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Abstract. Recent years have seen an increasing interest in the dielectric electroactive polymers 

(DEAPs) and their potential in actuator applications due to the large strain capabilities. This 

paper starts with an overview of some configurations of the DEAP actuators and follows with 

an in-depth literature and technical review of recent advances in the field with special 

considerations given to aspects pertaining to acoustics and vibration control. Significant 

research has shown that these smart actuators are promising replacement for many 

conventional actuators. The paper has been written with reference to a large number of 

published papers listed in the reference section. 

1. Introduction 

Electroactive polymers (EAPs) are smart materials capable of substantial changes in size or shape 

subjected to electrical stimulation, and can be categorized into two major classes, namely ‘ionic’ and 

‘electronic’. The electronic EAPs include electrostrictive elastomers, ferroelectric polymers and 

dielectric electroactive polymers (DEAPs), also referred to as dielectric elastomers (DEs) (for example 

silicone, acrylic, polyurethane etc.) The DEAPs have been shown to be potentially useful materials for 

actuator applications due to their large actuation strains together with a fast response and a high energy 

density. Much attention has been paid to the application of the DEAPs in actuation technology. [1]-[5]  

The basic structure of a DEAP actuator consists of a dielectric elastomer membrane sandwiched 

between two compliant electrodes. An electric field is applied between the compliant electrodes, 

causing compression in thickness and stretching in area of the film, as illustrated in figure.1. 

Compared with the conventional actuators based on the electromagnetic principle such as electroactive 

ceramic (EAC) or shape memory alloy (SMA) actuators, the DEAP actuators possess low elastic 

stiffness and high dielectric constant. The anticipated advantage over the conventional actuators is that 

they can produce high strain levels with large deformations, considerable generated forces, high 

energy convention efficiencies, lightweight and low-noise. [6]-[8] 



 

 

 

 

 

 

 

Figure 1. Deformation of the dielectric elastomer 

membrane under high voltage.[9] 

In the past decades, the DEAP materials have been most widely used in the development of DEAP 

actuators based on their unique properties. [2] The applications of electroactive polymer (EAP) and 

dielectric elastomer (DE) were discussed by Yoseph Bar-Cohen [1][10], Ailish O’Halloran [3], 

Federico Carpi [11][12] and so on. As suggested in earlier research, the applications of the DEAP 

cover a broad spectrum such as intelligent robotics, bioengineering and automation. This paper 

reviews the recent advances of the DEAP actuators, with particular applications for acoustics and 

vibration control. 

2. Typical configurations of DEAP actuators  

A DEAP film can be fabricated into actuators with the way in which the elongation in the plane of the 

film or its contraction in thickness can be applied for actuation purposes. When it comes to practical 

application, however, a single layer dielectric elastomer film is very thin and thus cannot leads to a 

large deformation or a considerable generated force. To overcome this, novel multilayer technologies 

are proposed so that the deformation or force in one direction are large under controllable conditions. 

Two fundamental configurations of the multilayer DEAP actuators have shown some promise in the 

application of active vibration control, and thus are of particular interest in this paper. These include 

the roll- and stack-actuators, as shown in figure 2. [13][14]  

 

Figure 2. Typical configurations of DEAP actuators: (a) roll-actuator[15] 

(b) stack-actuator[18] 

2.1. DEAP tubular actuators 

As illustrated in figure 2 (a), to produce large deformations or forces, a multi-layer tubular actuator is 

made by rolling a DEAP film into a cylinder. As a result, the tubular actuators apply actuation forces 

in the axial direction, thereby providing axial elongations under certain actuated voltage. Generally, 

there are two main tubular actuator designs. [13] The first design involves a compliant graphite or 

carbon electrode and a pre-strained acrylic elastomer, wrapped many times around a compressed 

spring core. Unfortunately the high stress concentration at the interface between the soft polymer film 

and the spring core may cause mechanical failures, which drastically reduces the durability of the 

actuator. [16] The second design is a core-free rolled tubular actuator. For example, a patented DEAP 

actuator developed by a Danish company called Danfoss PolyPower A/S, is formed by a silicone 

elastomer without pre-load sandwiched between two compliant metallic electrodes. Compared with 
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the above acrylic-based design, the silicone-based tubular actuator has excellent durability despite a 

relatively small strain under applied voltages. [5][17] 

2.2. DEAP stack actuators 

For this particular type of actuators, large deformations are realized by a stacking process, as 

illustrated in figure 2 (b). The devices with the specific configurations are considered to be the most 

suitable for developing light, compliant and flexible systems at noise free actuation. [18] Recent work 

has demonstrated that, DEAP stack-actuators can be successfully built with mechanically stable 

electrodes allowing a stacking process. Substantial research has been focused on the development of 

DEAP stack actuators by Roman Karsten, Henry Haus, Peter Lotz and Helmut F. Schlaak from 

Technische Universität armstadt, [19]-[23] J. Maas, D. Tepel and T. Hoffstadt from Lippe University 

of Applied Sciences, [14] Herold S., Kaal W. and Melz T. from Fraunhofer Institute for Structural 

Durability and System Reliability LBF [24][25] and Kovacs G from Federal Laboratories for 

Materials Science and Technology. [18][60] To date, however, the optimization of automated 

manufacturing processes for such actuators is at a very early stage, and there are still a number of gaps 

in the existing designs in terms of the inhomogeneity of strain distribution along its length. [14]  

3. Applications of DEAP actuators in acoustics  

As DEAP actuators have the advantages of being very lightweight and able to conform to any shape or 

surface over a wide range of frequencies, they have been considered to have potential applications in 

acoustics as low-profile and surface-mounted loudspeakers in rooms or vehicle interiors, [31] and for 

applications in active noise control like tunable acoustic resonators and so on.  

3.1. DE loudspeaker in sound generation 

The study of novel devices alternative to moving-coil electromagnetic loudspeakers has a long history 

for sound generation in practice, along with more practical issues such as the size, shape, weight, 

efficiency, and sound quality. [31] Apart from one of the most successfully applied polyvinylidene 

fluoride (PVDF) loudspeakers [27][28], the EAPs have been found to be particularly suited to the 

purpose of the development of acoustic transducers due to the materials being flexible, lightweight and 

having large actuation deformation in an electric field. In order to integrate lightweight and compact 

loudspeakers, a great deal of studies has been conducted on sound generation using various types of 

EAPs. The progress of dielectric elastomer (DE) loudspeakers discussed in previous research is 

summarized as follows. 

In the 1990s, a pioneering study on DE loudspeakers based on a silicone elastomer was presented 

by Stanford Research Institute (SRI) International. [29][30] More recently, B. Lassen [32] from the 

University of Southern Denmark developed a theoretical model of the two dimensional hyper-

elasticity for SRI’s DE loudspeakers, accounting for the morphology of the membrane surface, with 

particular emphasis on the radiative losses (acoustic losses) of the loudspeakers. 

Based on the characteristics of large deformation in the electrical field, Christian Graf [17] 

generated sound waves using the DE, and demonstrated the advantages of the DE loudspeaker for 

realization of an excellent impulse and wide-band frequency response. Dennis Nielsen [16] developed 

a small signal model of the DEAP transducer with validation by using impedance measurements. In 

this research, a push-pull DEAP based loudspeaker has been proven to be an alternative to the 

electrodynamic transducer in sound reproduction systems.  

C. Thyes et al from Technische Universität Darmstadt [61] promoted the sound transmission 

properties of double-glazed windows through finite element analysis, and the fully integrated EAP 

loudspeakers were tested as well. Takehiro Sugimoto et al [33] from the NHK Science & Technology 

Research Laboratories proposed a semi-cylindrical acoustic transducer using a thermoplastic 

polyurethane elastomer film. Later, they developed a lightweight push-pull acoustic transducer using 

the same DE material, which stably converts the surface expansion of a DE film into the vibration of 

the diaphragm for sound generation. The resonance frequency of the transducer was derived from 



 

 

 

 

 

 

modeling the push-pull configuration to estimate the lower limit of the frequency range. 

Measurements were made to show an advantage of push-pull driving in suppressing harmonic 

distortion. [34]  

 

3.2. Adaptive acoustic absorber in noise control 

The use of acoustic absorbers or resonators is currently practical for noise control in many engineering 

applications. [35] The main disadvantage of the conventional passive resonators is that they are 

generally narrow-band control devices since they are designed to achieve optimal performance at a 

certain frequency. The application of such passive devices becomes less effective, when it is required 

to suppress relatively broadband noise. In addition, the limitation of weight and size is another 

drawback in practical applications. In order to overcome these problems, the active tunable resonators 

have been designed by adopting lightweight materials with scalability to small and large areas in order 

to be tuned at various frequencies under different voltages. Although previous research has shown the 

great potential of the DE membrane for noise control, the dynamic performances of such devices have 

not been well documented, and there is a desire for further exploiting the devices prior to their 

practical applications. [36] 

Research work by Richard Heydt et al [31] at SRI focused on two applied aspects of noise control 

by means of DE loudspeakers. The devices can be utilized in the interior of an automobile, aircraft, or 

other vehicles to control cabin noise. Moreover, when they are attached to the surface of a vibrating 

machine or structure, the radiated noise can also be effectively suppressed. 

Laehwan Kim [37][38] from Ihna university in Korea investigated the properties of Electro-Active 

Papers (EAPap) which could be used as acoustic actuators, and conducted experiments to study the 

operational principle of the EAPap. The lightweight EAPap actuators have shown some promise and 

thereby being potentially useful as active sound absorbing materials and flexible speakers.  

Allan J. Moustgaard [39] carried out experimental investigations into the characteristics of sound 

level and total harmonic distortion of the flat panel using tubular DE acoustic actuators within the 

frequency range of 20-200Hz. Operating factors such as the D.C. voltage and pre-straining of the 

actuator were also examined, suggesting the potential application of this low frequency loudspeaker 

for the purpose of noise cancellation. 

Zhenbo Lu et al [40] from National University of Singapore developed a novel duct silencer 

namely ‘Dielectric Elastomer Acoustic Absorber’ (DEAA), which was a lightweight acoustic 

resonator formed by a DE membrane (VHB 4910) and a back cavity. The resonances of the device 

shift in response to the stress changes of the DE membrane of various pre-stretch ratios in the external 

electric field. As a result, the resonance peaks of the DEAA shift to lower frequencies in order to 

achieve broadband noise reduction. The electronically tunable characteristic of the acoustic resonator 

offers a potential improvement over the conventional acoustic treatments for noise control. 

4. Applications of DEAP actuators in active vibration control  
Dielectric elastomer actuators (DEA) have been shown to be effective for active vibration control at 

low frequencies below 200Hz. [19] Lightweight structures often tend to vibrate with large amplitudes 

at a relatively low force level at these frequencies. The DEA with a large stroke capability and a short 

response time have been found to be particularly useful in practical applications, for example, as a 

protection of a car body metal sheet structure [53] and sensible equipments such as optic components 

from vibrations. Besides, small adaptive absorbers can be adopted for attenuation at different 

resonance frequencies of a system by tuning the stiffness of the DEA under certain electrical voltages. 

[20] 

4.1. Active vibration isolation  

F. G. Papaspiridis [54] provided a general framework for the use of the DEA in an active vibration 

control system modelled as in a single degree of freedom (mass-spring) system. The results showed 



 

 

 

 

 

 

that the vibrations caused by an external force could be suppressed significantly by employing the 

DEA. As vibration of buildings occurs at very low frequencies, Umberto Berardi [57] pointed out that 

DEAPs could be used for vibration isolation such as seismic isolation of heavy structures when 

combined with other resistant materials. Furthermore, it has been suggested that the DEAP patches 

could be applied efficiently in structural health (vibration) monitoring. 

The commercial rolled tubular actuator (InLastor Push) manufactured by Danfoss PolyPower A/S, 

was adopted in the feasibility study to investigate its performance for active vibration isolation (AVI). 

Umberto Berardi [41] proposed a multi element theoretical model for this actuator, and showed the 

effectiveness of this device for active isolation of harmonic excitations at frequency below 10Hz. This 

DEAP actuator was also investigated by Rahimullah Sarban, Richard W. Jones, Emiliano Rustighi and 

Brian R. Mace. [5][13][17][43]-[48] They studied the DEAP actuator’s fabrication, static and dynamic 

characteristics and its active vibration isolation performance. In their work, experiment results have 

shown that a 250g mass can be effectively isolated under both the low frequency periodic and 

broadband random vibratory disturbances with a reduction of 19dB over a frequency range from 2-

8Hz using an adaptive feedforward control strategy. They subsequently validated the grey-box model 

for three different sizes of the DEA, representing different model-based control for the purpose of AVI. 

[49] Apart from the push configuration actuator mentioned above, another folded pull actuator was 

investigated for vibration control. [50] 

On the other hand, significant research was focused on the use of DEAP stack actuators for the 

AVI. Roman Karsten and Helmut F. Schlaak [21][58] discussed the application of dielectric elastomer 

stack actuators (DESA) as small adaptive absorbers to attenuate varying resonance frequencies of a 

system, and investigated an active isolation mat for cancelation of vibrations on sensitive devices with 

a mass of up to 500g. The mat contains 5 DESAs made of silicone Elastosil P7670. Experimental 

results showed that vertical disturbing vibrations were attenuated actively while horizontal vibrations 

were damped passively. Sven Herold and William Kaal [25] developed a new DESA with rigid and 

perforated electrodes for passive and active vibration control. They used the multilayer stack actuator 

to attenuate vibrations of a truss structure. Compared to the simulation results, a further reduction of 

the amplitudes at the resonances between 30Hz and 200 Hz was observed. 

4.2. Adaptive vibration damping 

The viscoelasticity of the DE offers an advantage and thus can be applied as a vibration damper. 

Hualing Chen et al [51] developed a model to achieve the passive vibration control using a spring 

oscillator. Active vibration attenuation was further achieved by applying alternating oppositely-phased 

voltages at different frequencies. The vibration damping has proven to be tunable by applying 

different voltages. Herold S. et al [42][55][56] investigated the design and application of active 

interfaces and semi-active vibration absorbers, suggesting DE actuators as ideal components for 

setting up control loops to suppress unwanted vibrations. They also studied the actuator’s nonlinearity 

and its negative effects on the controlled system numerically and experimentally. They applied the 

DEA to achieve active vibration control for two different mechanical systems based on compensation 

methods and control approaches. 

The effect of the mechanical pre-strain of VHB™ 4910 was studied by Kai Wolf et al [52]. They 

proposed a concept for suppressing the resonant vibration of an elastic system due to forced vibration 

by using a DEA. They employed the adaptive supports of DE strip actuators to change the stiffness of 

the end support of a clamped aluminum beam under harmonic vibration. A shift of the resonance 

frequencies of the vibrating beam was realized, enabling an effective reduction of the vibration 

amplitude by an external electric signal.  

Arnulf Spieth [59] developed a mass damper formed of a counter vibrating mass and an EAP-based 

damping spring for attenuating a vibrating system of a motor vehicle or an exhaust system of an 

internal combustion engine. The resonant frequency of the mass damper can be tuned to attenuate the 

structural vibration at different frequencies. 



 

 

 

 

 

 

5. Conclusion  
This paper reviews the development of DEAPs as an emerging smart material in actuator technologies, 

providing immediate insights into the research progress of the DEAPs including the configurations 

and applications for acoustic and vibration control. In particular, the multilayer DEAP roll- and stack-

actuators are achieved worldwide to realize a large deformation or a considerable generated force in 

practical applications. The large number of papers reviewed in this paper has indicated that the DEAP 

actuators offer a potential improvement over the conventional actuators considering their advantages as 

DE loudspeaker in sound generation and adaptive acoustic absorber in noise control, and prospects in 

the domain of active vibration and adaptive vibration damping.  
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