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Abstract—Recently, large-scale Multiple-Input Multiple-
Output (MIMO) systems have caught great attention for
increasing the system throughput as well as improving the
system performance. The main challenge in the design of these
MIMO systems is the detection techniques used at the receiver.
Lattice Reduction (LR) techniques have shown good potential
in MIMO decoding due to their good performance and low
complexity compared to Maximum Likelihood (ML) detector.
The Lenstra, Lanstra, and Lovasz (LLL) LR algorithm has been
employed for decoding while combined with linear detectors
such as ZF as well as with K-Best detection. However, the
LLL-aided detectors have shown limited performance, when
increasing the number of antennas at the transmitter and
receiver. Therefore, in this paper we propose to use the so-called
Element-based Lattice Reduction (ELR) combined with K-Best
detector for the sake of attaining a better BER performance
and lower complexity than the LLL-aided detection. Explicitly,
the ELR-aided detectors are capable of attaining a 2 dB
performance improvement at BER of 10° compared to the
LLL-aided detectors when considering a MIMO system with
200 transmit and receive antennas. Furthermore, for the same
MIMO configuration, the ELR basis update requires nearly
an order of magnitude reduction in the number of arithmetic
operations compared to the LLL algorithm.

Index Terms—Large-scale MIMO, detection, Lattice Reduc-
tion, K-Best detection.

I. INTRODUCTION

HE continuous growing demand for high data rate wire-

less services and for higher quality of service (QoS)
is pushing wireless communications networks to introduce
new technologies. Multiple-Input Multiple-Output (MIMO)
techniques have attracted considerable attention due to their
potential to increase the data throughput and link range without
the need for any additional bandwidth or transmit power [1]-
[3]. MIMO has been adopted as a key technique in the fourth
generation (4G) mobile communications standards. Recently,
large-scale MIMOs have been proposed in order to scale up
the MIMO gains [4], [5].

In MIMO systems, where multiple interfering symbols
are transmitted at the same time, the received symbols are
expected to be detected subject to the contamination of random
noise or interference. The detection challenge increases with
the increase of the number of antennas and hence in large-
scale MIMO, reducing the detection complexity is one of the
main challenges.
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Although the Maximum Likelihood (ML) detector offers
optimal BER performance, its complexity makes it impractical
in terms of hardware implementation. On the other hand,
linear detectors such as Zero Forcing (ZF) detection is simple
to implement, while it suffers from significant performance
degradation compared to the ML. Recently, Lattice Reduction
(LR) aided detectors were proposed for MIMO systems, that
are capable of achieving a sub-optimal performance close to
ML with much less complexity [6], [7]. Several algorithms
have been proposed in the literature for performing Lattice
Reduction such as the Lenstra, Lanstra, and Lovasz (LLL) al-
gorithm [8], the Korkine-Zolotareff (KZ) algorithm [9] and the
Element-based Lattice Reduction (ELR) algorithm [10]. These
algorithms vary in complexity and performance. The most
widely used is the LLL algorithm due to its efficiency and low
complexity, while KZ requires high computational complexity.
On the other hand, the ELR algorithm has been proposed as
a reduced complexity LR algorithm, while performing better
than the LLL-aided MIMO detectors when the number of
antennas in significantly high [10]. In large scale MIMOs, the
ELR algorithm requires less number of arithmetic operations
for the LR basis update than the LLL algorithm [10].

LLL-aided linear detectors were employed in [7], [11],
where the Bit Error Ratio (BER) performance improvement
was achieved compared to conventional linear detectors dis-
pensing with LR, while this required a slight increase in the
implementation complexity. Furthermore, in order to reduce
the performance gap between the LR-aided detectors and the
ML detector, [12] proposed an LLL-aided K-Best detector,
which was capable of improving the system performance
further while increasing the preprocessing complexity.

Recently, the ELR algorithm has been proposed to per-
form lattice reduction for large-scale MIMO systems in order
to attain an improved BER performance while maintaining
lower complexity compared to the LLL-aided detector [10].
Therefore, motivated by the results of [12], where the
performance of the K-Best detector was improved by
performing LR of the channel matrix before the detection,
in this paper we propose to improve the large-scale MIMO
detection performance by applying the ELR algorithm
with the K-Best detector, which we refer to as ELR-
aided K-Best detector. Our simulation results show that
our proposed ELR-aided K-Best detector is capable of
achieving an improved BER performance compared to the
benchmark techniques utilising the LLL algorithm in the



LR-aided K-Best detector, while requiring a significantly
lower complexity. Explicitly, the ELR-aided detectors are
capable of attaining a 2 dB performance improvement
at BER of 107° compared to the LLL-aided detectors
when considering a MIMO system with 200 transmit
and receive antennas. Furthermore, for the same MIMO
configuration, the ELR basis update requires nearly an
order of magnitude reduction in the number of arithmetic
operations compared to the LLL algorithm.

The rest of the paper is organized as follows. In Section II
we present an overview of the MIMO system model used in
this paper followed by Section III, where the LR-aided MIMO
detection is explained. In Section III, we present our proposed
ELR-aided K-Best detector. Then, we present our simulation
results in Section IV, where we compare the BER performance
as well as the complexity of the proposed detector with the
benchmark techniques. Finally, we present our conclusions in
Section V.

II. SYSTEM MODEL

Consider a MIMO system with /N transmit and M receive
antennas, where different data symbols are transmitted from
the different transmit antennas at the same time. The channel
between the transmitter and receiver is assumed to be Rayleigh
fading channel, where the different channels between the
different transmit and receive antennas are independent and
identically distributed (i.i.d.), since it is assumed that the
antennas at the transmitter and receiver are sufficiently spaced
apart.

Let x¢ denote the transmitted complex symbol vector of
size N x 1, where x¢ = [x§, 25, ..., 2%]7 such that z¢ € X¢ is
drawn from a complex constellation of P-QAM. Furthermore,
the channel can be described by a complex matrix H of size
M x N, where H® changes independently from one frame to
another. The received signal can be expressed as:

y© = Hx +n°, (1)

where y¢ = [y, 95, ...,y5,]T is the received complex signal
vector of size M x 1 and n® = [n§,n$, ...,n5,]T represents
the complex Additive White Gaussian Noise (AWGN) vector
of size M x 1 with zero mean and variance % The detector
at the receiver tries to retrieve the transmitted vector x¢ from
the received signal y°.
In the previous explanation, we have used the superscript
c in the notations representing the transmitted symbol vector,
received symbol vector, channel and noise in order to denote
that these are complex valued. The complex model of (1) can
be represented in an equivalent real model as follows:
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3

Sly“l) — LSH<], ®RE ] [SK] - [Snf]

where R and < represent the real and imaginary parts of
a complex number, respectively. Additionally, (2) can be
represented in the following form:

y = Hx +n. 3)

Since all the elements of each variable are decomposed into
their real and imaginary parts, the equivalent real model of (3)

has 'y = [y1,¥2, ..., yarsr]T and n = [n1, na, ..., naps| T both of
size 2M x 1, while H has a size of 2M x 2N, and x =
[x1, 22, ..., van]T of size 2N x 1. In this case, each x; € X is
drawn from the real constellation set of P-QAM as {—+/P +
1,-vVP+3,...VP — 1}. For example the real model of a
given z¢ = [1+4,3—7]7 of size 2x1 will be x = [1, 3,1, —1]
of size 4 x 1. In the following we will use the equivalent real
model for the design of the proposed detector.

III. LR-AIDED MIMO DETECTOR DESIGN

Based on (3) the ML detector requires to search through all
possible constellation points of the transmitted symbol vector
x within the lattice Hx, which can be expressed as:

~ . 2
X=arg min |y—Hx]|*. 4)

This process is time consuming and requires complex com-
putations. To reduce this complexity LR-aided detectors were
proposed in [6], [7]. LR-aided detectors try to reduce the basis
of the lattice Hx and find another basis with better properties
for detection [13]. The LR operation transforms the channel
matrix H into its equivalent channel matrix H, which is more
orthogonal and better conditioned than H [14]. The LR-aided
detector uses the new orthogonal channel matrix H, which
may give more reliable estimation for the received signal than
that of the detector that uses the original channel matrix H.

The new H matrix can be obtained by transforming the
MIMO equation as follows:

y=Hx+n
=y=HTT 'x+n
=y=HT)(T 'x)+n
:y:ﬁz—l—n. 5)

The new channel matrix is generated as H = HT, where
T is a uni-modular matrix having a determinant of +1 and
integer entries. Multiplying the matrix T with H produced
the orthogonal matrix H. B

Then, using the model in (5), given by y = Hz + n, the
detector requires decoding z = (T~!'x) from the reduced-
lattice constellation and then recovers the original constellation
point by X = Tz L Both Hx and Hz produce the same point
in the lattice but H is more orthogonal than H.

Various LR algorithms have been proposed in literature
in order to produce the T matrix. In the following we
will describe first the LLL algorithm which will form the
benchmark to our proposed work. Then, we will describe the
ELR algorithm that we utilized in our proposed detector.

A. LLL-Aided ZF detector

In this section, we present the LLL-aided ZF detector, where
the LLL LR algorithm is used to obtain_the T matrix [8],
which will result in a new channel matrix H = HT'. Then, the
conventional ZF detection is performed, where the equalisation
matrix W is obtained as the inverse of the new channel matrix

'Note that z € Z integer set.



ﬁ, i.e. W = H~!. This is in contrast to the conventional ZF,
where W = H™ 1

Afterwards, W is multiplied by the received signal using the
transformed MIMO model presented in (5). Then, the output
of the LLL-aided ZF will be Z = z + H 'n and since z =
(T~'x) € Z, the original constellation symbols x can be
recovered by multiplying with T after shifting, scaling and
rounding as follows [7]:

X =2T[(Z — T '1anx1)/2] — Llonx1, (6)

where 1oy is a (2N x 1) vector of all 1 entries.

B. LLL-Aided K-Best detector

As mentioned in Section I, [12] showed that the perfor-
mance of the K-Best detector can be improved by performing
a LR of the channel matrix as a preprocessing stage prior to
the K-Best. The LLL algorithm can be utilised to aid the K-
Best detector by first producing the T matrix in order to find
the new channel matrix H = HT. Then, the K-Best detection
process is applied, where the QR decomposition is performed
for the new channel matrix as H = QR, with R being an
upper triangular matrix and Q a unitary matrix?.

The size of both Q and R is 2M x 2N, when the real
MIMO model of (3) is considered as described earlier. After
the QR decomposition, (5) can be reshaped from y = Hz+n
to

y = QRz +n. (7
Then, the ML detection problem for z can be expressed as:

~ . -_’V 2
Z= argzénzgl}v |y — Rz |~ (8)

where ¥ = Q¥ and z = (T~ 'x).
Note that

y = (y — Hlanx1)/2, )

which is a shifted and scaled version of y [15]. From (8),
the detector requires performing a Tree Search to detect z and
then recovers the original symbols by multiplying with T after
rescaling and re-shifting Z as

X =2T(z) + 1anx1, (10)

or in terms of (8) it can be expressed as [15]:

=2T arg min | ¥ — Rz ||? +1aonx1. (an
z€ Z2N

On the other hand, the LLL-aided K-Best detector has been
further improved in [15] by combining the Minimum Mean
Square Error (MMSE) regularization with the LLL-aided K-
Best detector. This is referred to as LLL-aided MMSE K-Best
detector, which has an improved performance compared to
the LLL-aided K-Best detector. The difference between LLL-
aided K-Best and LLL-aided MMSE K-Best detectors is that
in the MMSE-aided detector the channel matrix H is replaced

2A unitary matrix has the following property QH = (3’1, where

represented the Hermitian transpose.

TABLE I
ELR ALGORITHM [16]

Input:H ‘ Output:T
(1) C=(HEH)"LT =1,
(2) Do

Cik
B Mg [ Vit K
4 ifall A =0,Vi#K
) break
(6) endif

(7)  Find the largest reducible Cy,
8) Choose i = arg maz; R; g

©) ) )+ Nipt!

(10)  Ck = Ckp + A kCi

an @™ k) 4 xx 3o

(12) While (True)

13 T =(1T""HH

with the extended H matrix and the received signal vector y
is replaced with the extended y as follows:

H

ﬁ: 2 b 7: y b
UU—IQN Y |:02N><1]
p

and then the same K-Best detection process described above
is applied.

12)

C. ELR-Aided ZF detector

In sections III-A and III-B LLL-aided detectors have been
described, which are capable of achieving significant perfor-
mance improvement compared to decoding whilst dispensing
with LR [7], [11]. However, this performance improvement
degrades gradually and starts to deviate from the ML perfor-
mance as the number of antennas increases [10], [12]. This
is due to the fact that the LLL algorithm is less efficient in
large-scale MIMO system [10], [12]. Recently, Element-based
Lattice Reduction (ELR) algorithm [10] has been proposed to
perform lattice reduction for large-scale MIMO systems with
an improved performance compared to the LLL algorithm,
while also requiring lower complexity [10].

The ELR algorithm is shown in Table I, which describes
the evaluation process of the matrix T. The ELR algorithm
has been applied with ZF detector for large-scale MIMO
in [10], [16], where the T matrix was obtained using the
ELR algorithm rather than the LLL algorithm and then ZF
detection is employed as described in III-A. A considerable
improvement in the BER performance can be noticed in large-
scale MIMOs, when employing the ELR algorithm compared
to the LLL-aided detector, which will be illustrated further in
Section IV.

D. The proposed ELR-Aided K-Best detector

In this paper, we propose to further improve the perfor-
mance of ELR-aided detectors by applying the ELR algorithm
to aid the K-Best detector, when employed for large-scale



MIMO systems. Our proposed ELR-aided K-Best detector
can achieve an improved BER performance compared to the
decoders described in Sections IlI-A, III-B and III-C, while
requiring lower complexity than those employing the LLL
algorithm. The ELR-aided K-Best detection process is similar
to that described in Section III-B with the difference that it
adopts the ELR algorithm described in Table I in order to
produce the T matrix used to obtain the new channel matrix
H=HT.

As described ig Section III-B, consider the MIMO equation
given by y = Hz + n, where the K-Best detector can be
applied for decoding the received signal. The decoding steps of
the ELR-aided K-Best detector can be summarized as follow:

1) Find T = ELR(H) using the ELR algorithm of Table I;

2) Evaluate H = HT; _ o _

3) Perform QR decomposition for H as [Q,R] = QR(H );

4) We now have the MIMO model y = Hz + n;

5) Evaluate y = (y — Hlanx1)/2;

6) Evaluate ¥ = Q7y;

7) Initialise the variables for performing the K-Best detec-
tion as follows z = [ ],cost = 0,len =1,k = 2;

8) Employ the K-Best detector as described in [15];

9) Evaluate X = 2T argmingezon || ¥ — Rz ||2 +1anx1.

The proposed ELR-aided K-Best detector can be further
enhanced by employing MMSE regularization as described in
Section III-C to obtain the ELR-aided MMSE K-Best detector.
The difference between the ELR-aided and the ELR-aided
MMSE K-Best detection is that the channel matrix H is
replaced with the extended matrix H and also the received
signal y is replaced with the extended y as follows:

H

H=| /[, =17
iIgN Y |:02N><1:|
p

The above-proposed ELR-aided K-Best and ELR-aided
MMSE K-Best detectors can perform better than the state-of-
the-art detectors including LLL-aided K-Best and LLL-aided
MMSE K-Best detectors, while at the same time requiring
lower complexity. The reduction in the complexity is mainly
due to the fact that the number of the arithmetic operations
required by ELR algorithm for basis updates is lower than the
LLL algorithm as explained in [10].

(13)

IV. SIMULATION RESULTS

A. BER Performance

In this section we present the BER performance of the
proposed ELR-aided K-Best and ELR-aided MMSE K-Best
detectors and compare these with the benchmark techniques
described in Section III, when employed to large-scale MIMO
systems. These detectors have been simulated in Matlab for a
MIMO system employing N = 200 transmit and M = 200
receive antennas, while employing 64-QAM. Additionally,
Rayleigh fading channels are considered, where the channels
are independent in space and time.

A"a
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Fig. 1. BER performance of various LR-aided detectors over 200X200
MIMO system and using 64-QAM as a modulation scheme.

Figure 1 shows the BER performance comparison of the
various decoding techniques’. In Figure 1, we show the BER
performance of the ZF detector, which forms as an upper
bound on the BER performance of the other detectors. The
ZF detector has the lowest complexity, while having the worst
BER performance. The LR-aided detectors aim to improve the
performance while requiring higher complexity than the ZF
detector. The aim of the LR-aided detectors is to attain a sub-
optimal performance close to that of the ML, while requiring
significantly lower complexity.

The simulation results for the LLL-aided detectors show
BER performance improvements for the simulated large-scale
MIMO compared to the ZF performance. The LLL-aided
ZF detector attains a gain of about 8 dBs at BER of 103
compared to the ZF detector, while the LLL-aided K-Best
detector attains a performance gain of around 11 dB at BER
of 10~° compared to the LLL-aided ZF detector. Furthermore,
the LLL-aided MMMSE K-Best detector attains an additional
gain of around 2 dB at BER of 10~5 compared to the detector
dispensing with MMSE, i.e. the LLL-aided K-Best detector.

On the other hand, the proposed ELR-aided detectors show
performance improvement compared to their LLL-aided coun-
terparts. For example, the proposed ELR-aided K-Best detector
is capable of attaining a 2 dB performance gain compared to
its LLL-aided counterpart at BER of 10~°. Additionally, the
ELR-aided MMSE K-Best detector outperforms its LLL-aided
counterpart by about 3 dBs at BER of 1075.

B. Complexity:

In the following, we illustrate the complexity of the detec-
tors in terms of the number of arithmetic operations including
real additions and real multiplications. We compare the com-
plexity of the LLL and the ELR algorithms for performing
the LR, where the proposed detector and the benchmark
technique are LR-aided detectors and the detection technique

3Note that in the figure we do not show the performance of the ML detector
due to its extremely high complexity for simulation with our configuration.
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Fig. 2. Average number of arithmetic operations for basis updates of
LLL and ELR algorithms versus the number of MIMO transmit and receive
antennas [10].

is the same in both detectors except for the LR operation.
According to [10], ELR algorithm requires the lowest number
of arithmetic operations for basis updates compared to all
other LR algorithms. Figure 2 shows the average number of
arithmetic operations for the basis update in the LLL and
ELR algorithms versus the number of MIMO transmit and
receive antennas, where the plot assumes the same number
of transmit and receive antennas. As shown in Figure 2, the
ELR has a much lower number of arithmetic operations than
the LLL algorithm, which is consistent for all number of
antennas. The ELR requires nearly an order of magnitude
less arithmetic operations that the LLL algorithm, as shown in
Figure 2. Therefore, we can conclude that our proposed ELR-
aided detectors will require significantly lower complexity than
their LLL-aided counterparts, while at the same time achieving
better performance.

V. CONCLUSION

In this paper, we proposed an ELR-aided K-Best and ELR-
aided MMSE K-Best detectors that are capable of improving
the performance of the LR-aided K-Best detectors for large-
scale MIMO systems. Our proposed ELR-aided detectors are
capable of outperforming their benchmark techniques, while
requiring significantly lower complexity. Explicitly, the ELR-
aided detectors are capable of attaining a 2 dB performance
improvement at BER of 1075 compared to the LLL-aided
detectors when considering a MIMO system with 200 trans-
mit and receive antennas. Furthermore, for the same MIMO
configuration, the ELR basis update requires nearly an order
of magnitude reduction in the number of arithmetic operations
compared to the LLL algorithm.
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