NEK1 variants confer susceptibility to amyotrophic lateral sclerosis
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Summary

To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted
whole exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a
novel screening strategy, gene burden analyses trained with established ALS genes
revealed a significant association between loss of function (LOF) NEK1 variants and FALS
risk. Independently, autozygosity mapping of an isolated community in the Netherlands
revealed an NEK1:p.R261H variant as a candidate risk factor. Replication analyses of
sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease
association for both p.R261H (10,589 samples analyzed) and NEK1 LOF variants (3,362
samples analyzed). In total, NEK1 risk factors are observed in nearly 3% of ALS cases.
NEK1 has been linked to several cellular functions including cilia formation, DNA damage
response, microtubule stability, neuronal morphology and axonal polarity. Our results provide
new and important insights into ALS etiopathogenesis and genetic aetiology.

Main Text (1500 words)

In recent years, the combination of exome sequencing, segregation analysis and
bioinformatic filtering has proven to be an effective strategy to rapidly identify novel disease
genest. Unfortunately, this method can be difficult to apply to disorders such as ALS where
late age of onset and low to modest variant penetrance make it difficult to obtain large
informative multi-generational pedigrees. Due to high genetic heterogeneity, ALS is also
difficult to analyze using filtering methods designed to exploit unrelated patient groups?.
Recently, we demonstrated the utility of exome-wide rare variant burden analysis (RVB) as
an alternative approach, identifying a replicable association between FALS risk and TUBA4A
in a cohort of 363 cases?®. In brief, RVB compares the combined frequency of rare variants
within each gene in a case-control cohort. Candidate associations are identified by
significant differences after multiple test correction. Since this initial study, we have extended
our dataset to include complete exome sequencing for 1,376 index FALS cases and 13,883
controls. Of these, 1,022 cases and 7,315 controls met all required data, inter-relatedness
and ancestral quality control criteria (Supplementary Fig. 1-2, Online Methods).

The successful detection of disease associations through RVB can depend heavily on the
appropriate setting of test parameters. Since genetic loci often contain many alleles of no or
low effect, prior filtering of variants based on minor allele frequency (MAF) and pathogenicity



predictors can reveal disease signatures otherwise masked by normal human variability. As
appropriate MAF or pathogenicity predictor settings may not be obvious in advance,
comprehensive assessment of all pursuable analysis strategies is desirable but can in turn
introduce excessive multiple test burden. To overcome these limitations, we performed 308
distinct RVB analyses of 10 well establish ALS genes using 44 functional and 7 MAF filters
(Fig. 1a). All tests included correction for gene coverage and ancestral covariates (Online
Methods). Within the final cohort, 72 cases and 0 controls harbored known ALS pathogenic
mutations within these 10 genes (Online Methods). An additional 26 cases harbored a repeat
expansion in the C9orf72 gene. Tests differed in their capacity to detect individual known
ALS genes (Supplementary Table 1), however, highest net sensitivity was achieved when
analyses were restricted to variants with MAF<0.001 and functional classifications of either
nonsense, splice altering* or FATHMM deleterious®. Under these settings, 4 genes exhibited
disease association at exome-wide (Bonferroni-corrected, P<2.5x10) significance

(SOD1, TARDBP, UBQLN2, FUS), 3 achieved near exome significance (TUBA4A, TBK1,
VCP), and 3 displayed modest to marginal disease association (PFN1, VAPB, OPTN) (Fig.
1b). Genes exhibiting the strongest disease associations included those reported as major
ALS genes in population based studies while those exhibiting weaker associations are
believed to constitute rarer causes of disease.

Extension of the optimal known ALS gene parameters to all protein coding genes revealed
one novel gene displaying exome-wide significant disease association (Fig. 1b). The gene,
NEK1 (OR=8.2, P=1.7x10°), encodes the serine/threonine kinase NIMA (never in mitosis
gene-A) related kinase. Retesting of NEK1 under alternate analysis parameters revealed
strong disease associations across most analysis strategies, particularly where loss of
function (LOF, nonsense and predicted splice altering) variants were included
(Supplementary Table 2). No evidence was observed for systematic genomic inflation
(0=0.95), confounding related to sample ascertainment (Supplementary Fig. 3) or
casecontrol biases in NEK1 gene coverage (Supplementary Fig.4). Removal of samples
carrying rare variants of known ALS genes did not influence the association (OR=8.9,
p=7.3x107).

In an independent line of research, whole genome sequencing was performed for 4 ALS
patients from an isolated community in the Netherlands (population<25,000). High
inbreeding coefficients were observed for each of the 4 patients confirming their high degree
of relatedness and supporting a restricted genetic lineage (Supplementary Fig. 5).
Autozygosity mapping, allowing for genetic heterogeneity, identified 4 candidate disease
variants occurring within detectable runs of homozygosity (ROH) (Supplementary Fig. 6).
These variants included a p.R261H variant of NEK1. Two of the 4 SALS cases were
homozygous for p.R261H while 2 were heterozygous, raising the possibility that even a
single copy of the allele may increase disease risk. Clinical evaluation of the 4 cases did not
reveal any overt differences in disease phenotype. . None of the other 3 candidate variants
exhibited homozygosity in multiple patients or occurred at all in more than 2 patients.
Analysis of the region revealed a shared p.R261H haplotype spanning 3 Mb in all 4 samples
(Supplementary Table 3).

To validate the risk effects of p.R261H, we tested for disease association among 6,172
SALS cases and 4,417 matched controls from 8 countries (Supplementary Fig. 7-8, Online
Methods). This cohort was either genotyped using the lllumina exome chip or whole genome
sequenced, allowing for checking any overlap or detectable relatedness to the FALS
casecontrol cohort, which was not present. Meta-analysis of all independent population
strata reveal a clear minor allele excess in cases with a combined significance of p=4.8x10°
and OR=2.4 (Fig. 2). Disease association was also observed within the FALS case-control



data (OR=2.7, p=1.5x107%) and meta-analysis of FALS, SALS and all controls combined
(OR=2.4, P=1.2x107).

DNA availability facilitated segregation analysis of only one NEK1 LOF variant, a p.R550X
variant which was also detected in the affected mother of the identified proband. To validate
the effect of LOF variants observed in FALS and assess any potential contribution to
sporadic disease, we analyzed full sequencing data of the NEK1 coding region for 2,303
SALS and 1,059 controls (Supplementary Fig. 2, Online Methods). RVB confirmed a
significant excess of LOF variants in cases (23/2,303 SALS vs 0/1,059 controls, OR=22.2,
p=1.5x10"*, Supplementary Table 2). Meta-analysis of discovery and replication LOF
analyses yielded a combined significance of P=3.4x10®and OR=8.8.

In total, 120 predicted nonsynonymous NEK1 variants were detected in FALS, SALS and
controls. These were distributed throughout the gene including within the protein kinase
domain (PKD) and 6 coiled-coil domains thought to be involved in mediating protein-protein
interactions (Supplementary Fig. 9). Following conditioning for LOF and p.R261H, tentative
excesses of case variants could be observed in analyses of rarer variant categories but
larger sample sizes will be required to confirm the pathogenicity beyond p.R261H and LOF
variants (Supplementary Table 4). Analysis of other members of the NEK gene family
(NEK2-11) revealed no associations in the FALS dataset meeting multiple test criteria
(Supplementary Table 5).

Although no other gene achieved discovery significance, 10 candidate loci exhibited
P<1.0x102 in the FALS discovery analysis (Table 1). These included the gene encoding the
SNARE (soluble NSF attachment protein receptor) complex protein synataxin 12 (STX12,
OR=33.1, P=9.7x107®). Analysis of the SALS replication cohort revealed 5 missense variants
in cases vs 0 in controls. However, the cohort was not sufficiently powered to assess events
of this frequency and larger sample sizes will be required to establish effects on ALS risk
(Supplementary Table 6). Another identified candidate gene was the known hereditary
spastic paraplegia gene KIF5A® (OR=7.1, p=4.8x10*), however no observed elevations in
patient variant frequencies within the SALS replication cohort reached statistical significance
(Supplementary Table 7).

NEK1 has been previously described as a candidate gene for ALS"®. Here, our findings
reveal that NEK1 in fact constitutes a major ALS-associated gene with risk variants present
in ~3% of European/ European American ALS cases. LOF variants were identified in 1.2% of
FALS (OR=8.2) and 1.0% of SALS (OR=22.2) versus 0.17% of controls, while the p.R261H
variant was identified in 1.7% of FALS (OR=2.7) and 1.6% of SALS (OR=2.4) versus 0.69%
of controls. Other variants of unknown clinical significance (missense, MAF<0.001) were
identified in a further 1.8% of FALS and 1.3% of SALS versus 1.2% of controls. In
comparison, risk variants in previously established ALS genes occur at approximately the
following percentages: C9orf72<10%, SOD1<2%, TARDBP<1%, FUS<1% and others <<1%
or uncertain®*2, However, caution must be taken when comparing the frequency of variants
or mutations that differ in penetrance (i.e. highly-penetrant mutations to lower-penetrant risk
variants). Furthermore, the assessment of the true odds ratio for variants within a gene may
be difficult due to the presence of neutral variants that dilute out the observed effect. The
actual odds ratio may in fact be even higher in a specific subset of variants versus controls.
The LOF variants within NEK1 display a higher odds ratio relative to p.R261H. The p.R261H
variant occurs adjacent to the protein kinase domain and is classified as deleterious by most
bioinformatic prediction algorithms (SIFT, PolyPhen, LRT, MutationTaster, Mutation
Assessor, PROVEAN, CADD, GERP, SiPhy). One model to account for the difference in



p.R261H and LOF variant toxicity could be a correlation between phenotypic expression and
the predicted extent of NEK1 loss of function. This model would also be consistent with
previous findings that homozygosity for NEK1 LOF variants causes a severe developmental
phenotype; short rib polydactyly syndrome type Il (SRPS)*2. In the current study, no
individuals carried multiple LOF alleles. However, in SRPS homozygous carriers of NEK1
LOF variants have been reported to exhibit a 64% reduction of NEK1 mRNA levels while
unaffected heterozygous parents exhibit a 30-40% reduction®?.

NEK1 represents one of 11 members of the highly conserved NIMA-kinase family, which has
conserved functions in cell cycle progression and mitosis. In post-mitotic cells, NEK1 is a
primary regulatory of the formation of non-motile primary cilium?4, Disruption in the
structure or function of primary cilia have been linked to neurological defects such as brain
dysgenesis, hydrocephalus and mental retardation'®!’, and abnormalities in cilia number,
structure and microtubule state occur in fibroblasts derived from short rib polydactyly
syndrome patients homozygous for NEK1 truncation variants®2. In vitro disruption of the
activity of other neuronally expressed NEK family members has similarly been shown to
disrupt neuronal morphology, neurite outgrowth, microtubule stability and microtubule
dynamics®®1°. Microtubule organization/integrity and kinesin/dynein intra-flagellar transport
are essential to maintain cilia structure and function. This is of particular relevance as
disruption of the microtubule cytoskeleton has been associated to the development of ALS®
and mutations of the dynein subunit dynactin are associated with motor neuron
degeneration?®, Additionally, motor neurons derived from the SOD1%%4 mouse show a
selective loss of cilia both in vitro and in vivo?!. Besides its role in ciliogenesis, NEK1 is also
known to regulate mitochondrial membrane permeability??> and DNA repair?. Both these
processes have been extensively investigated in relation to ALS, and postulated to explain
the toxicity of ALS-associated mutations in SOD1 and FUS?42%, Mutations in DNA repair
genes cause several early onset neurological phenotypes and multiple lines of evidence
suggest defective DNA repair may contribute to both late onset neurodegeneration and brain
aging in general®®, For example, oxidative damage and DNA strand breaks have been
observed to be elevated in ALS, Alzheimer’s and Parkinson’s disease cases?’, and a recent
large-scale GWAS implicated DNA repair genes as age of onset modifiers in Huntington’s
disease?. The pathological significance of DNA damage in ALS, and whether modifier
effects observed in Huntington's may generalize to repeat expansion disorders like C9orf72
associated ALS, constitute important questions to be addressed. Finally, through its
coiledcoil domain, NEK1 has been shown to interact with multiple other proteins of potential
importance, including the ALS-associated proteins VAPB and ALS2’, and the axonal
outgrowth regulator FEZ1%°.

Data access. Full details of ALS patient variants are publicly available through the ALS
Variant Server http://als.umassmed.edu/.

URLSs. Exome Variant Server, NHLBI Exome Sequencing Project (ESP),
http://evs.gs.washington.edu/EVS/; Exome Aggregation Consortium (ExXAC),
http://exac.broadinstitute.org; ALS Variant Server http://als.umassmed.edu/.

Accession codes. Genetic Epidemiology of COPD (COPDGene) phs000179; NHLBI GO-
ESP: Lung Cohorts Exome Sequencing Project (Cystic Fibrosis) phs000254; NHLBI GO-
ESP: Women's Health Initiative Exome Sequencing Project (WHI) - WHISP phs000281,
NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Pulmonary Arterial
Hypertension) phs000290; NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Lung
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Health Study of Chronic Obstructive Pulmonary Disease) phs000291; NHLBI GO-ESP: Lung
Cohorts Exome Sequencing Project (COPDGene) phs000296; NHLBI Framingham Heart
Study Allelic Spectrum Project phs000307; NHLBI GO-ESP: Family Studies (Aortic Disease)
phs000347; NHLBI GO-ESP Family Studies: Pulmonary Arterial Hypertension phs000354;
NHLBI GO-ESP: Family Studies: (Familial Atrial Fibrillation) phs000362; NHLBI GO-ESP:
Heart Cohorts Exome Sequencing Project (ARIC) phs000398; NHLBI GO-ESP: Heart
Cohorts Exome Sequencing Project (CHS) phs000400; NHLBI GO-ESP: Heart Cohorts
Exome Sequencing Project (FHS) phs000401; NHLBI GO-ESP: Heart Cohorts Exome
Sequencing Project (JHS) phs000402; NHLBI GO-ESP: Heart Cohorts Exome Sequencing
Project (MESA) phs000403; NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project
(Asthma) phs000422; Jackson Heart Study Allelic Spectrum Project phs000498; NHLBI
GOESP Family Studies: Idiopathic Bronchiectasis phs000518; Alzheimer's Disease
Sequencing Project (ADSP) phs000572; NHLBI GO-ESP: Family Studies (Hematological
Cancers) phs000632; Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium
(CHARGE-S): FHS phs000651; Building on GWAS for NHLBI-Diseases: The U.S. CHARGE
Consortium (CHARGE-S): CHS phs000667; Building on GWAS for NHLBI-Diseases : the
U.S. CHARGE Consortium (CHARGE-S): ARIC phs000668;. NIH Exome Sequencing of
Familial Amyotrophic Lateral Sclerosis Project phs000101.v4.p1l.
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Figure 1: Rare Variant Burden Analysis of FALS Exomes. (a) Rare variant burden analyses of 1,022 index FALS cases and 7,315
controls were performed for 10 known ALS genes. Analyses assessed 308 different combinations of minor allele frequency and functional
prediction filters (Supplementary Table 1). The set of analysis parameters achieving the highest sensitivity for known ALS genes was
identified as that achieving the highest area under the curve (AUC) in a plot of sensitivity (proportion of training genes achieving significance)
across an increasing minimum p-value threshold. Dotted vertical line denotes Bonferroni corrected p-value for exome-wide significance. (b)
Extension of the highest performing known gene trained analysis to the entire exome. Threshold for exome-wide significance is denoted by
the dotted red line.



Cohort

FAL

SALS
Belgium
Spain / Italy
Germany
Ireland
Netherlands
United Kingdom
United States
Total

FALS + SALS

Cases

1,022

466
472
1,229
565
1,839
1,335
266
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0.0017
0.0019
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0.0072
0.0033

0.0035

OR

2.66

1.81
1.36
5.27
2.32
2.99
2.59
0.84
2.4

241

95% CI

1.48-4.57

0.60-5.51
0.28-6.58
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Figure 2: Replication analysis of NEK1:p.R261H. NEK1:p.R261H genotypes were ascertained for 1,022 FALS, 6,172 SALS and 11,732
controls. The SALS cohort was divided into 7 geographically based case-control strata. Allelic tests of association were performed for all
subcohorts and followed by meta-analysis.



Gene ALS ALS Freq Control Control Freq OR OR 95% CI P

NEK1 12 0.0117 14 0.0019 8.2 3.7-18.0 1.7x10°®
ATRN 8 0.0078 7 0.0010 10.3 3.6-29.6 3.7x10°
STX12 4 0.0039 1 0.0001 33.1 5.8-339.0 9.7x10°
CREB3L2 4 0.0039 0 0.0000 64.9 6.6-8695.3 1.1x10*
DcCC 4 0.0039 2 0.0003 18.6 4.1-108.1 3.1x10*
WDR49 5 0.0049 2 0.0003 15.8 3.5-92.1 4.4x10*
KIF5A 7 0.0068 8 0.0011 7.1 2.5-19.7 4.8x10™
C1QTNF7 12 0.0117 26 0.0036 3.6 1.8-7.1 6.7x10*
PEAK1 5 0.0049 3 0.0004 11.6 2.9-51.5 7.5x10*
BIRC6 10 0.0098 18 0.0025 4.3 1.9-9.3 8.4x10*
ZSCANS5B 4 0.0039 2 0.0003 16.3 3.3-98.0 8.8x10™

Table 1: FALS discovery analysis candidate genes. RVB results for all genes exhibiting case association at P<1x102 in FALS discovery
cohort.



Online Methods

FALS discovery cohort. The FALS discovery cohort included 1,376 FALS patients and 13,883 non-ALS
controls analyzed by exome sequencing. Patients were recruited at specialist clinics in Ireland (n=18), Italy
(n=143), Spain (n=49), the UK (n=219), the USA (n=511), Netherlands (n=50), Canada (n=34), Belgium
(n=12), Germany (n=202), Turkey (n=47) and Australia (n=91). Variants occurring at very low frequency in the
general population (EXAC MAF<0.0001) which have been both previously reported as ALS associated and
annotated as either 'pathogenic’ or 'likely pathogenic' by Clinvar within the 10 genes were considered to be
pathogenic mutations. The breakdown of the 72 mutations observed in the final cohort included the following:
SOD1 (28), TARDBP (12), FUS (9), PFN1 (6), TBK1 (1), TUBA4A (4), UBQLNZ2 (4), VAPB (2), VCP (6). An
additional 26 cases harbored a repeat expansion in the C9ORF72 gene. Controls included 29 internal samples
and individuals participating in the dbGAP* projects listed under accession codes.. Familial history was
considered positive for ALS if the proband had at least one affected relative within three generations. We
received approval for this study from the institutional review boards of the participating centers, and written
informed consent was obtained from all patients (consent for research).

SALS replication cohort: The SALS replication cohort included 2,387 SALS and 1,093 controls analyzed by
whole genome sequencing and 5,834 SALS and 4,117 controls analyzed by exome chip. All individuals were
recruited at specialist clinics in Ireland, Italy, Spain, the UK, the USA, the Netherlands and Belgium. Details of
sample contributions per country are shown in Fig. 2. Evaluation of C9orf72 status was performed in 2,387
SALS cases and 166 (7%) displayed a repeat expansion. We received approval for this study from the
institutional review boards of the participating centers, and written informed consent was obtained from all
patients (consent for research).

Exome sequencing. Exome sequencing of patients was performed as previously described®. Raw sequence
data for controls was obtained from dbGAP. Sequence reads were aligned to human reference GRCh37 using
BWA (Burrows-Wheeler Aligner) and processed according to recommended best practices®. Variant detection
and genotyping were performed using the GATK HaplotypeCaller. Variant quality control was performed using
the GATK variant quality score recalibration method, with a VQSLOD cut-off of 2.27 (truth set sensitivity of
99%). A minimum variant quality by depth (QD) score of 2 was also imposed and all genotypes associated with
genotype quality (GQ)< 20 were reset to missing. Variants were also excluded in the event of case or control
call rates <70% (post genotype QC). Exome sequencing data was not used to infer the presence or absence of
indels due to the limited sensitivity and comparatively high false positive rates associated with available calling
algorithms®2,

Genome Sequencing: Whole genome sequencing of 2387 SALS and 1093 controls was performed with
lllumina’s FastTrack services (San Diego, USA) using PCR free library preparation and paired-end (100bp or
150bp) sequencing on the HiSeq 2500 or Hiseq X platform (Illumina®, San Diego, lllumina) to yield 35X
coverage at minimum. BWA was used to align sequencing reads to genome build hg19, and the Isaac variant
caller was used to call single nucleotide variants (SNVs), insertions and deletions (indels)3:. Both the aligned
and unaligned reads were delivered in binary sequence alignment/map format (BAM) together with variant call
format (VCF) files containing the SNVs, and indels. gVCF files were generated per individual and variants that
failed the Isaac-based quality filter were excluded.

Exome chip: A total of 5,815 ALS patients and 4,614 healthy controls from the Netherlands, Belgium,
Germany, Ireland, Italy, Spain and the UK were included. Genotyping was conducted using lllumina
HumanExome-12v1 BeadChips in accordance with the manufacturer’'s recommendations. The GenTrain 2.0
clustering algorithm was used for genotype calling, as implemented in the lllumina GenomeStudio software
package. Initial genotype calls were made based on the HumanExome clusterfile provided by lllumina. More
accurate cluster boundaries were determined based on the actual study data, after the exclusion of samples
with a GenCall quality score in the lower 10" percentile of the distribution across all variants genotyped



(p10GC) < 0.38 or call rate <0.99. Subsequently, the excluded samples were added back into the data set, and
new genotypes calls were made using the previously obtained cluster boundaries.

Sample filtering: Samples from the FALS discovery and SALS replication cohorts were excluded from analysis
in the event of failing to meet genotype call rate, heterozygosity, gender concordance, duplication, relatedness
or population stratification filters as summarized in Supplemental Fig. 1 and Supplemental Fig 7. All samples
from the FALS cohort were required to exhibit filtered exome-wide call rates >70%. For both the FALS and
SALS cohorts, PLINK v1.0734 was used to define an LD pruned (R?<0.5, window size=50, step=>5) set of
autosomal markers with MAF>0.01 and p>0.001 for deviation from Hardy Weinberg equilibrium. These marker
sets were then used to calculate inbreeding coefficients for use in heterozygosity filtering, identify study
duplicates, conduct relatedness filtering, perform tests of pairwise population concordance for stratification
filtering, conduct principal components (PC) analysis for a second round of stratification filtering and conduct
PC analysis to generate covariates for stratification correction in RVB and single variant analysis of filtered
cohorts. Samples from the SALS replication cohort were required to exhibit no relatedness/ duplication with
samples from the FALS discovery cohort. PLINK was used to calculate inbreeding coefficients, test for
discordance in reported and SNV predicted gender and conduct tests of pairwise population concordance.
Identification of sample duplicates and sample relatedness was performed using KING*. PC analyses were
conducted using GCTA®*® (Genome-wide Complex Trait Analysis). Details of results from population
stratification analysis provided in Supplementary Fig. 2 and Supplementary Fig. 8.

Statistical analyses: RVB analyses were performed by logistic regression of case-control status to number of
minor alleles observed per sample per gene*?’. Results from underpowered tests (<3 observations in
combined case control cohort) were excluded and did not contribute to assessments of genomic inflation.
Variants were included for RVB analyses on the basis of MAF within the combined case-control cohort, MAF
within the 1000 genomes project®®, and pathogenicity predictions generated using snpEFF*° (Single Nucleotide
Polymorphism Effect), PolyPhen2%° (Polymorphism Phenotyping version2), SIFT#! (Sorting Intolerant From
Tolerant), LRT*? (Likelihood Ratio Test), MutationTaster*}, MutationAssessor**, FATHMM® (Functional Analysis
through Hidden Markov Models), CADD* (Combined Annotation Dependent Depletion), PROVEAN“® (Protein
Variation Effect Analyzer), GERP*’ (Genomic Evolutionary Rate Profiling), phyloP*® (Phylogenetic P-value),
SiPhy“® (SiPhylogenic), dbNSFP*° (database Nonsynonymous SNP Functional Prediction) and dbscSNV*
(database of splice site consequences of Single Nucleotide Variants) as described Supplemental table 1. All
RVB analyses were conditioned for a missing variant MAF weighted measure of sample gene call rate and the
first 4 PC derived from common variant profiles. Homozygosity mapping was performed using
HomozygosityMapper®! allowing for genetic heterogeneity. ROH were selected as all loci achieving a
homozygosity score>=8483 (0.6 x max). Single variant analyses were allele count based, conducted using
PLINK and also included correction for the first 4 PC derived from common variant profiles. Meta-analyses
were conducted using METAL®? under a fixed effect model with weighting by inverted effect size standard
error. All statistical tests were two-sided.
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