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Abstract. Hydraulic pipes and cable bundles attached to host structures are widely found in 
engineering.  This paper explores how variability in the connection points between structures 
affects the coupled dynamics. One at a time, two different one-dimensional waveguides are 
attached to a thin plate through a different set of point connections. Measurements considering 
randomly spaced connections were made and the experimental results are presented and 
compared to previously developed models. When multiples attachments are considered, the 
structure accommodates standing-like waves between the attachments, amplifying its response. 
It was possible to see the variability due the random spacing and, in a frequency-averaged sense, 
good agreement between the experimental data and the models were obtained. A comparison of 
the spatial response of the experiment and the infinite system is also presented.    

1.  Introduction 
One-dimensional vibration waveguides, such as hydraulic pipes or cable bundles, connected to thin 
plates are widely found in engineering, but manufacturing processes lead to variability in the nominal 
properties of the materials and deviations from the design geometries [1]. This paper explores how 
deviations from the nominal position of the attachment points that connect the one-dimensional 
waveguide to the host-structure, namely a thin plate, affect the dynamic response of the system. 
Mobilities measurements were taken and are compared to analytical models. Previous experimental 
work [2] has measured the response of point-connected ribbed plates and compared the responses to 
results for infinite structures, but the effects of variability in the spacing of discrete attachments or for 
differences in the bending wavenumber ratio for the connected structures components were not 
previously investigated. 

 

1.1.  Mobility approach 
Mobility is defined as the ratio of velocity to force as a function of frequency and it is usually a complex 
function in the frequency domain. It can be measured (or estimated) in both the translational or rotational 
sense. The point (or driving point) mobility can be found when the velocity and force are in the same 
direction and at the same point [3]. Mobility methods are extremely useful and a straightforward tool to 
analyse mechanical systems under periodic, transient or random loads. It can deal with simple lumped 
parameters and also with more elaborate coupled systems, in the form of a mobility matrix [4]. These 
methods can cope with the dynamic behaviour, in the frequency domain, of both a source and receiver 



 
 
 
 
 
 

of vibration and then predict a coupled system performance in a manner analogous to what electrical 
engineers use for circuit analysis [3]. 

1.2.  Using mobilities to couple an infinite beam to an infinite plate 
Using mobility matrices, one can couple an infinite beam to an infinite plate through a set of point-
connections. One can find the mobilities for an Euler-Bernoulli beam and a thin plate in [4] and they are 
given by: 
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where 𝑌𝑌𝑏𝑏 
∞ is the mobility of the infinite beam as function of the frequency 𝜔𝜔 and the points on the beam 

at position 𝛼𝛼 and 𝛽𝛽, �̇�𝑊 is the transverse velocity,  𝐹𝐹 is the applied force, 𝐸𝐸 is the Young’s modulus 𝐸𝐸 is 

the second moment of area, 𝑘𝑘𝑏𝑏 =  �𝜌𝜌𝜌𝜌
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√𝜔𝜔  is the flexural wave number in the beam and 𝑟𝑟𝛼𝛼𝛼𝛼 is the 

distance between the points. 
 

For an infinite plate: 
 

 𝑌𝑌𝑝𝑝∞(𝜔𝜔,𝛼𝛼,𝛽𝛽) =

⎩
⎪
⎨

⎪
⎧ 𝜔𝜔

8𝐵𝐵𝑘𝑘𝑝𝑝2
�𝐻𝐻02�𝑘𝑘𝑝𝑝𝑟𝑟𝛼𝛼𝛼𝛼� −

2𝑗𝑗
𝜋𝜋
𝐾𝐾0(𝑘𝑘𝑝𝑝𝑟𝑟𝛼𝛼𝛼𝛼)� , 𝛼𝛼 ≠ 𝛽𝛽

1
8√𝐵𝐵𝐵𝐵

,                                                        𝛼𝛼 = 𝛽𝛽
 

 

(2) 

where  𝑌𝑌𝑝𝑝∞ is the mobility of the infinite plate as function of the frequency 𝜔𝜔 and the points 𝛼𝛼 and 𝛽𝛽, 
𝐻𝐻𝑖𝑖2is an ith order Hankel function of the second kind, 𝐾𝐾𝑖𝑖 is an ith order modified Bessel function of the 

second kind, 𝐵𝐵 is the plate bending stiffness, 𝑘𝑘𝑝𝑝 =  �𝑚𝑚
𝐵𝐵
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√𝜔𝜔 is the flexural wavenumber in the plate and 

𝑟𝑟𝛼𝛼𝛼𝛼 is the distance between the points. 
 
A model algebraically formulated and then presented in the form of matrices, for coupling these 

structures through point connections was developed in [5] for scenarios where either the attachments 
are considered to be perfectly rigid links or when some flexibility, in a form of an elastic spring, is 
introduced. Equation (3) shows the velocity vector for points on the plate when rigid links are 
considered, whereas Eq. (4) shows the velocity vectors for the plate and the beam when elastic springs 
are used as connections. This analytical modelling will be used simulate numerical results for 
comparison with the experimental data. 
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where  �̇�𝒘𝒑𝒑 is the velocity vector of the connections points on the plate, 𝒀𝒀𝒑𝒑∞ is the mobility matrix of the 
infinite plate, 𝒇𝒇 is the vector of the applied load applied to the plate and 𝒀𝒀𝑏𝑏∞ is the mobility matrix of the 
infinite beam. 
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where  �̇�𝒘𝒑𝒑 is the velocity vector of the connections points on the plate, �̇�𝒘𝒃𝒃 is the velocity vector of the 
connections points on the beam, 𝑰𝑰 is the identity matrix, 𝒀𝒀𝒑𝒑∞ is the mobility matrix of the infinite plate, 



 
 
 
 
 
 

𝒀𝒀𝑏𝑏∞ is the mobility matrix of the infinite beam, 𝜿𝜿 is the spring stiffness matrix, 𝜔𝜔 is the frequency in 
rad/s and 𝒇𝒇 is the vector of the applied load.  

2.  Description of the experiment  
The experiment was designed to measure differences in the mobility of a coupled system, namely a 
finite beam attached to a finite plate, caused by variation in the spacing of the attachment points. Two 
different beams were used. The general properties of the plate and beams are given in Table 1. They 
were all made of mild steel.  

Table 1. General properties of the plate and the beams. 

Properties Value 
Density (kg/m3)  7850 

Young’s modulus (GPa) 200 
Plate dimensions (l x b, mm)  750 x 350 

Plate thickness (mm) 0.9 
Beam 1 height (mm) 3 
Beam 1 base (mm) 6 

Beam 2 height (mm) 10 
Beam 2 base (mm) 10 

Beams 1 and 2 length (mm) 750 
Beam 1 to plate bending wavenumber ratio 0.56 
Beam 2 to plate bending wavenumber ratio 0.31 

Regular spacing 𝛥𝛥 (mm) 150 
 
The experiment consisted of attaching one of the beams to the plate at five points using Neodymium 

magnets. Each magnet has a diameter of 4 mm and a height of 3 mm. Grade N52 magnets were used 
and, according to the manufacturer, each of the discs has a vertical pull of 9.3 N flush to a mild steel 
surface, which could have been verified using a standard pull test kit, but this was not part of the concerns 
of this paper. Also, when comparisons with the numerical models were made, it was assumed that there 
is no incorporation of the magnets mass or rotational coupling between beam and plate. For beam 1, the 
flexible beam, only one magnet was used at each attachment point, whereas in the case of beam 2, stiff 
beam, two magnets, side-by-side, were used at each attachment point.  

The system was excited by a shaker at one of the attachment points at the beam and the input force 
was measured by an impedance head. It is possible to show algebraically that there is no difference in 
exciting the beam or the plate when rigid attachments are considered. The response was measured on 
the opposite side of the coupled system, on the plate, with a laser vibrometer, which measures the out 
of plane bending velocity at that point. Figure 1(a) shows schematically the experiment. 

 

 
Figure 1. Experimental configuration (a) and pdf of the spacing (b). 

For each of the beams, 15 repeatability tests were conducted by performing a disassemble and 
reassemble set of measurements were taken with the regular spacing 𝛥𝛥 between the attachments. Also, 

(a) (b)
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for each of the beams, 10 sets of random distributions of the spacing between the attachments were 
considered, with the pdf of the spacing being a uniform distribution, Figure 1(b). The spacing was 
allowed to vary up to 15% around its nominal equal spacing value of 150 mm. The driving attachment 
was kept the same and the other points moved relative to this one. Considering as the origin of the 
coordinate system the end of the beam closest to the shaker, the coordinates where the magnets were 
placed to connect the structures are given in Table 2, along with the spacing for each case. 

Table 2. Coordinates and spacing between the attachments. 

Set Coordinates (mm) 
Spacing 𝛥𝛥 (mm) 

1 75 225 375 525 675 
150 150 150 150 

2 89 225 393 549 708 
136 168 156 159 

3 81 225 356 488 641 
144 131 132 153 

4 95 225 363 494 639 
130 138 131 145 

5 74 225 355 517 647 
151 130 162 130 

6 82 225 372 540 703 
143 147 168 163 

7 90 225 353 505 648 
135 128 152 143 

8 88 225 393 525 680 
137 168 132 155 

9 57 225 361 526 687 
168 136 165 161 

10 67 225 357 500 632 
158 132 143 132 

11 76 225 366 507 640 
149 141 141 133 

3.  Results 
This section presents the experimental data obtained. These results are compared to those that are 

predicted for infinite connected structures. When mentioned, the equivalent infinite system is defined 
as having the same number of attachments and the same spacing of the measured system between said 
attachments. Also, the infinite beams have the same cross-sectional area as the ones that were measured, 
whereas the infinite plate has the same thickness as the measured plate. 
 

Figure 2 shows the difference that the random spacing produces on the measured mobility. This is 
obtained by referencing the randomly spaced cases to one of the evenly spaced in a dB scale. Therefore, 
the 0 dB is the selected evenly spaced scenario. It is also serves the purpose of showing the repeatability 
of the experiment and the inherent uncertainty in it. In both Figures 2(a) and (b), the black lines are the 
response of the 10 randomly spaced cases tested, the red line is the average of the 15 evenly spaced 
cases (when the system was disassembled and reassembled) and the yellow lines are the maxima and 
minima of these repeatability evenly spaced cases for each frequency. Figure 2(a) shows the results for 
beam 1, whereas Figure 2(b) shows the results for beam 2, the stiffer of the two beams. 

 
In Figure 3, the mobility of one of the randomly spaced cases is compared to the equivalent infinite 

system. In both cases, Figures 3(a) and (b), the black lines are the measured mobility, the red lines are 



 
 
 
 
 
 

the infinite system and the yellow lines are the frequency averaging of the experimental data. A 
bandwidth of 35 Hz was used for averaging. 

 

 
Figure 2. Differences due to random spacing versus repeatability. Beam 1 (less stiff beam) in (a) and 
beam 2 (stiffer beam) in (b). For both, ▬ are the randomly spaced cases, ▬ is the average of fifteen 
evenly spaced cases and the ▬ lines are the maxima and minima values for these evenly spaced cases 
at each frequency. 

Figure 4 represents the same data as shown in Figure 3, but instead of referencing it to 1 m/s/N, the 
evenly spaced case is used once again as 0 dB. For the experimental data, the reference is the data of the 
selected evenly spaced case, whereas for the infinite system, the equivalent evenly spaced infinite system 
is the reference. As in Figure 3, for Figures 4(a) and 4(b), the black lines are the measured mobility, the 
red lines are the infinite system and the yellow lines are the frequency averaging of the experimental 
data. 

(a) 

(b) 



 
 
 
 
 
 

Since all of the experimental data collected is referenced to the same value on a dB scale, 1 m/s/N, 
to change the reference for the evenly spaced case, one only needs to subtract the data from the new 
reference value, the evenly spaced case, as given by Equation (5). 

 
𝑌𝑌�𝑑𝑑𝐵𝐵 = 𝑌𝑌𝑑𝑑𝐵𝐵𝑟𝑟 − 𝑌𝑌𝑑𝑑𝐵𝐵𝑒𝑒  (5) 

where 𝑌𝑌�𝑑𝑑𝐵𝐵 is the experimental data now referenced to the evenly spaced case, 𝑌𝑌𝑑𝑑𝐵𝐵𝑟𝑟  is the experimental 
data of the randomly spaced cases on a dB scale referenced to 1 m/s/N and 𝑌𝑌𝑑𝑑𝐵𝐵𝑒𝑒  is the experimental data 
of the selected evenly spaced case, also on a dB scale referenced to 1 m/s/N. 

 

 
Figure 3. Randomly spaced cases, set number 3. Comparison with the infinite systems. Beam 1 in (a) 
and beam 2 in (b). For both, ▬ is the measured data, whereas ▬ is the equivalent infinite system and 
▬ is the frequency averaged experimental data. 

(a) 

(b) 



 
 
 
 
 
 

Around 300 Hz there is an amplification of the mobility response of the equivalent infinite system. 
Figure 5 shows spatial response of the experimental data and the equivalent infinite system at this 
frequency. In this case, a regular spacing of 150 mm between the attachments was considered. Although 
the data is shown for the evenly spaced case, the randomly spaced cases also exhibit the same behaviour 
in this region of the spectrum. The system was excited at the second connection point from right to left. 
The excitation was applied to the beam on the experiment and on the plate on the model. The results are 
shown for the combination of plate and beam 2, the stiff beam. 
 

 
Figure 4. Comparison of the mobilities. Finite system versus the equivalent infinite system, both 
referenced to the adequate evenly spaced case. Beam 1 in (a) and beam 2 in (b). For both, ▬ is the 
measured data, whereas ▬ is the equivalent infinite system and ▬ is the frequency averaged 
experimental data. 

(b) 

(a) 



 
 
 
 
 
 

Also, in Figure 4, an additional axis for 𝑥𝑥 was added, in red at the top. Instead plotting the curves 
versus Frequency, it is possible to plot them versus the dimensionless parameter 𝛥𝛥/𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚, where 𝛥𝛥 is 

the regular spacing, 150 mm, and  𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 is the wavelength in the beam, 𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 = 2𝜋𝜋 � 𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝜔𝜔2�
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Figure 5. Plate and stiff beam. Comparison of the spatial response. In (a), the experimental data versus 

equivalent infinite system, in (b). The attachments are represented by *. 

4.  Discussion 
In Figure 2, one can notice that when compared to the evenly spaced scenario, the dynamic response of 
both beams present variations that can be up to 40 dB, but most commonly reaching a difference up to 
20 dB. 
 

Although, in Figure 2(b), it is possible to see that the spread in the repeatability test is comparable to 
the variation from the random spacing at several points. Another way to look at this would be to compare 
the standard deviation values divided by the mean values, 𝜎𝜎/𝜇𝜇, also known as coefficient variation, for 
both the randomly spaced cases and the evenly spaced cases at each frequency. 
 

For beam 1, these coefficient of variation values at a frequency by frequency for the evenly spaced 
scenarios are oscillating around 0.25 at most frequency (with a maximum of 1.8 around 1.5 kHz), 
whereas the values for the randomly spaced cases are oscillating around 0.75. The coefficient of 
variation values, 𝜎𝜎/𝜇𝜇,  are also  over 1.5 several times and could be up to 2.5, with a maximum value of 
a little over 2.5 at around 650 Hz for the randomly spaced cases. 

 
For beam 2, the evenly spaced cases, the coefficient of variation also varies around 0.25 for most of 

the frequency range, but reaches up to 1.5 at several points, whereas the randomly spaced cases oscillate 
around 0.5, also reaching 1.5 multiple times with a maximum of 2.4 around 220 Hz. Even though the 
values for 𝜎𝜎/𝜇𝜇 are larger when randomly spaced attachments are considered, there are frequencies when 

(a) 

(b) 



 
 
 
 
 
 

the magnitude of the evenly spaced cases are comparable to the randomly spaced cases, especially at 
frequencies above 1 kHz, where the data becomes less reliable with reduced coherence. 

 
The literature reports that the response of the finite system, when frequency-averaged, should tend 

to that of the equivalent infinite system [6]. Both Figures 3(a) and 3(b) are consistent with that 
observation and comment. The frequency averaging of the experimental data was made by a moving 
averaging with a window of a constant size of 35 Hz. 

 
As a matter of fact, even when the mobilities were referenced on a dB scale to the evenly spaced 

case, Figures 4(a) and 4(b), the frequency-averaged response of the system oscillates around that 
predicted by the equivalent infinite system with the same randomly spaced attachments. The reference 
value for plotting the red line is the magnitude of the mobility of the evenly spaced infinite system. 

5.  Conclusions and future work 
The paper reports the findings of an experimental investigation into the effects that random variations 
of the position of the point connections have when simple but widely found structures are attached 
together. Neodymium magnets were used as the elements producing the connection. Two beams with 
different cross-sectional areas were considered. 

 
From the results presented in [5], it is fair to say that the magnets behave like rigid links for the 

frequencies considered. Moreover, the standing-like wave predicted to happen between the attachments 
of the infinite system seems to match the response of the finite system, as shown in Figure (5).  

 
 The wavenumber ratio were not sufficiently different to notice any significant difference in the 

response amplitude due to the small variation of the position of the attachment points introduced. 
 
 The need for two magnets per connection point for beam 2, the stiffer beam, could have added some 

extra uncertainties in the position of the connecting points and rotational inertia of the connections, 
therefore producing results that are more scattered in the repeatability test. For this beam, it is possible 
to see the effects that varying the position of the attachments produce in the frequency range between 
20 Hz and 500 Hz. Above the higher frequency, the inherent uncertainty of disassembling and 
reassembling the experiment gets comparable to the variation measured when random spacing was 
considered.  Further study is required to analyse this. 
 

Overall, it was also possible in a frequency average sense to show good agreement between the 
experimental data and the predicted equivalent coupled infinite systems. 

 
Further steps in the study will be to include a more flexible one-dimensional waveguide, such as a 

cable bundle, preferable with a beam to plate bending wavenumber ratio larger than 1 and also 
attachment connections with flexibility. Future work will also develop a model that considers slowly 
varying properties of a beam, and try to use the work developed by Skudrzyk [7] to find the envelopes 
for the response of the coupled system. 
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