
  

  

NEK1 variants confer susceptibility to amyotrophic lateral sclerosis  

 

 Kevin P Kenna1,40, Perry T C Van Doormaal2,40, Annelot Dekker2,40, Nicola Ticozzi3,4,40, 

Brendan J Kenna1, Frank P Diekstra2, Wouter Van Rheenen2, Kristel R Van Eijk2, Ashley R 

Jones5, Pamela Keagle1,  Aleksey Shatunov5, William Sproviero5, Bradley N Smith5, Michael 

A Van Es2, Simon D Topp5, Aoife Kenna1, Jack W Miller5, Claudia Fallini1, Cinzia tiloca3,6, 

Russell L McLaughlin7, Caroline Vance5, Claire Troakes5, Claudia Colombrita3,4, Gabriele 

Mora8, Andrea Calvo9, Federico Verde3,4, Safa Al-Sarraj5, Andrew King5, Daniela Calini3, 

Jacqueline De Belleroche10, Frank Baas11, Anneke J Van Der Kooi12, Marianne De Visser12, 

Anneloor LMA ten Asbroek11, Peter C Sapp1, Diane McKenna-Yasek1, Meraida Polak13, 

Seneshaw Asress13, José Luis Muñoz-Blanco14, Tim M Strom15, Thomas Meitinger16, Karen 

E Morrison17, SLAGEN consortium18, Giuseppe Lauria19, Kelly L Williams20, P Nigel Leigh21, 

Garth A Nicholson20,22, Ian P Blair20, Claire S Leblond23, Patrick A Dion23, Guy A Rouleau23, 

Hardev Pall24,25, Pamela J Shaw26, Martin R Turner26, Kevin Talbot26,  Franco Taroni27, Kevin 

B Boylan28, Marka Van Blitterswijk29, Rosa Rademakers29, Jesús Esteban-Pérez30,31, Alberto 

García-Redondo30,31, Phillip Van Damme32,33, Wim Robberecht32,33, Adriano Chio9, Cinzia 

Gellera27, Carsten Drepper34,35, Michael Sendtner34, Antonia Ratti3,4, Jonathan D Glass13, 

Jesús S Mora36, Nazli A Basak37, Orla Hardiman7, Albert C Ludolph38, Peter M Andersen39, 

Jochen H Weishaupt38, Robert H Brown, Jr1,  Ammar Al-Chalabi5, Vincenzo Silani3,4,41, 

Christopher E Shaw5,41, Leonard H Van Den Berg2,41,  Jan H Veldink2,41& John E landers1,41 

 

 1Department of Neurology, University of Massachusetts Medical School, Worcester, 

Massachusetts, USA. 2Department of Neurology Brain Centre, Brain Centre Rudolf  

Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands. 3Department of 

Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy. 4Department of Pathophysiology 

and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, Milan, Italy. 
5Maurice Wohl Clinical Neuroscience Institute, King’s College London, Department of Basic 

and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London, 

UK. 6Doctoral School in Molecular Medicine, Department of Sciences and Biomedical 

Technologies, Università degli Studi di Milano, Milan, Italy. 7Academic Unit of Neurology, 

Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. 8Salvatore 

Maugeri Foundation, IRCSS, Scientific Institute of Milano, Milan, Italy. 9‘Rita Levi Montalcini’ 

Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy. 10Neurogenetics 

Group, Division of Brain Sciences, Imperial College London, London, UK.  11Department of 

Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, the 

Netherlands. 12Department of Neurogenetics and Neurology, Academic Medical Centre, 

University of Amsterdam, Amsterdam, the Netherlands. 13Department of Neurology, Emory 

University, Atlanta, Georgia, USA.  14Unidad de ELA, Instituto de Investigación Hospital 

Gregorio Marañón de Madrid, Madrid, Spain. 15Institute of Human Genetics, Helmholtz 

Zentrum München– German Research Center for Environmental Health, Neuherberg, 

Germany. 16Institute of Human Genetics, Technische Universität München, Munich, 

Germany. 17Faculty of Medicine, University of Southampton, Southampton, UK. 18A list of 

members and affiliations appears at the end of the paper. 193rd Neurology Unit, Motor 

Neuron Diseases Center, Fondazione IRCCS Istituto Neurologica ‘0sta’, Milan, Italy. 
20Faculty of Medicine and Health Sciences, Macquarie University,   Sydney, New South 

Wales, Australia. 21Trafford Centre for Medical Research, Brighton and Sussex Medical 

School, UK. 22 ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, 

New South Wales, Australia. 23Montreal Neurological Institute, Department of Neurology and 

Neurosurgery, McGill University, Montreal, Quebec, Canada. 24Institute of Clinical Studies, 

College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, 

UK.  25Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK. 26 Nuffield 



Department of Clinical Neurosciences, University of Oxford, Oxford, UK.  27Unit of Genetics 

of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologica 

‘Carlo Besta’, Milan, Italy. 28Department of Neurology, Mayo Clinic Florida, Jacksonville, 

Florida, USA. 29Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA. 
30Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, Madrid, 

Spain. 31Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) U-

723, Madrid, Spain. 32Laboratory of Neurobiology, Department of Neurosciences, KU Leuven 

and Vesalius Research Centre, VIB, Leuven, Belgium. 33Department of Neurology,   

University Hospitals, Leuven, Belgium. 34Institute of Clinical Neurobiology, University 

Hospital Würzburg, Würzburg, Germany. 35Department of Child and  Adolescent Psychiatry, 

University Hospital of Würzburg, Würzburg, Germany. 36ALS Unit/Neurology, Hospital San 

Rafael, Madrid, Spain. 37NDAL, Department of Molecular Biology and Genetics, Bogazici 

University, Istanbul, Turkey. 38Neurology Department, Ulm University, Ulm, Germany. 
39Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, 

Sweden. 40These authors contributed equally to this work. 41These authors jointly directed 

this work. Correspondence should be addressed to J.H.V. (j.h.veldink@umcutrecht.nl).  

 

  

Summary  

To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted 

whole exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a 

novel screening strategy, gene burden analyses trained with established ALS genes 

revealed a significant association between loss of function (LOF) NEK1 variants and FALS 

risk. Independently, autozygosity mapping of an isolated community in the Netherlands 

revealed an NEK1:p.R261H variant as a candidate risk factor. Replication analyses of 

sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease 

association for both p.R261H (10,589 samples analyzed) and NEK1 LOF variants (3,362 

samples analyzed). In total, NEK1 risk factors are observed in nearly 3% of ALS cases. 

NEK1 has been linked to several cellular functions including cilia formation, DNA damage 

response, microtubule stability, neuronal morphology and axonal polarity. Our results provide 

new and important insights into ALS etiopathogenesis and genetic aetiology.  

  

  

Main Text (1500 words)  

In recent years, the combination of exome sequencing, segregation analysis and 

bioinformatic filtering has proven to be an effective strategy to rapidly identify novel disease 

genes1. Unfortunately, this method can be difficult to apply to disorders such as ALS where 

late age of onset and low to modest variant penetrance make it difficult to obtain large 

informative multi-generational pedigrees. Due to high genetic heterogeneity, ALS is also 

difficult to analyze using filtering methods designed to exploit unrelated patient groups2. 

Recently, we demonstrated the utility of exome-wide rare variant burden analysis (RVB) as 

an alternative approach, identifying a replicable association between FALS risk and TUBA4A 

in a cohort of 363 cases3. In brief, RVB compares the combined frequency of rare variants 

within each gene in a case-control cohort. Candidate associations are identified by 

significant differences after multiple test correction. Since this initial study, we have extended 

our dataset to include complete exome sequencing for 1,376 index FALS cases and 13,883 

controls. Of these, 1,022 cases and 7,315 controls met all required data, inter-relatedness 

and ancestral quality control criteria (Supplementary Fig. 1-2, Online Methods).   

  

The successful detection of disease associations through RVB can depend heavily on the 

appropriate setting of test parameters. Since genetic loci often contain many alleles of no or 

low effect, prior filtering of variants based on minor allele frequency (MAF) and pathogenicity 



predictors can reveal disease signatures otherwise masked by normal human variability. As 

appropriate MAF or pathogenicity predictor settings may not be obvious in advance, 

comprehensive assessment of all pursuable analysis strategies is desirable but can in turn 

introduce excessive multiple test burden. To overcome these limitations, we performed 308 

distinct RVB analyses of 10 well establish ALS genes using 44 functional and 7 MAF filters 

(Fig. 1a). All tests included correction for gene coverage and ancestral covariates (Online  

Methods). Within the final cohort, 72 cases and 0 controls harbored known ALS pathogenic 

mutations within these 10 genes (Online Methods). An additional 26 cases harbored a repeat 

expansion in the C9orf72 gene. Tests differed in their capacity to detect individual known 

ALS genes (Supplementary Table 1), however, highest net sensitivity was achieved when 

analyses were restricted to variants with MAF<0.001 and functional classifications of either 

nonsense, splice altering4 or FATHMM deleterious5. Under these settings, 4 genes exhibited 

disease association at exome-wide (Bonferroni-corrected, P<2.5x10-6) significance  

(SOD1, TARDBP, UBQLN2, FUS), 3 achieved near exome significance (TUBA4A, TBK1, 

VCP), and 3 displayed modest to marginal disease association (PFN1, VAPB, OPTN) (Fig.  

1b). Genes exhibiting the strongest disease associations included those reported as major 

ALS genes in population based studies while those exhibiting weaker associations are 

believed to constitute rarer causes of disease.  

  

Extension of the optimal known ALS gene parameters to all protein coding genes revealed 

one novel gene displaying exome-wide significant disease association (Fig. 1b). The gene, 

NEK1 (OR=8.2, P=1.7x10-6), encodes the serine/threonine kinase NIMA (never in mitosis 

gene-A) related kinase. Retesting of NEK1 under alternate analysis parameters revealed 

strong disease associations across most analysis strategies, particularly where loss of 

function (LOF, nonsense and predicted splice altering) variants were included 

(Supplementary Table 2). No evidence was observed for systematic genomic inflation 

( =0.95), confounding related to sample ascertainment (Supplementary Fig. 3) or 

casecontrol biases in NEK1 gene coverage (Supplementary Fig.4). Removal of samples 

carrying rare variants of known ALS genes did not influence the association (OR=8.9, 

p=7.3x10-7). 

  

In an independent line of research, whole genome sequencing was performed for 4 ALS 

patients from an isolated community in the Netherlands (population<25,000). High 

inbreeding coefficients were observed for each of the 4 patients confirming their high degree 

of relatedness and supporting a restricted genetic lineage (Supplementary Fig. 5). 

Autozygosity mapping, allowing for genetic heterogeneity, identified 4 candidate disease 

variants occurring within detectable runs of homozygosity (ROH) (Supplementary Fig. 6). 

These variants included a p.R261H variant of NEK1. Two of the 4 SALS cases were 

homozygous for p.R261H while 2 were heterozygous, raising the possibility that even a 

single copy of the allele may increase disease risk. Clinical evaluation of the 4 cases did not 

reveal any overt differences in disease phenotype. . None of the other 3 candidate variants 

exhibited homozygosity in multiple patients or occurred at all in more than 2 patients.  

Analysis of the region revealed a shared p.R261H haplotype spanning 3 Mb in all 4 samples 

(Supplementary Table 3).   

  

To validate the risk effects of p.R261H, we tested for disease association among 6,172  

SALS cases and 4,417 matched controls from 8 countries (Supplementary Fig. 7-8, Online 

Methods). This cohort was either genotyped using the Illumina exome chip or whole genome 

sequenced, allowing for checking any overlap or detectable relatedness to the FALS 

casecontrol cohort, which was not present. Meta-analysis of all independent population 

strata reveal a clear minor allele excess in cases with a combined significance of p=4.8x10-5 

and OR=2.4 (Fig. 2). Disease association was also observed within the FALS case-control 



data (OR=2.7, p=1.5x10-3) and meta-analysis of FALS, SALS and all controls combined 

(OR=2.4, P=1.2x10-7).  

  

DNA availability facilitated segregation analysis of only one NEK1 LOF variant, a p.R550X 

variant which was also detected in the affected mother of the identified proband. To validate 

the effect of LOF variants observed in FALS and assess any potential contribution to 

sporadic disease, we analyzed full sequencing data of the NEK1 coding region for 2,303 

SALS and 1,059 controls (Supplementary Fig. 2, Online Methods). RVB confirmed a 

significant excess of LOF variants in cases (23/2,303 SALS vs 0/1,059 controls, OR=22.2, 

p=1.5x10-4, Supplementary Table 2). Meta-analysis of discovery and replication LOF 

analyses yielded a combined significance of P=3.4x10-8 and OR=8.8.   

  

In total, 120 predicted nonsynonymous NEK1 variants were detected in FALS, SALS and 

controls. These were distributed throughout the gene including within the protein kinase 

domain (PKD) and 6 coiled-coil domains thought to be involved in mediating protein-protein 

interactions (Supplementary Fig. 9). Following conditioning for LOF and p.R261H, tentative 

excesses of case variants could be observed in analyses of rarer variant categories but 

larger sample sizes will be required to confirm the pathogenicity beyond p.R261H and LOF 

variants (Supplementary Table 4). Analysis of other members of the NEK gene family 

(NEK2-11) revealed no associations in the FALS dataset meeting multiple test criteria 

(Supplementary Table 5).   

  

Although no other gene achieved discovery significance, 10 candidate loci exhibited  

P<1.0x10-3 in the FALS discovery analysis (Table 1). These included the gene encoding the  

SNARE (soluble NSF attachment protein receptor) complex protein synataxin 12 (STX12, 

OR=33.1, P=9.7x10-5). Analysis of the SALS replication cohort revealed 5 missense variants 

in cases vs 0 in controls. However, the cohort was not sufficiently powered to assess events 

of this frequency and larger sample sizes will be required to establish effects on ALS risk 

(Supplementary Table 6). Another identified candidate gene was the known hereditary 

spastic paraplegia gene KIF5A6 (OR=7.1, p=4.8x10-4), however no observed elevations in 

patient variant frequencies within the SALS replication cohort reached statistical significance 

(Supplementary Table 7).   

  

NEK1 has been previously described as a candidate gene for ALS7,8. Here, our findings 

reveal that NEK1 in fact constitutes a major ALS-associated gene with risk variants present 

in ~3% of European/ European American ALS cases. LOF variants were identified in 1.2% of 

FALS (OR=8.2) and 1.0% of SALS (OR=22.2) versus 0.17% of controls, while the p.R261H 

variant was identified in 1.7% of FALS (OR=2.7) and 1.6% of SALS (OR=2.4) versus 0.69% 

of controls. Other variants of unknown clinical significance (missense, MAF<0.001) were 

identified in a further 1.8% of FALS and 1.3% of SALS versus 1.2% of controls. In  

comparison, risk variants in previously established ALS genes occur at approximately the 

following percentages: C9orf72<10%, SOD1<2%, TARDBP<1%, FUS<1% and others <<1% 

or uncertain9-12. However, caution must be taken when comparing the frequency of variants 

or mutations that differ in penetrance (i.e. highly-penetrant mutations to lower-penetrant risk 

variants). Furthermore, the assessment of the true odds ratio for variants within a gene may 

be difficult due to the presence of neutral variants that dilute out the observed effect. The 

actual odds ratio may in fact be even higher in a specific subset of variants versus controls. 

The LOF variants within NEK1 display a higher odds ratio relative to p.R261H. The p.R261H 

variant occurs adjacent to the protein kinase domain and is classified as deleterious by most 

bioinformatic prediction algorithms (SIFT, PolyPhen, LRT, MutationTaster, Mutation 

Assessor, PROVEAN, CADD, GERP, SiPhy). One model to account for the difference in  



p.R261H and LOF variant toxicity could be a correlation between phenotypic expression and 

the predicted extent of NEK1 loss of function. This model would also be consistent with 

previous findings that homozygosity for NEK1 LOF variants causes a severe developmental 

phenotype; short rib polydactyly syndrome type II (SRPS)13. In the current study, no 

individuals carried multiple LOF alleles. However, in SRPS homozygous carriers of NEK1 

LOF variants have been reported to exhibit a 64% reduction of NEK1 mRNA levels while 

unaffected heterozygous parents exhibit a 30-40% reduction13.  

NEK1 represents one of 11 members of the highly conserved NIMA-kinase family, which has 

conserved functions in cell cycle progression and mitosis. In post-mitotic cells, NEK1 is a 

primary regulatory of the formation of non-motile primary cilium14,15.  Disruption in the 

structure or function of primary cilia have been linked to neurological defects such as brain 

dysgenesis, hydrocephalus and mental retardation16,17,  and abnormalities in cilia number, 

structure and microtubule state occur in fibroblasts derived from short rib polydactyly 

syndrome patients homozygous for NEK1 truncation variants13. In vitro disruption of the 

activity of other neuronally expressed NEK family members has similarly been shown to 

disrupt neuronal morphology, neurite outgrowth, microtubule stability and microtubule 

dynamics18,19. Microtubule organization/integrity and kinesin/dynein intra-flagellar transport 

are essential to maintain cilia structure and function. This is of particular relevance as 

disruption of the microtubule cytoskeleton has been associated to the development of ALS3 

and mutations of the dynein subunit dynactin are associated with motor neuron 

degeneration20. Additionally, motor neurons derived from the SOD1G93A mouse show a 

selective loss of cilia both in vitro and in vivo21. Besides its role in ciliogenesis, NEK1 is also 

known to regulate mitochondrial membrane permeability22 and DNA repair23. Both these 

processes have been extensively investigated in relation to ALS, and postulated to explain 

the toxicity of ALS-associated mutations in SOD1 and FUS24,25. Mutations in DNA repair 

genes cause several early onset neurological phenotypes and multiple lines of evidence 

suggest defective DNA repair may contribute to both late onset neurodegeneration and brain 

aging in general26. For example, oxidative damage and DNA strand breaks have been 

observed to be elevated in ALS, Alzheimer’s and Parkinson’s disease cases27, and a recent 

large-scale GWAS implicated DNA repair genes as age of onset modifiers in Huntington’s 

disease28. The pathological significance of DNA damage in ALS, and whether modifier 

effects observed in Huntington's may generalize to repeat expansion disorders like C9orf72 

associated ALS, constitute important questions to be addressed. Finally, through its 

coiledcoil domain, NEK1 has been shown to interact with multiple other proteins of potential 

importance, including the ALS-associated proteins VAPB and ALS27, and the axonal 

outgrowth regulator FEZ129.   
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Figure 1: Rare Variant Burden Analysis of FALS Exomes. (a) Rare variant burden analyses of 1,022 index FALS cases and 7,315 

controls were performed for 10 known ALS genes. Analyses assessed 308 different combinations of minor allele frequency and functional 

prediction filters (Supplementary Table 1). The set of analysis parameters achieving the highest sensitivity for known ALS genes was 

identified as that achieving the highest area under the curve (AUC) in a plot of sensitivity (proportion of training genes achieving significance) 

across an increasing minimum p-value threshold. Dotted vertical line denotes Bonferroni corrected p-value for exome-wide significance. (b) 

Extension of the highest performing known gene trained analysis to the entire exome. Threshold for exome-wide significance is denoted by 

the dotted red line.   

  



    

  

  

  
  

Figure 2: Replication analysis of NEK1:p.R261H. NEK1:p.R261H genotypes were ascertained for 1,022 FALS, 6,172 SALS and 11,732 

controls. The SALS cohort was divided into 7 geographically based case-control strata. Allelic tests of association were performed for all 

subcohorts and followed by meta-analysis.   

  

    



  

  

  

  

  

Gene  ALS  ALS Freq  Control  Control Freq  OR  OR 95% CI  P  

NEK1  12  0.0117  14  0.0019  8.2  3.7-18.0  1.7x10-6  

ATRN  8  0.0078  7  0.0010  10.3  3.6-29.6  3.7x10-5  

STX12  4  0.0039  1  0.0001  33.1  5.8-339.0  9.7x10-5  

CREB3L2  4  0.0039  0  0.0000  64.9  6.6-8695.3  1.1x10-4  

DCC  4  0.0039  2  0.0003  18.6  4.1-108.1  3.1x10-4  

WDR49  5  0.0049  2  0.0003  15.8  3.5-92.1  4.4x10-4  

KIF5A  7  0.0068  8  0.0011  7.1  2.5-19.7  4.8x10-4  

C1QTNF7  12  0.0117  26  0.0036  3.6  1.8-7.1  6.7x10-4  

PEAK1  5  0.0049  3  0.0004  11.6  2.9-51.5  7.5x10-4  

BIRC6  10  0.0098  18  0.0025  4.3  1.9-9.3  8.4x10-4  

ZSCAN5B  4  0.0039  2  0.0003  16.3  3.3-98.0  8.8x10-4  

  

Table 1: FALS discovery analysis candidate genes. RVB results for all genes exhibiting case association at P<1x10-3 in FALS discovery 

cohort.  



Online Methods  

  

FALS discovery cohort. The FALS discovery cohort included 1,376 FALS patients and 13,883 non-ALS 

controls analyzed by exome sequencing. Patients were recruited at specialist clinics in Ireland (n=18), Italy 

(n=143), Spain (n=49), the UK (n=219), the USA (n=511), Netherlands (n=50), Canada (n=34), Belgium 

(n=12), Germany (n=202), Turkey (n=47) and Australia (n=91). Variants occurring at very low frequency in the 

general population (ExAC MAF<0.0001) which have been both previously reported as ALS associated and 

annotated as either 'pathogenic' or 'likely pathogenic' by Clinvar within the 10 genes were considered to be 

pathogenic mutations. The breakdown of the 72 mutations observed in the final cohort included the following: 

SOD1 (28), TARDBP (12), FUS (9), PFN1 (6), TBK1 (1), TUBA4A (4), UBQLN2 (4), VAPB (2), VCP (6). An 

additional 26 cases harbored a repeat expansion in the C9ORF72 gene. Controls included 29 internal samples 

and individuals participating in the dbGAP30 projects listed under accession codes.. Familial history was 

considered positive for ALS if the proband had at least one affected relative within three generations. We 

received approval for this study from the institutional review boards of the participating centers, and written 

informed consent was obtained from all patients (consent for research).   

  

SALS replication cohort: The SALS replication cohort included 2,387 SALS and 1,093 controls analyzed by 

whole genome sequencing and 5,834 SALS and 4,117 controls analyzed by exome chip. All individuals were 

recruited at specialist clinics in Ireland, Italy, Spain, the UK, the USA, the Netherlands and Belgium. Details of 

sample contributions per country are shown in Fig. 2. Evaluation of C9orf72 status was performed in 2,387 

SALS cases and 166 (7%) displayed a repeat expansion. We received approval for this study from the 

institutional review boards of the participating centers, and written informed consent was obtained from all 

patients (consent for research).   

  

Exome sequencing. Exome sequencing of patients was performed as previously described3. Raw sequence 

data for controls was obtained from dbGAP. Sequence reads were aligned to human reference GRCh37 using 

BWA (Burrows-Wheeler Aligner) and processed according to recommended best practices31. Variant detection 

and genotyping were performed using the GATK HaplotypeCaller. Variant quality control was performed using 

the GATK variant quality score recalibration method, with a VQSLOD cut-off of 2.27 (truth set sensitivity of 

99%). A minimum variant quality by depth (QD) score of 2 was also imposed and all genotypes associated with 

genotype quality (GQ)< 20 were reset to missing. Variants were also excluded in the event of case or control 

call rates <70% (post genotype QC). Exome sequencing data was not used to infer the presence or absence of 

indels due to the limited sensitivity and comparatively high false positive rates associated with available calling 

algorithms32.   

  

Genome Sequencing: Whole genome sequencing of 2387 SALS and 1093 controls was performed with  

Illumina’s FastTrack services (San Diego, USA) using PCR free library preparation and paired-end (100bp or 

150bp) sequencing on the HiSeq 2500 or Hiseq X platform (Illumina®, San Diego, Illumina) to yield 35X 

coverage at minimum. BWA was used to align sequencing reads to genome build hg19, and the Isaac variant 

caller was used to call single nucleotide variants (SNVs), insertions and deletions (indels)33. Both the aligned 

and unaligned reads were delivered in binary sequence alignment/map format (BAM) together with variant call 

format (VCF) files containing the SNVs, and indels. gVCF files were generated per individual and variants that 

failed the Isaac-based quality filter were excluded.  

  

Exome chip: A total of 5,815 ALS patients and 4,614 healthy controls from the Netherlands, Belgium,  

Germany, Ireland, Italy, Spain and the UK were included. Genotyping was conducted using Illumina 

HumanExome-12v1 BeadChips in accordance with the manufacturer’s recommendations. The GenTrain 2.0 

clustering algorithm was used for genotype calling, as implemented in the Illumina GenomeStudio software 

package. Initial genotype calls were made based on the HumanExome clusterfile provided by Illumina. More 

accurate cluster boundaries were determined based on the actual study data, after the exclusion of samples 

with a GenCall quality score in the lower 10th percentile of the distribution across all variants genotyped 



(p10GC) < 0.38 or call rate <0.99. Subsequently, the excluded samples were added back into the data set, and 

new genotypes calls were made using the previously obtained cluster boundaries.  

  

Sample filtering: Samples from the FALS discovery and SALS replication cohorts were excluded from analysis 

in the event of failing to meet genotype call rate, heterozygosity, gender concordance, duplication, relatedness 

or population stratification filters as summarized in Supplemental Fig. 1 and Supplemental Fig 7. All samples 

from the FALS cohort were required to exhibit filtered exome-wide call rates >70%. For both the FALS and 

SALS cohorts, PLINK v1.0734 was used to define an LD pruned (R2<0.5, window size=50, step=5) set of 

autosomal markers with MAF>0.01 and p>0.001 for deviation from Hardy Weinberg equilibrium. These marker 

sets were then used to calculate inbreeding coefficients for use in heterozygosity filtering, identify study 

duplicates, conduct relatedness filtering, perform tests of pairwise population concordance for stratification 

filtering, conduct principal components (PC) analysis for a second round of stratification filtering and conduct 

PC analysis to generate covariates for stratification correction in RVB and single variant analysis of filtered 

cohorts. Samples from the SALS replication cohort were required to exhibit no relatedness/ duplication with 

samples from the FALS discovery cohort. PLINK was used to calculate inbreeding coefficients, test for 

discordance in reported and SNV predicted gender and conduct tests of pairwise population concordance. 

Identification of sample duplicates and sample relatedness was performed using KING35. PC analyses were 

conducted using GCTA36 (Genome-wide Complex Trait Analysis). Details of results from population 

stratification analysis provided in Supplementary Fig. 2 and Supplementary Fig. 8.  

  

Statistical analyses: RVB analyses were performed by logistic regression of case-control status to number of 

minor alleles observed per sample per gene3,37. Results from underpowered tests (<3 observations in 

combined case control cohort) were excluded and did not contribute to assessments of genomic inflation. 

Variants were included for RVB analyses on the basis of MAF within the combined case-control cohort, MAF 

within the 1000 genomes project38, and pathogenicity predictions generated using snpEFF39 (Single Nucleotide 

Polymorphism Effect), PolyPhen240 (Polymorphism Phenotyping version2), SIFT41 (Sorting Intolerant From 

Tolerant), LRT42 (Likelihood Ratio Test), MutationTaster43, MutationAssessor44, FATHMM5 (Functional Analysis 

through Hidden Markov Models), CADD45 (Combined Annotation Dependent Depletion), PROVEAN46 (Protein  

Variation Effect Analyzer), GERP47 (Genomic Evolutionary Rate Profiling), phyloP48 (Phylogenetic P-value),  

SiPhy49 (SiPhylogenic), dbNSFP50 (database Nonsynonymous SNP Functional Prediction) and dbscSNV4  

(database of splice site consequences of Single Nucleotide Variants) as described Supplemental table 1. All 

RVB analyses were conditioned for a missing variant MAF weighted measure of sample gene call rate and the 

first 4 PC derived from common variant profiles. Homozygosity mapping was performed using 

HomozygosityMapper51 allowing for genetic heterogeneity. ROH were selected as all loci achieving a 

homozygosity score>=8483 (0.6 x max). Single variant analyses were allele count based, conducted using 

PLINK and also included correction for the first 4 PC derived from common variant profiles. Meta-analyses 

were conducted using METAL52 under a fixed effect model with weighting by inverted effect size standard 

error. All statistical tests were two-sided.  
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