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Abstract. In this paper we analyse longitudinal wave propagation in exponentially tapered
rods from both a theoretical and an experimental perspective. The tapering introduces
significant changes to the behaviour of the rod. The longitudinal wave does not propagate
from zero frequency, its cut-off frequency depending on the coefficient in the exponent. The
analytical description of this phenomenon is well established, however little experimental work
has been published to date. After a brief review of the classical solution of the exponential rod
equation, we derive a methodology allowing the wavenumbers to be estimated from a set of
equally spaced dynamic responses. Our approach is verified numerically against a finite element
simulation and validated experimentally, both showing very good agreement. To further explain
the results and provide an outlook for future work, we present a finite element model of the
tapered rod embedded in an infinite solid medium. We conclude with a discussion on the
effects of the surrounding medium on the behaviour of the structure and resulting characteristic
features of the wavenumber.

1. Introduction

Waves in tapered rods have been widely studied throughout the years and many classical
solutions are available in the literature with the acoustic horn as the foremost example [1].
One of the most typical features of such structures is banded energy transmission related to the
cut-off reqion. To study the phenomena resulting from the tapering, a variety of mathematical
treatments has been applied. Stevenson [2] used the WKB approximation to formulate solutions
for horns of an arbitrary shape enabling the identification of transmission and attenuation zones.
Nayfeh and Telionis [3] employed the multiple scales method to study wave propagation in ducts
with a varying cross-section. For specific tapering configurations, longitudinal wave propagation
and vibration were described using Bessel functions [4, 5]. Finally, Langley [6] performed an
extensive investigation into wave propagation in non-homogeneous waveguides (including both
longitudnal and flexural motion) with the aid of perturbation methods.

Exponential tapering, which is of interest in this paper, allows for an analytical solution, if
the elementary rod theory is used. However, more complex rod theories may well be addressed
by the aforementioned methods. One other possible approach is to formulate the problem in a
transfer matrix manner [7]. Based on that concept, Gan et al. [8] presented a study comparing
different rod theories for non-uniform rods focusing on pass-bands and cut-off frequencies.

Whilst wave propagation in tapered bars placed in an industrial context is the most common
research motivation, certain types of tapering are observed in naturally grown structures. For
instance, it is known that tree roots’ diameter decreases exponentially in the vicinity of the



stem, which is commonly referred to as the ‘zone of rapid taper’ [9]. In recent years there has
been an increased interest in exploration and maintenance of the underground space, especially
in an urban environment. In this light, non-destructive methods capable of interrogating buried
components using on-surface measurements are of primary interest. Building on the successful
application of vibroacoustic methods for locating buried water pipes [10], similar principles are
expected to support remote tree root detection. To envisage the latter, a better understanding of
wave propagation in root structures and how they radiate into the surrounding soil is required.

The most simplistic representation of a tree root is an exponentially tapered rod. Given the
background application, the primary focus of the work presented in this paper was put on an
experimental investigation of waves in such structures. Although the literature on the topic is
extensive, to our best knowledge, experimental results on wavenumbers in exponentially tapered
solid rods were published.

In this paper we propose a methodology enabling wavenumbers in exponentially tapered
rods to be estimated from a set of equally spaced measurements. The experimental results
are compared with established theoretical solutions and various features of the gathered data
discussed. Motivated by the background application, we also discuss the expected influence of
the surrounding soil based on preliminary finite element simulations.

The paper is organised as follows. In Section 2, we briefly present the analytical model for an
exponentially tapered rod. In Section 3, the equations for the estimation of the wavenumbers
from five measured dynamic responses are derived and verified with a numerical experiment. The
experiments including both frequency response function (FRF) measurement and wavenumber
estimation are presented in Section 4. Finally, the results from preliminary finite element
simulations are presented to support the discussion on the effect of surrounding soil on wave
propagation in Section 5.

2. Analytical model

Longitudinal wave propagation is analysed using the elementary rod theory that assumes a
uniform distribution of the displacement and neglects the effects of Poisson’s contraction. The
displacement is taken time-harmonic and the e/! term is omitted hereafter for clarity. The
equation of motion in the frequency domain is [11]

U"(z) + A U'(m)—i—wQ%U(a:) =0 (1)

where U(z) is the complex amplitude of the displacement, A(z) is the cross-sectional area of the
rod, p is the density, E is the Young’s modulus and the prime denotes differentiation over the
propagation direction, . Noting that the exponential tapering yields an z-dependence of the
radius r

r(z) = roe P* (2)

the governing equation can be written in a simpler form
U"(x) — 28U (z) + wQ%U(;U) =0 (3)
The form of tapering considered in this paper results in equation (3) having constant
coefficients. Owing to that, an analytical solution is available. Assuming that U(z) = Ue 7k,

where U is the complex wave amplitude and k is the wavenumber, we obtain

— k2 + 28k + wZ% =0 (4)
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Figure 1. Dispersion curves for an exponentially tapered rod.
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Figure 2. Longitudinal wavelength in the exponentially tapered rod against frequency; lines
corresponding to certain number of wavelengths within the length of the rod are also marked.

from which the wavenumbers are calculated as

—92 \/—4p2 + 4k2
b SV R (5)

In the above equation, k2 denotes the square of the uniform rod wavenumber <w2%>.

A brief inspection of equation (5) indicates that there exists a cut-off frequency (w = fer)
below which both wavenumbers are imaginary, i.e. the associated waves are evanescent. Above
the cut-off frequency there are two propagating waves — negative- and positive going. The
amplitude of the positive-going wave (in the direction of diminishing radius) grows, whereas
the amplitude of the negative-going wave decreases, as indicated by the imaginary part of the
wavenumber. At high frequencies the real part of the wavenumber of the tapered rod approaches
the uniform rod solution.

In Figure 1 we plot illustrative dispersion curves for a circular exponentially tapered rod
(E =10 x (1 +0.0055) GPa, p = 700 kg/m3, 8 = 1.55, Ry = 0.1 m). The cut-off phenomenon
is clearly visible, although since the material is damped the real part of the wavenumber is non-
zero in the cut-off region. It is known that no purely imaginary wavenumbers can exist in lossy
structures and that the real part of the wavenumber is always non-zero (albeit often very small).
The analytical cut-off frequency (932 Hz) is marked in Figure 1 for reference. The longitudinal
wavelength as a function of frequency is plotted in Figure 2. For a free-free tapered rod, the
frequencies at which there is an integer number of half-wavelengths along the rod correspond to
its natural frequencies.



3. Estimating wavenumbers from equidistant FRFs

In this paper we aimed at establishing a sensor configuration for measuring the wavenumbers in
exponentially tapered rods. One possible approach was presented by Muggleton et al. [12] who
estimated wavenumbers in a pipe using dynamic responses taken at three equispaced locations.
Their method originated from the observation that the steady-state response is a superposition
of waves travelling across the structure. As only one wave type was expected to be propagating
in that case and k™ = —k~, simple relationships was derived.

3.1. Derivation
For an exponentially tapered rod the positive- and negative-going wavenumbers are different,
i.e. kT # —k~. Consequently, we assumed the response to be a function of two unrelated

wavenumbers
u(x, t) = uleJ(wt—klm) =+ u2e](wt—k2a:) (6)

where ki and ko are the two wavenumbers and uq and us are the associated wave amplitudes.
Note that no attribution of the direction of propagation is made at this stage.

The number of required sensing location comes from the number of unknowns (wavenumbers
and wave amplitudes) and the form of equation (6). Muggleton et al. [12] showed that three
sensing locations suffice if there is only one wave type propagating and k™ = —k~. In the
case presented here there are four unknowns in total (see equation (6)). However, we found
that convenient manipulation of a set of sums of exponential terms can be done if five sensing
locations are used (resulting in five simultaneous equations).

Dropping the time-harmonic term and denoting the spacing between the sensors as Lg five
equispaced displacements u,. . can be written as

Ug = upe IFIT0 4 qpeIk2T0

up = ule—]lﬂ(ﬂco-‘rLs) + U2e—ﬂ€2($o+Ls)

Up = uye IR @ot2Ls) 4o o—ska(wo+2Ls) (7)
Ug = upe kr(@o—Ls) 4 g0 e=ska(wo—Ls)

(xo—2Ly) —gka(xo—2Ls)

Ue = uge MM + uge
where xg is the location of the central sensor with respect to a chosen origin.

A series of arithmetic manipulations of the above equations leads to the following set of
simultaneous equations

el 4 etk2l — oy

eIl ookl _ Cs

(8)

UpUe — UqUq UqUe — UgUp

where C'1 = 5 and Cy = 5
UpUg — U2 UpUg — UZ

Equation (8) can be solved by substitution

1
koL __
otk2L _ G oRT 9)
which leads to
CQGijlL — Cloge]le +C1=0 (10)

Equation (10) is an ordinary quadratic equation, so

nr C1Ca £+ /C1C3(C1Cy — 4)
e = 20, (11)
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Figure 3. Numerical verification of the wavenumber estimation procedure based on an
analytical forced response model and a finite element model.

Finally, the wavenumber is obtained from

(12)

ky = —1
! ]Ln 2CYy

1 (Clcg +1/C1Cy(C1Cy — 4))
The right hand side of equation (11) is a complex number, so a complex definition of logarithm
must be used while evaluating k; in equation (12). The other wavenumber is obtained from the
substitution equation, yet the analysis of the form of equation (8) indicates that the pairs of
solutions for k1 and ko are identical. Hence it is enough to solve the above equation for k; which
then captures both wavenumbers.

3.2. Numerical example for an analytical and an FE model

The methodology is verified numerically using a wave-based forced response model (see
Appendix) and a finite element model. The cross-sectional dimensions and properties of the
rod are the same as in the preceding section except for the length which is specified now to be
2 m. The sensors are spaced at 0.3 m starting from the location 0.15 m from the large face.
Corresponding wavenumber estimates are shown in Figure 3.

The results confirm that the wavenumbers are estimated correctly using the proposed routine.
The results from the FE model are not very accurate in the cut-off region which is related to
the mesh density. As the phase variation of the response along the rod is very small in that
region, one needs a very fine mesh to represent these effects correctly (much finer than the
typical convergence criteria). We conducted a short study, results of which are not shown here,
that confirmed that hypothesis.

4. Experiments

We performed a series of experiments on a freely suspended wooden rod with an exponentially
varying radius. The rod was 2.006 m long and its radius varied from 0.945 to 0.004 m in an
exponential manner. The density and an effective Young’s modulus in the axial direction were
estimated based on the measured FRF's.

The experimental setup is schematically depicted in Figure 4(a) and shown on a photograph
in Figure 5. The rod was excited with an electrodynamic shaker at the end with larger
radius and instrumented with PCB 35C22 accelerometers. The input force was measured by a
PCB208CO01 force gauge connected to a shaker via a stinger. At each sensing location we used
four accelerometers evenly distributed around the circumference as shown in Figure 4(b). This
enabled the influence of flexural waves, which were excited due to a non-ideally axial forcing and
material anisotropy, to be cancelled. The accelerometers were mounted on the surface of the rod
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Figure 4. Experimental setup for longitudinal FRF measurement: (a) schematic diagram; (b)
accelerometers arrangement for longitudinal input FRF measurement (planar view of the large
face)

Figure 5. A photograph of the experimental setup

using 3D-printed attachments to facilitate orienting them so that predominantly longitudinal
response was captured.

The results for the point and transfer FRF's are shown in Figure 6, where the predicted results
are computed using the updated properties (E = 13.89 x (1 + 0.00735) GPa, p = 531 kg/m3,
f =1.643, L = 2.007). There are three resonances visible which correspond to when an integer
number of a half-wavelength matches the length of the rod. Imprints of flexural resonances, the
presence of which was alluded to above, can be observed in the transfer FRF (Figure 6) below
2 kHz.

4.1. Wavenumber estimation

In this section we apply the method described in Sec. 3 to a set of responses measured
experimentally at five equally spaced locations. The sensors’ spacing has a significant effect
on the quality and, possibly, required processing of the estimates [12]. Whilst a too small
spacing (compared with the wavelength) makes the inversion procedure very prone noise, largely
spaced sensors (more than half a wavelength apart) suffer from spatial aliasing, providing a
wrapped estimate of the wavenumber. The method discussed in this paper requires some a priori
knowledge of the expected wavelengths, so that the sensors’ spacing can be chosen accordingly.
For this experiment, the sensors were spaced at 0.3 m (starting sensor at 0.15 m from the shaker)
which ensured that no spatial aliasing would occur.

Wavenumber estimates from the experimental data are compared with the analytical result
in Figure 7. The estimates follow the analytical trend closely and the cut-off phenomenon is
well predicted. The resonance imprints on the estimates (e.g around 4.5 kHz) are thought to be
related to residual flexural motion contribution.
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Figure 6. Point(a) and transfer(b) accelerances for an exponentially tapered rod — comparison
between the experimental results and the analytical results based on rod’s updated properties.
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Figure 7. Longitudinal wavenumber estimated from the experimental data (using the ring of
four sensors at each location).

The results below the cut-off frequency deserve a further explanation. In this region the
wavenumber is predominantly imaginary, hence the phase difference between the responses along
the rod is very small. Consequently, the outcome of the arithmetic manipulation of the dynamic
responses used to estimate wavenumbers is dominated by measurement noise and contains little
useful physical information. Owing to the numerical implementation of the logarithm, the
wavenumber is limited to (—mLs, mLg) range (with Lg being the sensors’ spacing) which explains
the arrangement of points in Figure 7 and also suggests that the wave is, indeed, cut off.

The results in the propagating region are promising and prove the potential of the method
for measuring wavenumbers in exponentially tapered rods. However, predominantly imaginary
wavenumbers cannot be recovered if signals are noisy.

The significance of an appropriate choice for sensors’ spacing is demonstrated in Figure 8
where the results with 0.15 m spacing are shown. The estimates are strongly affected by noise
and extracting physical information becomes difficult.
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Figure 8. Longitudinal wavenumber estimated from the experimental data - the effect of
insufficient sensor spacing (here: 0.15 m).

5. The effect of the surrounding medium on waves in an embedded rod

In this section we look at the influence of the surrounding medium on longitudinal waves
in exponentially tapered rods with the aid of finite element simulations. Preliminary results
presented below are expected to inform future experimental work.

Two configurations were considered: (i) exponential rod embedded in a finite cuboid of
sand with free boundaries (3D FE model); (ii) exponential rod embedded in an infinite soil
(axisymmetric 2D FE model). The former relates directly to a planned experiment in which
the wooden rod will be placed in a large sandbox with sensors installed so that an analogous
measurement campaign can be performed. The latter configuration provides insight into the
effect of the infinite soil on guided wave propagation along the rod.
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Figure 9. Illustrative results from the FE models: (a) at 505 Hz for the rod embedded in a
finite block of sand; (b) at 454 Hz for the rod embedded in a soil with low-reflective boundaries
(axisymmetric model)

5.1. Rod embedded in a finite sandbox (3D model)

In this model, an exponentially tapered rod with dimensions and properties as in Section 4 was
placed in a finite cuboid of sand (0.6 x 0.6 x 2.5 m) emulating a sandbox planned for future
laboratory experiments. The force was applied to the large face of the rod which was aligned
with one of the small walls of the sandbox. The walls of the box were not modelled and the
sand surfaces were assumed to be free. Sand was represented as an isotropic material with
cr = 161.446 + 38.0522 m/s, cg = 100.1246 + 74.9938 m/s, p = 2000 kg/m3, where the loss
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Figure 10. Transfer functions measured at locations specified in the legend to be used for
wavenumber estimation.
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Figure 11. Wavenumbers for an exponential rod in a finite sandbox calculated from different
pairs of adjacent sensing locations.

factor n was 0.1. Finally, the surface of the rod was considered to be in compact contact with
the sand, allowing no relative displacement between the rod and the sand. For convenience,
we modelled only a quarter of the described configuration and prescribed symmetry boundary
conditions on two faces. The model consisted of 247816 quadratic tetrahedral elements (with
the minimum element size equal to a quarter of the shortest wavelength, as recommended for
quadratic elements). An illustrative example of the results as visualised by the FE package is
shown in Figure 9(a).

The response was measured at five locations spaced at 0.3 m starting from the location 0.15
m from the force. The corresponding FRFs are shown in Figure 10. Here, the waves can be
seen to decay towards the thinner end of the rod. Moreover, the resonances are very weak and
hardly visible at locations far from the tip. This indicates that a very small reflected wave is
present and owing to attenuation it contributes mainly to the response close to the tip. The
above-mentioned observations suggest that the five sensors approach described in Section 3 is not
appropriate and a simpler methodology can be adopted in which the space harmonic component
is extracted from two adjacent responses

kL 2o 13
= (13

We calculated the estimate using equation (13) for all pairs of adjacent sensing locations
as described above. The results are presented in Figure 11 with a few features immediately
apparent. Firstly, the cut-off phenomenon does not exist any more and waves propagate from
zero frequency. Secondly, the trend lines for all locations are different indicating that the
wavenumber varies along the rod. In this case the calculation from equation (13) gives only



an approximate wavenumber over the sensors’ spacing L,. In addition to that, the wave does
not grow while propagating down the rod, but decays with attenuation increasing towards the
tip of the rod.

The wavenumber estimates are clearly affected by the resonances of the sandbox which are
responsible for the peaks in the dispersion curves. This can well be observed at low frequencies,
where the attenuation is low, and close to the tip of the rod where the reflected wave has still a
non-negligible amplitude over a broader frequency range.

5.2. Rod embedded in an infinite soil (axisymmetric model)

To verify the above observations further, we created another model in which the effect of the
infinite soil is emulated. The model was defined as axisymmetric since the attention is focused
on longitudinal waves only. The properties and dimensions of the rod and the contact conditions
are the same as in the preceding section. The sand is now defined as a spherical domain with
a radius of 1.5 m (properties kept the same) and a low reflective boundary specified on the
outside surface of the sphere. The model consisted of 15797 quadratic triangular elements. An
illustrative result for the axisymmetric model is shown in Figure 9(b).
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Figure 12. Wavenumbers for an exponential rod in an infinite sand domain calculated from
different pairs of adjacent sensing locations.

Wavenumber estimates calculated from pairs of adjacent responses arranged in the same way
as in the preceding section are presented in Figure 12. The performance of the low reflective
boundary is very good except for the lowest frequencies (long wavelengths). The wave that
travels along the rod radiates into the soil very effectively so that the amplitude at the tip is
very small and hardly any reflection is observed (mainly in the estimate from sensors 4 and 5).
The wavenumber is confirmed to be position dependent (increasing along the tapering), as well
as the attenuation (increasing along the tapering as well). As expected, the sandbox resonances
described earlier are no longer visible.

6. Conclusions

In this paper we considered longitudinal wave propagation in exponentially tapered circular rods.
The focus was put on demonstrating the effects deduced from the well-established analytical
solution experimentally. To achieve this, a measurement method, allowing for estimating
wavenumbers from dynamic responses acquired at five equally spaced locations, was derived.
The approach was tested in an experiment in which the wavenumbers in a wooden exponentially
tapered rod were estimated. The results were shown to be in a very good agreement with the
theoretical predictions. In the last part of the paper we investigated the effect of the surrounding
medium on wave propagation in an embedded rod using finite element simulations. The cut-off
phenomenon was no longer observed and the wavenumber was found to be position dependent,



as well as the attenuation. Waves radiated into the surrounding medium very effectively and
little energy was carried don to the tip of the rod.

This paper is a preliminary part of the longer term investigation into remote tree root
mapping. The fundamental physical characteristics discussed in this paper are rather well
known. However, their association with tree roots has not been discussed to date. Moreover,
our experimental approach is expected to facilitate future experiments on buried exponential
bars emulating tree root networks. The observations presented in this paper indicate possible
range limitations for vibroacoustic mapping methods.

Apart from the measurements on buried structures, we plan to develop an analytical/semi-
analytical model for wave propagation in buried exponential bars with analytical absorbing
boundary conditions. Depending on the coupling between the root and the soil, practical
recommendations on the choice of excitation mechanism and processing of the results for effective
and robust tree root detection will be proposed.
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Appendix A. Forced response of an exponential rod

In this section the forced response calculation in the wave domain is detailed. A steady-state
response is a superposition of waves travelling across a structure, hence it can be conveniently
expressed using wave relationships [13]. The labelling for the waves at different stages is
presented in Figure Al.

Figure Al. Schematic diagram of waves propagating along an exponentially tapered rod at
different stages.

We consider a free-free rod excited by an axial force @) acting at the large face. The force
induces a wave of amplitude et which can be determined from force equilibrium at = 0 (origin

is where the force is applied)
Pt+Q=0 (A1)

with PT being the resultant force associated with longitudinal wave propagation. At x =0

+ Ou” (z) - +
PT(0) = EA(0) . = —)kTEA(0)e (A.2)

=0
Thus,

—J
et = WFEA(Q) (A.3)



The reflection coefficient at free ends is found from the equilibrium of forces associated with
positive- and negative-going waves

R kT d R h_ (A4)
= —_—— aln = —_—— .

R = L e

The change of the wave amplitude along the waveguide axis is governed by propagation constants.

As a consequence of tapering, they are different for positive- and negative-going waves
T (z) = e ke and T (x) =eF " (A.5)

from where, e.g. b© = 71(L)a™ and a= = 77 (L)b~ (see Figure A1).
The travelling wave at the forcing location can be expressed as

at =Rpa +e” (A.6)

Accounting for the relationships between waves at different stages given by propagation and
reflection matrices, we obtain the final expression for the steady-state wave amplitudes at the
forcing location

at = [1 - Rpr Rpr*] et (A.7)

and
a” =7 Rprta™ (A.8)

from which the point receptance can be written as
Xpoint =a" +a (Ag)
whereas the transfer receptance at x = x,- as

KNtransfer = T+(-757‘)a+ + Ti(L - 377=)]:ER7'+(L)CL+ (AlO)
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