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Abstract

Background: Perseveration — repetition of words, phrases or questions in speech — is
commonly described in Alzheimer’s disease (AD). Measuring perseveration is difficult, but
may index cognitive performance, aiding diagnosis and disease monitoring. Continuous
recording of speech would produce a large quantity of data requiring painstaking manual
analysis, and risk violating patients’ and others’ privacy. A secure record and an automated
approach to analysis are required.

Objectives: To record bone-conducted acoustic energy fluctuations from a subject’s vocal
apparatus using an accelerometer, to describe the recording and analysis stages in detail,
and demonstrate that the approach is feasible in AD.

Methods: Speech-related vibration was captured by an accelerometer, affixed above the
temporo-mandibular joint. Healthy subjects read a script with embedded repetitions.
Features were extracted from recorded signals and combined using Principal Component
Analysis to obtain a one-dimensional representation of the feature vector. Motif discovery
techniques were used to detect repeated segments. The equipment was tested in AD
patients to determine device acceptability and recording quality.

Results: Comparison with the known location of embedded motifs suggests that, with
appropriate parameter tuning, the motif discovery method can detect repetitions. The
device was acceptable to patients and produced adequate signal quality in their home
environments.

Conclusions: We established that continuously recording bone-conducted speech and
detecting perseverative patterns were both possible. In future studies we plan to associate
the frequency of verbal repetitions with stage, progression and type of dementia. It is
possible that the method could contribute to the assessment of disease-modifying

treatments.

Keywords:  Alzheimer’s disease; perseveration; bone-conducted speech; motif discovery;
principal component analysis
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Introduction

The risk of dementia rises markedly with age (1), therefore an increased incidence of
dementia and of its vast associated socio-economic costs (2) are inevitable consequences of
improved life expectancy (3). Consequently, early, accurate detection and treatment of
dementia have been identified as among the most important priorities for health research
in the UK and other economically advanced societies (4). Impairment of cognition short of
dementia (mild cognitive impairment (MCI)) is recognised as a potential precursor to future
decline (5), yet symptom progression is by no means inevitable, and clinicians often rely on
invasive, expensive biological measures such as structural and functional brain imaging and
cerebrospinal fluid (CSF) analysis to verify the presence of a neurodegenerative pathology
(6, 7). It is widely acknowledged that simpler, more widely available biomarkers of
comparable sensitivity and specificity would have a transformative effect on the

classification and clinical management of MCI (8).

As there is still no known method of slowing or arresting progression in AD, biomarker
positive MCl patients are increasingly recruited to randomised controlled trials of candidate
disease-modifying drugs. Outcomes are derived from global metrics of deterioration based
on estimates made by clinicians or caregivers (9), abbreviated cognitive assessments such as
the mini mental state examination (MMSE) (10) or the Addenbrooke’s cognitive
examination (ACE) (11), and comprehensive batteries of formal neuropsychological tests.
None of these methods is without shortcomings: global measures are based on subjective
judgements and quantified using coarse-grained interval scales; the content of bedside

cognitive batteries is fixed, and thus subject to learning or practice effects, which may mask
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progression; and psychometric measures are time-consuming to complete, sensitive to
fluctuations in a patient’s level of motivation and effort, as well as to learning effects, and
reflect performance in a laboratory, rather than ‘real world’ context (12). An outcome
measure based on a robust and naturalistic performance marker could radically simplify
dementia drug trial protocols, accelerating the rate at which efficacy of candidate
treatments could be either confirmed or eliminated.

There is therefore a compelling case for seeking new biomarkers, which correlate with
cognitive performance and can be measured with minimum invasion, to assist with
diagnosis or measurement of disease progression. We propose that perseveration —the
tendency to make the same statement, ask the same question, or carry out the same action
repeatedly over the course of the day (13) is a good candidate for such a marker.

Among the many abnormalities noticed by family members and caregivers of patients with
Alzheimer’s disease (AD) — perseveration is among the most common. Perseverative
behaviour is likely to be related to a decline in day-to-day memory (the commonest first
symptom of AD): it is assumed that failure to store new information in episodic memory
results in incomplete updating of conscious experience, and hence to repetition. These
phenomena are widespread among patients with established dementia, probably increase
with progression of the condition (13), and are widely regarded as sensitive indicators of
disordered cognition (14).

To date, the frequency and severity of such errors have been quantified only in terms of
caregivers’ estimates (13); more discriminating, quantitative measures (such as the mean
length of time between repetitions, the complexity of the repeated behaviour, and the
number of times the repetition is observed over the course of a day) have not been

acquired, despite the potential value of this information.
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Lack of progress in this area is related to two important barriers to research - one ethical,
the other practical. The principal ethical consideration is that of privacy: continuous audio
and/or video recording of a patient with AD in the domestic environment may well capture
the appropriate data, but would be unacceptably intrusive, not only on the patient but on
all those with whom they interacted. Moreover, even if continuous voice recording were
deemed acceptable, the record would have to be subjected to considerable analysis.
Segmentation of the record to select only the subject’s utterances, followed by the
identification and quantification of any repeated word strings, would be too time-
consuming to be feasible manually on a large scale and requires the development of
automated methods if it is to be practicable. In this paper we describe a technical solution

to both the privacy and the analysis problem:s.

To solve the privacy problem, we propose the use of an accelerometer to detect vibration
signals transmitted through the body during speech. Such a system, sometimes referred to
as a “contact microphone” differs from the airborne speech sound detected by a traditional
microphone and allows a continuous record of vocal activity to be acquired, which is robust
against sound sources external to the subject (15) including the sound of other speakers.
The signals so recorded represent a significantly low-pass filtered waveform compared to
recordings of the sound radiated from the mouth. Typically maximum speech frequencies
recorded by a microphone range up to about 5 kHz whereas in accelerometeric speech, the
upper cut-off frequency is of the order of 1 kHz resulting in the loss of higher order formant
frequencies for vowels, frication and burst information for consonants and therefore
masking to some extent both the speaker’s identity and the semantic content of their

speech (16). We hypothesised that repeated occurrences of identical phrases should
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nevertheless be identifiable from the similarity of the recorded waveforms associated with

them.

In order to assess the practical application of such a device in a real world setting, we report
on a small scale test in patients with AD in their homes. The goal was to ascertain whether a
face-mounted recording device is acceptable to wearers in their home environment and

whether the signals so recorded are of sufficient quality to permit automatic analysis.

We then report the outcome of a study in healthy participants using scripted speech to test
the feasibility of automatically identifying repeated segments of speech in longer
conversations. We apply established algorithms for data mining that have been tested in
other contexts (music categorisation; astronomical data analysis, gene sequencing) to
identify repeated sub-sequences in the accelerometeric speech. The technique of
identifying the existence and location of repeated sub-sequences in a data stream is known
as motif discovery where a motif can be described as a previously unknown but frequently
occurring pattern. The problem we consider here differs from the classical speech
recognition problem in that the linguistic and semantic contents of the utterance are not of
interest; instead we ask: Are any of the utterances in this sample of speech repeated more
than once? The possible repeated phrases are not identified a priori. Note that we are
interested in identifying phrases where the acoustic features match closely, suggesting
repetition of the identical utterance, not in phrases which are identical in meaning (so
“What is the time?” and “What time is it?” are not in our case a match). We note that motif
discovery algorithms have been applied to speech samples before (17-19) though we are
not aware of any studies applying these methods to accelerometric speech where the

information content is much reduced by the recording process.
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Our two aims in this work are therefore:

e To determine the potential of accelerometric speech in terms of recording quality,
privacy and acceptability of device to a small group of AD users.
e Toimplement and test a data-mining protocol for identifying repeated phrases

embedded in accelerometric speech.

Materials and methods

We report in this paper two separate studies, one to test the device function and
acceptability in a small sample of AD patients in their home environment and one using only
healthy subjects to obtain speech samples for a proof-of-principle study to test an algorithm

for automatic detection of repeated speech phrases.

Participants — device testing

For this study 5 patients, all aged over 65, with a diagnosis of probable AD were recruited. In
each, the presence of perseverative verbal behaviour manifesting as repetitive speech
during everyday home life, had been reported. Patients who did not have a regular
conversational partner, those who suffered from separate speech and/or language disability
(e.g. due to previous stroke), those with significant hearing impairment, with dermatological
problems at or adjacent to the facial region where the accelerometer was to be fixed, or

recent ENT surgery, were not invited to participate.

All participants gave informed consent. The clinical study was approved after review by the
National Research Ethics Service (NRES) London South East Committee [REC reference

11/L0/1192].
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Participants — algorithm testing

Recordings were obtained from a group of 5 healthy volunteers, who were undergraduate
or postgraduate students at the University of Southampton, aged between 20 and 30.
Volunteers were not invited to participate if they reported: a speech and/or language
disability (e.g. stammer), significant hearing impairment, dermatological problems at or
adjacent to the facial region where the accelerometer was to be fixed, or recent ENT
surgery. Ethical Approval for the study was obtained from the University’s internal ethics

committee and all participants gave informed consent.

Data acquisition

In both studies, accelerometric speech was captured by recording bone-conducted
vibrations due to the vocal apparatus using an accelerometer. The data acquisition system
consisted of a small (approx. 10 mm?®) accelerometer (Knowles BU 21771-000), which was
affixed to the skin over the temporo-mandibular joint (TMJ) using adhesive tape. The TMJ
was chosen specifically for locating the sensor because a previous study (20) found that the
speech intelligibility score for bone-conducted speech recorded via a contact sensor in the
region of the TMJ was as low as 65%, thus affording the greatest privacy to the patient.
Informal aural assessment of the recorded signal suggested it was largely devoid of linguistic

meaning.

For the device testing study, the accelerometer signal was routed to a lightweight, battery
powered digital recorder. For the algorithm testing study it was connected via an amplifier

and analogue to digital converter to a PC.
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The data acquisition system for the algorithm testing study also included a headset
mounted boom microphone (Yoga Electronics, EM-174M, 20Hz-16kHz, -68 dB+3 dB, 680 Q),
which used the traditional air-conducted route for recording speech, to give a reference
signal in which repeated phrases could be clearly identified and used to validate the
outcomes of the analysis of the accelerometric speech. Figure 1 shows the data acquisition

system for both data testing and algorithm testing studies.

Accelerometer

Microphone

Power amplifier
Digital
recorder
AD converter

Device testing P Algorithm testing

MATLAB

Host computer

Figure 1: Data acquisition system used for the device and algorithm testing studies. In the
device testing study with AD patients there was no microphone and the accelerometer
signal was recorded on a portable digital recorder and later transferred to the PC for
processing. Recorded signals from the accelerometer and the microphone were sampled at
a frequency of 16 kHz (12-bit resolution).
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Recorded speech data — device testing

Upon recruitment, participants in the device testing study were given a trial speech
production task. This used the Cookie Theft picture from the Boston Diagnostic Aphasia
Examination (21), a picture frequently used to elicit free and fluent speech in linguistic
studies, and asked to: Please tell me everything you see going on in the picture. The aim of
this brief assessment was to ensure the participant’s tolerance of the equipment while

speaking and to check for adequate quality of recorded data.

At a later date, the participant was visited at home by a member of the research team, and
the equipment reattached. The participant was instructed to avoid bringing the
accelerometer into contact with water, and to remove the device at the end of the day,
before going to bed, but otherwise to carry out their daily activities as normal. Speech
produced naturally by the patient during the course of the day was recorded continuously in
the home environment via the accelerometer and digital recorder until the patient chose to
remove the device. The following day a member of the research team visited the

participant’s home to collect the recording equipment.

Recorded speech data — algorithm testing

For this study, the healthy participants were instructed to read aloud each of three pre-
prepared scripts, which contained, embedded in the speech, some short, repeated
guestions and statements. The embedded speech segments used were selected based on
conversations with carers for people with AD as typical of the perseverated phrases they
encountered and consisted of: “What is the time?” (script 1); “I think I'm getting confused”

and “What day is it?” (script 2); and “Have you eaten?” and “Where did | leave my glasses?”

10
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(script 3). Note that the choice of embedded sentences from among those suggested by the
carers is arbitrary as the proposed algorithm searches for any repeated phrases on the basis
of similarity of their acoustic features and has no underlying assumption about the semantic

attributes of the phrase or a priori model of what the phrase might be.

Data analysis — device testing

The purpose of the study with the AD patients was to test the feasibility of using the
accelerometer to capture speech-related data of sufficient quality in a patient’s home
environment. Recorded signals were assessed for continuity and quality of recording and
the researcher also discussed with the patient after the trial whether they had any
difficulties with the device. Discussion with a family member or carer for the patient also
covered difficulties with the device and whether the patient was thought to have shown any

perseverative speech behaviour while wearing it for the trial.

Data analysis — algorithm testing

Data analysis for algorithm testing involved the application of established data-mining
methods to the accelerometric speech signal as detailed in this section.

The accelerometer signal was pre-processed by applying a noise reduction scheme (22, 23)
and by the removal of any silent periods in order to reduce the size of the data stream
requiring processing. It was also high-pass filtered with a cut-off frequency of 20 Hz to
remove any motion artefacts related to articulatory movements of the TMJ.

The signal was then segmented into frames (frame length 50 ms, overlap between frames
60%) and a set of 95 features was calculated per frame: statistical measures (means,
extremes, zero and mean crossing rates, linear and quadratic regression coefficients);

spectral moments (centroid, spread, skewness, kurtosis), energy in defined frequency bands

11
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(RMS energy, logarithmic energy), wavelet parameters, Mel-frequency and PLP cepstral
coefficients (to model aural and psychoacoustic perceptual aspects of hearing respectively)
and prosodic measures (fundamental frequency; voicing probability, pitch strength); using
the OpenSMILE toolbox (24, 25). OpenSMILE is a toolbox developed for extracting features
from speech signals that are typically used in speech recognition and emotion detection
applications. All the features selected have been shown to be useful in characterising air-
borne speech, though their applicability for characterising accelerometric speech has not
previously been tested.

Speech data characterised by these features contains a very large amount of information,
but equally, requires significant processing time to search for motifs. We wish to reduce the
dimensionality of the data without knowing prior to our analysis which features will be
useful in identifying repeated phrases and which may be discarded. We therefore carried
out a principal component analysis (PCA) on the feature vector and retained only the first PC
for further processing (26). The first PC for our data typically accounted for 25 to 30% of the
total variance of the feature vector signal. It is unlikely to contain elements related to all 95
features, but it contains the elements that contribute most to the variance of the signal.
More critically for this application, if we treat the component as a new time series it
provides a reduced information signal that nevertheless retains a similar shape in segments

that have similar acoustic features (i.e. repeated segments) as can be seen in Figure 2.

12
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Figure 2 (a) Accelerometric speech signal with two repeated segments (shaded background)
identified for illustration and (b) first principal component extracted from the 95-D acoustic
feature vector.
To search for motifs, it would now be possible to divide this new data stream into shorter
sub-sequences and to compare each sub-sequence with every other. Repeated speech
patterns represented in the data may not be absolutely identical, but are likely to be similar
to each other. Similar sub-sequences can be defined as those that have a Euclidean Distance
(or other suitable distance metric) between them of less than a pre-defined threshold value.
Such a process is often referred to in the data-mining literature as the “brute force” search
method. However, even with the reduction in dimensionality resulting from the use of only
the first principle component, any given recording remains very large due to the still
considerable amount of information it contains and will be extremely time consuming to
analyse by such a method. A key focus in the development of the system was therefore the
application of efficient search techniques that were able to reduce the computational

burden of locating repeated utterances. The tactic adopted is to search first for the most

13
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likely candidates for a motif and then to evaluate these in more detail to identify repetitions
that are sufficiently good matches under a given set of criteria.

The algorithms we used are established data mining techniques and their detailed
implementation can be found in the references given. We focus here more on the general
scheme of analysis and provide a largely qualitative description of the process we adopted.
The first step in the search process was to apply a coding to the data that further reduces
the information carried and which makes data segments easier to manipulate by
representing them in a symbolic format. This was achieved by the application of the
Piecewise Aggregate Approximation (PAA) (27) followed by the Symbolic Aggregate
Approximation (SAX) (28). PAA takes each sub-sequence of a pre-defined length T, within
the signal, z-score normalises it, divides it into sections of equal length and replaces the data
within each section with its mean value. The number of sections is known as the PAA word
size and we chose to work with a word size of 6 to represent each sub-sequence of data
with a step between the start of one sub-sequence and the next of one sample. SAX coding
then converts the PAA words into alphabetic symbols using, in our case a word size of 6 to
match the PAA word length and an alphabet size of 4. PAA sections are assigned an
alphabetic symbol based on the probability distribution of the subsequence. The process is

illustrated for a single subsequence in Figure 3.

14
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Figure 3 a) Subsequence extracted from the first principal component of the 95-D feature
vector with length T,n; b) z-score normalised sequence divided into 6 sections with (red
line) PAA coding applied by replacing the data in each section with its mean value p;, and c)
division of the amplitude into 4 areas, based on equal probability, indicated by dotted lines
and SAX coding of the PAA signal using an alphabet of 4 symbols according to which area it
falls into such that the SAX code for this subsequence is: bdcbab.

Sub-sequences that are part of a motif in the data stream are defined as those with a
Euclidean difference between them of less than a pre-set threshold value. Sequences
associated with the same motif are likely to have the same, or at least similar, SAX codes.
The difference between SAX codes can be computed much more quickly than the Euclidean
difference between sub-sequences and is therefore a more efficient way to look for
similarity. Once candidates for motifs are identified, only those most likely to represent
motifs need be checked more rigorously by testing the Euclidean distance. The process can

be made yet more efficient by optimising the order in which SAX codes are searched so as to

start with the those most likely to result in finding a motif.
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To search for candidate motifs using the SAX-coded sub-sequences, we selected the
Enumeration of Motifs through Matrix Approximation (EMMA) algorithm (29). In this
method, the hash-value for each SAX word is used to label a bucket which contains the
pointers to the starting position in the data stream of all SAX words with the same hash-
value. The buckets are then sorted according to the number of pointers they contain. The
bucket with the largest number of pointers in it is the most likely place to find a motif and is
known as the Most Promising Candidate (MPC). It is not certain that the MPC will contain a
motif, nor that all occurrences of a given motif will be found in the MPC. Therefore, prior to
search the MPC is given an associated neighbourhood of other buckets where the SAX word
differs from the word labelling the MPC by less than a predefined threshold value for a
distance metric known as the MinDist (30). Searching then starts with the MPC and its
neighbourhood and proceeds through subsequent buckets and their neighbourhoods in
order of bucket size until a pre-defined stop condition is met (e.g. N different motifs found

where N is a pre-defined value).

Even with the targeted search method defined by EMMA, the number of comparisons
between sub-sequences can be large and computationally costly. A further efficiency was
gained by using the Approximate Distance Map (ADM) algorithm (31) to first estimate the
upper and lower boundaries for the Euclidean distance between sub-sequences and then
only to calculate in full the Euclidean distances for those pairs not ruled out as too far apart

by ADM.

16
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Results
Device testing

The device testing study indicated that the accelerometer was not found too intrusive by
wearers and that the recording device could normally be accommodated in a pocket.
Recorded data were found to be of adequate quality for analysis with no breaks in recording
or excessive noise. Of the five subjects recorded, the carer of only one reported that they
had shown perseverative speech behaviour during the recording session. The data from this

subject is a current focus of further analysis.

Algorithm testing

In order to validate the results from the algorithm testing study, the location of the
embedded repeated phrases was identified in the signal recorded via the microphone and
the corresponding points in the accelerometric speech were manually labelled. We call

these embedded phrases true motifs.

An illustration of the detection results is shown in Figure 4. The bottom plot shows the first
principal component extracted from the accelerometric speech superimposed with matches
of the two deliberately embedded (true) motifs in this script; one coloured red and one
blue. The starting position of each true motif is denoted by a vertical line on the upper plot
emerging from a correspondingly-coloured dot on the horizontal axis. Each of the, in this
case 7, detected motifs, is shown as one row of dots on the upper plot. Each dot represents
starting position of a SAX word identified as forming part of the motif. The total number of
SAX words in a given motif is shown as the number of repetitions on the vertical axis with

the number of matches to a true (embedded) motif given in brackets. For instance, the third

17



1 motif consists of 13 matches and all these matches belong to one of the two motifs

2  embedded in the script.

18
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Figure 4: Example of detected motifs (script 3, subject 5) showing (bottom plot) the first principal component extracted from the bone-
conducted speech superimposed with two deliberately embedded (true) motifs; one red and one blue, and (top plot) the detected motifs each
represented by a row of dots where each dot represents a SAX word within that motif. The starting position of each true motif is denoted by a
vertical line on the upper plot emerging from a correspondingly-coloured dot on the horizontal axis. The total number of SAX words in a given
motif is shown as the number of repetitions on the vertical axis with the number of matches to a true motif is given in brackets.
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Where only some of the SAX words in a motif align with a true motif the non-aligned words
nonetheless do indicate sections of the signal which are sufficiently similar to the true motif
to be detected as such and thus they obey the rules for inclusion in the motif. Further there
may be motifs where none of the SAX words align with true motifs, but these do
presumably represent sufficiently similar sections of the signal to indicate repetitions even if
not those repetitions that were deliberately embedded in the signals in this study. These
might well represent other, naturally occurring, repetitions in the signal. The performance
of the system as a detector of the true motifs deliberately embedded in the scripts is

summarised in Table 1.

Table 1: Average performance for the motif detection system over all subjects

Range of no. Average of true
Script  Motif true motifs motifs detected
embedded (SD) [%]
1 #1 “What is the time?” 14 60.0 (13.9)
2 #1 “l think I’'m getting confused” 4 70.0 (44.7)
2 #2 “What day is it?” 9 48.9 (44.9)
3 #1 “Have you eaten?” 18-29 75.1(10.3)
3 #2 “Where did | leave my glasses?” 7-14 47.3 (27.7)

Scripts 1 and 2 contained the same number of true motifs for all subjects and all reached the
end of the script hence the number of motifs for each script and each subject is fixed. Script
3 was long and not all subjects reached the end in the allotted recording time, hence the
number of embedded true motifs in the recording for each speaker varied and is presented

as a range.

In practice, for an implementation used with patients where the goal is to ensure privacy,
one would not have access to the ground truth information about the location of any

perseverative phrase within the recorded data, nor even necessarily any knowledge of

20
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whether there was an unusual amount of phrasal repetition in a subject’s speech during the
recording. It is therefore instructive to look at the difference in performance of the method
using speech with and without the embedded repetitions. In order to achieve this, the true
motifs were cut from the signals and the remaining portions of the signal were re-joined
using the weighted overlap-add technique to ensure smoothness (32). Table 2 shows the
average percentage reduction in the number of detected SAX words within the motifs for

each script.

Table 2: Average reduction in the percentage of detected Symbolic Aggregate
Approximation (SAX) words between recordings with and without embedded true
motifs.

Mean (SD) percentage reduction in number
Script SAX words detected with and without true
motifs embedded

1 41.7 (39.5)
2 32.2(28.1)
3 47.2 (11.1)

It can be seen that, on average for each script, the number of detected SAX words does
reduce when there are no embedded true motifs. Although the variance for this small
sample of subjects is sufficiently large that statistical significance at the 95% level of the
difference in the mean values of SAX words detected with and without embedded true
motifs can only be shown for the difference in script 3 (mean no. with true motifs (SD) =
110.6 (30.0); mean no. without true motifs (SD) = 59.2 (24.1); Mann Whitney U = 2.0, p (1-
tailed) = 0.01) the effect sizes for the differences (r = 0.3 (small) for script 1; r = 0.3 (small)
for script 2 and r = 0.7 (large) for script 3) suggest that there are generally a measurably

larger number of SAX words found when true motifs are embedded in the scripts.
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Discussion

Device testing

The device testing study was designed to give a preliminary understanding of whether the
recording system was likely to be acceptable to users and functional as a stand-alone system
in a patient’s home environment. Our findings, based on this small scale study, were that
the device was generally acceptable. Patients did not appear to find it intrusive to have the
accelerometer fixed to the TMJ and were usually able to accommodate the digital recorder
within a pocket. Carers did not report any distress or unusual behaviour from patients when
wearing the system. The accelerometer remained securely attached to the TMJ for all
patients over the course of the test day and the recorder had sufficient memory and battery
capacity to cope with acquiring and storing the data for that duration. Recorded data had a
satisfactory signal to system-noise ratio and was of sufficient quality to permit automated
analysis. Aural assessment of the recorded signals suggested that the rejection of external
noise, including speech of conversational partners was robust and speech content was not
readily identifiable. We therefore suggest that the device meets the requirements we set
out for recording a data stream that represents speech behaviour but maintains due regard

for privacy of both the user and their interlocutors.

Algorithm testing

The motif discovery algorithm worked well on script 1, script 2 motif #1 and script 3 motif #1
detecting between 60 and 75% of all true motifs. Its performance was less good on script 2

motif #2 and script 3 motif #2 dropping to 49 and 47% respectively on these motifs. In order
to achieve good detection a number of parameters within the algorithms need to be chosen

a priori: the Euclidean distance threshold below which sub-sequences are considered to be
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similar, the PAA word size, the SAX alphabet size and the minimum duration of a sub-
sequence, Tmin, that can be considered as a member of a motif. For the majority of these
values we were guided by values chosen in the literature for similar applications (26, 27).
For Tmin we used the empirically selected values of 108 ms for scripts 1 and 2 and 54 ms for
script 3. The good detection rates for the true motifs for script 1 and for the first embedded
motif in scripts 2 and 3 suggest that the chosen values were adequate. For detection in
scripts 2 and 3, a single value of T,y was used despite there being two true motifs with
potentially rather different durations. T.,i» was closer to the length for motif #1 in each case
and therefore did not perform so well at detecting examples of motif #2. It would be
possible to search for motifs in a given script with multiple values of T, (26), but the
resulting additional processing time could be significant. Further, accuracy of detection of
true motifs was much improved if data for one of the subjects, who spoke noticeably more
slowly than the others, were neglected; for example, for script 2, average accuracy
increased to 87.5% (25%) for motif #1 and 61.1% (41.1%) for motif #2 when this subject was
not included. Evidently some tuning of the parameters for individuals, whether in some way

algorithmic or manual, might be required in any real-life implementation.

Our primary concern was to show in principle that true motifs could be automatically
detected from the accelerometric speech signal using only the first principal component of
the feature vector and we did not therefore focus here on further optimisation of the

parameters of the data mining algorithms.

To estimate the likely specificity of the algorithm we compared the detection of similar data
sub-sequences in the time series from which the true motifs had been removed, with their

detection in unedited data sets. Naturally we expect there to be repeated phrases in healthy
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speech (e.g. ‘vou know’ or ‘sort of’ as well as words and phrases specific to a given topic of
conversation) and these may also be detected by the algorithm as motifs. We found a
measurable effect of more SAX words detected in the data containing embedded true
motifs than in the data where they had been edited out, and in one script (script 3) the
difference was statistically significant and the effect size large. The observed differences
suggest that with sufficient normative data we could define an upper threshold for the
number of detected SAX words in typical speech patterns in the absence of perseveration

and use this as a metric for determine the presence of abnormal repetition.

To improve the detection of repeated motifs and to apply it to unscripted speech samples
obtained from patients, a number of possible modifications may be considered to improve
the performance of the algorithm: Firstly, the features commonly used to characterize air-
conducted speech may not provide an optimal description of a data series obtained using an
accelerometer. Whether a better set of features can be specified for such data remains to
be determined. Secondly, the performance of the motif discovery algorithm was clearly
influenced by the choice of the sub-sequence length (T,i,) and data-driven methods for
selecting an optimal value for T, for any given recording should be developed. Thirdly, the
parameters of the motif discovery algorithm (word and alphabet size) and criteria of
similarity (thresholds for the Euclidean distance between a given pair of sub-sequences) that
work best will require empirical evaluation in larger and more complex sets of speech data.
Finally, metrics for normal and abnormal repetition must be developed to allow

discrimination between perseverative speakers and those engaged in normal conversation.

CONCLUSIONS
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In this preliminary study we have presented the technical details of a system that records a
continuous signal related to the speech signal while preserving the privacy of the monitored
individual and his/her conversational partners. We have shown that the proposed system
can be used safely and is well tolerated by one group of patients in whom speech
monitoring could give rise to clinically useful information — namely patients in the early
stages of probable AD. In addition, we have described and implemented an algorithm for
automatic processing of the recorded signal in order to identify any repeated patterns
embedded within the signal and to count their occurrences, and estimated the accuracy of
the algorithm in automatic detection of patterns corresponding to phrases that were
deliberately embedded repeatedly within scripted speech samples. In order to develop this
system further, a large scale study of normal and perseverative speech is required in order
to set upper thresholds for expected amounts of repetition in the daily conversational
speech of healthy participants and to set empirical values for the parameters in the motif

discovery algorithm that optimise the detection of abnormal repetition.
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Table legends

Table 1: Average performance for the motif detection system over all subjects
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Table 2: Average reduction in the percentage of detected Symbolic Aggregate
Approximation (SAX) words between recordings with and without embedded true motifs.

Figure legends

Figure 1: Data acquisition system used for the device and algorithm testing studies. In the
device testing study with AD patients there was no microphone and the accelerometer
signal was recorded on a portable digital recorder and later transferred to the PC for
processing. Recorded signals from the accelerometer and the microphone were sampled at
a frequency of 16 kHz (12-bit resolution).

Figure 2: (a) Accelerometric speech signal with two repeated segments (shaded background)
identified for illustration and (b) first principal component extracted from the 95-D acoustic
feature vector.

Figure 3: a) Subsequence extracted from the first principal component of the 95-D feature
vector with length T,,i;» = 50 ms; b) z-score normalised sequence divided into 6 sections with
(red line) PAA coding applied by replacing the data in each section with its mean value and
c) division of the amplitude into 4 areas, based on equal probability, indicated by dotted
lines and SAX coding of the PAA signal using an alphabet of 4 symbols according to which
division it falls into such that the SAX code for this subsequence is: bdcbab.

Figure 4: An illustration of detected motifs in a script with embedded true motifs (script 3,
subject 5).
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