · 0
0 0 −â35 −â25 −â15 0 â15 â25 â35 0 0 0 0 · · · 0
0 0 0 −a3 −a2 −a1 0 a1 a2 a3 0 0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 0 0 −a3 −a2 −a1 0 a1 a2 a3 0 0 0
0 · · · 0 0 0 0 −â35 −â25 −â15 0 â15 â25 â35 0 0
0 · · · 0 0 0 0 0 −â34 −â24 −â14 0 â14 â24 â34 0
0 · · · 0 0 0 0 0 0 −â33 −â23 −â13 0 â13 â23 â33
0 · · · 0 0 0 0 0 0 −b26 −b25 −b24 −b23 −b22 −b21 −b20
0 · · · 0 0 0 0 0 0 −b16 −b15 −b14 −b13 −b12 −b11 −b10
0 · · · 0 0 0 0 0 0 −b06 −b05 −b04 −b03 −b02 −b01 −b00




Since maximising the spectral resolution properties of pseudo-boundary

schemes is not necessarily the objective, optimisation via the wavenumber

error fitness function is avoided. Alternatively, the pseudo-boundary coeffi-

cients are tuned through direct application to the second benchmark problem

(two-dimensional inviscid vortex convection). Five equations are required
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to determine the five compact finite difference coefficients of each pseudo-

boundary scheme. The first two are formed by the requirement for fourth

order truncation error, while the remaining three are determined by minimis-

ing an integral error function defined between exact and modified wavenum-

ber curves. This process was utilised by Kim [1] to obtain the main interior

scheme used throughout this paper. In this case the error function inte-

gration range r is selected as the tuning parameter, and is varied between

0.7π ≤ r ≤ π. The coefficients of the i = {3, N − 3} nodes are the first

to be modified. Firstly by replacing them with coefficients generated using

r = 0.7π, and then by incrementing r in steps of ∆r = 0.01π. The ℓ2-norm

error in the second benchmark problem based on normalised pressure, ǫ = 5

and a N ×N = 150 × 150 grid is then determined, and the most successful

coefficients retained. The same process is then undertaken at the next node

(i = {4, N − 4}), this time initialising the search with the best coefficients

obtained by the previous step. As well as reducing computational cost, this

ensures that subsequent pseudo-boundary points will be based on a higher

integration range, encouraging a gradual increase in spectral resolution. This

process was continued until a minimum ℓ2-norm error was reached, resulting

in pseudo-boundary coefficients applied to the i = {3, N −2}, i = {4, N −1}
and i = {5, N} interior nodes, shown in Table 4.

6.1. Pseudo-boundary Modified Wavenumber Characteristics

Figure 24 shows the respective dispersion and dissipation errors (Eqs.(23)

and (24)) produced by a N = 13 matrix system. This consists of 6 boundary,

6 pseudo-boundary and 1 main interior point. The dissipation error distribu-

tions behave generally as anticipated, gradually improving as i is increased.
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i = 3 i = 4 i = 5
r 0.710π 0.757π 0.920π
α̂i 0.56075605925645422 0.56692843691602146 0.60253603159337543

β̂i 0.07930134421661057 0.08298645604575880 0.10724531301136056
â1i 0.66544805450470135 0.66024976364668564 0.62798918770826639
â2i 0.23030478868512835 0.23706131441853673 0.27695667488600395
â3i 0.00466659053270228 0.00518083349267372 0.00929293570815389

Table 4: Pseudo-boundary scheme coefficients

Please note that the dissipation error produced at the interior node (i = 6) is

zero, and therefore it is not shown here. (This is always the case for the cen-

tral row of a composite template). The dispersion errors on the other hand

are perhaps more surprising, particularly for the pseudo-boundary points.

Over some wavenumber regions they manage to obtain even lower dispersion

errors than the interior node. Despite this, the overall resolution error pro-

duced at these points will be larger due to their non-zero dissipation errors.
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Figure 24: Wavenumber error plots for the current finite difference template and pseudo-
boundary schemes (N = 13)
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6.2. Pseudo-boundary Performance

An example of the accuracy improvements offered by pseudo-boundary

schemes is given in Figure 25. This shows a comparison of the normalised

pressure ℓ2-norm error history, obtained during the two-dimensional vor-

tex convection problem using the coarsest grid and most non-linear vortex

strength. The result is a significantly large reduction of 44.9% to the error

at u∞t/L = 1.0. Although it appears pseudo-boundary schemes have the

potential to offer reasonably large accuracy improvements, they do present

a challenge in terms of numerical stability. In the current benchmark test

problems they were able to obtain stable solutions. However, they fail to

meet eigenvalue requirements for linear stability unless an excessive level of

filtering is applied. For this reason their stability in other problems cannot

be ensured.

7. Conclusion

A new optimisation strategy for compact finite difference boundary sche-

mes is successfully implemented utilising a genetic algorithm. This com-

prises of an objective function based upon a new formulation for the modified

wavenumber of composite templates. A non-linear constraint for eigenvalue

stability is used to ensure a stable matrix system is automatically obtained

through compact filtering. Pentadiagonal schemes with a seven-point stencil

are the primary focus, however a similar approach could be utilised for alter-

nate compact schemes if desired. The optimised schemes provide substantial

improvements to resolution, accuracy and computational efficiency in a se-

ries of one and two-dimensional benchmark problems. They are suitable for
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Figure 25: Time history of ℓ2-norm errors produced in the vortex convection problem
based on normalised pressure p/(ρ∞a2

∞
). Result shown with and without pseudo-boundary

schemes for N ×N = 60× 60 and ǫ = 5
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a variety of flow problems with varying degrees of linearity, on both uniform

and curvilinear grids.
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Appendix A.

An exact solution to the second benchmark problem is usually obtained

by substituting x̂ = x− u∞t for x in Eq. (34). However, for more non-linear

cases it appears this formulation may not be the most appropriate when

analysing the performance of the boundary schemes. This was made appar-

ent by the presence of an additional error which manifested itself well before

the vortex reaches the domain boundary, masking the true performance of

the schemes. This is shown graphically by Figure A.26, which contains ab-
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solute error contours based on the exact solution for normalised pressure

(|e| = |(p − pexact)/(ρ∞a
2
∞)|) plotted with three contour level bandwidths,

and ǫ = 5. As the contour bandwidth is decreased it becomes clear that

the most substantial error actually exists near the vortex core, and persists

until the vortex has left the domain. If errors from the exact solution are

alternatively quantified in terms of an ℓ2-norm, the influence of this effect

can not be detected until an error level of approximately 10−6 is obtained,

requiring a grid density close to N ×N = 600×600. Therefore it is expected

that this issue has not been encountered in prior optimisation attempts, due

to relatively higher peak errors obtained during the simulation. Since this

issue is only encountered for non-linear vortex strengths (above ǫ = 0.1) it

seems likely that it is caused by some non-linear physical phenomenon which

is successfully detected in the simulation, but not properly represented by

the analytical solution due to assumptions made in its derivation. For this

reason numerical errors generated by the boundary schemes were analysed

by comparing solutions obtained on both a full-size and truncated domain.

The full-size domain resolving the vortex solely with interior points, while

the truncated domain requires the vortex to pass through an exit boundary

where the boundary schemes are implemented.
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Figure A.26: Absolute error contours based on the exact solution for normalised pressure,
|e| = |(p−pexact)/(ρ∞a2

∞
)|. Calculated with CFL=0.5 and ǫ = 5 with N×N = 300×300.

Errors are shown at three instances of time and with three contour level bandwidths.
Top: wide bandwidth 5 × 10−5, Middle: medium bandwidth 1 × 10−5, Bottom: narrow
bandwidth 5× 10−6
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