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Abstract. Recently, complex shaped aluminium panels have been adopted in many structures 
to make them lighter and stronger. The vibro-acoustic behaviour of these complex panels has 
been of interest for many years but conventional finite element and boundary element methods 
are not efficient to predict their performance at higher frequencies. Where the cross-sectional 
properties of the panels are constant in one direction, wavenumber domain numerical analysis 
can be applied and this becomes more suitable for panels with complex cross-sectional 
geometries. In this paper, a coupled wavenumber domain finite element and boundary element 
method is applied to predict the sound radiation from and sound transmission through a 
double-layered aluminium extruded panel, having a typical shape used in railway carriages. 
The predicted results are compared with measured ones carried out on a finite length panel and 
good agreement is found. 

1. Introduction 
Nowadays, complex shaped stiffened panels are widely used for many structures such as railway 
vehicles, ships, offshore structures, etc. in order to make them lighter and stronger. To predict the 
acoustic performances of these structures, it is essential to understand the vibro-acoustic behaviour of 
complex shaped panels. As examples of such panels, extruded aluminium panels which have uniform 
cross-sections along their lengths are considered in this study. 

For structures with uniform cross-sections like extruded panels, wavenumber domain analysis 
becomes more suitable for predicting their vibro-acoustic performance. The radiation ratio and sound 
transmission loss are important vibro-acoustic features of extruded panels that are investigated in this 
study. The radiation ratio and sound transmission of extruded panels have been studied by a few 
researchers using wavenumber domain techniques so far. The radiation ratio for a simple plate strip 
has been studied theoretically by Xie et al. [1] and they proposed simplified formulae for the radiation 
ratio of plate strips. A numerical analysis for the radiation ratio from and sound transmission through 
plate strips has been carried out by Prasetiyo [2] using a wavenumber domain numerical method. He 
found that the numerical results coincided well with the theoretical results for plate strips. For plate 
strips with longitudinal stiffeners, Orrenius and Finnveden [3] have examined the contribution of the 
stiffeners in terms of the dispersion relations by using the wavenumber domain finite element method. 
From their study, it was found that the stiffeners behave like rigid or simply supported boundaries at 



 
 
 
 
 
 

high frequencies and then the waves travel only along the strips (or bays) which are bounded by two 
adjacent stiffeners. Because of that, the dispersion curves of the stiffened plate strip converge to those 
of bays separated by the stiffeners. Kim and Ryue [4] have predicted the radiation ratio for single and 
double layered stiffened strip plates numerically and investigated the variation of that caused by the 
stiffeners and added layer. However, they chose a double layered extruded panel possessing a 
relatively simple cross-sectional geometry. 

In terms of experimental study, Müller [5] has measured the radiation ratio and sound transmission 
of an extruded panel with a complex geometry, which is a typical floor panel of a railway carriage. 
Nilsson et al. [6] have also measured the sound transmission loss through the extruded panel. In these 
experiments, Müller mounted the extruded panel in an aperture between two reverberation chambers, 
while Nilsson et al. used the reverberation and anechoic chambers. However, the experimental results 
have not previously been compared with numerical ones. 

In this paper, the radiation ratio and sound transmission loss of an extruded panel used in railway 
vehicles are investigated using a numerical method, called the wavenumber domain finite and 
boundary element method (WFE/BE) method. The WFE method has often been used for the vibration 
analysis of waveguide structures like rails [7, 8] and plates [3], etc. The WFE/BE approach has also 
been used to predict the sound radiated from rails [9], simple plate strips [2] and stiffened double 
plates [4]. The numerical results predicted from the WFE/BE method are validated with experiments. 
In WFE/BE analysis, the panel is assumed to have an infinite length but the experiments are carried 
out with a finite length extruded panel. Despite this, from the comparison between the simulated and 
measured results, it is found that the predicted results from the WFE/BE method coincide well with 
the measured ones, especially at high frequencies. 

2. Wavenumber domain finite and boundary elements analysis for an extruded panel 
In this section, the wavenumber domain finite element and boundary element (WFE/BE) method is 
described briefly. This method is known to be particularly useful for waveguide structures which have 
uniform cross-section along one direction ( x  direction in this paper), such as rails, plates, ducts, etc. 
Details of the derivation of the governing equations are well reported in the literature [10] so only a 
brief introduction of the method is given here. For the WFE/BE analysis in this paper, a software 
program, called WANDS, developed at ISVR is used to analysis the vibro-acoustic behaviours in the 
extruded panel numerically. 

In this wavenumber domain method, only a 2D cross-section of a structure is meshed, assuming 
that the cross-sectional deformation travels harmonically along the third direction with respect to time 
and space. The governing equation of the WFEs for a waveguide structure modelled with plate 
elements is given by 

  4 2 2
4 2 1 0( ) ( ) ( )s s s s s si i i          K K K K M Φ F   (1) 

where 4sK , 2sK , 1sK , and 0sK  are the matrices that come from the stiffness of the structure, sM  is 

the mass matrix,   is the angular frequency,   is the structural wavenumber along the x  direction, 

Φ  contains the displacements of the cross-section at the nodes of the FEs and sF  is the vector of 
excitation forces at these nodes. 

For free vibration, i.e. s F 0 , equation (1) can be solved for   at given real wavenumbers (or for 
  at given  ). This general eigenvalue problem provides dispersion relations of waves propagating 
along the x  direction of the structure. 

When a waveguide structure is connected with fluid, wavenumber domain boundary elements 
(WBE) are introduced to model the fluid and coupled with the WFEs. If this fluid-coupled structure is 
excited by mechanical forces sF and also acoustic pressures iP , the governing equations of the 
WFE/BEs are given by 
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Table 1. Properties and dimensions of the extruded panel. 

Material 
Density 
 (kgm-3) 

Thickness 
(mm) 

Poisson’s ratio
Young’s modulus 

(GPa) 
Aluminium 2700 2.54 0.3 70 

Rubber 1500 4 - - 
 
vehicle, is examined by WFE/BE analysis. The panel is made of aluminium but the bottom plate is 
covered with a rubber mat. The cross-sectional models of the panel structure are illustrated in figure 
1(b) and 1(c), composed of plate and beam finite elements. The low height stiffeners attached on the 
top plate are modelled using beam elements and marked with ‘□’ in figure 1(b) and 1(c). To reflect the 
attached rubber mat on the bottom plate, the mass and damping of the bottom plate have been 
increased. The damping loss factor assumed for bare aluminium is 0.005 and for the compound plate is 
0.02. The dimensions and properties of the panel are listed in table 1. The air cavity inside the 
extruded panel is not considered in this study because lots of nodes for modelling the air leads to long 
calculation time. 

In the WFE/BE modelling for the radiation ratio, the panel is set to have free-free boundary 
conditions at both ends and the boundary elements are placed to enclose the panel entirely as shown in 
figure 1(b) (BE nodes are marked with ‘○’ in figure 1(b) and 1(c)). In this modelling, it is assumed 
that the sound radiation from the left and right sides of the panel are negligible so that the WBEs on 
both sides are set to be rigid in order to simplify the model. 

On the other hand, in case of sound transmission, the WBEs are located only on the top and bottom 
plates as shown in figure 1(c) assuming that each panel is rigidly baffled for 0y   and 1y  m. The 
sound transmission is evaluated from the comparison between the power incident on the panel and that 
transmitted through the panel. In the experiments, the sound transmission is measured by installing the 
panel in a wall with a frame between two rooms. Therefore, the practical boundary condition of the 
panel must be between fixed and simply supported conditions. In the numerical study the simply 
supported boundary condition is applied at both ends of the panel as illustrated in figure 1(c). The 
variation induced by different boundary conditions has also been checked and it is found that it only 
affects at low frequencies. 

3.2. Dispersion relation 
In order to understand characteristics of waves propagating along the extruded panels shown in figure 
1(b) and 1(c), their dispersion diagrams are illustrated in figure 2. The dispersion diagrams shown in  

   
(a)                                                                           (b) 

Figure 2. The dispersion diagrams of the extruded panel with (a) free boundary conditions (figure 
1(b)) and (b) simply supported boundary conditions (figure 1(c)). (Acoustic wave is added with a 
dashed line). 
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(a)                                                                          (b) 

Figure 3. The deformation shapes of two waves marked with (a) ‘ ’ and (b) ‘ ’ in figure 2(b). 
 

figure 2(a) and 2(b) are obtained from the panels with the boundary conditions shown in figure 1(b) 
and 1(c), respectively. For comparison, the acoustic wavenumber is also shown with a dashed line. 

As mentioned in Section 3.1, the extruded panel is modelled with different boundary conditions at 
both ends of the panel for the prediction of radiation ratio and sound transmission. The effects of 
boundary condition are more obvious in the low frequency range as seen in figure 2. There are several 
waves at low frequency in the case of the free-free boundary condition, as shown in figure 2(a). These 
correspond to global modes of the extruded panel. On the contrary, the panel with the simply 
supported boundary condition does not have any wave below about 75 Hz, as illustrated in figure 2(b), 
due to the restriction at the boundary; many waves appear from about 300 Hz. 

In contrast, at high frequency and high wavenumber, local modes occur in the plate strips and both 
dispersion diagrams show similar features.  It is found that there are two groups of dispersion curves at 
high wavenumber in figure 2(b). To observe the deformation shapes of these wave groups, cross 
sections of one wave from each group, marked with ‘ ’ and ‘ ’ in figure 2(b), are shown in figure 3. 
It can be seen that these two waves have a localized deformation restricted within one bay in the top 
and bottom plates between two adjacent core stiffeners. Since the bottom plate has a larger density 
than the top plate due to the rubber mat, the wave marked with ‘ ’ travels relatively slower than that 
marked with ‘ ’. 

3.3. Calculation of radiation ratio and sound transmission loss 
The radiation ratio ( ) of the structure can be determined as 
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where c  is the sound speed in the fluid,   is the perimeter of the cross-section in contact with the 

fluid and 2

inf
v  represents the integral of the mean-square velocity over the length and the average 
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where k  is the acoustic wavenumber,  denotes the complex conjugate. Since  p   and  v   can be 

found from equations (5) and (6), equations (8) and (9) can be evaluated with the WFE/BE solutions. 
For the calculation of sound transmission in the WFE/BE method, incident waves which excite the  

 



 
 
 
 
 
 

 

 
 

(a)                                                                  (b) 

Figure 4. Coordinates to define a wave incident on the plate (a) in 3D space and (b) in the y z  plane. 
 
extruded panel should be defined. It is assumed that the sound is incident on the top plate with an 
angle,  , in the y z  plane and an angle,  , about the x -axis, as depicted in figure 4. The acoustic 
wavenumber of the incident wave can be written as 

  1 22 2 2
x y zk k k k    (10) 

with the directional wavenumbers xk , yk  and zk  along the x , y  and z  directions, respectively. These 

directional wavenumbers can be expressed in terms of   and   as 

 cosxk k   (11) 

 sin cosyk k    (12) 

  1 22 2 2
z x yk k k k   . (13) 

The incident power, iW , can be obtained in the wavenumber domain as 
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For the extruded panel, the transmitted power, tW , can be calculated as 
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where tp  and tv  are the sound pressure and fluid particle velocity on the bottom plate. The 

transmission coefficient,  , is defined by the ratio between the incident and transmitted powers as 
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Since equation (16) applies at specific angles   and  , the transmission coefficient for a diffuse 

sound field, d , needs to be calculated by [11] 
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(a)                                                                          (b) 

Figure 10. Comparison of radiation ratios obtained from numerical simulation and experiments for (a) 
strip excitations and (b) stiffener excitations. 

  

Figure 11. Comparison of sound transmission losses obtained from the numerical simulation and 
experiment. 
 
behaviour is also observed in figure 10. Additionally, the appearance of localized strip modes in the 
extruded panel with the finite length seems to contribute to the similarity of levels between the 
numerical and experimental results at high frequency. Figure 10(a) shows that the experimental results 
measured by exciting points P1 and P2 are almost the same at frequencies above 400 Hz where the 
strip modes cut on. From this feature, it can be said that the panel adopted in the present study has a 
weak influence of size in the x direction at frequencies higher than 400 Hz.  

The sound transmission loss measured from the experiment is shown in figure 11 together with the 
predicted one. The numerical result was obtained by diffuse incidences with angles of 0 90    , 
0 90    . It is observed from figure 11 that the measured result shows a discrepancy of about 
10dB with the predicted one at low frequencies, below about 400 Hz. However, at frequencies above 
that, the measured and predicted results agree quite well in level and tendency. As explained already, 
this agreement at high frequency can be attributed to the occurrence of localized strip modes at high 
frequencies due to the core stiffeners so that the effects of the finite length of the panel become weaker 
as frequency increases. 

Finally, from the comparison between the measured and predicted results, it is found that the 
WFE/BE method is quite reliable for predicting the vibro-acoustic behaviour of extruded panels, 
especially at high frequencies where the conventional FE/BE approach is not applicable. Therefore, it 
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can be said that the infinite length assumption introduced in the WFE/BE analysis is acceptable even 
for finite length extruded panels, especially at mid to high frequencies. 

5. Conclusions 
In this paper, the vibro-acoustic behaviour of a complex shaped extruded panel was investigated by 
using the wavenumber domain finite and boundary elements (WFE/BE) method. This method assumes 
that the panel has a uniform cross-section along its length and is infinitely long. The radiation ratio and 
sound transmission loss were predicted by this numerical method for an extruded panel. Also, in order 
to validate the numerical method, experiments were conducted with an extruded panel having the 
same cross-section but a finite length. 

For the radiation ratio, two different types of excitation point were selected; in the middle of a strip 
and where a core stiffener connected in the top plate of the panel. From the comparison with the 
measured results, it was found that the predicted and measured results show quite similar levels and 
tendencies. In case of sound transmission, the transmission loss of the panel in diffuse sound field was 
calculated from the WFE/BE method. It was also found from the comparison with the experiment that 
the predicted result has a very good agreement with the measured one at frequencies above 400 Hz. 

It was observed from the simulation and measurements that the panel used in this study possesses 
localized deformation trapped in individual strips above 400 Hz. For this reason, the numerical results 
for the infinite length extruded panel match quite well with the measured ones for the finite length 
panel at frequencies above 400 Hz. 

From this study, it was confirmed that the WFE/BE method is applicable in predicting the vibro-
acoustic features of complex extruded panels of finite lengths at mid to high frequencies. It will be 
helpful to draw design measures improving the vibro-acoustic performances of the extruded panel, 
particularly for high frequencies where the conventional FE/BE method is not suitable. 
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