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Abstract. This paper is concerned with an intelligent phonotic crystals (IPC) consisting of an 
Euler-Bernoulli beam attached with 2DOF locally resonant (LR) structures. The novel design 
of the dielectric electroactive polymer (DEAP) rings acting as the springs of oscillators is 
presented that could be employed to control the transmission of flexural waves on the beam. 
Tunable band gaps (BGs) can be realized by changing the stiffness of each oscillator driven by 
the external electric field, where the DEAPs transform electric energy directly into mechanical 
work under the applied voltage. Discrete copper (Cu) strips are then attached to the DEAP to 
allow the deformation of DEAP rings. The transfer matrix (TM) theory is adopted to assist 
readers to better understand the formation of the BG. Simulation results show that this 
particular configuration is effective for attenuating the flexural waves at low frequencies below 
1000Hz where the tunable BGs may occur. Moreover, it is found that a wider BG can be 
achieved and shifts towards higher frequencies by increasing the applied voltages. 

1. Introduction 
Over the last decades, the concepts of artificially-structured periodic materials known as phonotic 
crystals (PCs) and metamaterials, have been introduced to develop novel materials with the property 
of band gaps (BGs), in which transmission of sound and/or vibration is forbidden [1-3] . As such, these 
materials are of particular interest and have been proposed as a potential solution for the design of 
acoustic/elastic filters, noise control, vibration less environments for high-precision mechanical 
systems and improvement in the design of transducers [4]. 

In general, there are two types of BGs, including the Bragg BG and the locally resonant (LR) BG [5]. 
For the conventional Bragg BGs, the BG is caused by the inference of Bragg scattering due to the 
periodicity or the reaction between unit cells, and thereby the physical dimension of a BG material is 
typically much larger than the wavelength at the fundamental BG frequencies. This severely restricts 
the application of Bragg BGs at low frequencies. On the other hand, acoustic/elastic metamaterials as 
proposed by Liu et al [6] have desirable features of realizing BGs at significant lower frequencies due 
to the resonant behavior exhibited in the materials. Albeit attractive for low frequency applications, the 
LR BGs are typical limited to fixed and narrow frequency bands. There is an aspiration to provide a 



 
 
 
 
 
 

commercially viable solution, in particular, in practical situations where there is a drift of the 
attenuation band.  

Dielectric electroactive polymers (DEAPs) fall into the category of smart materials, and are known 
to be capable of substantial changes in size or shape subjected to electrical stimulation. Recent 
research has shown the potential of these materials in actuator applications due to their efficient 
deformation characteristics, fast response time and high energy densities. The application of DEAPs in 
PCs have been investigated in recent work [4,7-10]. Here, tunable BGs are achieved by adopting DEAPs 
acting as the springs of oscillators for the suppression of flexural waves in beam-like structures. This 
combined structure forms the intelligent phononic crystals (IPCs), with the tunable BG properties 
governed by the applied voltage in the external electric field. 

Yu et al [2] studied the flexural vibration band gaps in an Euler-Bernoulli beam with 2 degree-of-
freedom (DOF) LR structures. Based on this model, the BG properties in the proposed IPC are 
investigated. The relationship between the applied voltage and deformation of the proposed structure 
is established. The transfer matrix (TM) theory is introduced to explain the formation of the BG. The 
transmission frequency response function (FRF) of the structure with finite length is calculated by the 
finite element (FE) method. Numerical results demonstrate that tunable BGs contributed by the LR 
mechanism, can be realized by varying voltages in the external electric field. 

2. Relationship between the applied voltage and deformation 
The proposed IPC structure can be modelled as an Euler-Bernoulli beam with 2DOF LR structures, as 
illustrated in Figure 1, with detailed information as described in Figure 2. The beam is constructed 
from an aluminum tube with the inner and outer radii being r0=7 and r1=10mm, respectively. Referring 
to Figure 2(b), each unit of the LR structure is composed of two soft DEAP rings with outer radius 
r2=15mm and equispaced heavy Cu strips attached at the DEAP rings. The radius of the outer layer of 
strips is r3=19.5mm. The main advantage of discrete Cu strips over the distributed ring covering 
outside the DEAP is to allow the deformation of DEAP under the applied voltage. The length of the 
DEAP ring is h=10mm. The length of the Cu strip is 2l=60mm and the angle of each strip is b spaced 
by g between two adjacent strips. The lattice constant is a=1.5×10-1m. The cross-section area of the 
aluminum beam is calculated as A=1.602×10-4m2 and the area moment of inertia I=5.986×10-9m4. 

 
Figure 1. An Euler-Bernoulli beam with 2DOF LR structures. 
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Figure 2. The schematic design of the IPC structure: (a) in the longitudinal 

direction; (b) the cross-section. 



 
 
 
 
 
 

The analytical relationship between the applied voltage V and the DEAP strains in the radial 
direction was derived in [9,11]. The model is extended here to study the structure with discrete Cu strips. 
Important assumptions are made in the analysis as follow, 

(1) The elastic analysis is modelled under plane strain conditions; 
(2) The DEAP is assumed to be isotropic and its viscoelastic behaviour is ignored; 
(3) Small strain and linear deformation are assumed in the calculation. 
By applying a voltage between the outer and inner surfaces of the DEAP ring, an electrostatic field 

arises and the Maxwell’s electrostatic pressure from the surface mechanically presses the DEAP ring. 
As a result of the mechanical compression, the thickness z decreases and thus the radial displacement 
occurs, which in turn tunes the BGs due to the change in the stiffness of the LR structures. This 
suggests that the BGs can be tuned by controlling the applied electric field. 

The Maxwell’s electrostatic pressure p loading on the DEAP ring with thickness z is obtained by [12] 
 ( )22

0 0r rp E V zε ε ε ε= =   (1) 
where ε0 and εr are the free space permittivity and relative permittivity respectively; V is the applied 

electric voltage. It is noted that the free space permittivity keeps constant, ε0=8.85×10-12F/m. The 
electrostatic pressures pi and po, exerted by the inner and outer surfaces, are related to an applied 
voltage V by [13]  
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For time-invariant displacements and the axisymmetric motion, the equation of compatibility in 
polar coordinates is [14] 
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where ϕ is the Airy stress function, depending only on r. The solution of the above equation is 

 2 2log logA r Br r Cr Dφ = + + +   (5) 

with the constants A, B, C, D defined by the boundary conditions. The corresponding stress 
components are given by 
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For the uniform internal and external pressure loadings as shown in Figure 3, the stress components 
become 
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The boundary conditions of the hollow cylinder are 
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Substituting Eqs. (8) into (7), the constants A and C are found to be 
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Substituting Eqs. (9) into (7) leads to 
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Given the plane strain condition, the plane stress εθ satisfies 
 rE θ θε σ υσ= −   (11) 

where E and ν are the Yong’s modulus and Poisson’s ratio of the DEAP. The radial displacement u is 
found from the relationship εθ=u/r, and given by 

 ( ) ( )r
ru r r
Eθ θε σ νσ= = −   (12) 

Substituting Eqs. (10) into (12), the radial displacement (deformation in thickness) is found to be 
related to the applied voltage by 
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The deformation in the radial direction is given by 

 ( ) ( )2 1rr u u r∆ = −   (14) 

In response to the applied voltage, the inner and outer radii become 
 1 1 2 2'  ,  'r r r r r= = + ∆   (15) 

Assuming the volume of the DEAP remain unchanged [11] leads to 

 ( ) ( )2 2  2 2
2 1 2 1' 'r r h r r hπ π π π− = −   (16) 

Combining Eqs. (14)-(16), the deformation in the longitudinal direction is obtained by 

 
( )

( ) ( )

2 2
2 1

2 2
2 2 1 1

'
h r r

h
r u r u r r

−
=
 + −  − 

  (17) 

Specifically, for a DEAP ring, the radial stiffness can be determined by [15] 
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where G1 are the shear modulus of the DEAP, and the shape coefficient H=h/(r1+r2)ln(r1/r2)  
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Figure 3. The cross-section of the DEAP ring in the applied electric field. 

 



 
 
 
 
 
 

3. Transfer matrix (TM) theory 
The calculation model of the IPC structure is illustrated in Figure 4. With reference to Figure 4(a), an 
infinite Euler-Bernoulli beam is now periodically attached with 2DOF LR structures. For each unit 
cell with a lattice constant a as shown in Figure 4(b), the DEAPs along with Cu strips constitute an 
oscillator. Thus one LR oscillator consists of two springs k and one mass m.  

The governing differential equation for free flexural vibration of an Euler-Bernoulli beam can be 
obtained by [16]: 
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where ρ and E are the density and Young’s modulus of the beam respectively; A and I are the cross-
section area and the moment of inertia with respect to the axis perpendicular to the beam axis 
respectively; and y(x,t) is the dynamic displacement at x.  
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Figure 4. The calculation model of the IPC structure: (a) the 2DOF LR structures periodically 
attached on an infinite Euler-Bernoulli beam; (b) the force equilibrium in the nth unit cell. 

For time harmonic motion of the form exp(iωt), the displacement y(x,t) may be assumed 
y(x,t)=Y(x)exp(iωt), where ω is the angular frequency and the amplitude Y(x) given by 

 ( ) ( ) ( ) ( ) ( )cos sin cosh sinhY x A x B x C x D xλ λ λ λ= + + +   (20) 

where λ4=ρAω2/EI. 
Each unit cell is divided into two sections. For the nth cell as shown in the Figure 4(b), the 

amplitude at the first section is given by 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1cos sin cosh sinhn n n n nY x A x B x C x D xλ λ λ λ′ ′ ′ ′ ′= + + +   (21) 

where x׳=x-na, na≤x≤na+2l. Similarly, the amplitude at the second section can be written as 

 ( ) ( ) ( ) ( ) ( )2 2 2 2 2cos sin cosh sinhn n n n nY x A x B x C x D xλ λ λ λ′′ ′′ ′′ ′′ ′′= + + +   (22) 

where x″=x-na, na+2l≤x≤(n+1)a. 
For the nth oscillator, applying the equilibrium conditions of the shear force and the moment about 

the center of the gravity On, gives [17]  

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1 2 1 1 2 20 ,   0n n n n n n n n nf t f t mZ t f t O x J t f t x Oθ− − − = − − − − =   (23) 

where fn1(t), fn2(t) are the interactive forces between the oscillator and the beam at the two attachment 
points xn1 and xn2, respectively; m and J are the mass and mass moment of inertia of the oscillator, 
respectively; the displacement of the nth LR oscillator at the center of gravity, Zn(t)=Vnexp(iωt) with 
Vn being the displacement amplitude; and the torsional displacement of the nth oscillator 
θn(t)=αnexp(iωt) with αn being the rotational angle. 

The forces fn1(t)  and fn2(t) are given by 
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and 
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respectively. Substituting Eqs. (24), (25) into (23) leads to 
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where 2l is the distance between the two attachment points xn1 and xn2,i.e., the length of the strip. 
Setting xn1=0 in Eq. (21) and xn2=2l in Eq. (22), one can obtain 

 ( ) ( )1 1 1 1 10n n n n nY x Y A C= = +   (27) 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 22 cos 2 sin 2 cosh 2 sinh 2n n n n n n nY x Y l A l B l C l D lλ λ λ λ= = + + +   (28) 

These results are now used to derive the dispersion relationship of the Euler-Bernoulli beam with 
2DOF LR structures considered.  

At the attachment point xn2, (i.e., x=na+2l), equations expressing continuity conditions of the 
displacement and slope, and equilibrium conditions of the bending moment and shear force are given 
by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 22 2  ,  2 2  ,  2 2  ,  2 2n n n n n n n n nY l Y l Y l Y l EIY l EIY l EIY l EIY l F′ ′ ′′ ′′ ′′′ ′′′= = = = −   (29) 

Substituting Eqs. (21), (22), (24) and (25) into Eq. (29), one can obtain the following relation in 
compact form by 

 2 1 1n n=1K ψ H ψ   (30) 

where ψn2=[An2 Bn2 Cn2 Dn2]T and  ψn1=[An1 Bn1 Cn1 Dn1]T. 
Similarly, at the attachment point xn1, (i.e., x=na), the four equations expressing continuity and 

equilibrium are  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( 1)2 1 ( 1)2 1 ( 1)2 1 ( 1)2 1 12 2 ,    2 2  ,  2 2  ,  2 2n n n n n n n n nY l Y l Y l Y l EIY l EIY l EIY l EIY l F− − − −′ ′ ′′ ′′ ′′′ ′′′= = = = −   (31) 

Thus, one can obtain 

 2 1 3 2 2 ( 1)2n n n−+ =K ψ K ψ H ψ   (32) 

Combining Eqs. (30) and (32), the relationship between the nth cell and (n-1)th cell is given by 

 2 ( 1)2n n−=ψ Tψ   (33) 

where the transfer matrix 11 1
1 1 2 3 1 1 2

−− − = + T K H K K K H H . 
Based on the Bloch dispersion relationship [5] of a periodic structure of infinite length, one can 

obtain 
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where q is the Bloch wavenumber in the x direction. Combining Eqs. (33) and (34), one can obtain the 
eigenvalues (i.e., the Bloch wavenumber q) of the transfer matrix by finding the roots of the 
determinant 

 0iqae− =T I   (35) 

where I is the 4×4 unit matrix. It is noted that the imaginary part of the wavenumber governs the wave 
attenuation. This suggests flexural waves are largely attenuated at the frequencies where a 
wavenumber q has an imaginary part. Therefore, the structures proposed exhibits a BG property at 
these frequencies [2]. 

4. Simulation results  
To clarify the mechanism of the BG formation, damping is neglected in the analysis. The IPC structure 
with nine oscillators is considered for low frequency attenuation and the transmission FRF of the 
flexural vibration is obtained using the FE technique in the framework of Comsol Multiphysics [1]. 
Referring to Figure 2, the outer Cu layer is divided into several strips with parameters b denoting the 
angle of each strip and g the separation angle. In terms of the transmission FRF, the effects of the 
configuration of the Cu strips are now studied in this section. The dimension parameters are chosen as 
b=23.3°, 35°, 70°, and g=6.7°, 10°, 20° to ensure b/(b+g)=0.78 in each Cu layer. The material 
parameters for this structure are ρAl=2700kg/m3, EAl=7×1010Pa, GAl=2.7×1010Pa, ρDEAP=1190kg/m3, 
EDEAP=5×106Pa, GDEAP=1.7×106Pa, ρCu=8700kg/m3, ECu=1.1×1010Pa, and GCu=4.1×109Pa. Other 
parameters are the same as listed in section 2. 

In the simulations, the beam is excited at one end with an acceleration av1 and the frequency of 
interest is below 1000Hz. The response at the other end av2 can be calculated and the transmission 
FRF is represented in logarithmic scale 10×lg(av2/av1). 
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Figure 5. Transmission FRF for the IPC structure with nice unit cells. The  
parameters of each layer of Cu strips are b=23.3°, g=6.7° (-x-); b=35°,  
g=10° (––); b=70°, g=20°(---). 

The following observations are based on the transmission FRF as plotted in Figure 5: 
(1) For each configuration of the Cu layer, it is clear that two BGs are obtained below 1000Hz. 

This suggests that flexural vibration can be effectively attenuated in the low frequency BG by using 
the novel design of the Euler-Bernoulli beam attached with discrete Cu strips.  

(2) The BGs are largely affected by the configuration of the Cu layer in each cell. The first BG 
shifts slightly towards lower frequencies with an increasing number of Cu strips. In contrast, the 
transmission FRF becomes erratic close to 1000Hz. Nevertheless, the general trend is that a broader 
BG can be achieved by adopting more Cu strips with the lower BG edge less sensitive to the 
configuration.  
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              Figure 6. Vibration patterns of the IPC structure at different frequencies. 

              T1, T2, T3, T4 are the four BG edges and T5 is the frequency outside the BG. 

For the IPC structure proposed as shown in Figure 5, Figure 6 shows the vibration patterns at the 
BG edges (T1, T2, T3, T4) along with one of the vibration patterns outside the BGs (T5). It is apparent 
from the figure that for T1 and T2 of the first BG, the vibration direction of Cu strips is vertical to the 
beam. At ω=T1, only a couple of oscillators close to the excitation end exhibit resonant behaviour with 
amplified magnitudes; at ω=T2, all the oscillators start vibrating resonantly. At ω=T3 and ω=T4 of the 
second BG, however, each Cu strip vibrates like a teeter-totter, as a result of the moment of the Cu 
strips. Similar to the first BG, at ω=T3, only the first two oscillators have triggered resonant vibrations, 
while all nine oscillators demonstrate resonant behaviour at ω=T4. Clearly, flexural vibrations are 
largely attenuated by passing through the IPC structure at the frequencies of the two BG edges. In 
contrast, as anticipated, it can be seen form the figure that the flexural vibration at frequencies beyond 
the BGs, such as ω=T5, cannot be largely controlled by passing through the IPC structure since the LR 
structures in each unit cell are inactive for ‘absorbing’ the energy at these frequencies. 

The particular configuration of the Cu layer with b=35° and g=10° is now chosen to study the 
effect of the voltage on the BGs. As derived in Section 2, the voltage V is related to the dimension 
variations of DEAP ∆r and ∆h by Eqs. (14) and (17), and hence the stiffness k given by Eq (18). These 
relationships are plotted in Figure 7. 
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Figure 7. Relationships between the voltage and (a) the deformations ∆r, ∆h; (b) the stiffness k. 

As can be seen from Figure 7(a), the radial thickness of the DEAP ring ∆r decreases and the length 
∆h increases with increasing the applied voltage. Figure 7(b) shows that DEAP becomes stiffer (k 
increases) under a higher voltage value. The calculated results of ∆r, ∆h and k at three voltages are 
listed in Table 1. The transmission FRFs under voltages of 2000V, 3000V, 4000V are illustrated in 
Figure 8 and the BG edges are shown in Table 2. 



 
 
 
 
 
 

Table 1. Results of ∆r, ∆h and k at different voltages 
 ∆r (m) ∆h (m) k (N/m) 

2000V -2.4×10-4 6×10-4 1.31×106 
3000V -5.4×10-4 1.46×10-3 1.71×106 
4000V -9.6×10-4 2.88×10-3 2.53×106 

The transmission FRF under voltage of 2000V, 3000V, 4000V is illustrated in Figure 8. Detailed 
frequencies at edges of both gaps are described in Table 2.  
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Figure 8.  Transmission FRF under the applied voltages of 2000V, 3000V and 4000V. 

Table 2. Results of the BG edges 
 T1 T2 T2-T1 T3 T4 T4-T3 

2000V 220Hz 295Hz 75Hz 605Hz 945Hz 340Hz 
3000V 235Hz 320Hz 85Hz 645Hz 1015Hz 370Hz 
4000V 270Hz 365Hz 95Hz 715Hz 1150Hz 435Hz 

Figure 8 shows that both BGs shift toward higher frequency with an increasing voltage. The reason 
for this that, the applied voltage increases the stiffness of DEAP k, as shown in Figure 7(b), which 
thereby leads to an increment of the resonant frequency corresponding to each oscillator. Thus the 
BGs occur at higher frequencies. Moreover, as illustrated in Table 2, a higher voltage leads to wider 
BGs. 

5. Conclusions 
In this paper, a novel design of an IPC is proposed for the control of the flexural vibration. The DEAP 
rings attached with discrete Cu strips acting as oscillators are adopted in each unit cell. This design is 
particular suitable for the deformation of DEAPs subjected to an electric field. The dispersion 
relationship is derived based on the TM theory. Simulation results have shown that the LR BGs occur 
at low frequencies below 1000Hz. In addition, tunable BGs can be realized by changing the applied 
voltages. It has also been found that a wider BG can be achieved and shifts towards higher frequencies 
with an increasing applied voltage. The theoretical investigations with numerical calculations provide 
a framework for the design of the IPC structure for vibration control at low frequencies. Further 
experimental work will be conducted to evaluate the performance of the structure for flexural wave 
attention. 
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