Sweeping piezoelectric patch vibration absorbers
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Abstract. This paper presents a simulation study concerning the low-mid frequencies control of
flexural vibration in a lightly damped thin plate, equipped with five time-varying shunted
vibration absorbers. The panel is excited by a rain-on-the-roof broad frequency band stationary
disturbance. The absorbers are composed of piezoelectric patches connected to time-varying RL
shunt circuits. Continuous, sweeping, variations over time of the shunts are implemented in such
a way as to swing the resonance frequency and damping factor of the absorbers within certain
ranges and in this way to reduce the resonant response of multiple flexural modes of the hosting
plate. A single patch absorber implementing the sweeping shunt is first presented and its
performance is compared to that of a classical patch absorber with time-invariant RL shunt. The
same analysis is conducted for a multiple patch system using five shunted absorbers. The control
performance is assessed considering the spectrum of the total flexural kinetic energy of the
system in the 20 Hz to 1000 Hz frequency band. The study shows that the configuration with
five time-varying shunted piezoelectric patches reduces the resonance peaks of the kinetic energy
spectrum by 5 to 15 dB.

1. Introduction

Forward [1] was one of the first to propose in 1979 the use of shunted piezoelectric transducers to control
the vibration of structures. In the following years, several studies were published on this topic [2-9]
investigating the basic principles of shunt vibration control and exploring the effects produced by
passive and active shunted transducers to enhance the vibration reduction effects. While references [10-
13] offer detailed reviews on this subjects, the specific idea of implementing electro-mechanical
vibration absorbers using piezoelectric patches connected to RL shunt circuits can be traced to the study
carried out by Hagood and von Flotow [5]. Considering the classical work on vibration absorbers [14],
they derived the expressions for the resistance and inductance elements of the shunt that would optimise
the vibration absorption effect on the resonant response of a specific mode of the structure with the
shunted piezoelectric patch. The same effect can be achieved using both series and parallel RL circuits
[15]. Moreover, the broad brand vibration absorption can be enhanced by adding a negative capacitance
in the shunt, which compensates the inherent capacitance of the piezoelectric transducer to maximise
the energy absorption by the shunted transducer [16-19]. In practice this can only be obtained with an
appropriate active electrical circuit introducing stability issues. Therefore this study will focus on the
use of RL shunts.

The possibility of controlling the flexural response of thin structures over a wide frequency band
using time-varying mechanical absorbers composed by classical spring-damper-mass mechanical
systems has been explored in recent studies [20,21]. In particular, the implementation of time-varying
absorbers has been investigated, whose stiffness and damping parameters are varied within given ranges



to continuously sweep the absorbers fundamental resonance and damping ratio and thus to effectively
control the resonant response of the hosting structure within a given frequency band. The practical
realization of a sweeping mechanical absorber has also been demonstrated experimentally using a voice
coil transducer with the magnet suspended on soft springs [22].

In this work, the effects produced by time-varying shunted piezoelectric patch absorbers bonded on
a thin panel are considered. Each electro-mechanical absorber is composed by a piezoelectric patch
transducer connected to a RL shunt whose inductive and resistive components are continuously varied
in such a way as to set the absorber fundamental resonance and damping ratio to control the flexural
response of the panel in the targeted frequency band comprised between 20 Hz and 1 kHz.

The paper is structured in five sections. Section 2 describes the system and introduces the
mathematical model along with the state space mathematical formulation used in the numerical
calculation of the flexural response of the panel with the time-varying shunted piezoelectric patches.
Section 3 contrasts the vibration control effects produced by a time-varying shunted piezoelectric patch
and a classical time-invariant shunted piezoelectric patch. Section 4, investigates the vibration control
effects produced by an array of five sweeping absorbers each working on a specific sub-band of the
targeted frequency range or working asynchronously in the whole targeted frequency range. Finally,
Section 5 summarises the principal conclusions of the study.

2. Plate with piezoelectric shunted patches

Figure 1 shows the smart panel considered in this study, which is composed of a thin rectangular
aluminium plate with five piezoelectric patches whose physical and geometrical parameters are
summarized in table 1 and 2 respectively. As depicted in figure 1(a), the plate is exposed to a white
noise rain-on-the-roof excitation, which has been modelled in terms of a4 x4 array of point forces
uniformly distributed over the surface of the plate. Figure 1(b) shows the absorbers array with the centre
patch bonded on the backside of the plate.

Table 1: Dimensions and physical Table 2: Dimensions and physical parameters
parameters of the panel. of the PZT patches.
Parameter Value Parameter Value
dimensions Ly, %1y, =414x314 mm dimensions A pox XAy, =80Xx80 mm
thickness hp =1 mm thickness hpe =0.2 mm
density P, =2700 Kg/ m’ centre X1 s Yer =Ly / 2,1, / 2
Youne’s positions B - _
g Y, =7x10" N/m? j=2345 KoYy =ly/2T60,1, /2760
modulus P o 3
Poisson ratio v, =0.33 density Ppe=7600 kg/m
Modal Young’s YE =5x10'° N/m>
=0.02 X m
damping ratio < modulus re
Poisson ratio er =0.35
Table 3: Single patch systems control range. strain/charge 12
Shunt type Frequency range constants dyy =dyp ==150x107" m/V
Fixed 39 Hz permittivity £5;,=29.2x10"° F/m
Sweeping 30 to 130 Hz capacitance Cp= 934x10~° F

2.1. State space formulation
The electromechanical equations of motion for the response of the plate with the shunted piezoelectric
patch time-varying vibration absorber shown in figure 1 are derived with a state-space formulation [23].
This general formulation takes into account a rectangular thin plate with 1 or 5 shunted piezoelectric



absorbers, characterized by time-varying inductance and resistance. The stochastic nature of the primary
disturbance acting on the plate and the time-varying characteristics of the shunt circuits of the vibration
absorbers cannot be addressed using a standard formulation in the frequency domain for vibrations,
based on frequency dependent power spectral densities (PSD) and transfers functions [24]. Thus a state
space formulation is used in conjunction with a numerical approach to integrate the equation of motion
of this time-variant system.
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(a) (b)
Figure 1.Plate subject to a rain on the roof excitation modelled with a 4x4 array of uncorrelated point
forces (a) and equipped with five piezoelectric patches connected to time-varying RL shunts (b).

The formulation considers the classical theory of out of plane flexural vibrations in plates [25], which
is based on Kirchhoff hypothesis. Also, the effects of in-plane vibrations are neglected, which is a
reasonable assumption in the 20 Hz — 1 kHz frequency range considered in this study. The state space
formulation is derived from the generalised form of Hamilton’s principle for electromechanical systems
[26,27], which, considering displacement and electric field variables, is characterised by the following
variational indicator:

V.I.=J;t12[c5L+6Wnc]dt=0, (1)

where O(---) denotes the variation operator and, considering displacement and electric field variables,
the Lagrangian is given by [27]:
L=T"-V+W, . ()

Also, T*, V, W, and W, are the kinetic coenergy, the elastic potential energy, the electrical coenergy
and the work done by non-conservative forces, which are given by the following expressions [3]:
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In this formulation the superscript indicates matrix transpose and the subscripts “ ,” and © ,

p
indicate plate and piezoelectric patch variables. Also, W(x,y,f) is the transverse displacement of the

plate, Tp, Tpe and Sp, Spe are 3X1 vectors that contain the T}, T,, T, and S;, S,, S¢ stress and
strain components respectively, E,, and D, are the electric filed intensity and electric displacement.

Also 4 is the viscous damping factor, f,; are the point forces acting on the plate, and ¢, , v, are the

charge and voltage on the piezoelectric patch. Finally V is the volume and A is the surface area.
According to Kirchhoff hypothesis, thin plates are characterized by plane strain [28]. However, as
discussed by Reddy [29], since the transverse stress component is not considered in the variational
formulation, plane stress could be equally assumed, in which case the constitutive equations for the plate
and piezoelectric patch are given by the following matrix expressions using the materials axes 1,2,3,
which for the problem at hand coincides with the axes x,y,z of the structure [3]:

T, =c,S,. @)
S t
DPE _ gpe epe EPE 8
T - E S B ( )
pe _epe Cpe pe
where
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Also, the vector e, =|e;; ey, 0] is formed by the e;; ande;, piezoelectric stress/charge

constants and €§3 is the permittivity of the piezoelectric material. The superscripts «S» and «E~

indicate that the parameters have taken assuming constant strain, i.e. S pe =0, and constant electric field

intensity, i.e. E,, =0, respectively. As shown in [3] for example, the €3S3 , €31 and e, parameters for

the piezoelectric patch are derived from the following equations

e,=6,—d chd e, =cid, (11,12)

which refers to the permittivity 6‘;6 for constant stress, i.e. T, =0, and to the piezoelectric

strain/charge constants d5; and d5, forming the vector dtpe =|_d31 ds, OJ, which are normally

measured and provided in piezoelectric material datasheets. Substitution of equations (3-6) into equation
(1) gives the following integral expression

j“ POV, <], PGV, =], e, SV, [, SISV,

" y . (13)

+j 6 dv, +j EpE O, AV, = [ 1oSwdV, + " [, 00, =, |dt =0
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pe pe pe



Considering Kirchhoff hypothesis and assuming small deformations, the linearized
strain — displacement relations can be used, which, for the structural axes x,y,z take the following form
[25]:

S, =zkS ,=zk (14,15)

where kz[— W —Woy —2W, ‘. Since the piezoelectric material is homogeneous and the
piezoelectric patch has constant thickness, the electric field in the piezoelectric patch can be expected
to be constant (for small thickness fringe effects are negligible) and thus the following electric

field — electric potential relation can be assumed

1%
E,, :h—”e . (16)

pe
Substitution of equations (14-16) into equation (13) leads to the following expression
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where the volume integrals have been broken into area and thickness integrals, and the thickness
integrals have been solved. Here, Zpe :(hp +hpe)/2, m, =pphp, n,, :ppehpe, Ip :h;/IZ,
1, 204126/12 with (Z=3(hp/hp€)2 +6(hp/hpe)+4. For synchronous motions, the transverse

displacement of the plate — piezoelectric patch is separable in space and time variables [23], such that it
can be expressed in terms of the following modal summation

wix,y.0=[gy) - ] @) ]=ex a0
: , (18)
qr(t)

where @, (x,y) are the natural modes of the plate with no piezoelectric patch bonded in it and g, (f) are

the generalized coordinates for the transverse vibrations of the plate. In this study, the plate is assumed
simply supported and thus is characterized by the following natural modes and natural frequencies for

Y, h?
the r-th mode with indices r1 ,r2 [30]: 4, (x, y) = ZSin(erx)sin(ky,x) and @,, = # (kf +k§ )
PpU=Vp

with k., =rz/l, and k,, =nz/l, .
Substituting the modal expansion for the transverse displacement w given in equation (18) and
allowing arbitrary variations of q(f)and v ,,(¢), such that =0 and v,, =0 for =1t ,t,, leads to the

following two matrix equations [3]

M, +M, Jio+C, a0 +[K,+K , Ja-0v, =0, 1,0). (19)
O q(1)+Cp vy =4, (1). (20)

Here C), = eieApe / h,, is the capacitance of the piezoelectric patch and



M, =m, [¢"gdA,=mIM, =m, [o(x,y)" o(x,y)dA, (21,22)

Ap Ape
K,=1, [y c,ydA,=m,Q" K, =1, [y'c),ydA, (23,24)
A, Ape
C,=[uo"odA,=26m,Q ©=z,, [y'e,dA (25,26)
p p p pe pe“pe s
Ap Ape

whereI is aR xR identity matrix. Also

(p,xx wnl (P(xbyl) fpl
v=l o, |, Q= , @, = : = : (27-30)
20 DR (X165 Y16) fois
where f,; .+, f},16 are the sixteen forces applied on the plate. As schematically shown in figure 1, the

piezoelectric patch is connected to a shunt circuit composed by time-varying resistor and inductor
components connected in parallel such that

1 1
ipe(t)=—R—vpe(t)—L—vae(t)dt. 31

The electromechanical equation of motion of the shunted piezoelectric patch can now be casted in
the following state space matrix formulation

x(1) = Ax(1) + Bf , (1), (32)
q(1) =Cx(1). (33)
The state vector is given by

q(r)

q(r)
= 34
x(1) vae o (34)

Ve (1)

and the state, input and output matrices are given by

0 I 0 0 0
-M'K -M"C, 0 Mo, -M '@
A= , B= 7|, c=[o 1 0 0]
0 0 0 1 0
0 -0,,/C,. —1/(C, L) —1/(C,R,) 0

(35-37)
where M=M ,+M ,, ,

The state space equations are integrated using a numerical method as in reference [20] based on a
specific Runge-Kutta algorithm [31]. The algorithm uses a fixed integration step, at each time step the
A matrix is updated with the proper values so that the integration continues at each step using as initial
condition the state vector of the previous iteration.

K=K ,+K, and I is a 1X16 vector of ones.



2.2. Energy formulation

The state-space formulation derived in the previous subsection can be efficiently used to predict the
time-response of the plate flexural vibration. However, vibration and noise problems subject to
stationary random disturbances are normally studied in the frequency domain by considering the spectra
of the response and sound radiation. Since the sweeping operation of the absorbers can be categorized
as cyclostationary, as discussed in reference [20], a spectral analysis for the flexural response of the
plate can be implemented. Therefore to evaluate the control effects produced on the plate by the four
absorber configurations considered in this paper, the power spectral density (PSD) of the total plate
flexural kinetic energy is derived, which for simplicity, will be referred to as kinetic energy PSD for the
remaining part of the paper. As shown in [32], the kinetic energy PSD can be derived with the following
expression [33, 34]:

SK(a)):% j Jhy, Jim E[l W (x, v, @)W(x, y,a))}dA (38)
A

Here the superscript * indicates the complex conjugate operator, W(X,y,&) is the finite Fourier
transform of W(Xx, y,t), which can also be expressed in terms of a finite modal expansion over the finite

Fourier transform of the generalized modal velocities of the panel q(@) as follows:

wx, y, @) =(x,y) (@) . (39)

Thus, the PSD of the kinetic energy can be written as:
1 . 1. . 1
Sx(@) =2 £ ph lim E{; Q" ()" (x.y)9(x.y) q(w)}ds = myT S @], @0

wherem,, is the mass of the plate and TrlS % (a;)] is the trace matrix of the fully populated matrix

S,,(&) containing the self and cross PSD functions of the plate modal velocities produced by the

random excitation:
S (a)) =— hm E{ q(w)q (a))} . 41)

The vector (@) with the finite Fourier transforms of the panel modal velocities can be derived from
the combination of the Fourier transforms of equations (19), (20), (31). Since l =dq e / dt, and

considering that, for the notation shown in figure 1(b), the impedance of the shunt is given by
Z = —vpe(w)/ipe (@) , the vector q(w) can be expressed as follows:

qo)=Yf, (o), (42)
where:
. 2 . T 1
Y(w) = ]0)[—0) M+]a)(Cp +Zspg®pe®pg)+ KT ®,, (43)
andf (@) contains the finite Fourier transform of the M primary forces acting on the panel and

Zye =(Z5' + joC

derived with the following equation:

,,e)_1 . Thus, the matrix S o (w) with the PSDs of the plate modal velocities can be

S g (@)= lim EH Y(olf, (] (0)Y" (w)} - Y @Sy, @Y (@), @



where St ¢, (@) is the matrix with the PSD functions of the 16 uncorrelated white noise forces acting on

the plate, which, assuming unit primary excitation, is given by a (16x16) identity matrix. In summary,
the kinetic energy PSD can be derived by substituting equation (44) into equation (40) so that:

1
Si(@ = m,TrlY(@Sy; (@Y (@)]. (45)

When the sweeping operation mode is implemented, the system becomes time-variant and the time
history of the kinetic energy function is not anymore stationary, therefore the PSD kinetic energy cannot
be defined [33, 34]. However, for a smooth sweep, the process can be categorized as cycle-stationary
and a Fourier transform analysis can be used to estimate the kinetic energy PSD in the frequency domain
[35]. In this case, the PSD of the kinetic energy cannot be derived from equation (45) but should be
calculated from equations (40) and (41) after the vector (@) has been derived from the numerical finite

Fourier transform of the time domain vector q(#), which is calculated numerically using a stochastic
integration algorithm as stated above in the end of Section 2.1.

3. Single patch systems
Simulation results for the plate with the top left piezoelectric patch only are presented in this section.
Two cases are investigated considering a classical fixed tuning shunt and the proposed sweeping shunt.

3.1. Fixed tuning shunt

For the fixed tuning operation mode, as indicated in table 3, the RL shunt is tuned to control the flexural
response at the first resonance frequency of the plate. Considering figure 2(a), the thin solid black line
shows the 22 — 176 Hz spectrum of the flexural kinetic energy of the plate without the piezoelectric
patch, which is characterized by a series of five peaks (the last two being only 3 Hz apart from each
other) due to the resonances of the panel low order natural modes. The thick solid green line shows the
spectrum of the flexural kinetic energy of the plate equipped with the shunted piezo (thick solid green
line). In this case it can be noted large reduction, of about 15.5 dB, of the controlled mode resonance
peak, and some extra reductions, of about 3, 6 and 2.7 dB, of the following four resonance peaks.

3.1. Sweeping shunt
For the sweeping shunt operation mode, the inductance in the RL shunt is harmonically varied such that
the shunt natural frequency is swept between the lower and upper limits of the frequency control range
with the following harmonic law:

0, =0, +(@; —@)sin@,t)*, (44)

where @; and @, are the initial and final values of the sweep frequency range listed in table 3 and ¢,

is the sweeping circular frequency set to 6 Hz. As discussed in reference [36], this sweeping law is
obtained by continuously varying the inductance in the shunt with the following law:

1
Ly=———. (45)
a)szh Cpe
Also, as discussed in reference [36], the resistance of the shunt is changed in such a way as to maintain
a constant damping ratio equal to 30%. The thick solid red line in figure 2(b) shows the effects produced
by the sweeping absorber. The amplitudes of the three resonance peaks in the targeted 30 — 130 Hz
control band are effectively controlled. More specifically, reductions of about 11.7, 7, 13 dB are
observed for the first three resonance peaks, and about 3 dB for the fourth resonance peak, which lies
outside the controlled frequency band.
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Figure 2.Flexural kinetic energy of the plate with no piezoelectric patch (thin solid black line) and
with the top left piezoelectric patch and (a) an RL shunt tuned to the first resonant frequency (thick
solid green line);(b) a sweeping shunt tuned to the 30 — 130 Hz frequency band (thick solid red line).

4. Multiple patch systems

The same analysis as that presented in the previous section is introduced here for the panel equipped
with five absorbers considering a control frequency range comprised between 22Hz and 1 kHz. Table 4
shows the targeted frequencies for the fixed tuning absorbers. Two operation modes of the sweeping
shunted absorbers are considered: first, a series mode in which the control frequency range is divided in
five sub-bands and each absorbers is acting on one of them; second, an asynchronous mode in which
the five absorbers are acting on the whole control frequency range with a phase shift of z7/5 between
each other. In the series operation mode, each one of the five sweeping absorbers is configured to work
on one of the five sub-bands, with some overlapping between consecutive bands.

Table 4: Multi-patch systems control frequencies or control bands.

Type Absorber 1 Absorber 2 Absorber 3  Absorber 4  Absorber 5
Fixed 39 Hz 113 Hz 253 Hz 456 Hz 634 Hz
Series sweep 30- 125 Hz 100 - 250 Hz 230-440Hz  400-670Hz 620 -970 Hz
Asynchronous sweep 30 to 970 Hz frequency band with a phase shift of Z/5 between the sweeps

4.1. Fixed tuning shunts

Figure 3 shows the 22 — 1000 Hz spectrum of the flexural kinetic energy of the plate without the
piezoelectric patches (thin solid black line) and with the five piezoelectric patches implementing the
fixed tuning shunts (thick solid green line). Each absorber is tuned to control the flexural response at
one resonance within each sub-band, which are highlighted by different colours in the plot. At the lower
frequencies, the spectrum for the plain plate is characterized by a series of well-defined sharp resonance
peaks that start to overlap as frequency rises. The spectrum for the plated with the five fixed tuning
absorbers is characterised by smoother peaks. It can be seen that the five fixed absorbers produce
respectively reductions of the flexural kinetic energy of around 20 dB, 9 dB, 12 dB and 8 dB at the first
four resonances, rather poor control effects between 200 Hz and 300 Hz, and then good reductions of 8
to 15 dB between 300 Hz and 500 Hz and 4 to 10 dB between 550 Hz and 650 Hz.



Kinetic energy (dB Rel. 1 J)

Y Sy S T | i T S

100 200 300 500
Frequency (Hz)

50 70 700 1000

Figure 3.Flexural kinetic energy of the plate with no piezoelectric patch (thin solid black
line) and with the five piezoelectric patches implementing RL shunts tuned to the
resonance frequencies as specified in table 4 (thick solid green line).
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Figure 4. Flexural kinetic energy of the plate with no piezoelectric patch (thin solid black
line) and with the five piezoelectric patches (thick solid red line) implementing either the
series sweeps (plot a) or asynchronous sweeps (plot b) as specified in table 4.



4.2. Sweeping shunts

The spectrum of the flexural kinetic energy of the plate implementing the series and asynchronous
sweeping modes are presented in figure 4 (thick solid red line in plots a,b respectively). In the series
mode, the system produces good flexural vibration reductions below 200 Hz, in particular about 14 dB
for the first and third resonances and 8 dB for the second one. The performance drops to around 4 dB
reduction of the flexural vibration for the resonances comprised in the 200-300 Hz band and then very
good control effects are obtained between 300 and 500 Hz, with reductions of the resonance peak
amplitudes between 6 and 17 dB. The system also works well between 550 Hz and 650 Hz achieving
between 6 and 12 dB and some extra reductions can be seen at higher frequencies in the 750-950 Hz
band.

The asynchronous sweeping operation mode also shows very good performances at low and mid
frequencies, with improved control effects over the 200-300 Hz band compared to the series mode.
However it has lower control effects over the resonances at 450 Hz and 530 Hz. At higher frequencies
the control performance is similar to that of the series mode.

S. Conclusions

This simulation study has presented the effects of using time-varying shunted piezoelectric patch
absorbers bonded on a thin aluminium panel to control its flexural response in a frequency range
comprised between 22 and 1000 Hz. Single and multiple absorbers configuration were analysed, and it
could be seen that the proposed system is able to significantly reduce the flexural response of the panel
both at low frequencies, where the spectrum of the plate flexural kinetic energy is characterised by well
separated resonance peaks, and at mid frequencies, where spectrum of the plate flexural kinetic energy
is characterised by wide band crests produced by the overlap of clusters of modes.

Recalling that the sweeping absorbers do not require a precise tuning of the shunts, it is concluded
that they can offer significant practical advantages for the development of effective, robust and easy to
use modular devices, which can be operated without the need of system identification of the hosting
structure physical properties.
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