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Abstract. A Nonlinear Parametrically Excited (NPE) system subjected to a harmonic base
excitation is presented. Parametric amplification, which is the process of amplifying the system’s
response with a parametric excitation, has been observed in mechanical and electrical systems.
This paper includes an introduction to the equation of motion of interest, a brief analysis of the
equations nonlinear response, and numerical results. The present work describes the effect of
cubic stiffness nonlinearity, cubic parametric nonlinearity, and the relative phase between the
base excitation and parametric excitation under parametric amplification. The nonlinearities
investigated in this paper are generated by an electromagnetic system. These nonlinearities
were found both experimentally and analytically in previous work [1]; however, their effect on
a base excited NPE is demonstrated in the scope of this paper. This work has application in
parametric amplification for systems, which are affected by strong stiffness nonlinearities and
excited by harmonic motion. A careful selection of system parameters, such as relative phase
and cubic parametric nonlinearity can result in significant parametric amplification, and prevent
the jump from upper stable solutions to the lower stable solutions.

1. Introduction

Parametrically excited oscillators and actuators have been introduced recently to amplify [2],
suppress [3] or control [4] the response amplitude. Linear Parametrically Excited (LPE)
systems, where defining system parameters vary with an independent variable (time), are a
well-established concept in the field of electrical and mechanical engineering [5]. However,
less attention has been dedicated to Nonlinear Parametrically Excited (NPE) systems as a
result of their complexity in analytical and experimental studies. Real systems are nonlinear,
and linearising systems with strong nonlinearity means essential information is lost [6]. For
example, some nonlinearities in signal amplifiers improve their performance. Designing a low-
noise signal amplifier for electronic devices is essential. Electromechanical parametric amplifiers
have been introduced to address the above issue for micro/nano systems [7]. Traditionally, these
amplifiers are operated in a linear range, however driving these amplifiers within a nonlinear
frequency response regime can be beneficial. Rhoads et, al. [8] have shown the effect of hardening
nonlinearity on a classical degenerate parametric amplifier (where the parametric frequency is
locked at twice the frequency of the external signal). They evaluated the gain of the amplifier due
to the effect of hardening nonlinearity for different parametric amplitude and phase between the
direct excitation and parametric excitation. Gain is defined as a relation between the amplitude
of response without parametric excitation and when parametric amplification is applied [8].
Recently, Neumeyer et, al. [9] investigated the effect of frequency detuning of parametric and



direct excitation for near resonant nonlinear systems. They showed, for some frequency ranges,
frequency detuning might increase the steady-state response. This work is relevant to studies
where frequency detuning can be expected between the parametric and direct excitation, or
between the parametric and direct excitation and the system’s natural frequency during system
operation. Rhoads et, al. [10] demonstrated the potential of parametric amplification in a macro-
scale mechanical amplifier. They used a cantilever beam under longitudinal and transverse
base excitation as an example of a parametric amplifier. They found parametric amplification
achieved a gain increase of a factor between 1.4−1.6 when put into practice. Careful selection of
phase can also cause response reduction, which can be used in other applications like vibration
absorbers. Parametric amplification in the model presented by Rhoads et. al. occurred as
a result of exciting the cantilever beam at twice its natural frequency with an angle with its
motion. This model only could be used for checking the effect of parametric amplification on
the gain, however the nonlinearities in the system could not be controlled, and their effect
could not be examined separately. In this paper, the effect of parametric amplitude and
parametric nonlinearities on the steady-state response is shown analytically. The experimental
set-up is shown as motivation for future study on base excitation response of NPE systems.
The relative phase between the base excitation and parametric excitation for each stable and
unstable branches of solutions are examined, it is found the change in relative phase, amplify or
suppress the response amplitude of each stable branches differently.

2. Methodology

The system of interest is a cantilever beam under transverse base excitation (figure 1). The
base excitation is in the form of translation in the transverse direction with a small rotation
(rotational motion is neglected in this study). Parametric excitation is introduced by a time-
varying electromagnetic force on the cantilever beam. The electromagnetic force is generated
by a set of coils and magnets when DC/AC current is carried by coils. This configuration
is explained in previous work [1]. Here, a SDOF model is used to analyse the cantilever beam
motion. The SDOF system parameters are defined as: x is the displacement of moving mass mh,
and Y0 is the amplitude of harmonic base displacement at frequency ω and phase φ. The relative
displacement z, is the displacement between the mass and base. The overall damping coefficient
ch = cm + ce, where cm and ce are components due to mechanical and electrical damping
respectively. The electrical damping ce represents an electrical load from the electromagnetic
system.
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Figure 1: (a) Schematic model of a cantilever beam under transverse base excitation. (b) Experimental
set-up consisting of a cantilever beam on a shaker and electromagnetic system.



The governing differential equation of motion for the SDOF system is defined as:

mhẍ+ εch(ẋ− ẏ) + εkb(x− y) + εFe = 0, (1)

where kb is the static stiffness of the cantilever beam before applying the electromagnetic force
Fe, and ε is the small bookkeeping parameter introduced to facilitate analysis. The system
parameters, mh, ch, and kb are the physical parameters. Rearranging Eq. (1) in terms of the
relative displacement of the mass z = x− y yields

mhz̈ + εchż + kbz + εFe = −εmhÿ. (2)

When base excitation is y = Y0 cos(ωt+ φ), Eq. (2) is

mhz̈ + εchż + kbz + εFe = εmhω
2Y0 cos(ωt+ φ). (3)

The electromagnetic force Fe is modeled based on previous work [1]:

Fe(t) = kextz + kp1 cos(Ωt)z + k3z
3 + kp3 cos(Ωt)z

3 (4)

where kext is the linear external stiffness due to the static electromagnetic force, kp1 is the
time-varying stiffness with frequency Ω, k3 is the cubic stiffness and kp3 is the cubic parametric
stiffness as a result of nonlinearity in electromagnetic system.

The magnetic field produced by two current carrying coils and two magnets can be calculated
assuming that the coils are perfect and have identical solenoids and that the magnets constitute
a magnetic dipole. If the magnets and coils are repulsive, the magnets return to their equilibrium
position, however when the magnets are not in the equilibrium position (z is the magnet
displacement with respect to the equilibrium position) a force is generated from one set of
current carrying coils is greater than the other one. When the coils are carrying a DC current
the magnets are under the constant force and they are forced to stay at equilibrium position.
When the coils are carrying an AC current as well as a DC current, the force on magnets will
change with time, as a result of the change in the magnetic field with the frequency of AC current
but still the magnets are positioned at the equilibrium position. In this work the current carried
in coils has low frequency (less than 20 Hz), hence the coils inductance is neglected and only
modeled as a resistor. Coils are connected in series. Repulsion effects of the electromagnetic
force increase the stiffness of the cantilever beam, which manifests as hardening nonlinearity.
Eq. (3) is normalised by the mass mh and time scaling τ = Ωt, and is expressed as derivatives
with respect to τ instead of t. Prime (.)′ represents a quantity differentiated with respect to τ .
Normalisation in this way results in

z′′ +
2εζωn

Ω
z′ +

ω2
n

Ω2
(1 + εδ cos(τ))z +

ω2
n

Ω2
(εα+ εγ cos(τ))z3 =

1

4
εY0 cos(

τ

2
+ φ). (5)

Note that base excitation frequency ω is considered to be half of the parametric frequency ω = Ω
2
.

In this case, when Ω = 2ωn, only the response at the linear resonance frequency is considered.

ωn =
√

k1
mh

is the linear resonance frequency (first mode of the cantilever beam), k1 is the total

static stiffness k1 = kb + kext, ζ is the damping ratio, δ =
kp1
k1

, α = k3
k1
, γ =

kp3
k1

, and φ is the
phase between the parametric stiffness and base excitation. The averaging method is applied
to solve Eq. (5). To capture the system’s near-resonance behaviour, the parametric frequency
Ω varies around the reference frequency Ω0; thus ∆ the detuning parameter is introduced as
Ω = Ω0 (1− ε∆). If ε = 0, when the system is simplified to an undamped oscillator, the
solutions of Eq. (5) are a linear combination of cos(τ) and sin(τ). This linear combination can



be written as z (τ) = a cos (κτ + ϕ), where a and ϕ are the constant amplitude and the phase
which can be determined from initial conditions. The frequency relation ωn

Ω0
= κ is used here

for simplification. If ε 6= 0 is based on the ”variation of constant” method of Lagrange, we can
assume that the solution can still be written in the above form, but the amplitude and phase a
and ϕ are now functions of time [11]. Hence, the complementary solution of the final simplified
nonlinear equation (Eq. (5)) is a linear combination of cos (Φ (τ)) and sin (Φ (τ)), which can be
written as z (τ) = a (τ) cos (Φ (τ)), where Φ (τ) = κτ + ϕ (τ), and

z (τ)′ = a′ (τ) cos (Φ (τ))− a (τ) (κ+ ϕ′ (τ)) sin (Φ (τ)) . (6)

Substituting Φ (τ) and Eq. (6) into Eq. (5) results an equation which can be solved for a′ (τ) and
ϕ′ (τ). a′ (τ) and ϕ′ (τ) are averaged by assuming a (τ) and ϕ (τ) are changing slowly. a′ (τ) and
ϕ′ (τ) are averaged over one period T = 2π

Ω
. The resulting averaged equation can be integrated

with respect to τ to find the a (τ) and ϕ (τ) for a given κ and reference frequency Ω0. The
steady-state behaviour of the system can be recovered from the set of a′ (τ) and ϕ′ (τ) by setting
(a′, ϕ′) = (0, 0) and solving for steady-state values of a and ϕ:

a′ (τ) = −εζ
ωn

Ω
a+ ε

1

8
δ sin(2ϕ)a+ ε

1

16
γ sin(2ϕ)a3 + ε

1

4
Y0

Ω2

ω2
n

sin(φ− ϕ) (7)

ϕ′(τ) = 0.5ε∆a+ ε
1

8
δ cos(2ϕ) + ε

1

16
αa2 + ε

1

8
γa2 cos(2ϕ)− ε

3

16

Ω2

ω2
na

cos(φ− ϕ). (8)

The resulting solution is an approximation of the original solution:

a =
Ω2Y0

√

(−p1 sin(2φ) + ζ)2 + (p2 − p3 cos(2φ))2

8ω2
n

(

p21(1− cos(2φ)2) + p23 cos(2φ)
2 − p22 − ζ2

) , (9)

where p1 = 1
4

(

δ + 1
2
γa2

)

, p2 = 3
8
αa2 − Ω

2ωn

+ 1, and p3 = 1
4

(

δ + γa2
)

. a represents the steady-
state amplitude of non-trivial solutions. Eq. (5) has at least five stable and unstable non-trivial
solutions when the system parameters δ, α, γ, ψ 6= 0.

3. The effects of parametric excitation and nonlinearities

The effect of parametric excitation for linear and nonlinear base excited systems is studied
here. Several cases are introduced in table 1. A linear base excited system, Case A, is shown
as a reference. A Linear Parametrically Excited (LPE) system, Case B, shows the parametric
amplification caused by parametric excitation. A system with duffing nonlinearity is shown in
Cases C and D, where both parametric excitation and duffing nonlinearity are considered. The
transition curve for each cases are explained along with the amplitude-frequency curves (See
figure 2). The effect of positive and negative cubic parameteric nonlinearity for a system with
hardening nonlinearity and parametric excitation is investigated in Cases E and F.

When a linear non-parametric SDOF is considered (δ = α = γ = φ = 0 in Eq. 5), the
maximum amplitude is expected when base excitation frequency is equal to the natural frequency
ωn. Figure 3(a), shows the amplitude frequency plot (see Case A in table 1).

Case B is a LPE system when the electromagnetic force varies in time, and in this analysis
the nonlinearities in the electromagnetic system are neglected. The steady-state amplitude of
non-trivial solutions of the LPE system (Case B in table 1) from Eq. (9) are simplified to:

a =
Ω2Y 0

√

(

−1
4
δ sin (2φ) + ζ

)2
+
(

1− Ω
2ωn

− 1
4
δ cos (2φ)

)2

ω2
n

(

2 Ω2

ωn
2 − 1

2
δ2 + 8ζ2 − 8 Ω

ωn

+ 8
) . (10)



Table 1: Linear and nonlinear system parameters

δ α (m−2) γ (m−2) ζ Y0 (m) φ(rad)
Case A: Linear system 0 0 0 0.001 0.001 0
Case B: LPE system 0.1 0 0 0.001 0.001 π

2

Case C: Nonlinear system 0.001 1000 0 0.001 0.001 0
Case D: NPE system 0.1 1000 0 0.001 0.001 π

2

Case E: NPE system 0.1 1000 300 0.001 0.001 π
2

Case F: NPE system 0.1 1000 -300 0.001 0.001 π
2

The steady-state solutions are only found in the vicinity of parametric resonance outside the
tongues in transition curves. The transition curves define the regions where the amplitude of the
response is increased as a result of parametric excitation (inside the tongues) without the base
excitation effect (Y0 = 0). When parametric amplification is seen in linear systems, exponentially
growing responses are expected inside the tongues [12]. Note that the denominator of Eq. (10)

is zero when Ω
ωn

= 2± 1
2

√

δ2 − 16ζ2. Hence, unbounded solutions exist when

2−
1

2

√

δ2 − 16ζ2 <
Ω

ωn
< 2 +

1

2

√

δ2 − 16ζ2. (11)

Case B in table 1 is studied for a linear parametrically excited system, and the amplitude
frequency relation plot is presented analytically and numerically in figure 3(b). Figure 3(b) shows
that the steady-state amplitude increases close to parametric resonance, and that exponentially
growing solutions are calculated numerically for 1.95 < Ω

ωn

< 2.05. Also from figure 2, for Case

B, 1.95 < Ω
ωn

< 2.05 shows the region inside the instability tongue.

Figure 2: Linear transition curve corresponding to Case B and nonlinear transition curves corresponding
to Cases D, E, and F for a given parametric amplitude δ. Since the transition curves for NPE systems
are dependent on the amplitude of the steady-state response, in this plot the amplitude a = 0.01(m) is
kept constant. These cases are explained in table 1.
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Figure 3: Amplitude frequency relation, a versus Ω
ωn

for Cases in table 1. These systems are
solved analytically using the averaging method (−), and direct numerical integration. (c) line
presented by (....) is the backbone curve. For (d), (e) and (f), black lines represent solutions
produced by base and parametric excitation, and the green lines represent solutions affected
only by parametric excitation.



A harmonically excited duffing oscillator (when δ = γ = φ = 0 in Eq. (5)), has been studied
in literature [13]. The effect of hardening (α > 0) and softening (α < 0) nonlinearities have also
been studied [13]. Case C in table 1 investigates the effect of adding parametric amplitude below
its parametric instability (δ < 4ζ) with hardening nonlinearity. Figure 3(c) shows the frequency
response plot for Case C, where three branches of solutions are present. These solutions can be
found from Eq. (9) by solving it for a. Solid lines represent stable solution branches, and dashed
lines represent unstable solution branches. A good agreement between the theoretical predictions
and direct numerical integration is shown. A backbone curve corresponds to the solution of the
nonlinear system on the hypothesis that both forcing and damping are null, or equivalently, that
the base excitation compensates the damping forces in the system at those particular frequencies
and amplitudes. A backbone curve is found for γ = ζ = φ = 0, when the parametric amplitude
is considered as an external force on the system that affects the backbone curve:

1

16
δ2 − (

3

8
αa2 − (

Ω

2ωn
− 1))2 = 0. (12)

A NPE system, Case D, is driven near parametric resonance above the parametric instability,
where δ > 4ζ (see table 1). In this case strong hardening nonlinearity is applied since the
electromagnetic system is in repulsion. Though only responses with hardening nonlinearity are
presented here, softening nonlinearities, like (α < 0) behaviours, could not be easily achieved.
When the electromagnetic system is in attraction, due to strong attraction forces, it is difficult
to maintain the equilibrium state.

Case D features five distinct response branches. The two additional branches present
compared to Case C arise from the coexistence of two resonances within the nonlinear parametric
system. One resonance is induced by combination of base and parametric excitation, and the
other is caused by parametric excitation. In this paper, we refer to stable and unstable branches
caused only by parametric excitation as “additional branches”. In figure 3(d), the additional
branches are shown in green and other stable and unstable branches are presented in black. In
figure 3(d) the solid lines are the stable branches and the dashed lines are the unstable branches.
The two additional branches are comparable in magnitude to the other stable/unstable branch
pair. The stable/unstable branches produced as a result of parametric excitation and base
excitation, they are dependent on base excitation amplitude and parametric amplitude, however
the additional branches only alter when the parametric amplitude is varied.

The transition curves are independent of base excitation amplitude and are dependent on
the amplitude of the response for NPE systems. Figure 2 shows the transition curve for Case D
when a = 0.01(m). For NPE systems the transition curves define the regions which for a given
amplitude of response, additional stable and unstable solution branches exist. The transition
curve for the NPE system is also shifted to the right as a result of positive cubic nonlinearity.

The effect of positive cubic parametric nonlinearity on a NPE system driven near parametric
resonance above the parametric instability is considered (Case E in table 1). Cubic parametric
nonlinearity increases the amplitude of the steady-state response. Both upper stable branches in
figure 3(e) have been increased as a result of positive cubic parametric nonlinearity, compared to
figure 3(d) when cubic parametric nonlinearity was considered equal to zero. Additional stable
and unstable branches separate from each other at higher amplitude and frequency since the
transition curve for a given system is expanded. Figure 2 shows the transition curve for Case E
when the response amplitude is a = 0.01(m). At δ = 0.1 the transition curve for Case E is larger
than the transition curve for Case D, which shows the stable and unstable additional branches
for Case E have larger separation compared to the stable and unstable additional branches for
Case D. However, if negative cubic parametric nonlinearity is applied (Case F), the amplitude
of the steady-state response will be decreased. Figure 3(f) shows the effect of negative cubic
parametric nonlinearity on upper stable branches. This also can be seen in the transition curve



plot, figure 2 for Case F, when the transition curve is shifted up compare to the transition
curve for Cases D and E, where higher cubic parametric nonlinearity was applied. At δ = 0.1
the transition curve for Case F has the smallest region compared to Cases D and E. This is in
agreement with figure 3(f), when the additional stable and unstable branches are closer together
when compared to Cases D and E in Figs 3(d) and (e).

4. The effects of phase

The gain associated with the linear PE system, introduced in the previous section can be defined
as

Gain =
a |δ 6=0

a |δ,α,γ 6=0

. (13)

Gain is calculated from Eq. (9) from the amplitude of the steady-state response when α = γ = 0
and δ 6= 0 over the amplitude of the response for a linear system (δ = α = γ = 0). This metric
shows the value of parametric amplitude δ or relative phase φ for which the LPE system has
higher response amplitude compared to a linear nonparametric system.

Figure 4: Gain versus phase φ for a LPE system.

The gain depends on relative phase φ. Figure 4 presents the effect of varying relative phase
on gain. The maximum gain is found when φ = π

2
(rad) with the parametric amplitude above

its parametric instability δ > 4ζ, however when the parametric amplitude is chosen under
the parametric instability δ < 4ζ the maximum gain is achieved at φ = 3π

4
(rad). The phase

relationship is repeated on π (rad) intervals. When the LPE system is excited with parametric
amplitude above its parametric instability at Ω

ωn

= 2, the gain grows exponentially since the

response is unbounded (see figure 3 (b)). Hence, gain is calculated at Ω
ωn

= 1.9 when the steady-

state response is bounded (see figure 3 (b)). When the LPE system is excited with parametric
amplitude below its parametric instability (δ < 4ζ), it is possible to excite the system at Ω

ωn

= 2

since solutions are bounded in this region. From figure 3 (b), it is evident that for a LPE system
excited above its parametric instability, at Ω

ωn

= 1.9 and Ω
ωn

= 2.1 the amplitude of the response

(a) is different. The stable branch at Ω
ωn

= 1.9 is known as the upper stable branch, and the lower

stable branch is at Ω
ωn

= 2.1 [1]. These two stable branches are comparable in magnitude when

LPE/NPE systems have different relative phase φ. In figure 4, when Ω
ωn

= 2.1 and parametric
amplitude is above its parametric instability, the maximum gain occurs when the relative phase
is φ = 0(rad), and the minimum gain is found when relative phase is φ = π

2
(rad).



Figure 5: Amplitude frequency relation, a versus Ω
ωn

.

Stable and unstable solutions of the NPE system are affected by the relative phase between
the base excitation and parametric excitation. Stable branches in figure 3 (shown with solid
black lines) can be varied by the relative phase. The additional branches (green lines) are not
affected by base excitation, hence they are independent of the phase between the base excitation
and the parametric excitation.

Figure 5 shows the amplitude frequency relation for a NPE system with system parameters
δ = 0.1, α = 1000(m−2), ζ = 0.001, Y0 = 0.001(m) and when cubic parametric nonlinearity is
a positive large value γ = 1000(m−2) for two different phases φ = π

2
and φ = 0 (rad). Black

lines correspond to the analytical solutions when φ = π
2
(rad) and red lines show the analytical

solutions when φ = 0 (rad). For both cases with different relative phase φ, the additional
stable/unstable branches are fixed. The comparison between the amplitude of the response for
these two phases shows that the upper branch is higher when φ = π

2
(rad), however the lower

branch is reduced compared to when φ = 0 (rad). For a NPE system with φ = 0 (rad), the
upper stable branch (red line in figure 5) and the stable additional branch (green line in figure
5) are separated from each other, and as a result of this the jump phenomenon between these
two branches are expected.

5. Conclusions

This work demonstrated the effect of electromechanical nonlinearities on the near-resonant
response of a base-excited cantilever beam. The cantilever beam was excited by parametric
excitation as well as the base excitation. The amplitude of response for linear and nonlinear
parametrically excited systems was explained analytically for various system parameters with the
averaging method and it was in agreement with the numerical integration. For a LPE system it
was shown that the system has parametric amplification above its parametric instability, however
adding the hardening nonlinearity reduces the response amplitude. The novel achievement of
this work was related to the effect of relative phase on the different branch of solutions. It is
possible to reduce and increase the amplitude of each stable branches by varying the relative
phase. Stable branches were produced only because of the parametric amplification and they
are not affected by the base excitation.
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