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Abstract. The window is one of the main components of the high speed train car body 
structure through which noise can be transmitted. To study the windows’ acoustic properties, 
the vibration of one window of a high speed train has been measured for a running speed of 
250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been 
measured simultaneously. The experimental results show that the window vibration velocity 
has a similar spectral shape to the interior noise. Interior noise source identification further 
indicates that the window makes a contribution to the interior noise. Improvement of the 
window’s Sound Transmission Loss (STL) can reduce the interior noise from this transmission 
path. An STL model of the window is built based on wave propagation and modal 
superposition methods. From the theoretical results, the window’s STL property is studied and 
several factors affecting it are investigated, which provide indications for future low noise 
design of high speed train windows. 

1.  Introduction  
Interior noise is one of the key parameters affecting the comfort level of high speed trains. Due to the 
presence of many different kinds of sources and their complex transmission paths [1, 2], the control of 
the interior noise of high-speed trains is quite complex. However all transmission paths to the receiver 
inside the cabin involve the carbody plate structures, such as the windows and extruded aluminium 
panels. For airborne transmission paths the sound transmission loss performance of these structures is 
one of the essential factors that directly affect the noise level inside the train.  

The main object of the present study is the window, which is a sealed double glazed unit with air in 
the cavity. The sound insulation performance of double and multiple glazed windows, particularly 
with application to buildings has been widely studied [3-9]. The wave propagation method is one of 
the most effective methods. Wang et al [10], used the wave propagation method to study the insulation 
of an infinite double-leaf partition. Xin et al [11] applied the wave propagation method to study the 
sound insulation properties of finite double plate structures, and investigated the effect of the panel 
thickness, cavity thickness and the incidence angle. The effectiveness of this method for double plate 
sound insulation calculations has also been verified through comparison with experiments under 
different boundary conditions [12, 13]. 

In order to determine the importance of the window in the transmission of interior noise, the 
vibration acceleration characteristics of a high-speed train window and the corresponding interior 
noise and noise in the wheel-rail source region are first measured for a train speed of 250 km/h, which 
is presented in section 2. For better understanding of the window’s acoustic properties, the wave 
propagation method is then applied in Section 3 to simulate the behaviour of a high speed train 



 
 
 
 
 

window. In the theoretical model, several important parameters are investigated to improve further the 
Sound Transmission Loss (STL) according to main frequency band of the interior noise. 

2.  Field experimental investigation  
To investigate the window’s vibration properties and their effect on the interior noise, the vibration 
acceleration of a window of a high-speed train and the corresponding interior noise and bogie area 
noise have been measured simultaneously at a running speed of 250 km/h. The measured window and 
the interior noise test point are both located in the middle of the high speed train trailer car, as shown 
in figure 1(a). 15 acceleration points on the window are measured as shown in figure 1(c). To avoid 
adding too much mass on the window, the acceleration was measured one point at a time during steady 
running. Figure 1(b) shows the bogie area noise test point. The equipment used consists of a Bruel & 
Kjaer 4508 accelerometer (weighting 4.8 g), 4190 microphone and 8606 spherical beamforming array 
and using PULSE for data analysis. 

    
(a)      (b) 

    
(c) 

Figure 1. Photos and Schematic diagram of field test. 

2.1.  Interior noise and its source identification 
The interior and bogie area noise test results obtained are shown in figure 2. This shows that, after A-
weighting, the interior noise is dominated by the region 630~1250 Hz with its peak at the 1000 Hz 
frequency band. As one of the main noise sources of interior sound, the bogie area noise may shed 
some light on this phenomenon. It also peaks in the region 630~1250 Hz where the A-weighted level 
is far higher than the rest of the frequency range.  

For further identification of the interior noise source, the spherical beamforming array has been 
used at the same interior noise test point on the coach centreline opposite the window. The source 
identification results are shown in figures 3(a) and 3(b). These display the sound pressure distribution 
(with a range of 6 dB) in the 1000 and 1250 Hz one-third octave bands respectively. In figure 3(a), the 
peak interior noise in the 1000 Hz band mainly comes from the two ends of the cabin, which is near 
the location of the bogie area and inter-coach connection. The contribution from the window is around 
3 dB below the maximum contribution. At the same time, in figure 3(b), in the 1250 Hz band the 
interior noise mainly comes from the roof, two ends, window and floor around the centre of the cabin. 
Here the window is within 2 dB of the maximum contribution. On the basis of this interior noise 
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identification we can conclude that the window, as well as other panels from the roof and floor, has a 
contribution to the interior noise. 
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Figure 2. One-third octave band spectra of interior and bogie area noise. 

     
(a)                                                    (b) 

Figure 3. Interior noise source identification in one-third octave frequency bands, (a) 1000 Hz, (b) 
1250 Hz.  

2.2.  Window’s vibration 
To further study the vibration property of the window and to survey its relation with the interior noise, 
the acceleration of the 15 points on the window has been obtained. The window’s velocity is 
determined by integrating the acceleration and is shown in figure 4. When comparing with the 
unweighted interior noise level, the window’s vibration velocity has a similar frequency distribution. 
This further supports the conclusion that the window’s vibration may contribute to the interior noise. 
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Figure 4. Comparison of window vibration velocity with interior SPL.  
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3.  Theoretical model of window STL 
Airborne sound transmission is one of the main noise contributions of a high-speed train window. To 
improve the acoustic properties of the window we must consider its Sound Transmission Loss (STL). 
In this section a theoretical STL model of a double panel with a cavity is built based on the wave 
propagation method and modal superposition method [12]. For simplicity, simply supported boundary 
conditions are used for panels. A schematic view of the window is shown in figure 5. The international 
standard units are used. 

  
(a)                                                         (b) 

Figure 5. Schematic of sound transmission through a rectangular simply supported double panel 
window partition: (a) global view; (b) sectional view. 

3.1.  Double panel cavity model 
For a plane harmonic sound wave, its acoustic potential is given by [12]: 
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where I is the sound amplitude; j= -1 , is the angular frequency, the wavenumber components are: 
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k0 is the acoustic wavenumber in air, c0 is the sound speed in air, and kx, ky, and kz are the wavenumber 
components in the x, y, and z directions respectively. The equations of motion of panel 1 and panel 2 
are: 
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where 1w  and 2w  are the displacements of the panel at the source and receiver side, respectively; 0  

is the air density, M1 and M2 are panel surface densities, D1 and D2 are the flexural rigidity of the 
panels: 
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The index i=1, 2 is used for the panels at the source and receiver side. Ei, hi, i and vi are the Young’s 
modulus, thickness, damping loss factor and Poisson’s ratio of panels respectively. Based on the 
modal superposition method, the transverse displacements of the two panels can be written as: 

       1 1, 2 2,
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m and n are the number of half-wavelengths in the x and y directions. For simply supported boundary 
conditions, the modal function 

mn and modal displacements amplitude qi,mn can be given by:  
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In the present model, there are three fluid regions, 1, 2, 3 which represent the halfspace on the 
source side, the cavity between the two panels and the halfspace on the receiver side, respectively. The 
velocity potential for each domain can be described as the superposition of positive and negative 
waves in the z direction, which can be further expressed in terms of the panel modal functions as: 
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where

 
mnI , mn , mn , mn  and mn  can be determined by applying the orthogonal condition of the 

modal function by Fourier transform： 
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At the air-panel interface, the velocity compatibility equations apply: 
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 Substituting equations (3.6) ~ (3.10) into equations (3.12) and (3.13), we can obtain the acoustic 
velocity potential parameters as a function of the panel displacements. 
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Substituting equations (3.6) ~ (3.10) and (3.14) into equations (3.3) and (3.4), the governing equation 
can be written in matrix form as: 
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The terms a, b are the length and width of the window as shown in figure 5. Once the matrix is solved, 

the displacement amplitudes of the panels are obtained, and the velocity potential parameters in 

equations (3.14) can be calculated. The sound power transmission coefficient  is a function of the 

elevation angle, and can be expressed as: 
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φ and θ are the incident angles as defined in figure 5(a). For a diffuse incident sound field, the 

averaged transmission coefficient can be obtained by integration as: 
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where lim is the limiting angle defining the diffuseness of the incident field. Here the limiting incident 

angle is 78 [12]. The sound transmission loss is given as: 
1

STL 10lo g( )
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3.2.  Model validation 
The STL model developed here is verified by comparison with the simply supported experimental 
results and structural and material parameters given in [12]. According to [12], the two identical 
aluminium panels with length a=0.3 m, width b=0.3 m, and thickness h=1 mm are separated by an air 
cavity of depth H=80 mm. The STL results at normal incidence are compared in figure 6. Overall, the 
theoretical result has a good consistency with the measurements although there are some differences. 
These differences can be expected due to the deviation in the boundary conditions, material damping 
and so on.  
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Figure 6. STL model validation.                 Figure 7. Convergence check of window STL. 

3.3.  STL property of window 
The theoretical model is applied next to simulate the STL of the high-speed train window. Table 1 lists 
the simulation parameters of the actual window. The damping loss factor of the glass is set to 0.005. 
The air density 0 and sound speed in air c0 are 1.21 kg/m3 and 343.0 m/s respectively. Due to the 
absorption and sealing performance at the boundary in practical windows, the air damping loss factor 
of the window interior cavity  is defined as 0.05. The air damping is added by making the 

wavenumber complex, '
0 0 0( / )(1 / 2)k c j    in the interior cavity. The incident sound amplitude of 

the acoustic velocity potential, I in equation (3.8) , is fixed at 1 m2 / s. 

Table 1.  Window’s dimensions and material parameters 

Length Width 
Thickness of 

glass 
Thickness of 

air cavity 
Glass Young’s 

modulus 
Glass density 

Glass 
Poisson’s ratio 

a b h1= h2 H E1=E2 1=2 v1= v 2 

1.4 m 0.82 m 0.005 m 0.009 m 5.51010 Pa 2500 kg/m3 0.24 



 
 
 
 
 

To calculate the STL of the window, the convergence of the solution is checked first. Since the 
vibration of the plate is calculated based on the modal superposition method, it needs to be defined 
how many modes are needed in the simulation. Only if enough modes are used can the convergence 
and accuracy of the result be assured. 

As shown in figure 7, the STL at five frequencies is checked when differing numbers of modes are 
included in the calculation. It can be seen that when the number of modes considered in each direction 
is at least 40, the results at all the frequencies considered will converge. The lower the excitation 
frequency is, the smaller the number of modes that is needed. At 1000 Hz for example, only 15 modes 
in each direction would be needed. In the following results from the theoretical model, the number of 
modes of standard window is set to 40 in each direction. 

The diffuse field STL of the window is shown in figure 8(a) and (b) in one-third octave band and 
narrow band forms respectively. Figure 8(a) illustrates the STL of the window from 16 to 8000 Hz. 
The STL generally increases with increasing frequency; at 1000 Hz for example it is 32 dB. There are 
four dips in the STL, which are at 20, 160, 250 and 2500-3150 Hz. For better understanding of this 
behaviour, the narrow band spectrum is given in figure 8(b). The frequency region can be divided into 
four general regions of interest, labelled as stiffness controlled, resonance controlled, mass controlled, 
and coincidence controlled areas [14].  
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(a)                                                               (b) 

Figure 8. Diffuse field STL, (a) one third octave and (b) narrow band.  
Within the frequency range plotted, seven “resonance” frequencies occur, namely 22, 67, 106, 152, 

217, 260 and 3000 Hz. To identify the mechanisms of those frequencies, several typical frequencies 
need to be considered first. For a double panel structure, typical frequencies are the “Mass-Air-Mass” 
resonance, fMAM, “coincidence frequency”, fco, and “standing wave resonance”, fst, which are given as 
follows [8].  
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The parameters are the same as listed in table 1. fMAM, 0 represents fMAM at and fco, 90 represents 
fco at s’ =ρ0c0

2/H is the equivalent stiffness of the air in the gap. mp1 and mp2 are the mass per unit 
area for panel 1 and 2 respectively. The three frequencies above are all independent of the boundary 
conditions; although the mass-air-mass frequency can be influenced by the first bending mode of the 
plate the latter is sufficiently low in frequency not to influence the results in the present case. 



 
 
 
 
 

The values of these frequencies illustrate that the dip in the diffuse field STL at 260 Hz is 
associated with the “Mass-Air-Mass” resonance and that at 3000 Hz belongs to the “coincidence 
frequency”, both of which are a function of the angle of the incident sound field defined in figure 5. 
These two frequencies shed light on the dips in figure 8(a) in the 250 and 2500 Hz frequency bands. 
The “standing wave resonance” has its least value at 19 kHz, which is out of the frequency range 
considered. 

The other five dips identified in the resonance controlled area of diffuse field STL are at 22, 67, 
106, 152 and 217 Hz. Comparing these with the natural frequencies of the panel, listed in table 2, it 
can be seen that 22 Hz is mode (1, 1), 67 Hz corresponds to mode (3, 1), 106 Hz is mode (4, 1) and 
152 Hz is mode (1, 3) and 217 Hz is mode (6, 1). 

Table 2. First seven order natural frequencies of the radiation panel (Hz) 
 n=1 n=2 n=3 n=4 n=5 

m=1 22 71 152 266 413 
m=2 39 88 169 283 430 
m=3 67 115 197 311 458 
m=4 106 155 236 350 497 
m=5 156 205 286 400 547 
m=6 217 266 348 462 608 
m=7 290 339 420 535 681 

To illustrate the influence of the modes in the STL, for simplicity an oblique incidence STL at 45 
relative to the z axis is calculated. The modal displacement amplitude distribution of the panel on the 
receiver side under sound excitation at four particular frequencies, 22, 67, 106 and 152 Hz, is given in 
figure 9. Taking 22 Hz for example, as shown in figure 9(a), only the first mode (1, 1) dominates the 
response. This confirms that it is this panel resonance that leads to the dip in the STL at this frequency. 
Similar results are obtained for the other three frequencies although more than mode contributes. For 
illustration the corresponding mode shapes are shown together with the STL in figure 10. 
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(c)     (d)  

Figure 9. The displacement amplitude distribution of radiation panel under 45 oblique incident 
sound excitation at (a) 22 Hz, (b) 67 Hz, (c) 106 Hz, (b) 152 Hz.  
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Figure 10. STL for 45 oblique plane incidence. 
Compared with simply supported boundary conditions, a clamped boundary makes the panel stiffer. 

The first natural frequency is then found to be 42 Hz according to a finite element simulation using 
ANSYS. The simply supported boundary condition may not be so correct for the simulation of STL at 
low frequencies, especially in the stiffness-controlled and resonance areas, but the trend of the STL 
will still be similar. In the following parameter study, simply supported boundary conditions are again 
used.  
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3.4.  Parameter study of window STL 
To look for a window with a better STL, the influence of several parameters of the window is 

investigated. The four main structural factors studied are the air cavity thickness H, glass thickness h, 
window length a and damping of the interior air cavity . The results are shown in figures 11, 12, 13 
and 14 respectively. The parameters, h0, H0, a0, b0, are the nominal values used in the previous section, 
as shown in table 1. For each case the convergence was checked before performing the calculation. 

Figure 11 illustrates that decreasing the air cavity gap will increase the mass-air-mass frequency, 
and at the same time, the STL around the 250 Hz band improves. With a larger air gap the STL around 
1000~2000 Hz is increased, which is desirable because the A-weighted interior noise has a high 
component around 1000 Hz. 

 Compared with the change of air cavity gap, the STL is more sensitive to changes in the thickness 
of the glass over the whole frequency range. As shown in figure 12, increasing the glass thickness 
leads to an increase of the STL over the whole frequency range except at the first mode resonance and 
in coincidence region.  
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Figure 11. STL variation with cavity gap H. Figure 12. STL variation with glass thickness h 

As shown in figure 13, the STL is sensitive to changes in the window length at low frequency in 
the stiffness controlled region. The first mode resonance frequency is higher when the window is 
shorter, giving a similar effect to the change of glass thickness, although the effect is larger. The STL 
in the stiffness controlled region below the first resonance is significantly increased with the shorter 
window. Above 250 Hz there are only small changes in the STL. 

The influence of the window interior cavity damping on the STL is shown in figure 14.  It can be 
seen that the air damping mainly influences the mass controlled area of the STL between 250 and 
2000 Hz. When the air damping loss factor is increased from 0 (black line) to 0.05 (red line), the STL 
is increased by about 4 dB in this region. To identify why the air damping has such a great influence in 
this region, the STL for plane incidence at particular angles is given in figure 15. The two plots (a) and 
(b) are the STL for air damping of 0 and 0.05 respectively. 
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Figure 13. STL variation with length a. Figure 14. STL variation with air damping. 
Figure 15(a) gives the STL at five incident angles. It can be seen both fMAM and fco vary with 

incident angle , as defined in equations (3.22)-(3.23). When increases from 0 to 78, fMAM increases 
from 254 Hz to 1222 Hz, while fco decreases from infinity to 2806 Hz. In the mass controlled region, 
the dips in the STL at fMAM from each plane incident wave have a great influence on the diffuse field 
STL. When adding air damping in the cavity, as figure 15(b) shows, the STL at the mass-air-mass 
resonance increases by more than 7 dB at each dip. The STL at the coincidence frequencies also 
increases, which leads to an increase of about 1 dB around the dip at 2806 Hz when is 78 for 
example. These phenomena shed some light on the effect of air damping on the diffuse field STL in 
figure 14. 
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(a) (b) 
Figure 15. Plane STL at five incident angles, air damping of window interior cavity is (a) 0, (b) 0.05. 

4.  Conclusion 
The interior noise of a high speed train has been measured and identified at a running speed of 

250 km/h. The field results show that the window is among the panel structures which contribute to 
the interior noise. To study and improve the STL of the window, a double panel STL model based on 
the wave propagation method and modal superposition method has been developed. The theoretical 
result shows that below 25 Hz the STL is stiffness controlled, between 25~315Hz is resonance 
controlled , and between 315~2500 Hz is mass controlled. The main interior A-weighted noise has its 
peak in the mass controlled frequency region, in which increasing the thickness of the glass provides 
the most significant improvement in STL. Increasing the air gap and damping also has some benefit. 



 
 
 
 
 

In practice, the interior noise level and its dominant frequencies vary with many factors, including the 
running speed. Even at a fixed running speed, the interior noise frequency distribution will vary from 
one cabin to another and also spatially within the single cabin. The window can be designed more 
specifically for particular locations in the train, and the present work can provide a reference for its 
low noise design. 

Extruded panels are also a major interior sound transmission path as identified in this work. Further 
research concerning these paths will be carried out in the future work. 
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