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Abstract. Passive vibration isolators are desired to have both high static stiffness to support large 
static load and low local stiffness to reduce the displacement transmissibility at frequencies 
greater than resonance. Utilization of a vertical buckled beam as a spring component is one way 
to realize such a stiffness characteristic since it exhibits a smaller ratio of local stiffness to static 
stiffness than that of a linear spring. This paper investigates the behaviour of a vibration isolator 
using inclined beams as well as vertical ones and examines the effect of beam inclination for the 
purpose of improving the isolation performance. The experimental system investigated has an 
isolated mass which is supported by a combination of two types of beams: buckled beams and 
constraining beams. The buckled beams can be inclined from the vertical by attachment devices, 
and the constraining beams are employed to prevent off-axis motion of the isolated mass. The 
results demonstrate that the inclination of the buckled beams reduces the resonance frequency 
and improves the displacement transmissibility at frequencies greater than resonance. 

1.  Introduction 
Vertical vibration isolation using axially compressed buckled beam has the advantage that it has a low 
resonance frequency without large deflection when supporting a static load [1].  Winterflood et al. 
proposed a vibration isolator using such high static and low local stiffness characteristics of buckled 
beams [1,2].  Virgin and Davis analytically investigated the force-displacement relationship of a vertical 
buckled beam including the effects of initial geometric imperfections, and experimentally obtained the 
displacement transmissibility for a vibration isolator with such vertical buckled beams [3]. 

Some quasi-zero-stiffness systems using a combination of a positive and negative stiffness have also 
been proposed.  Carrella et al. demonstrated that an oblique spring can have a negative stiffness 
characteristic in a certain range of vertical displacement and analytically investigated the static 
characteristics of a system consisting of one vertical and two oblique springs [4].  When this mechanism 
is used in a vibration isolator, parameters of the system are determined so that compressed oblique 
springs are in horizontal position when an isolated mass is at equilibrium.  Force transmissibility and 
displacement transmissibility of this system were examined by the analytical and numerical approaches 
[5,6].  The vibration isolator with axially compressed beams instead of horizontal springs has also been 



 
 
 
 
 
 

proposed [7].  Liu et al. analyzed force and displacement transmissibility of the system which has such 
a quasi-zero-stiffness mechanism [8], and Fulcher et al. examined the vibration isolation performance 
experimentally as well as analytically [9].  Magnetic force has also been used to create negative stiffness 
characteristic [10,11], and both positive and negative stiffness characteristics [12]. 

The force-displacement relationship shown in reference [4] indicates that the vertical stiffness of an 
oblique spring decreases with an inclination angle due to geometric nonlinearity.  This suggests that the 
resonance frequency of a vibration isolator with buckled beams may also be reduced by inclining the 
beams since a buckled beam can be regarded as a compressed spring. 

In this paper, the effectiveness of inclining the buckled beams in a vibration isolator is examined.  
Stiffness characteristics of a vibration isolator with inclined as well as vertical beams are investigated 
and compared.  Base excitation tests are also conducted to confirm the reduction in displacement 
transmissibility.  The term "local stiffness" is referred as "dynamic stiffness" in some references.  
However, the latter is also used for the transfer function between force and displacement [13].  To 
prevent this confusion, the term "local stiffness" is used throughout in this paper. 

2.  Effect of beam inclination on stiffness 
The arrangement of a vertical vibration isolation system considered in this paper is depicted in figure 1.  
An isolated mass is supported by two pairs of identical flat beams which are buckled in opposite 
directions, as shown in figure 1.  Stiffness of the buckled beams in the vertical direction plays the role 
of a spring in conventional vibration isolation systems.  The beams are set in the vertical position in 
figure 1(a) and at an angle   with respect to the vertical in figure 1(b). 

 
 

          
 

    
 

Figure 1. Vertical vibration isolation 
system consisting of an isolated mass 
and two pairs of buckled beams.  The 
beams are set (a) in the vertical 
position and (b) at an angle   with 
respect to the vertical. 
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Figure 2. Theoretical (a) force-displacement and (b) 
stiffness-displacement characteristics of the set of 
buckled beams shown in figure 1. 
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The force-displacement relationship of a buckled beam with arbitrary clamp angles at both ends is 
formulated using elliptic integrals of the first and second kind [1].  The calculated results for the set of 
inclined beams in figure 1 are plotted in figure 2, where x  is the vertical deflection of the beams which 
is taken from the unbuckled position and normalized by the beam length, and F  is the vertical 
compressive force normalized by the buckling load for 0   .  For supporting a large static load and 
reducing the natural frequency of the system, F  should be large whereas /dF dx  should be small. 

The figure demonstrates that both F  and /dF dx  increase with displacement x  in the case of 
0   , and the force-displacement relationship becomes more flattened.  This suggests that beam 

inclination is effective for reducing the local stiffness and consequently the resonance frequency of the 
vibration isolation system. 

In the case of 30   , the value of /dF dx  is negative for 0.141x  .  If the intended equilibrium 
position of the isolated mass is in this range, an additional spring with appropriate positive stiffness 
needs to be attached in order to stabilize the system. 

 
 

 

 

Figure 3. (a) Photograph and (b) schematic of the test rig. 
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3.  Test rig 
The test rig is shown in figure 3.  The isolated mass consisting of a block, threaded rod and additional 
mass is supported by a combination of buckled beams and constraining beams.  The isolated mass is 
904.5 g ( 8.87 N)  in total and the size of the buckled beams is 300 mm 10 mm 0.3 mm  .   

The buckled beams can be inclined to 10 , 20     and 30  from the vertical by attachment devices.  
Note that   represents the beam inclination before buckling.  The constraining beams in the horizontal 
plane are employed to prevent off-axis motion of the isolated mass.  Both types of beams are attached  
to the base frame which is mounted on a shaker table.  To prevent initial deformation of the constraining 
beams, the height of the base frame, denoted by d  in figure 3(b), is adjusted so that the constraining 
beams become flat when the vertical or inclined beams are not buckled. 

To examine the isolation performance in the case when the system behaves in a linear fashion, the 
base frame was excited by a harmonic motion with small peak-to-peak amplitude of 1 mm.  
Displacements of the isolated mass and the base frame were measured by laser sensors, and then FFT 
analyses were conducted to obtain the displacement transmissibility. 

4.  Results 
To confirm the effect of the beam inclination on the stiffness, the force-displacement relationship was 
investigated experimentally for the inclination angles 0 , 10 , 20      and 30 . 
First, the relationship was measured in the vicinity of the equilibrium position of the isolated mass by 
using static loads of 8.81 N ~ 8.91 NF  .  The results are shown in figure 4.  Here, the displacement 
for 8.81 NF   is set to zero in all cases of  , and 0F  denotes the static load ( 8.87 N)  at the 
equilibrium position.  As shown in the figure, the stiffness about the equilibrium position becomes lower 
as the beam inclination   increases.  The stiffness values calculated from the slopes of the fitted lines 
in figure 4 are listed in table 1.  The effect of beam inclination is small between 0    and 10 , but 
stiffness decreases rapidly as   increases to 20  and 30 .  Table 2 shows the natural frequency nf  
measured from free vibrations for each value of  .  As predicted from table 1, the natural frequency 
decreases with  . 

 
 

Figure 4. Force-displacement relationship in the vicinity of 
the equilibrium position of the isolated mass.  The symbols 

, , , and  represent experimental results for 
0 , 10 , 20      and 30 , respectively.  0F  denotes the 

static load ( 8.87 N)  at the equilibrium. 
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Table 1. Stiffness obtained from 
figure 4. 

 Stiffness 

0 56.2 Nm 

10 52.2 Nm 

20 40.1 Nm 

30 21.7 Nm 



 
 
 
 
 
 

Table 2. Natural frequency 
measured from free vibration. 

 Natural frequency nf  

0 1.26 Hz 

10 1.22 Hz 

20 1.07 Hz 

30 0.78 Hz 

 
 

 

Figure 5. Force-displacement relationship in a wide range of 
displacement. (0 )ex   and (30 )ex   denote equilibrium positions 

of the isolated mass for 0    and 30 , respectively. 
 

Figure 5 shows the force-displacement and stiffness-displacement relationships as well as the ratio 
of local stiffness to static stiffness which are measured in a wider range of displacement.  Here, x  is the 
displacement of the isolated mass from the unbuckled position.  For clarity, only results for 0    and 
30  are plotted.  Two vertical dotted lines indicate the equilibrium positions, (0 ) 14.0 mmex    and 

(30 ) 52.2 mmex   , of the isolated mass for each value of  .  Normalized values of these equilibrium 
positions are given as (0 ) 0.047ex    and (30 ) 0.174ex   , respectively.   

The results shown in figures 2 and 5 have the following different features which are due to the effects 
of the constraining beams in the test rig.  Stiffness for 30    is positive at the equilibrium position 
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52.2 mmx   in figure 5 but it is negative at 0.174x   in figure 2.  This means that the positive bending 
stiffness of the constraining beams counteracts the negative stiffness of the buckled beams at this 
position.  In addition, the stiffness for 0    decreases with displacement in figure 5 but increases in 
figure 2.  This suggests that the stiffness of the constraining beams decreases with displacement, and 
therefore, reduction of the total stiffness results from the beam inclination itself and an accompanying 
reduction of stiffness contributed by the constraining beams. 

A vibration isolator with a vertical linear spring has a ratio of local stiffness to static stiffness of 1.0.  
In contrast, the value of the ratio in figure 5 is of the order of 0.1 in the range of the experiment, which 
shows the advantage of using buckled beams as a spring component in a vibration isolator.  In figure 5, 
moreover, the ratio is further reduced by beam inclination particularly in the range corresponding to 
larger static deflection.  This suggests that beam inclination is effective for improving vibration isolation 
performance. 

Finally, effectiveness of the beam inclination is examined by the base excitation test.  Figure 6 shows 
the response of the isolated mass to the base frame at an excitation frequency of 3 Hzf  .  It is seen 
that the response of the isolated mass for 30    is much smaller than that for 0   .  Table 3 shows 
displacement transmissibility values which are obtained from the amplitude ratio of the isolated mass to 
the base frame for the excitation frequency component.  Values in parentheses are calculated values for 
an undamped vibration isolation system which are obtained from the theoretical formula 

2 1|1 ( / ) |nT f f    and the natural frequencies shown in table 2.  It is confirmed that the isolation 
performance is improved by the beam inclination and the measured transmissibility agrees with the 
calculated results obtained from the theoretical formula for an undamped system. 

 
 

Figure 6. Response of the isolated mass to a base excitation at an excitation frequency 3 Hzf   in 

the case of (a) 0    and (b) 30   . 
 

Table 3. Measured displacement transmissibility.  Values in parentheses are 
calculated values from the formula 2 1|1 ( / ) |nT f f    and the natural 

frequency nf  shown in table 2. 

f 0    30    

1.4 Hz 12 dB  (13 dB) 8 dB  (7 dB) 

2.0 Hz 4 dB  (4 dB) 16 dB  (15 dB) 

3.0 Hz 14 dB  (13 dB) 23 dB  (23 dB) 
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5.  Conclusion 
The performance of a passive vibration isolator using buckled beams has been investigated.  It has been 
found from theoretical calculations that inclination of the buckled beams reduces the local stiffness, 
which suggests that beam inclination is effective for reducing the resonance frequency of the system.  
An experimental study has also been done to verify the effectiveness.  The results have demonstrated 
that beam inclination reduces the natural frequency and consequently improves vibration isolation 
performance at frequencies greater than resonance.  It has also been found that constraining beams in 
the experimental rig have a positive but reducing stiffness with respect to the displacement.  
Improvement of the performance partly results from the stiffness reduction of the constraining beams 
which is accompanied by the beam inclination. 
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