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Abstract. Curve squeal in railway vehicles is an instability mechanism that arises in tight curves 

under certain running and environmental conditions. In developing a model the most important 

elements are the characterisation of friction coupled with an accurate representation of the 

structural dynamics of the wheel. However, the role played by the dynamics of the rail is not 

fully understood and it is unclear whether this should be included in a model or whether it can 

be safely neglected. This paper makes use of previously developed time domain and frequency 

domain curve squeal models to assess whether the presence of the rail and the falling 

characteristics of the friction force can modify the instability mechanisms and the final response. 

For this purpose, the time-domain model has been updated to include the rail dynamics in terms 

of its state space representation in various directions. Frequency domain and time domain 

analyses results show that falling friction is not the only reason for squeal and rail dynamics can 

play an important role, especially under constant friction conditions.    

1. Introduction 

Railway curve squeal is a loud and often annoying tonal noise usually found in tight curves. Although 

it has been studied for decades, the mechanism behind this phenomenon is still controversial. Rudd [1] 

was the first to indicate that the wheel response was unstable due to the falling friction characteristics at 

large sliding velocities, which was described as negative damping that could feed energy into the system 

in each period of vibration. Rudd’s work has been widely accepted and, following his work, many 

subsequent models that appeared in the literature adopt parts of Rudd's approach to the theoretical 

modelling of squeal [2-7]. However, another type of instability, called mode coupling, may also be able 

to induce curve squeal. To explain the mechanism of mode-coupling instability, Hoffmann et al. [8] 

used a two degree of freedom model to show that the constant friction force can lead to a non-symmetric 

stiffness matrix, and with increasing friction coefficient, to instability. As a consequence two structural 

modes originally with different natural frequencies converge and, when the two natural frequencies are 

equal, one of the two becomes unstable. This behaviour is also known in literature as flutter. Glocker et 

al. [9] and Pieringer [10] showed that curve squeal can exist with a constant friction coefficient 

according to this mechanism. 

Besides the mechanism of curve squeal, the role played by the rail in curve squeal is also not fully 

understood. To explore the mechanism of curve squeal and the role of rail dynamics, in this paper the 

curve squeal model from Huang [11] is used and extended.  In his model, a falling friction law was 

considered and a method introduced by Wu and Thompson [12] was used to represent rail dynamics in 

the time domain. This consisted in finding a low order equivalent system corresponding to each rail 

mobility curve, according to which the rail mobility in each direction was fitted with a ratio of 



 
 
 
 
 
 

polynomials. This approach involved a system identification technique with system constants obtained 

by minimization of frequency response functions over the frequency range of interest. It is not possible 

to relate these system constants to the physical properties of the track system. In [13], an approach was 

used for vertical track dynamics based on a multi-degree of freedom (MDOF) mass-spring system. This 

paper extends this modal summation approach to study the rail dynamics in vertical, longitudinal, lateral 

and spin (rotation about vertical) directions. This is then applied to Huang’s curve squeal model. The 

role of rail dynamics and different friction laws are then explored using this extended model. 

2. Theoretical squeal model 

A complete curve squeal model consists of several sub-models, which relate to vehicle dynamics, 

wheel/rail dynamics, contact dynamics, and acoustic radiation. The vehicle dynamics provides the 

necessary parameters related with the steady-state curving behaviour; time domain and frequency 

domain models for the wheel/rail system are developed by combining wheel/rail dynamics and contact 

dynamics; finally, an acoustic radiation model is used for predicting the sound pressure level from 

vibration. 

In the frequency domain, the wheel and rail dynamics are described by their mobility matrices. The 

wheel mobility can be obtained by modal analysis after determining the modal parameters from a finite 

element analysis for the wheel. The rail mobility is obtained from an analytical model which will be 

summarised in Section 3. In the contact zone, only vertical contact spring is considered, thus the normal 

force fluctuates because of the compression or extension of the contact spring. The fluctuation of the 

normal force leads to fluctuations in the friction force which leads to an asymmetric matrix. This is the 

reason for possible mode coupling instability. Friction forces in lateral, longitudinal and spin direction 

are determined by using the FASTSIM algorithm [14]. By combining wheel dynamics, rail dynamics 

and contact dynamics, a self-excited vibration loop can be obtained (see Figure 1). If the contact friction 

forces 𝐅𝐟 are applied, the sliding velocities matrix 𝐕𝐬 can be obtained by using mobility matrix 𝐆, which 

will then give a modified set of forces through a linearized frictional impedance matrix 𝐇𝟏. Matrix 𝐇𝟐 

gives the linearized effect from the fluctuation of normal force on the friction forces. Thus, the stability 

can be studied using the open loop transfer function of the self-excited vibration loop, which is (𝐇𝟏𝐆 +
𝐇𝟐) [11].  

 

Figure 1. Linearized self-excited vibration loop of the wheel/rail contact system [11].  

In the time domain, state-space models are used for the wheel and rail. The state-space rail model 

will be introduced in Section 3; the state-space wheel model can be developed by using a similar method 

once the modal parameters are obtained as above. If some small disturbances of the friction force are 

given, the wheel and rail will produce dynamic responses, which will in turn update the contact force 

and feed back to the wheel and rail system. Hence, step by step integration will be used to obtain the 

time history response of the wheel and rail. 

3. Rail vibration 

Analytical rail models have been developed by other researchers to give the point mobilities of the rail 

in different directions. The vertical vibration response has been presented by Grassie in [15] by using a 

beam on two-layer support model. Wu and Thompson [16] gave the lateral vibration response of railway 

track based on a multi-beam model. Lurcock [17] studied the longitudinal motion. Spin motion of the 

rail was modelled for squeal analyses using a Timoshenko beam model [11]. The stability analysis 

performed in the frequency domain makes direct use of these results. Cross mobilities are not considered 

in the present work. 



 
 
 
 
 
 

3.1. Equivalent MDOF track model 

These analytical rail models, however, are not suitable to the step-by step integration in the time domain. 

An equivalent track model is adopted instead which is based on a multi-degree of freedom mass-spring 

system (see Figure 2), a similar method has been used in [18] to study ballasted tracks. The application 

of the extra mode in Figure 2 will be explained below. According to the modal summation approach 

[19], for a MDOF system, the displacement at DoF j due to a force Fk at DoF k is: 

𝑋𝑗,𝑘 = 𝐹𝑘 ∑
𝜓𝑖(𝑗)𝜓𝑖(𝑘)

−𝜔2 + 𝜔𝑖
2 + 2𝑗𝜁𝑖𝜔𝜔𝑖

𝑛

𝑖=1

 (1) 

where 𝜔𝑖 is the natural frequency of ith mode, 𝜔 is the excitation frequency, 𝜓𝑖 is the mass-normalised 

mode shape and 𝜁𝑖 is the modal damping ratio. With this formulation, it is not necessary to derive the 

mass and stiffness of this system, because modal parameters are used instead.  

The receptance from analytical models which are based on an infinite track shows peaks at the cut 

on frequencies of waves in the rail. According to the number of cut on frequencies in the frequency 

range considered, the number of modes included in the equivalent modal model can be defined. Their 

natural frequencies are chosen to be the same as the cut on frequencies in analytical model. 

Take the vertical point receptance of the track for example. Figure 3 shows a comparison of the rail 

vertical receptance between the analytical model (solid line) and a modal model (dashed line). From the 

analytical model, it can be found that there are two peaks at 80Hz and 700Hz, which are also chosen as 

the natural frequencies in the modal model. It should be noticed that hysteretic damping, as used in the 

analytical model, cannot be used in a time-domain model. Hence, a viscous damping model is applied 

in the modal model, and according to [20], a suitable choice of viscous damping coefficient C is obtained 

by equating it to the required hysteretic damping value at the corresponding cut on frequency, i.e. 𝐶 =
𝑠𝜂

𝜔0
, where 𝑠 is the stiffness, 𝜂 is the damping loss factor, 𝜔0 is the cut on frequency. 

Moreover, it can be seen from Figure 3 that the analytical and modal models match well up to 1 kHz, 

but at higher frequencies the agreement is less good. This is because, for an infinite track, energy is 

carried away from the driving point at high frequency due to free wave propagation along the rail. 

Consequently the receptance of a Timoshenko beam tends to a phase of −𝜋/2 and a slope of 1/𝜔 at 

high frequency whereas the modal model tends to a phase of – and a slope of 1/2 equivalent to mass. 

In order to get a better match at high frequency, an additional spring/damper set with a small mass is 

included in series with the mass/spring model, see Figure 2. This can be considered as adding an extra 

mode to the system; its natural frequency is set equal to 20 kHz which is beyond the frequency range 

considered in the current study. Again, there is no need to know the mass associated with this extra 

mode. It can be seen that the modal model with extra mode (dotted line) gives a better fit with analytical 

model (solid line). 

M1

M2

M0 extra 
mode

 
 

Figure 2. Modal model for track 

vertical receptance 

Figure 3. Comparison of track vertical receptance between 

analytical model and modal model 
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The results from the equivalent MDOF models for lateral and longitudinal directions are shown in 

Figure 4; these are obtained with the same method although in the lateral direction more modes are 

included. It should be mentioned that, for spin direction, the modal model cannot match the analytical 

results well, which needs to be solved in the future. 

  
(a) lateral direction (b) longitudinal direction 

Figure 4. Comparisons of track lateral and longitudinal receptance between analytical model and 

modal model 

3.2. State-space matrix for track dynamics 

A state-space model of the rail is required for the simulations in the time domain. After the equivalent 

mass-spring system has been built with the modal analysis method, the state-space model can be easily 

obtained for these mass-spring systems. Separate modal models are obtained for four directions: vertical, 

longitudinal, lateral and spin.  

Consider a mass-spring system with n modes, one input dynamic force f, and output dynamic velocity 

on one direction {𝑉r} = [𝑣1
r]. This can be represented by a state equation and an output equation as: 

{𝑅̇} = [𝐴r]{𝑅} + [𝐵r]𝑓 (2) 

{𝑉r} = [𝐶r]{𝑅} (3) 

where the state variable vector 𝑅 consists of the modal velocity 𝑞̇𝑖 and the modal displacement 𝑞𝑖 of 

mode i (1 to n) 

{𝑅} = [𝑞1,̇  𝑞2̇ , … , 𝑞𝑛̇ , 𝑞1, 𝑞2, … , 𝑞𝑛]T       (4) 

The system matrix [𝐴r] is: 

[𝐴r]  =  

[
 
 
 
 
 
 
 
 
 
 
 
−2𝜁1𝜔1 −𝜔1

2

−2𝜁2𝜔2 −𝜔2
2

⋱ ⋱

−2𝜁𝑛𝜔𝑛 −𝜔𝑛
2

1 0 ⋯ 0

1 0

⋱ ⋮ ⋱ ⋮

1 0 ⋯ 0 ]
 
 
 
 
 
 
 
 
 
 
 

 (5) 

where 𝜁𝑖 is the damping ratio of mode i and ω𝑖 is the natural frequency (in radians/sec) of mode i. The 

input matrix [𝐵r] can transform external forces into modal forces for each mode, while the output matrix 
[𝐶r] sums modal velocities of each mode into external velocities. Both matrices are formed from the 

mode shapes, for example: 
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[𝐵r] =  [𝜙11 𝜙12  ⋯𝜙1𝑛 | 0, 0⋯0 ]T     (6) 

and 

[𝐶r] =  [𝜙11 𝜙12  ⋯𝜙1𝑛 | 0, 0⋯0 ]     (7) 

where 𝜙1𝑖 is the mass-normalised modeshape of mode i in 1 direction.  

By assembling the mass-spring state-space models for the four directions, the total system matrix 

[𝐴], input matrix [𝐵] and output matrix [𝐶] are given as follows: 

[𝐴] =  

[
 
 
 
[𝐴11

r ]

[𝐴22
r ]

[𝐴33
r ]

[𝐴66
r ]]

 
 
 

 (8) 

 [𝐵] =  

[
 
 
 
[𝐵11

r ]

[𝐵22
r ]

[𝐵33
r ]

[𝐵66
r ]]

 
 
 

 (9) 

[𝐶] =  

[
 
 
 
[𝐶11

r ]

[𝐶22
r ]

[𝐶33
r ]

[𝐶66
r ]]

 
 
 

 (10) 

where the subscript 1 refers to the longitudinal direction, 2 to the lateral direction, 3 to the vertical 

direction and 6 to spin. Thus, the matrices [𝐴], [𝐵]and [𝐶] can be obtained according to the parameter 

values obtained from curve fitting.  

4. Friction law 

The rolling friction force depends on the relative sliding velocity at the contact. For small sliding 

velocity, the friction force increases linearly from zero, until it saturates at the Coulomb friction limit. 

This is the adhesion zone where micro-slip occurs in part of the contact. After this zone, the rolling 

contact is under gross sliding. The friction law used in this paper is from Huang [11], which is based on 

Kalker’s FASTSIM theory [14] together with a falling part, defined as: 

𝜏(𝛾) = 1 − 𝜆𝑒𝜅/|𝛾| (11) 

where 𝜆 is the falling ratio, 𝜅 is the saturation coefficient, and 𝛾 is the creepage. 

To study whether squeal can occur with a constant friction, a friction law without falling part is also 

considered. Therefore, both of the friction curves in Figure 5 will be employed to study the occurrence 

of squeal. Some important parameters for the friction curve are listed in Table 1. 

 

Figure 5. Two friction laws used in this paper  
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Table 1. Parameters used for friction force curves 

Description and Name Unit Value 

Coulomb friction coefficient 𝜇0 / 0.3 

Falling ratio 𝜆 in Eq.(11) / 0.1 

Saturation coefficient 𝜅 in Eq.(11) / 0.005 

Longitudinal creepage / 0 

Spin creepage / 0 

Longitudinal semi-axis of contact ellipse 𝑎 mm 10 

Lateral semi-axis of contact ellipse 𝑏 mm 5 

5. Results 

5.1. Parameters of cases studied 

To study the role of rail dynamics and falling friction characteristics, four cases are calculated here, 

which are described in Table 2. Cases 1 and 2 are with falling friction; rail dynamics is included in Case 

1 but not in Case 2. Meanwhile constant friction is adopted for Cases 3 and 4, again with and without 

the rail dynamics respectively. A wheel from a Class 158 multiple unit train [11] (see Figure 6) is used 

in all these cases. Some important parameters used in all these cases are shown in Table 3. In the present 

work, the contact angle is set as 2 and the contact is assumed to be located at the nominal wheel/rail 

contact point, which is not necessarily representative of a train running around a curve.  

 

Figure 6. Solid model of Class 158 wheel 

Table 2. Cases description 

Case number 
Falling friction (✔) or 

constant friction(✖) 

Include rail(✔) or not 

(✖) 

1 ✔ ✔ 

2 ✔ ✖ 

3 ✖ ✔ 

4 ✖ ✖ 

Table 3. Some input parameters and their values 

Description and Name Unit Value 

Normal force N kN 60 

Rolling velocity V0 m/s 10 

Lateral steady state creepage 𝛾2 / 0.02 

Longitudinal steady state creepage 𝛾1 / 0 

Spin steady state creepage 𝛾6 / 0 

  



 
 
 
 
 
 

5.2. Frequency domain analysis  

To study the stability of the wheel/rail system, a generalised Nyquist stability criterion is applied, which 

can be stated as follows. The system will be closed-loop stable if and only if the net sum of anti-

clockwise encirclements of the critical point (-1/k, j0) by the set of eigenloci of the open-loop transfer 

function matrix (TFM) is equal to the total number of right-half plane poles of the TFM, where for 

negative feedback, k =1, and for a positive feedback, k = -1 [21]. In order to predict the possible unstable 

frequencies in the squeal loop, only the eigenvalue with maximum modulus at each frequency is chosen 

to judge the stability [11]. In addition, to have intuitive frequency information, the Bode plot is also 

employed.  

 

Figure 7. Case 1: Nyquist contour of eigenloci and modulus of the Bode diagram of eigenloci: * 

unstable frequencies 

Figure 7 gives the stability analysis for Case 1. The unstable frequencies are shown in both Nyquist 

contour and the modulus graph of the Bode plot, which are marked by a ‘*’. The same thing has been 

done for Cases 2-4, all the useful results are summarised in Table 4. The wheel modes involved are 

identified by their natural frequencies (Hz) and their indices (n,m) in Table 4. The wheel modes listed 

as responsible for the corresponding unstable frequencies are verified by including only these wheel 

modes in the analysis to see whether the unstable frequencies remain. To describe the wheel modes, the 

number of nodal diameters n and the number of nodal circles m are used. The word ‘axle’ means an axle 

bending mode, the index ‘r’ means a radial wheel mode, ‘x’ means other modes. 

Comparing the results of Cases 1 and 2 in Table 4, it can be seen that with a falling friction force, 

the frequency at 150.5Hz can be eliminated if the rail is not included in this model. However, the 

modulus at this unstable frequency is 2.131, which is much smaller than most of other unstable 

frequencies, meaning that this one is unlikely to be the dominant unstable frequency.  

Comparing the results of Cases 3 and 4 shows that even with a constant friction force, the system 

can still be unstable at some frequencies. This indicates that falling friction is not the only reason for 

curve squeal instability. Interestingly, in Case 3, two wheel modes are coupled for the unstable frequency 

at 3974Hz, but for the unstable frequencies at 150.8Hz, 272.5Hz, 418.2Hz, 1102Hz and 1977Hz, only 

one single wheel mode is responsible for each unstable frequency, which means these instabilities do 

not come from the wheel mode coupling. When rail is not considered the number of unstable frequencies 

for constant friction reduces from 6 to 2, which means the existence of the rail can have a significant 

impact on the existence of squeal instability. 
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Table 4. Summary of frequency domain analysis for Cases 1-4 

Case 1 

(falling 

friction 
/rail 

included) 

Unstable 
frequencies (Hz) 

150.5 272.5 401.4 418.6 1102 1976 2951 3977 

Loop gain 2.131 6.753 1.556 14.2 7.997 6.373 4.728 2.858 

Wheel modes 

involved (Hz) 
149.42 272.54  402.03 418.34 1102 1976.2 2950.4 3977.4 

(n,m) (1,0) (0,0) (0,x) (2,0) (3,0) (4,0) (5,0) (6,0) 
          

Case 2 
(falling 

friction/ 

rigid rail) 

Unstable 
frequencies (Hz) 

 269.2 400.1 420.2 1103 1976 2951 3977 

Loop gain  2.755 1.811 35.89 16.87 6.523 5.091 2.647 

Wheel modes 

involved (Hz)  
 272.54 402.03 418.34 1102 1976.2 2950.4 3977.4 

(n,m)  (0,0) (0,x) (2,0) (3,0) (4,0) (5,0) (6,0) 
          

Case 3 

(constant 

friction  
/rail 

included ) 

Unstable 

frequencies (Hz) 
150.8 272.5  418.2 1102 1977  3974 

Loop gain 2.01 6.348  8.722 6.613 3.153  1.234 

Wheel modes 
involved (Hz)  

149.42 272.54  418.34 1102 1976.2  
3915.1 
3977.4 

(n,m) (1,0) (0,0)  (2,0) (3,0) (4,0)  
(4,1) 

(6,0) 
          

Case 4 
(constant 

friction  

/rigid rail) 

Unstable 

frequencies (Hz) 
 263.1    1977   

Loop gain  1.543    2.913   

Wheel modes 
involved (Hz)  

 

82.37 

149.42 
272.54 

   
1959.4 
1976.2 

  

(n,m)  

(axle) 

(1,0) 

(0,0) 

   
(2,r) 
(4,0) 

  

In order to study the detailed effect of rail dynamics on the mode coupling, some extended cases 

have been considered based on Case 3. It is found that the instabilities at 150.8Hz, 272.5Hz, 418.2Hz, 

1102Hz and 1977Hz in Case 3 can be eliminated if the normal modal displacement of the wheel mode 

is set to 0, even though the rail is included. This means that the instabilities at these frequencies are not 

due to the coupling between wheel modes and rail dynamics; they are more likely to occur because of 

the coupling between the tangential component and normal component of the single wheel mode, when 

normal contact is included. Nevertheless the rail mobility can change the flexibility of the normal 

contact, which affects the degree of coupling.  

It is also found that using a different wheel design can produce very different results. For instance, if 

a straight-webbed wheel is used and the contact angle is set to 0, the system will always be stable under 

the same conditions as Case 3.  

5.3. Time domain analysis 

In the time domain, a step by step integration method is used including the state-space models for wheel 

and rail. The velocity time histories of wheel and rail in different directions can be obtained.  To quantify 

the squeal noise level, an engineering method [22] is employed here to determine the sound pressure 

level (SPL) at 7.5 m from the sound source. Only the noise radiation from wheel is considered. Figure 

8 to Figure 11 show the time history results and narrow-band velocity spectra for Cases 1-4. Figure 12 

gives the A-weighted SPL of Cases 1-4. 



 
 
 
 
 
 

  

Figure 8. Time history of Case 1 Figure 9. Time history of Case 2 

 

 

 

 

Figure 10. Time history of Case 3 Figure 11. Time history of Case 4 

 

Figure 12. Noise radiation from the wheel 

The time history results show that a steady state response is obtained for all four cases considered, 

which means squeal exists in all these cases. Moreover, it can be seen that the amplitude of vibration in 

the rail is much smaller than the response of the wheel. The spectra in Figure 8 and Figure 10 show that, 
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although a few possible unstable frequencies can be found in the frequency domain, only one becomes 

dominant in the time domain. For Case 1 and Case 3 this is at 1100 Hz. Other peaks exist in the response 

spectrum; some of them are higher harmonics of 1100 Hz (due to non-linearities) while others 

correspond to the rail modes. The wheel mostly vibrates sinusoidally at 1100 Hz showing the highest 

amplitude, but the rail spectrum can be greater than that of the wheel at the higher harmonics or at the 

frequencies of the rail modes. Figure 9 and Figure 11 show that the dominant frequency changes to 1978 

Hz when the rail is neglected. 

Each of the two dominant frequencies found for the cases with and without rail (1100 and 1978 Hz) 

corresponds with one of those found in the frequency domain analysis in Table 4, although they are not 

necessarily the ones with the largest loop gain. 

For these examples, the total sound pressure levels for Cases 1 to 4 are quite similar (Figure 12). 

6. Conclusions 

A systematic study has been presented to show the effect of rail dynamics and friction condition on 

squeal noise. By performing the stability analysis, it is found that, while a falling characteristic of the 

friction force generally leads to curve squeal, it is not the only reason for the squeal. Wheel mode 

coupling or even the coupling between the tangential component and normal component of the single 

wheel mode can also be responsible in some situations. Rail dynamics is found to play an important role 

when constant friction is considered. Time history results show that squeal instability exists even with 

a constant friction force, and the presence of the rail can change the dominant frequency of squeal noise. 
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