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Abstract. This paper presents a simulation study concerning the low-mid frequencies control of 

flexural vibration in a lightly damped thin plate, equipped with five time-varying shunted 

vibration absorbers. The panel is excited by a rain-on-the-roof broad frequency band stationary 

disturbance. The absorbers are composed of piezoelectric patches connected to time-varying RL 

shunt circuits. Continuous, sweeping, variations over time of the shunts are implemented in such 

a way as to swing the resonance frequency and damping factor of the absorbers within certain 

ranges and in this way to reduce the resonant response of multiple flexural modes of the hosting 

plate. A single patch absorber implementing the sweeping shunt is first presented and its 

performance is compared to that of a classical patch absorber with time-invariant RL shunt. The 

same analysis is conducted for a multiple patch system using five shunted absorbers. The control 

performance is assessed considering the spectrum of the total flexural kinetic energy of the 

system in the 20 Hz to 1000 Hz frequency band. The study shows that the configuration with 

five time-varying shunted piezoelectric patches reduces the resonance peaks of the kinetic energy 

spectrum by 5 to 15 dB. 

1.  Introduction 

Forward [1] was one of the first to propose in 1979 the use of shunted piezoelectric transducers to control 

the vibration of structures. In the following years, several studies were published on this topic [2-9] 

investigating the basic principles of shunt vibration control and exploring the effects produced by 

passive and active shunted transducers to enhance the vibration reduction effects. While references [10-

13] offer detailed reviews on this subjects, the specific idea of implementing electro-mechanical 

vibration absorbers using piezoelectric patches connected to RL shunt circuits can be traced to the study 

carried out by Hagood and von Flotow [5]. Considering the classical work on vibration absorbers [14], 

they derived the expressions for the resistance and inductance elements of the shunt that would optimise 

the vibration absorption effect on the resonant response of a specific mode of the structure with the 

shunted piezoelectric patch. The same effect can be achieved using both series and parallel RL circuits 

[15]. Moreover, the broad brand vibration absorption can be enhanced by adding a negative capacitance 

in the shunt, which compensates the inherent capacitance of the piezoelectric transducer to maximise 

the energy absorption by the shunted transducer [16-19]. In practice this can only be obtained with an 

appropriate active electrical circuit introducing stability issues. Therefore this study will focus on the 

use of RL shunts. 

The possibility of controlling the flexural response of thin structures over a wide frequency band 

using time-varying mechanical absorbers composed by classical spring-damper-mass mechanical 

systems has been explored in recent studies [20,21]. In particular, the implementation of time-varying 

absorbers has been investigated, whose stiffness and damping parameters are varied within given ranges 



 

 

 

 

 

 

to continuously sweep the absorbers fundamental resonance and damping ratio and thus to effectively 

control the resonant response of the hosting structure within a given frequency band. The practical 

realization of a sweeping mechanical absorber has also been demonstrated experimentally using a voice 

coil transducer with the magnet suspended on soft springs [22].  

In this work, the effects produced by time-varying shunted piezoelectric patch absorbers bonded on 

a thin panel are considered. Each electro-mechanical absorber is composed by a piezoelectric patch 

transducer connected to a RL shunt whose inductive and resistive components are continuously varied 

in such a way as to set the absorber fundamental resonance and damping ratio to control the flexural 

response of the panel in the targeted frequency band comprised between 20 Hz and 1 kHz. 

The paper is structured in five sections. Section 2 describes the system and introduces the 

mathematical model along with the state space mathematical formulation used in the numerical 

calculation of the flexural response of the panel with the time-varying shunted piezoelectric patches. 

Section 3 contrasts the vibration control effects produced by a time-varying shunted piezoelectric patch 

and a classical time-invariant shunted piezoelectric patch. Section 4, investigates the vibration control 

effects produced by an array of five sweeping absorbers each working on a specific sub-band of the 

targeted frequency range or working asynchronously in the whole targeted frequency range. Finally, 

Section 5 summarises the principal conclusions of the study. 

2.  Plate with piezoelectric shunted patches 

Figure 1 shows the smart panel considered in this study, which is composed of a thin rectangular 

aluminium plate with five piezoelectric patches whose physical and geometrical parameters are 

summarized in table 1 and 2 respectively. As depicted in figure 1(a), the plate is exposed to a white 

noise rain-on-the-roof excitation, which has been modelled in terms of a 44 ×  array of point forces 

uniformly distributed over the surface of the plate. Figure 1(b) shows the absorbers array with the centre 

patch bonded on the backside of the plate.  

 

Table 1: Dimensions and physical 

parameters of the panel. 

Parameter Value 

dimensions mm  314414 ×=× ypxp ll  

thickness mm  1=ph  

density 
3mKg 0027=pρ  

Young’s 

modulus 
210 mN  107 ×=pY  

Poisson ratio 33.0=pν  

Modal 

damping ratio 
02.0=pζ  

 

 

Table 3: Single patch systems control range. 

Shunt type Frequency range 

Fixed  39 Hz 

Sweeping 30 to 130 Hz 
 

Table 2: Dimensions and physical parameters  

of the PZT patches. 

Parameter Value 

dimensions mm  8080×=× peypex aa  

thickness mm  2.0=peh  

centre  

positions 

j = 2,3,4,5 

2 , 2 , 11 ypxpcc llyx =  

602 , 602 , mm ypxpcjcj llyx =  

density 
3mkg  7600=peρ  

Young’s 

modulus 
210 mN  105×=E

peY  

Poisson ratio 35.0=E
peν  

strain/charge 

constants 
Vm  10150

12
3231

−×−== dd  

permittivity F/m  102.29 9
33

−×=Sε  

capacitance F 10934 9−×=peC  
 

2.1.  State space formulation 

The electromechanical equations of motion for the response of the plate with the shunted piezoelectric 

patch time-varying vibration absorber shown in figure 1 are derived with a state-space formulation [23]. 

This general formulation takes into account a rectangular thin plate with 1 or 5 shunted piezoelectric 



 

 

 

 

 

 

absorbers, characterized by time-varying inductance and resistance. The stochastic nature of the primary 

disturbance acting on the plate and the time-varying characteristics of the shunt circuits of the vibration 

absorbers cannot be addressed using a standard formulation in the frequency domain for vibrations, 

based on frequency dependent power spectral densities (PSD) and transfers functions [24]. Thus a state 

space formulation is used in conjunction with a numerical approach to integrate the equation of motion 

of this time-variant system. 

 

  
(a) (b) 

Figure 1.Plate subject to a rain on the roof excitation modelled with a 4×4 array of uncorrelated point 

forces (a) and equipped with five piezoelectric patches connected to time-varying RL shunts (b). 

 

The formulation considers the classical theory of out of plane flexural vibrations in plates [25], which 

is based on Kirchhoff hypothesis. Also, the effects of in-plane vibrations are neglected, which is a 

reasonable assumption in the 20 Hz – 1 kHz frequency range considered in this study. The state space 

formulation is derived from the generalised form of Hamilton’s principle for electromechanical systems 

[26,27], which, considering displacement and electric field variables, is characterised by the following 

variational indicator: 

 [ ] 0V.I.
2
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where )(Lδ  denotes the variation operator and, considering displacement and electric field variables, 

the Lagrangian is given by [27]: 
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Also, 
*

T , V , *
eW  and ncW  are the kinetic coenergy, the elastic potential energy, the electrical coenergy 

and the work done by non-conservative forces, which are given by the following expressions [3]: 
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In this formulation the superscript “
t
” indicates matrix transpose and the subscripts “ p ” and “ pe ” 

indicate plate and piezoelectric patch variables. Also, ),,( tyxw  is the transverse displacement of the 

plate, pT , peT  and pS , peS  are 13×  vectors that contain the 1T , 2T , 6T  and 1S , 2S , 6S  stress and 

strain components respectively, peE  and peD  are the electric filed intensity and electric displacement. 

Also µ  is the viscous damping factor, pjf  are the point forces acting on the plate, and peq , pev  are the 

charge and voltage on the piezoelectric patch. Finally V  is the volume and A  is the surface area. 

According to Kirchhoff hypothesis, thin plates are characterized by plane strain [28]. However, as 

discussed by Reddy [29], since the transverse stress component is not considered in the variational 

formulation, plane stress could be equally assumed, in which case the constitutive equations for the plate 

and piezoelectric patch are given by the following matrix expressions using the materials axes 1,2,3, 

which for the problem at hand coincides with the axes x,y,z of the structure [3]: 

 ppp ScT = , (7) 
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Also, the vector  
t

pe ee
 

3231 0=e  is formed by the 31e  and 32e  piezoelectric stress/charge 

constants and 
S
33ε  is the permittivity of the piezoelectric material. The superscripts “

S
” and “

E
” 

indicate that the parameters have taken assuming constant strain, i.e. 0=peS , and constant electric field 

intensity, i.e. 0=peE , respectively. As shown in [3] for example, the 
S
33ε , 31e  and 32e  parameters for 

the piezoelectric patch are derived from the following equations 
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which refers to the permittivity 
T
peε  for constant stress, i.e. 0=peT , and to the piezoelectric 

strain/charge constants 31d  and 32d  forming the vector  03231 dd
t
pe =d , which are normally 

measured and provided in piezoelectric material datasheets. Substitution of equations (3-6) into equation 

(1) gives the following integral expression  
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Considering Kirchhoff hypothesis and assuming small deformations, the linearized 

strain – displacement relations can be used, which, for the structural axes x,y,z take the following form 

[25]: 

 kS  zp = kS  zpe =  (14,15) 

where [ ] t
,,, 2 xyyyxx www −−−=k . Since the piezoelectric material is homogeneous and the 

piezoelectric patch has constant thickness, the electric field in the piezoelectric patch can be expected 

to be constant (for small thickness fringe effects are negligible) and thus the following electric 

field – electric potential relation can be assumed 
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Substitution of equations (14-16) into equation (13) leads to the following expression 
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where the volume integrals have been broken into area and thickness integrals, and the thickness 

integrals have been solved. Here, 2)( peppe hhz += , ppp hm ρ= , pepepe hm ρ= , 123
pp hI = , 

123
pepe hI α=  with 4)(6)(3 2 ++= peppep hhhhα . For synchronous motions, the transverse 

displacement of the plate – piezoelectric patch is separable in space and time variables [23], such that it 

can be expressed in terms of the following modal summation 
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where ),( yxrφ  are the natural modes of the plate with no piezoelectric patch bonded in it and )(tqr  are 

the generalized coordinates for the transverse vibrations of the plate. In this study, the plate is assumed 

simply supported and thus is characterized by the following natural modes and natural frequencies for 

the r-th mode with indices r1 ,r2 [30]: ( ) ( )xkxkyx yrxrr sinsin2),( =φ  and ( )22

)1(12
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Substituting the modal expansion for the transverse displacement w  given in equation (18) and 

allowing arbitrary variations of )(tq and )(tvpe , such that 0=q  and 0=pev  for 21  , ttt = , leads to the 

following two matrix equations [3] 
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Here pepe
S
pepe hAC ε=  is the capacitance of the piezoelectric patch and 
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where I  is a RR ×  identity matrix. Also 
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where 161  ,  , pp ff L  are the sixteen forces applied on the plate. As schematically shown in figure 1, the 

piezoelectric patch is connected to a shunt circuit composed by time-varying resistor and inductor 

components connected in parallel such that 
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The electromechanical equation of motion of the shunted piezoelectric patch can now be casted in 

the following state space matrix formulation 

 )()()( tftt pBAxx +=& , (32) 

 )()( tt Cxq =& . (33) 

The state vector is given by 
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and the state, input and output matrices are given by 
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where pep MMM +=  , pep KKK +=  and I  is a 161×  vector of ones. 

The state space equations are integrated using a numerical method as in reference [20] based on a 

specific Runge-Kutta algorithm [31]. The algorithm uses a fixed integration step, at each time step the 

A matrix is updated with the proper values so that the integration continues at each step using as initial 

condition the state vector of the previous iteration. 



 

 

 

 

 

 

2.2.  Energy formulation 

The state-space formulation derived in the previous subsection can be efficiently used to predict the 

time-response of the plate flexural vibration. However, vibration and noise problems subject to 

stationary random disturbances are normally studied in the frequency domain by considering the spectra 

of the response and sound radiation. Since the sweeping operation of the absorbers can be categorized 

as cyclostationary, as discussed in reference [20], a spectral analysis for the flexural response of the 

plate can be implemented. Therefore to evaluate the control effects produced on the plate by the four 

absorber configurations considered in this paper, the power spectral density (PSD) of the total plate 

flexural kinetic energy is derived, which for simplicity, will be referred to as kinetic energy PSD for the 

remaining part of the paper. As shown in [32], the kinetic energy PSD can be derived with the following 

expression [33, 34]: 
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Here the superscript * indicates the complex conjugate operator, ),,( ωyxw&  is the finite Fourier 

transform of ),,( tyxw& , which can also be expressed in terms of a finite modal expansion over the finite 

Fourier transform of the generalized modal velocities of the panel )(ωq&  as follows: 

 )(),(),,( ωω qφ && yxyxw = . (39) 

Thus, the PSD of the kinetic energy can be written as: 
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where pm is the mass of the plate and [ ])(ωqqTr S  is the trace matrix of the fully populated matrix 

)(ωqqS  containing the self and cross PSD functions of the plate modal velocities produced by the 

random excitation: 
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The vector )(ωq&  with the finite Fourier transforms of the panel modal velocities can be derived from 

the combination of the Fourier transforms of equations (19), (20), (31). Since dtdqi pepe = , and 

considering that, for the notation shown in figure 1(b), the impedance of the shunt is given by 

)()( ωω pepes ivZ −= , the vector )(ωq&  can be expressed as follows: 
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where: 
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and )(ωpf  contains the finite Fourier transform of the M primary forces acting on the panel and 

11 )( −− += peSspe CjZZ ω . Thus, the matrix )(ωqqS  with the PSDs of the plate modal velocities can be 

derived with the following equation: 
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where )(ω
ppffS  is the matrix with the PSD functions of the 16 uncorrelated white noise forces acting on 

the plate, which, assuming unit primary excitation, is given by a )1616( ×  identity matrix. In summary, 

the kinetic energy PSD can be derived by substituting equation (44) into equation (40) so that: 

 [ ])()()(
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When the sweeping operation mode is implemented, the system becomes time-variant and the time 

history of the kinetic energy function is not anymore stationary, therefore the PSD kinetic energy cannot 

be defined [33, 34]. However, for a smooth sweep, the process can be categorized as cycle-stationary 

and a Fourier transform analysis can be used to estimate the kinetic energy PSD in the frequency domain 

[35]. In this case, the PSD of the kinetic energy cannot be derived from equation (45) but should be 

calculated from equations (40) and (41) after the vector )(ωq&  has been derived from the numerical finite 

Fourier transform of the time domain vector )(tq& , which is calculated numerically using a stochastic 

integration algorithm as stated above in the end of Section 2.1. 

3.  Single patch systems 
Simulation results for the plate with the top left piezoelectric patch only are presented in this section. 

Two cases are investigated considering a classical fixed tuning shunt and the proposed sweeping shunt. 

3.1.  Fixed tuning shunt 

For the fixed tuning operation mode, as indicated in table 3, the RL shunt is tuned to control the flexural 

response at the first resonance frequency of the plate. Considering figure 2(a), the thin solid black line 

shows the 22 – 176 Hz spectrum of the flexural kinetic energy of the plate without the piezoelectric 

patch, which is characterized by a series of five peaks (the last two being only 3 Hz apart from each 

other) due to the resonances of the panel low order natural modes. The thick solid green line shows the 

spectrum of the flexural kinetic energy of the plate equipped with the shunted piezo (thick solid green 

line). In this case it can be noted large reduction, of about 15.5 dB, of the controlled mode resonance 

peak, and some extra reductions, of about 3, 6 and 2.7 dB, of the following four resonance peaks. 

3.1.  Sweeping shunt 

For the sweeping shunt operation mode, the inductance in the RL shunt is harmonically varied such that 

the shunt natural frequency is swept between the lower and upper limits of the frequency control range 

with the following harmonic law: 

 
4)sin()( tsifish ωωωωω −+= , (44) 

where iω  and 
fω  are the initial and final values of the sweep frequency range listed in table 3 and sω  

is the sweeping circular frequency set to 6 Hz. As discussed in reference [36], this sweeping law is 

obtained by continuously varying the inductance in the shunt with the following law: 
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Also, as discussed in reference [36], the resistance of the shunt is changed in such a way as to maintain 

a constant damping ratio equal to 30%. The thick solid red line in figure 2(b) shows the effects produced 

by the sweeping absorber. The amplitudes of the three resonance peaks in the targeted 30 – 130 Hz 

control band are effectively controlled. More specifically, reductions of about 11.7, 7, 13 dB are 

observed for the first three resonance peaks, and about 3 dB for the fourth resonance peak, which lies 

outside the controlled frequency band.  



 

 

 

 

 

 

 

  

Figure 2.Flexural kinetic energy of the plate with no piezoelectric patch (thin solid black line) and 

with the top left piezoelectric patch and (a) an RL shunt tuned to the first resonant frequency (thick 

solid green line);(b) a sweeping shunt tuned to the 30 – 130 Hz frequency band (thick solid red line). 

4.  Multiple patch systems 

The same analysis as that presented in the previous section is introduced here for the panel equipped 

with five absorbers considering a control frequency range comprised between 22Hz and 1 kHz. Table 4 

shows the targeted frequencies for the fixed tuning absorbers. Two operation modes of the sweeping 

shunted absorbers are considered: first, a series mode in which the control frequency range is divided in 

five sub-bands and each absorbers is acting on one of them; second, an asynchronous mode in which 

the five absorbers are acting on the whole control frequency range with a phase shift of 5/π  between 

each other. In the series operation mode, each one of the five sweeping absorbers is configured to work 

on one of the five sub-bands, with some overlapping between consecutive bands.  

Table 4: Multi-patch systems control frequencies or control bands. 

Type  Absorber 1 Absorber 2 Absorber 3 Absorber 4 Absorber 5 

Fixed 39 Hz 113 Hz 253 Hz 456 Hz 634 Hz 

Series sweep 30– 125 Hz 100 – 250 Hz 230 – 440 Hz 400 – 670 Hz 620 –970 Hz 

Asynchronous sweep 30 to 970 Hz frequency band with a phase shift of 5/π  between the sweeps 

4.1.  Fixed tuning shunts 

Figure 3 shows the 22 – 1000 Hz spectrum of the flexural kinetic energy of the plate without the 

piezoelectric patches (thin solid black line) and with the five piezoelectric patches implementing the 

fixed tuning shunts (thick solid green line). Each absorber is tuned to control the flexural response at 

one resonance within each sub-band, which are highlighted by different colours in the plot. At the lower 

frequencies, the spectrum for the plain plate is characterized by a series of well-defined sharp resonance 

peaks that start to overlap as frequency rises. The spectrum for the plated with the five fixed tuning 

absorbers is characterised by smoother peaks. It can be seen that the five fixed absorbers produce 

respectively reductions of the flexural kinetic energy of around 20 dB, 9 dB, 12 dB and 8 dB at the first 

four resonances, rather poor control effects between 200 Hz and 300 Hz, and then good reductions of 8 

to 15 dB between 300 Hz and 500 Hz and 4 to 10 dB between 550 Hz and 650 Hz. 
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Figure 3.Flexural kinetic energy of the plate with no piezoelectric patch (thin solid black 

line) and with the five piezoelectric patches implementing RL shunts tuned to the 

resonance frequencies as specified in table 4 (thick solid green line). 

(a) 

 

(b) 

 

Figure 4. Flexural kinetic energy of the plate with no piezoelectric patch (thin solid black 

line) and with the five piezoelectric patches (thick solid red line) implementing either the 

series sweeps (plot a) or asynchronous sweeps (plot b) as specified in table 4. 
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4.2.  Sweeping shunts 

The spectrum of the flexural kinetic energy of the plate implementing the series and asynchronous 

sweeping modes are presented in figure 4 (thick solid red line in plots a,b respectively). In the series 

mode, the system produces good flexural vibration reductions below 200 Hz, in particular about 14 dB 

for the first and third resonances and 8 dB for the second one. The performance drops to around 4 dB 

reduction of the flexural vibration for the resonances comprised in the 200-300 Hz band and then very 

good control effects are obtained between 300 and 500 Hz, with reductions of the resonance peak 

amplitudes between 6 and 17 dB. The system also works well between 550 Hz and 650 Hz achieving 

between 6 and 12 dB and some extra reductions can be seen at higher frequencies in the 750-950 Hz 

band. 

The asynchronous sweeping operation mode also shows very good performances at low and mid 

frequencies, with improved control effects over the 200-300 Hz band compared to the series mode. 

However it has lower control effects over the resonances at 450 Hz and 530 Hz. At higher frequencies 

the control performance is similar to that of the series mode. 

5.  Conclusions 
This simulation study has presented the effects of using time-varying shunted piezoelectric patch 

absorbers bonded on a thin aluminium panel to control its flexural response in a frequency range 

comprised between 22 and 1000 Hz. Single and multiple absorbers configuration were analysed, and it 

could be seen that the proposed system is able to significantly reduce the flexural response of the panel 

both at low frequencies, where the spectrum of the plate flexural kinetic energy is characterised by well 

separated resonance peaks, and at mid frequencies, where spectrum of the plate flexural kinetic energy 

is characterised by wide band crests produced by the overlap of clusters of modes. 

Recalling that the sweeping absorbers do not require a precise tuning of the shunts, it is concluded 

that they can offer significant practical advantages for the development of effective, robust and easy to 

use modular devices, which can be operated without the need of system identification of the hosting 

structure physical properties. 
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