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Abstract.   In this paper, the static and dynamic characteristics of a nonlinear passive vibration 
isolation table is investigated through finite element analysis.  The intended application is 
specifically isolation in the vertical direction where the isolator is required to be sufficiently 
stiff statically to bear the weight of the isolated object and soft dynamically for small 
oscillations about its equilibrium position.  The modelled configuration consists of a rigid 
isolation table mounted on two -shaped beam isolators which are loaded to their post-buckled 
state in their unstable buckling mode by the weight of the isolated mass.  A nonlinear static 
analysis is presented to establish the negative stiffness provided by the buckled beams, and two 
linear springs are then added in parallel which are chosen to have just sufficient stiffness to 
restore stability.  Modal analysis of the linearized system about its statically deformed position 
(1mm) gives a natural frequency of just 1Hz which is considerably lower than is achievable by 
a linear isolator.  Motion transmissibility of the linearized system shows a non-resonant 
isolation region spanning two decades when the system is perfectly symmetric but additional 
resonance peaks appear when asymmetries are included in either the mass or stiffness 
distribution.  Several strategies are explored for reducing the prominence of these resonances. 

1.  Introduction 
Passive isolators remain the most commonly adopted form of isolator due to their simplicity, stability 
and low cost.  A key trade-off in the selection of most passive mounts is their static load bearing 
capacity, which requires high stiffness, versus their isolation bandwidth which requires low stiffness.  
This intrinsic compromise, which is a consequence of their approximately linear elastic behaviour, can 
be circumvented by designing a softening nonlinearity into the force-deflection curve.  Ideally, the 
mount is stiff when loaded statically up to its intended equilibrium position, about which it has a low 
stiffness to small dynamic perturbations.  Many nonlinear spring mechanisms have been proposed, 
especially over the last 15 years.  An extensive review is presented by Ibrahim [1].  Mechanisms 
studied are often geometrically [2] or magnetically nonlinear [3] but buckled elements are perhaps the 
most common experimental manifestations, as in [4] for example.  However, such mechanisms can 
require cumbersome arrangements particularly in order to constrain lateral motions.  To overcome 
these problems, the authors have previously proposed a -shaped (inverted L-shaped) beam isolator 
which offers a potentially simple and compact realisation.  Analytical and experimental 
characterisation of the isolator has been reported in previous papers [5], [6].  This isolator exhibited 
improved isolation performance compared to an equivalent linear passive isolator but the system is 
unrepresentative of practical cases where multiple isolators are required to support a distributed mass. 



 
 
 
 
 
 

This paper considers a vibration isolation table which is supported by a pair of post-buckled -
shaped beam isolators.  This model accounts for the moment of inertia of the isolation table and the 
rotational stiffness provided by the spacing of the beam springs. The configuration is described in 
section 2.  In section 3 finite element results are presented for the nonlinear static analysis of the 
system, followed by modal and harmonic base excitation analyses of the system when linearized about 
its equilibrium position.  Perturbations are introduced to the mass and stiffness distributions in section 
4 to illustrate the sensitivity of the system to asymmetry.  Also, section 4 identifies the source of this 
sensitivity which can be mitigated by detuning the system from near quasi-zero stiffness (QZS). 

2.  A vibration table comprising post-buckled -shaped beam isolators 
A schematic of a passive nonlinear vibration isolation table is shown in Fig. 1.  The key feature of the 
arrangement are the -shaped beams.  These can be made to buckle in their stable buckling mode so as 
to provide low stiffness to dynamic perturbations about an equilibrium position whilst providing high 
static stiffness to support the weight of the isolated object.  Here, however, the beams are made to 
buckle in their unstable buckling mode in order to provide negative stiffness to counteract the positive 
stiffness of a pair of linear springs.  A rigid isolation table is suspended from the vertices of the -
shaped beams by short wires to facilitate hinged joints.  An isolated object can be placed at the centre 
of the isolation table.  By tuning the spring constant and the initial extension of the linear springs, 
Quasi-Zero-Stiffness (QZS) can be realized for an isolated object with arbitrary mass. 
 

 
Fig.1.  Schematic of a passive vibration isolation system comprising post-buckled -shaped beam 

isolators 

3.  Static and dynamic behaviour of the isolation table 
In this section, the static and dynamic behaviour of the proposed isolation system is predicted using 
Finite Element analysis.  The parameter values of the model are listed in Table 1.  The dimensions of 
the -shaped beams were chosen to be the same as used in previously published numerical and 
experimental studies [5],[6]. 

3.1.  Static behaviour 
Fig. 2 shows the force-deflection curve in the vertical direction when a downward displacement is 
imposed at the centre of the isolation table such that the -shaped beams buckle in their unstable 
buckling mode.  In this analysis, the linear springs and gravitational acceleration are omitted.  Motion 
of the isolation table is purely in the vertical direction owing to symmetry of the system.  The solid 
line in Fig. 2 shows the static restoring force and the dashed line shows the tangent stiffness, i.e. the 
gradient of the force-deflection curve.  From the figure, it is confirmed that the system exhibits 
negative stiffness in its post-buckled state.  However, the system can be stabilised by the addition of 
linear springs of appropriate stiffness to yield arbitrarily low overall tangent stiffness. 
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Table 1.  Dimensions of the -shaped beam isolators and the isolation table 

-shaped beam 
isolators 

Vertical beam 
Length [mm] 100 
Width [mm] 18 

Thickness [mm] 0.5 

Horizontal beam 
Length [mm] 100 
Width [mm] 18 

Thickness [mm] 0.7 

Isolation table 
Length [mm] 300 
Width [mm] 50 

Thickness [mm] 50 
Wire (circular 
cross-section) 

Length [mm] 10 
Radius [mm] 1.5 

Common 
material 

parameters 

Young's modulus [GPa] 180.36 
Poisson's ratio [-] 0.3 
Density [kg/m3] 7000 

 
A static equilibrium position of about 1mm was chosen to allow for modest dynamic oscillations 

within the post-buckled state.  At this position, the tangent stiffness is about -5,500N/m.  The linear 
springs were chosen to have a stiffness of 3000N/m to ensure low but positive stiffness of the system.  
The parameter values for the system are listed in Table 2. 

When gravitational acceleration was included in the model the isolators buckled under the weight 
of the isolated mass and the isolation table reached a stable equilibrium position at about 1mm below 
its unloaded state, as expected from the preceding static analysis.  The linearized stiffness matrix in its 
post-buckled state was then used to conduct subsequent modal analysis and base excited harmonic 
analysis. 

 
Fig. 2  Static force and tangent stiffness as functions of applied vertical displacement for the system 

without stabilizing linear springs 
 

Table 2.  Specification of the linear spring and mass of the isolated object 

Linear spring 
Spring constant [N/m] 3000 

Initial tension [N] 0.15 

Isolated object 
Mass [kg] 17.24 

Moment of inertia [kg.m2] 0 
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3.2.  Modal analysis in the post-buckled state 
Modal analysis was conducted using the linearized stiffness matrix in the static equilibrium state. At 
this stage, the acceleration of gravity was omitted so that the pendulum mode of the isolation table was 
not obtained.  The natural frequencies of the first ten modes are listed in Table 3.  The fundamental 
natural frequency of the system is about 1Hz.  By comparison, a linear single degree-of-freedom 
system with the same static deflection would result in a natural frequency of over 15Hz.  The mode 
shapes of the first 10 modes are shown in Fig. 3.  The black and red lines correspond to the static 
deformation shape and the mode shape respectively.  From Table 3, it is seen that there are three 
additional modes at slightly higher frequencies than the fundamental mode that could jeopardise the 
system’s low frequency isolation performance.  However, by inspection of Fig. 3(b) to (d) it is 
apparent that the centre of the isolation table, where an isolated object is located, corresponds to a 
nodal point of these additional modes and so they are not expected to transmit vertical motion. 
 

(a) mode 1 (b) mode 2 
 

(c) mode 3 (d) mode 4 
 

 
(e) mode 5 (f) mode 6 

 

(g) mode 7 (h) mode 8 
 

 
(i) mode 9 (j) mode 10 

 
Fig. 3.  Mode shapes of linearized model about an equilibrium position of 1mm 

(── static deformation, ── mode shape) 
 
 



 
 
 
 
 
 

Table 3.  Natural frequencies of the post-buckled system 
Order Natural frequency [Hz] Order Natural frequency [Hz] 

1 1.02 6 266 
2 3.16 7 266 
3 5.23 8 495 
4 6.44 (out-of-plane) 9 496 
5 52.7 (out-of-plane) 10 785 

 

3.3.  Motion transmissibility in the post-buckled state 
Harmonic base excitation of the model in its post-buckled state was applied to all six mounting points 
shown in Fig. 1 and a linear harmonic analysis was conducted based on modal superposition of the 
first 30 modes.  The motion transmissibility between the base and the isolated object is shown by the 
black line in Fig. 4.  From the figure, it is confirmed that the first resonance peak appears at the first 
natural frequency and the next resonance appears at the sixth natural frequency.  As anticipated from 
inspection of the mode shapes, the intervening modes are neither excited nor observed in the 
frequency response which permits good isolation performance in this frequency range.  By comparison, 
the frequency response of an equivalent linear single degree-of-freedom system is shown by the blue 
dashed line in Fig.4.  The proposed system is seen to offer substantially improved isolation 
performance from 2-200Hz. 
 

  
Fig. 4.  Motion transmissibility of the linearized model about an equilibrium position of 1mm 

compared with a linear single degree-of-freedom system with the same static deflection 
 

4.  Investigation of the effects of asymmetry on isolation performance 
The isolation performance suggested by Fig. 4 can only be realized when symmetry of the system is 
assured.  In practice, asymmetry is inevitable due to manufacturing variability and imprecise 
installation.  In this section, the effects of both stiffness and mass asymmetry are investigated.  In both 
cases the elastic centre can be expected to deviate from the centre of mass thereby coupling 
translational and rotational degrees of freedom. 
 
 

10–1 100 101 102
–100

–50

0

50

Frequency [Hz]

T
ra

ns
m

is
si

bi
lit

y 
[d

B
]

: Proposed model

: Equivalent linear spring



 
 
 
 
 
 

4.1.  Frequency response of asymmetric system 
Asymmetric stiffness was introduced by perturbing the spring constant of the right linear spring whilst 
leaving the stiffness of the left spring unchanged.  Fig. 5(a) to (c) show the results for stiffness changes 
of ±3% and -20%.  It is seen that the second and third modes, which did not appear when the system 
was symmetric, are now apparent owing to small shifts in their nodal points.  These peaks disrupt an 
otherwise broad isolation region. 

Mass asymmetry was introduced by shifting the position of the isolated mass by 0.2mm from the 
centre of the isolation table.  The predicted motion transmissibility is shown in Fig. 5(d).  Again, the 
second and the third modes are prominent in the response and are detrimental to the isolation 
performance.  However, in this case the fundamental resonance has reduced to less than 0.2Hz.  The 
system is now close to quasi-zero stiffness since the shift in weight distribution has altered the tangent 
stiffnesses of the buckled beams.  In practice, such a marginally stable system may be undesirable and 
a very low natural frequency may render the system too responsive to any direct forcing of the isolated 
object. 
 

Fig. 5(a)  Transmissibility of system with 
asymmetric stiffness (spring constant perturbed 

by +3% to 3090N/m) 

Fig. 5(b)  Transmissibility of system with 
asymmetric stiffness (spring constant perturbed 

by -3% to 2910N/m) 
 

Fig. 5(c)  Transmissibility of system with 
asymmetric stiffness (spring constant perturbed 

by -20% to 2400N/m) 

Fig. 5(d)  Transmissibility of system with 
asymmetric mass distribution (isolated object 

shifted by 0.2mm from the centre of the isolation 
table) 

4.2.  Mitigation of additional resonances due to asymmetry 
In the previous section, it is shown that the isolation performance of proposed system can deteriorate 
significantly owing to small asymmetries of the system.  In this section, two possible countermeasures 
for mitigating the effect of asymmetry on the isolation performance are investigated. 

4.2.1.  Effect of isolation table       The second and the third natural modes are dominated by rotational 
motion of the isolation table, as shown in Fig. 3(b) and 3(c), and are expected to be sensitive to the 
moment of inertia of the isolation table.  This parameter was varied in the model by increasing its 
length from 300mm to 900mm, and also reducing its length to 100mm.  The mass of the isolated 
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object was also adjusted so that the overall mass of the isolated object and the isolation table was 
unchanged.  Figs. 6 and Figs. 7 show the frequency responses for the 900mm model and the 100mm 
model respectively.  Each model was considered with and without stiffness asymmetry.  Comparison 
of Figs. 6 and 7 with Fig. 5(a-b) suggests that the length of the isolation table does not assist greatly in 
mitigating the system’s sensitivity to asymmetry. 
 

 
(a) symmetric model (b) +3% stiffness asymmetry (c) -3% stiffness asymmetry 

 
Fig. 6.  Motion transmissibility of system with lengthened (900mm) isolation table 

 

 
(a) symmetric model 

 
(b) +3% stiffness asymmetry (c) -3% stiffness asymmetry 

Fig. 7.  Motion transmissibility of system with shortened (100mm) isolation table 
 

4.2.2.  Effect of static deflection in post-buckled state       The static deflection of the system was 
increased from 1mm to 2mm by adjusting the pretension of the linear springs.  Figs. 8(a) to 8(c) show 
the motion transmissibility of the system with and without asymmetry in the linear springs.  The 
prominence of the second and third modes is reduced considerably.  By lowering the static equilibrium 
position further into the buckled region the combined negative stiffness of the buckled springs has 
almost halved from -5,500N/m to about -3000N/m, according to Fig. 2, such that the overall stiffness 
with the linear springs installed increases substantially from about 500N/m to 3000N/m.  Any 
subsequent asymmetry in one of the linear springs no longer has a disproportionate effect on the 
stiffness distribution and hence the position of the elastic centre is less affected.  The cost of this 
benefit is roughly to double the fundamental natural frequency.  Figs. 8(d) and 8(e) show the 
corresponding results for an asymmetric mass distribution in which the isolated mass is shifted first by 
0.2mm and then by 1.0mm, thereby shifting the centre of mass away from the elastic centre.  Again, 
the system is seen to be less sensitive to mass asymmetry than when the equilibrium position was set 
to 1mm.  Fig. 8(f) shows the result for the same system as in Fig. 8(e) but with a constant damping 
ratio of 0.5% included in the model which lessens the severity of the offending resonances. 
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(a)  symmetric model (b) +20% stiffness asymmetry (c) -20% stiffness asymmetry 

 

 
(d) isolated object shifted by 

0.2mm 
(e) isolated object shifted by 

1.0mm 
(f) same as in (e) but with a 

constant damping ratio of 0.5% 
 

Fig. 8.  Motion transmissibility of linearized model about an equilibrium position of 2mm 

5.  Conclusions 
This paper has investigated, by Finite Element analysis, the static and dynamic characteristics of a 
vibration isolation table comprising post-buckled -shaped beam isolators.  The fundamental 
resonance of the proposed system occurs at about 1Hz for a static deflection of just 1mm, as compared 
to 15Hz for a linear isolator with the same static deflection.  If symmetry is assured then the system is 
free from other resonances until above 200Hz.  However, small asymmetries in either the stiffness or 
mass distribution cause intervening resonances to be excited thus disrupting the wide isolation region.  
The system is found to be significantly less sensitive to asymmetries if the beam isolators are used 
further into their post-buckled region, although this has the undesirable side-effect of increasing the 
fundamental natural frequency. 
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