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Abstract. This paper presents the inverse design method for the nonlinearity in an energy 
harvester in order to achieve an optimum damping. A single degree-of-freedom electro-
mechanical oscillator is considered as an energy harvester, which is subjected to a harmonic base 
excitation. The harvester has a limited throw due to the physical constraint of the device, which 
means that the amplitude of the relative displacement between the mass of the harvester and the 
base cannot exceed a threshold when the device is driven at resonance and beyond a particular 
amplitude. This physical constraint requires the damping of the harvester to be adjusted for 
different excitation amplitudes, such that the relative displacement is controlled and maintained 
below the limit. For example, the damping can be increased to reduce the amplitude of the 
relative displacement. For high excitation amplitudes, the optimum damping is, therefore, 
dependent on the amplitude of the base excitation, and can be synthesised by a nonlinear 
function. In this paper, a nonlinear function in the form of a bilinear is considered to represent 
the damping model of the device. A numerical optimisation using Matlab is carried out to fit a 
curve to the amplitude-dependent damping in order to determine the optimum bilinear model. 
The nonlinear damping is then used in the time-domain simulations and the relative displacement 
and the average harvested power are obtained. It is demonstrated that the proposed nonlinear 
damping can maintain the relative displacement of the harvester at its maximum level for a wide 
range of excitation, therefore providing the optimum condition for power harvesting. 

1. Introduction 
Nonlinear control can be achieved by introducing nonlinearities in the damping force or stiffness force, 
to enhance the performance of the system through vibration isolation [1] or energy harvesting [2]. 
Nonlinear damping has been observed in a significant number of engineering systems such as 
automotive shock absorbers [3,4], orifices [5], loudspeakers [6], nanoelectromechanical systems such 
as graphenes [7] and aircraft wings [8]. It has been demonstrated that quasi-linear models can provide a 
very good approximations to obtain the dynamic response of such systems [9], since nonlinear damping 
in contrast to nonlinear stiffness does not introduce jump or bifurcation phenomena to the system’s 
response.  



 
 
 
 
 
 

Nonlinear damping has also been investigated for the problem of energy harvesting by Ghandchi Tehrani 
et al [2] to extend the dynamic performance range of the harvester. The system with nonlinear damper 
can harvest more energy at resonance when driven below its maximum amplitude compared to the 
system with linear damper.  
In this paper, first a model of an energy harvester is provided. The constraint of maximum relative 
displacement is included in the model. The optimum damping is obtained in order to maintain the 
amplitude at its maximum level when the base excitation amplitude exceeds its threshold. Then a 
nonlinear model is fitted to the optimum damping, which is dependent on the amplitude levels. An 
optimisation is carried out to fit a bilinear model to the variable damping. The bilinear damping model 
is then validated using time domain simulation.  
 

2. Energy Harvesting with Optimum Linear Damping 
A single degree-of-freedom system (spring-mass-damper) shown in Figure 1 is considered, which is 
subjected to a base excitation, where m  is the mass, k  is the suspension stiffness, c is a damper, x is the 
mass displacement, y  is the base displacement and z  is the relative displacement between the mass of 
the harvester and the base . The system is harmonically excited at resonance frequency nω  and the 

amplitude Y .  The damping c consists of an internal inherent damping, Ic , which is a damping loss and 
an additional shunt damping, Ac , that harvests power. 
 

 
Figure 1: Single degree-of-freedom base excited system with a variable damper 

 
The governing dynamic equation can be written as: 

 ( ) .ymkzzcczm AI  −=+++  (1) 
For harmonic base excitation, 
 ( ),cos tYy ω=  (2) 
The fundamental component of the relative displacement is assumed to be, 
 ( ),cos φω −== tZz  (3) 
where, Z is the amplitude of relative displacement andφ  is the phase shift between z  and y  . 

At resonance, nω , the relative displacement can be obtained from [10],  
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The relative displacement of the harvester at resonance depends on the damping value and the base 

excitation amplitude. The device has a maximum relative displacement maxZ  due to its physical throw 

limit. For a fixed value of Ac  and Ic , and at a particular base excitation amplitude maxY , the harvester 
can reach its maximum relative displacement. 



 
 
 
 
 
 

For base excitation below maxY , the shunt damping, Ac ,  can be adjusted such that the relative 
displacement is at its maximum and the device operates at its optimum condition. The optimum quasi-
linear damping, which is level dependent, can be found from, 
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The average harvested power can be obtained from the shunt damping and the relative displacement 
as, 
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The internal damping dissipates energy and therefore is not included in the harvested energy. Using Eq. 
(4) for the relative displacement, we can obtain the average harvested power in terms of the base 
excitation amplitude. 
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The average harvested power is maximised with respect to the shunt damping 0=
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results in IA cc =  [10], assuming that this is less than that required to limit the throw in Eq. (5).   
 
 

3. Numerical Simulation 

The simulation parameters for the single degree-of-freedom harvester are:  

 m1  Ns/m,1.0  , N/m4    kg1 max
2 ====  Zckm Iπ , 

 
so that the natural frequency of the system is 1 Hz. If a fixed shunt damper is used, its value needs to be 

mNscA /1=  in order to limit the throw to mZ 1max = , at the assumed maximum excitation amplitude, 

maxY , of 0.1751m. When the base excitation amplitude reduces, the relative displacement then reduces 
linearly, as can be seen in Figure 2(a) with blue dashed line.  
From the power equation, lower values of shunt damping would result in higher values of the average 
harvested power. However, the shunt damping cannot be too small, since the relative displacement 
cannot exceed the physical threshold, so that a level-dependent damper is used, which has a value of 

1Ns/m for maxY , but reduces linearly to maintain the throw at maxZ until its value is equal to the optimum 
mechanical load of 0.1Ns/m, below about 0.03m. 
The average harvested power using the fixed damping, mNscA /1= , and the amplitude dependent 
damping are plotted in Figure 2(c).  
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Figure 2: (a) Relative displacement, Z, (b) shunt damping, Ac , and (c) average harvested power, aveP , as a 
function of the base excitation amplitude, Y for the quasi-linear model;  The optimum linear shunt damper is 

marked with red solid line and fixed shunt damper is marked with blue dashed line 
 

In order to implement the quasi-linear damper in practice, the damping of the harvester needs to be 
adjusted based on the amplitude of the base excitation. One approach is to synthesize a nonlinear damper 
by using a shunt with a static nonlinearity that provides the required variation of quasi-linear damper 
with level. A bilinear model can be considered, which describes the damping force in terms of the 
relative velocity, where the relative velocity is m/s 2π for the maximum throw. For the harvester with 
the variable damper, the damping force changes linearly with the velocity until it reaches the limit of 

m/s 2π  as shown in Figure 3(a). The aim is to fit a bilinear function to this curve. The damping is also 
shown in Figure 3(b) as a function of the amplitude of the relative velocity. An optimisation will be 
carried out in the next section in order to synthesize the variable damper with a nonlinear function. 



 
 
 
 
 
 

  
(a) (b) 

Figure 3: (a) The damping force versus the relative velocity, (b) the describing function versus the amplitude of 
the relative velocity 

 
 

4. Nonlinear Model 
 
In this section, a general nonlinear function between the damping force and the relative velocity is 
considered as shown in Figure 4(a).  

   
(a)                                                     (b) 

Figure 4: (a) A general nonlinear function between the damping force and the relative velocity, (b) a bilinear 
model of damping force 

 
The velocity response is assumed to be harmonic and has an amplitude of Z  and the fundamental 
frequency component only. Therefore, 

( )tZtz ωsin)(  =      (9) 
However, the damping force )(tf , is nonlinear and contains the harmonics.  
 
To obtain the amplitude of the damping force, F , at the fundamental frequency, the coefficients of the 
Fourier series of the nonlinear function are obtained. For example, 
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The amplitude of the damping force can then be found from 2
1

2
1 baF += .  The describing 

function, which is the ratio between the amplitude of the nonlinear force and the amplitude of the 
velocity at the fundamental frequency, is equal to the level dependent shunt damping Ac . 
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If we consider the nonlinear function to be a bilinear model, then the damping force can be written as, 
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where, 1k  and 2k  are the slopes of the two lines in Figure 4(b) and d  is the saturation limit. The 
describing function of the bilinear model is in the form of [11], 
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An optimisation is carried out to find the parameters of 1k , 2k  and d  such that,  

( ) ( ) linearbiAlinearquasiA ZcZc −− − min    (15) 
A constraint of positive describing function is also used to achieve sensible parameters. The optimum 
bilinear parameters are found to be, 

  1.01 =k , 10002 =k and π2=d    (16) 
The instantaneous bilinear damping force is shown in Figure 5(a) together with the variation of its 
quasi-linear damping with level. There is a good agreement between the quasi-linear and the bilinear 
damping model. The describing function of the bilinear model, Eq.(14) is in good agreement with the 
quasi-linear damping. 

  
(a) (b) 

Figure 5: (a) The instantaneous bilinear damping force versus the relative velocity, (b) The analytical describing 
function versus the amplitude of the relative velocity; quasi-linear is marked with solid line and bilinear is 

marked with dashed line. 

 

5. Time Domain Simulation 
The bilinear damper obtained from the optimisation is now used in time-domain simulations and the 
describing function is plotted for different excitation levels. A state-space model is constructed in Matlab 
and integrated numerically using ode45, 
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where, the damping force from Eq.(13) is substituted into Eq. (15) . The amplitude of the base excitation 

Y  is varied from 0 to max2Y  and the response of the nonlinear system is obtained at every amplitude. 
The instantaneous bilinear function is plotted in Figure 6(a) for two different amplitudes of the base 
excitation mY 01.0=  and mY 3.0= . For low levels, the response is linear; however for high level of 
excitation the response is saturated. 
The describing function is also plotted using the numerical velocity and damping force in Figure 6(b). 
There is a slight discrepancy between the two results, since the time data contains harmonics. 
 
 

  
(a) (b) 

Figure 6: (a)The bilinear damping force versus the relative velocity from time domain simulation using two 
different base excitation amplitudes, (b) the numerical describing function (red dotted line) versus the amplitude 

of the relative velocity compared with the quasi-linear model (blue solid line) 
 
The time histories of the base excitation and the relative velocity are also provided in Figure 8 for two 
different levels of excitation. For low level, the relative velocity is sinusoidal; however, at high level of 
excitation, the relative velocity is limited and it does not exceed m/s 2π . 
 

 
(a) (b) 

Figure 7: The time responses for two different base amplitudes (a) mY 01.0=  (b) mY 3.0=  
 



 
 
 
 
 
 

Finally, the relative displacement, the describing function and the average harvested power are 
calculated using time domain simulation at every excitation amplitude and the plots are shown in Figure 
8. The results are in good agreement with the quasi-linear model in Figure 2. 

  
(a) (b) 

 
(c) 

Figure 8:(a) Relative displacement, Z, (b) shunt damping, Ac , and (c) average harvested power, aveP , as a 
function of the base excitation amplitude, Y for the bilinear model using time domain simulation;  The optimum 

linear shunt damper is marked with red solid line and fixed shunt damper is marked with blue dashed line 
 

6. Conclusions 

This paper has investigated an inverse design of nonlinearity in an energy harvester to achieve optimum 
damping. When the harvester is excited at an amplitude above its physical limit, the damping can be 
adjusted to control the displacement level. This results in a level dependent damping at high excitation 
level. To implement the variable damper, a nonlinear function in the form of bilinear damping is 
synthesized, which provides a good representation of the linear optimum damper. The bilinear damping 
is then used in time domain simulation and the response of the system is obtained. 
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