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Abstract. Attachments affect the dynamic response of an assembled structure. When engineers 
are modelling structures, small attachments will often not be included in the “bare” model, 
especially in the initial design stages. The location of these attachments might be poorly 
known, yet they affect the response of the structure. This paper considers how attachments 
jointed to the structure at uncertain points, can be included in the dynamic model of a structure. 
Two approaches are proposed. In the time domain, a combination of component mode 
synthesis, characteristic constraint modes and modal analysis gives a computationally efficient 
basis for subsequent analysis using, for example, Monte Carlo simulation. The frequency 
domain approach is based on assembly of frequency response functions of bare structure and 
attachment. Numerical examples of a beam and a plate with a point mass added at an uncertain 
location are considered and predictions compared with experiment results.  

1.  Introduction 
In the initial design stage in particular, a model of the structure is often incomplete, with there being 
various additional componentry of various forms, referred to here as attachments, being added later, or 
maybe not included at all in the numerical model. Attachments play an important role in complex 
structures, for example bundles of wires in cars or aircraft, small control and sensing boxes in engines 
etc. When engineers model structures, normally small attachments will not be included in the “bare” 
mode. The location and properties of attachments might be poorly known at the beginning of the 
design process, and they are often fitted later. These uncertain attachments produce uncertainties in the 
dynamic response of the assembled structures. However, they might affect change the behaviour of the 
structures significantly and be a detrimental influence on the response of the products, such as higher 
noise or vibration levels. This paper considers the case where the properties of the attachment are 
known, but the points on the main structure to which it is attached are uncertain. 

The finite element method (FEM) is well established for vibration analysis (e.g. [1]). In practice, 
models might be large and computational cost significant. The multi-point constraint (MPC) [2] 
method can be used to consider attachments at any position of the model without re-meshing or 
modifying the model. MPC was used by De Alba Alvarez et al. [3] to consider variability in the 
position of a spot weld on a structure.  The frequency domain method [4] is another method to 
consider the attachments. McMillan et al. [5] used the plate Green function with the frequency domain 
method to consider effect of the point masses on a simply supported plate.  

However, when applying FEM to complex structures there may be a very large number of DOFs, 
which can be a disadvantage. Therefore model reduction methods have been developed to improve the 



 
 
 
 
 
 

 
 

efficiency of calculation. One of the commonly used model reduction approaches is component mode 
synthesis (CMS), which partitions a structure into components. Thus different components could be 
analysed independently and these components are assembled together to calculate the eigensolutions 
of the whole structure. According to the different assumptions regarding the interface between sub-
structures, it can be classified as fixed interface (Craig-Bampton) [6], free interface [7], loaded 
interface [8] and hybrid interface [9]. Other approaches have also been combined with CMS to do 
further calculations. Singh and Suarez [10] developed a method combining CMS and dynamic 
condensation together, in which the models of components were reduced by dynamic condensation. 
Finally Characteristic Constraint (CC) modal analysis has been suggested to reduce the number of the 
interface DOFs [11]. 

Uncertainty and variability have significant influence on manufactured products due to 
geometrical, material property parameter variations, assembly tolerances, model inaccuracy etc. 
Generally variability involves these inherent variations of the physical properties or environmental 
condition, such as the variations of geometric and material properties, and manufacturing variability. 
Compared with variability, lack of knowledge of systems leads to uncertainty, for example the 
inaccurate model and the unknown physical characteristics in the design stage [12]. Note that 
uncertainty can be reduced by increasing the knowledge of the system, while it is hard to eliminate the 
influence of variability. Variability is normally assessed by probabilistic methods, in which a 
probability density function is applied to the variable parameters. Monte Carlo simulation (MCS) is 
one of the commonly used methods to investigate variability in the structures. An overview of Monte 
Carlo simulation can be found in [13, 14]. While this approach is effective for the analysis of complex 
structures with many variables, the simulation is computationally expensive, especially when the 
complex structures have many uncertain parameters.  One of the possible solution methods is the 
importance sampling method [15]. It selects the sampling points non-uniformly based on another 
probability distribution rather than sampling in the whole region. It has been demonstrated that the 
requirement of the number of sampling points to meet a given confidence level is very much lower 
than that of simple MCS [16]. A number of studies have concerned uncertain structures, but most 
work focusses on the uncertainty and variability of the structure itself, such as geometry [17], loading 
[18], etc.  

Uncertainty and variability in the physical locations of attachments have been considered much less 
frequently. One example is given in reference [3]. This paper considers how the effects of these 
attachments might be included in the model and how they affect the dynamic response. Typically a 
(possibly very large) finite element (FE) model of the bare structure will be known and the attachment 
connected at some unknown location(s) within a region, as illustrated in Figure 1. The next section 
describes two approaches to the numerical analysis, section 3 contains numerical examples and 
experimental results, while section 4 concludes. 

2.  Numerical methods 
In this section two approaches are described, one based on a time domain, modal description using 
CMS: this involves assembly of the mass and stiffness matrices of the attachment and part of the 

Figure 1 (a) A structure with two components and an attachment; (b) fixed interface model 
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structure. The second is a frequency domain approach (the frequency responses might follow from a 
modal model) with the assembly being performed in the frequency domain. In both cases the 
attachment is connected at some unknown point or points within a region of a structure. The location 
of the point might be described probabilistically (by a probability density function for example) or 
possibilistically (i.e. it lies at some points within the region) and predictions of the statistics or bounds 
of the response might be desired. The dynamic model of both bare structure and attachment are 
assumed to be known: uncertainty arises only in the points at which they are connected.  In practice of 
course there might also be uncertainty in the dynamic models. 

2.1.  Component mode synthesis and characteristic constraint modes 
Reviews of CMS can be found in [19]. The structure is divided into components connected at 
interfaces. The mass and stiffness matrices for each component are found. In the Craig-Bampton (CB) 
method, adopted here, the DOFs are the internal DOFs ix  of the component and the interface DOFs 

bx . The response is then described in terms of the fixed interface modes of the component and the 
constraint modes associated with unit displacement of each of the interface DOFs. 

The general undamped equations of motion are  
 
 + =Mx Kx F  (1) 

where M is the mass matrix, K is the stiffness matrix, F is the force vector and x is the vector of 
DOFs. Equation (1) can be partitioned as [20] 
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where b indicates the interface DOFs and i indicates the internal DOFs of the component. The ( )tx  is 

now transformed to a new set of coordinates by two terms: (1) vibration mode shapes iΦ ; (2) 

constraint modes cΦ . The transformation can be written as  
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where iiΦ is the reduced matrix of fixed interface mode shapes of internal DOFs, 1
ib ii ib

−= −Φ K K , 
and Ψ is the transformation matrix. The resulting model of the component is smaller since only some 
of the fixed interface modes are retained. 

The structure in Figure 1 is divided into two components. Component 1 comprises the bare 
structure outside the region in which the attachment might be connected: the modal analysis of this 
component need be performed just once.  

Component 2 comprises the bare structure within the connection region and the attachment itself. 
The mass and stiffness matrices for component 2 are found by assembling the parts associated with 
part of the bare structure and the attachment. Modal analysis of the assembled matrices yields the 
fixed interface modes.  

Now, since the connection points are uncertain, repeated analysis will be required for a range of 
possible connection points: in the examples below a Monte Carlo simulation (MCS) is performed. 
This then involves re-assembling the two parts of component 2. This multiple re-assembly is expedited 
if MPCs are used, so that the connection points can lie anywhere in the FE mesh. 



 
 
 
 
 
 

 
 

The analysis thus involves a single modal analysis for most of the bare structure, assembly and 
modal analysis multiple times for the attachment region, global modal analysis and response 
prediction. 

2.1.1.  Characteristic constraint modes 
Characteristic constraint (CC) modes involve a further modal analysis of the partitions of the matrices 
associated with the constraint modes [11] and further reduction in the model size.  This further 
improves computational efficiency. The constraint modes of the CMS matrices can be written as [11] 
 

 bb bb
c cφ λ φ=K M  (4) 

Solving this eigenproblem gives the eigenvectors. After these eigenvectors are truncated, only some of 
the selected modes are kept, i.e. 
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where bbΦ  is the full eigenvector matrix of the interface, ˆ bbΦ  is the reduced eigenvector matrix with 
CC modes, mN  is the number of interface DOFs and hence constraint modes and CCN  is the number 
of CC modes. The retained eigenvectors are used to transform the mass and stiffness matrices of the 
CB model. It reduces the size of the matrices and yields a reduced-order model (ROM). The 
transformation matrix can be written as 
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where X contains the generalized coordinates of the CMS in (3) and Y  the coordinates of the ROM. 

2.2.  Frequency domain approach 

In this approach the frequency responses of the bare structure and attachment are assembled.  
Excitation and response DOFs ex and rx  on the structure in Figure 2 are identified. In terms of 
receptance the response of the bare structure without the attachments is 
 

Figure 2 A structure with an attachment 
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 r re e=x H f  (7) 

In Figure 2, ax and 1ax , are the response of the structure and the attachments respectively, and af
is the interconnecting force. When the attachments are added, continuity and equilibrium imply that 
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Equation (8) can be rewritten as [4] 
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where Ha is the receptance matrix of the attachments.  
The total response of the combined structure at position r can be expressed as 
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Note that the matrices being inverted are relatively small. 

3.  Numerical and experiment results 
In this section two examples – a beam and a plate – are considered to demonstrate the above methods 
and to validate results against experimental measurements. In the two examples the attachment is a 
small mass, modelled as a point mass, attached within a region of an otherwise homogeneous structure. 

3.1.  Cantilever beam with added mass 

The first example comprises a steel cantilever beam. The physical and geometrical properties are: 
cross-sectional area A=39.85×2.01mm2, density 3 37.750 10 g/mmρ −= ×  and length L=400mm. The 
elastic modulus, estimated by minimising the mean-square error of the first 7 measured and predicted 
natural frequencies, was taken to be E=1.9982GPa. An impact hammer was used to excite the beam 
and the response measured by an accelerometer mounted at the tip. The mass of the accelerometer was 
included in the predictions. The frequency response between these points was measured both for the 
bare beam (to estimate E) and with a small mass of 47g added at some point between 0.25L and 0.4L 
from the clamped end.  
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Figure 3 The beam with three components 



 
 
 
 
 
 

 
 

In the numerical predictions a finite element model [1] was developed in Matlab using thin beam 
elements and MPCs and frequency domain methods when including the added mass. In the CMS 
approach the beam is divided into three components as shown in Figure 3. The added mass is located 
on component 2. Each component is divided into 20 elements and 10 fixed interface modes of each 
component are retained. 

The position of the added mass was assume to be a random variable with a Gaussian distribution, 
the mean and standard deviation being 0.13m and 0.026m respectively, truncated so as to lie within 
region 2. A MCS was performed using the importance sampling method [15]. A scaled normal 
distribution 20.13, 0.026N x    was selected as the sampling distribution, with parameters chosen 

such that ( ) ( ) , 0.1m 0.16mp x kq x x< < <  and  
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200 sampling positions were selected and the relevant FRFs are predicted. The truncated PDF and the 
distribution of the sample are shown in Figure 4.  

The measured accelerances of the beam (36 random positions), and those predicted (200 positions) 
by MPC (with CMS) and the frequency domain approach (with CMS), are shown in Figure 5 and 
Figure 6 respectively. The effect of the mass is to decrease the natural frequencies of the bare beam, 
the effects depending on the location of the mass. Both numerical approaches predict the spread of 
responses well. Errors are larger at higher frequencies, perhaps because the mass moment of inertia 

(a) Normal and truncated PDFs p(x) and q(x)                                (b) Sample distribute  

Figure 4 (a) A plot of p(x) and q(x), and (b) the sampling positions 

 

Figure 5 Measured FRFS and predicting using CMS and MPCs 

 



 
 
 
 
 
 

 
 

was neglected in the numerical models.  

3.2.  Free suspended plate with added mass 
The second example comprises a 500 mm x 300mm steel plate, 1.62mm thick, as shown in Figure 7. 
The density and Poisson’s ratio were taken as 3 37.5201 10 g/mm−×  and 0.33  respectively. The 

Figure 6 Measured FRFS and predicting using the frequency domain method and CMS 
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Figure 7 The profile of the plate divided into two components 

 

Figure 8 The measured FRFs of the plate with the added mass  

 



 
 
 
 
 
 

 
 

Young’s modulus was estimated by minimising the mean-square error in the first 13 measured and 
predicted natural frequencies and taken to be 1.748GPa. 

In the experiment the plate was suspended by two elastic cords. An impact hammer and a laser 
vibrometer were used to measure the input accelerance at point 1. The mass of 156g was attached at 
35 randomly selected points within the square of side 100mm shown. The variable points were 
selected around the central position of the square. Figure 8 shows the measured accelerances. There is 
a higher spread in the resonance peaks at higher frequencies. 

In the numerical predictions Kirchhoff plate theory [1] was used in Matlab, and the frequency 
domain method and MPCs were applied respectively to include the added mass. The moment of 
inertias of the added mass was ignored in simulation. Two 10 10×  meshes were used to construct the 
FE model of component 1 and component 2. A CB model of the plate was generated and the first 20 
modes were retained for each component. In addition, there were 33 constraint modes, which were 
truncated to 10 modes. The positions of the added mass were assumed to obey the normal distribution

( ) 2, 0.1, 0.02N x y   , with the mean hence being in the centre of the square. The importance 

sampling method was used to sample 100 points in the 100mm 100mm×  square area.  
The measured and predicted results are shown in Figure 9 and 10. The agreement is very good at 

lower frequencies, below about 170Hz. The agreement is less good at higher frequencies, with there 
being greater dispersion in the predicted results. 

Figure 9 Measured FRFs and predicting using CMS and MPCs 

 

Figure 10 Measured FRFs and predicting using CMS and the frequency domain method 

 



 
 
 
 
 
 

 
 

4.  Concluding remarks 
The paper discussed the influences of attachments located at uncertain points on the vibrational 
response of the structure. Two approaches were suggested. The first involves taking the mass and 
stiffness matrices of the attachment and the region of the structure to which it might be connected, and 
assembling them with the mass and stiffness matrices for the remainder of the structure. The resulting 
time domain model is then solved. To make this approach efficient, the model reduction method, 
Craig-Bampton CMS, with CC modes was proposed to increase the efficiency of calculation. 
Furthermore, MPCs were used so that the attachment can be connected at any location without the 
need to remesh the structure.  

The second approach involves calculating the frequency response for both regions and assembling 
them using the method in chapter 8 of [4]. The application of the methods was validated 
experimentally on a cantilever beam and a free suspended plate with a small mass attached at a 
random position.  

It was seen that the case of an added mass decreases the natural frequencies, and the effect depends 
on the locations of the added mass. The predicted results are consistent with the results of experiments 
especially at lower frequencies.  
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