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Abstract 
A method is presented for generating a sound field that is significantly attenuated over 
half of the reproduction region, which has application to the generation of two 
independent sound fields for two listeners. The half-space sound field is produced by 
attenuating the negative or positive modes in the cylindrical or spherical expansion of 
a plane wave or point source sound field. It is shown that this is equivalent to adding 
to the original sound field, in quadrature, a second field which is the Hilbert transform 
of the original field. The resulting analytic field has a small magnitude in one half of 
the plane.  Methods are presented for controlling the attenuation in the unwanted half-
space. Finally, a simulation is presented showing the generation of a wideband pulse 
that propagates across half of the area within a circular array of sources. 
 
 
 PACS numbers 43.60.Fg, 43.38.Md, 43.60.Tj  
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I. INTRODUCTION 
A recent topic of interest in sound reproduction systems is personal sound systems, 

which aim to provide independent sound fields for separate listeners 1,2. A number of 

methods have been applied to producing multiple zones with independent sound 

fields, using a single set of loudspeakers, such as beamforming 1,3, pressure matching 
4,5, mode matching 6 and optimal contrast 7–10. The optimal contrast methods 

maximize the ratio of potential energy in a desired zone to that in an unwanted zone 

and as a consequence do not specify a direction of propagation. This allows the 

solution to choose a direction of propagation that allows the greatest contrast. A 

combination of optimal contrast with the requirement of a planar sound field was used 

in 11 to produce a trade-off between the maximum contrast and a desired sound 

direction.  

Methods have also been investigated that control the radiation pattern of an array of 

sources, subject to controlling sound levels in a target zone, to minimize the radiated 

sound power 12,13. A recent approach to producing personal sound for two listeners is 

to create a sound field with a null (i.e. a region with low sound pressure level) 

centered at one listener 14. This produces a desired sound field for the other listener 

and ensures there is very low interference at the position of the first listener. By 

linearity a second field can then be produced for the first listener with a null at the 

second listener position. The nulls are produced by suppressing the low-order modes 

in the cylindrical or spherical mode expansions of the sound field at each listener 

position. 

Many of these approaches provide a set of relatively small zones of sound 

reproduction each of which is sufficient for a single listener. It would be an advantage 

to provide a sound zone that extends over a wider area that could be sufficiently large 

to enclose multiple listeners. This paper presents a method of achieving this. The 

method generates a sound field that exists over half of the area within a multi-channel 

sound reproduction system. This is possible if the direction of propagation of the 

sound is parallel to the boundary between the two half-spaces. It will be shown that 

the half space field is produced by suppressing the positive or negative index modes 

in the cylindrical or spherical harmonic expansions of the sound field 14. Simulations 

will be presented that show that wideband sound fields can be created within a half-
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space. If the half-space requirement is relaxed, limited directionality can be produced 

with silence in a more restricted region. 

The structure of this paper is as follows. In section 2 the theory describing the Hilbert 

transform of a 2D sound field is presented. Section 3 presents methods for controlling 

the characteristics of the field and considers half-space fields for the 3D case. Finally, 

section 4 presents simulations showing the generation of two independent, wideband, 

half-space fields. 

II. THEORY  

A. Hilbert transform of a 2D sound field 
Consider the general  solution to the 2D homogeneous Helmholtz equation in polar 

coordinates ( ),R φ=r  represented by the Herglotz wave function 15 

( ) ( ) ( )
2

cos '

0

1, , ' '
2

ikRp R k A e d
π

φ φφ φ φ
π

−= ∫ .    (1) 

where k cω=  is the wavenumber at radian frequency ω , c is the speed of sound and 

( )A φ′  is the plane wave angular amplitude distribution at wavenumber k. φ′  

indicates the direction of arrival of the plane waves and the positive time convention 
i te ω  is used throughout the paper. Since the angular distribution is periodic it can be 

written 

( ) '' im
m

m
A e φφ α

∞

=−∞

= ∑ .     (2) 

The Jacobi Anger expansion of the plane wave term is16 

( ) ( ) ( )cosikR imm
m

m
e i J kR eφ φ φ φ

∞
′ ′− −

=−∞

= ∑ ,   (3) 

where ( ).mJ  is the mth Bessel function of the first kind 16. Substituting this expansion 

and (2) into (1), rearranging the order of sum and integration and applying the 

orthogonality relation of complex exponential functions yields  

( ) ( ), , m im
m m

m
p R k i J kR e φφ α

∞

=−∞

= ∑ ,   (4) 

which has the standard form of the interior 2D solution to the wave equation with 

coefficients m
m ma iα= . For a finite radius R and wave number k, the expansion order 
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can be limited to [ ],m M M∈ −  where M kR=     and where .    denotes rounding to 

the next highest integer 17. 

Consider multiplying the coefficients m
miα  by the step function sequence 

0, 0
1, 0

2, 0
m

m
m
m

µ
<

= =
 >

.     (5) 

Note that this sequence can be written as 

( )1 sgnm mµ = + ,     (6) 

where sgn is the signum function 

( )
1, 0

sgn 0, 0
1, 0

m
m m

m

− <
= =
 >

.     (7) 

The angular distribution produced by eliminating the negative mode amplitudes is, 

from (2), the convolution of ( )A φ′  with the function 

( ) im
m

m
U e φφ µ

∞
′

=−∞

′ = ∑ .     (8) 

It can be shown by taking limits (Appendix A) that  

( ) ( ) ( )tan 2
iU φ δ φ
φ

′ ′= +
′

.    (9) 

The angular distribution therefore becomes 

( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ *
tan 2

1* ,
tan 2

iA A

A i A

φ φ δ φ
φ

φ φ
φ

 
′ ′ ′= + ′ 

 
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   (10) 

which is the original distribution plus the quadrature addition of the function  

( ) ( )
( )

2

0 tan 2
A

A d
π φ θ

φ θ
θ
′ −

′ = ∫ ,    (11) 

which is the Hilbert transform of the plane wave distribution 18 with associated sound 

field expansion 

( ) ( ) ( ), , sgn m im
m m

m
p R k m i J kR e φφ α

∞

=−∞

= ∑ .   (12) 

The total sound field is  
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( ) ( ) ( ) ( )
2
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0

ˆ , , , , ikRp R k p R k i A e d
π

φ φφ φ φ φ′−′ ′= + ∫  ,   (13) 

which, in analogy with the analytic signal19, may be termed the analytic sound field, 

with expansion 

( ) ( ) ( )0 0
1

ˆ , , 2 m im
m m

m
p R k J kR i J kR e φφ α α

∞

=

= + ∑ .   (14) 

B. Half-space fields for a plane wave 
For the simple case of a single plane wave propagating along the negative x-axis, 

( ) ( )A φ δ φ′ ′= , 1mα = , the Hilbert transform is ( ) ( )1 tan 2A φ φ′ ′=  and the resulting 

analytic field is 

( ) ( ) ( )ˆ , , , , , ,p R k p R k p R kφ φ φ= +  ,    (15) 

where ( ), ,p R kφ  is the sound field associated with the Hilbert transform 

( )
( )

( ) ( ) ( )
2 cos

0

, , sgn
tan 2

ikR
m im

m
m

ep R k i d m i J kR e
π φ φ

φφ φ
φ

′− ∞

=−∞

′= =
′ ∑∫ .  (16) 

By separating the positive and negative m terms this can be put in the form 

( ) ( ) ( )
1

, , 2 sinm
m

m
p R k i i J kR mφ φ

∞

=

= ∑ .    (17) 

It is interesting to compare this sound field with that of the original plane wave, which 

has the well-known expansion20 

( ) ( ) ( ) ( )0
1

, , 2 cosm
m

m
p R k J kR i J kR mφ φ

∞

=

= + ∑ .   (18) 

The Hilbert transform field thus has an expansion which is in phase and angular 

quadrature to the original sound field expansion. The analytic sound field is the sum 

of (17) and (18), 

( ) ( ) ( )0
1

ˆ , , 2 m im
m

m
p R k J kR i J kR e φφ

∞

=

= + ∑ ,   (19) 

which is the original field with negative modes suppressed, as expected.  

The Hilbert transform field tends to produce a plane wave field similar to the original, 

but with a phase shift of 180 degrees in the upper half plane. Defining 

( ) ( ) ( ), , , , , ,p R k p R k R kφ φ ψ φ= ,    (20) 

the relative complex amplitude function ( ), ,R kψ φ , calculated using a finite 
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expansion order of 40 in (16) and (17), is shown in Figure 1 for kR = 10 and kR = 30. 

The phase of the field is approximately offset by π  in the upper half plane [ ]0,φ π∈  

and the magnitude has additional ripple and is zero at 180 degrees, at the boundary 

between the two regions. A similar phase shift occurs at all frequencies but the 

transition is more rapid at higher kR values and displays more rapid oscillations with 

angle.  

The complex sum of the two fields (15) thus tends to produce a plane wave of twice 

the magnitude in the lower half space and an attenuated field in the lower half space. 

In the same manner, subtracting the Hilbert transform (suppressing the positive mode 

amplitudes), 

( ) ( ) ( )ˆ , , , , , ,Up R k p R k p R kφ φ φ= −  ,   (21) 

tends to produce an upper half space field.  

 

 
Figure 1: ( ), ,R kψ φ  for kR = 10 and kR = 30 
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III. METHODS FOR CONTROLLING THE PROPERTIES OF HALF 
SPACE FIELDS 

A. Reducing artefacts  
The sound field with the weighting given by (5) is shown in Fig. 2, for a frequency of 

1 kHz, using a finite expansion order 2 53M k D = =   where D = 2. The field 

magnitude is relatively small in the upper half plane, but is not zero. This corresponds 

to the fact that the relative complex amplitude oscillates around the required value of 

–1 in Fig. 1. There is also ripple in the wave fronts in the lower half plane, also 

corresponding to oscillations in ( ), ,R kψ φ . These artefacts are caused by the sharp 

transition of the signum function through m = 0. Similar artefacts occur when 

generating analytic signals where the corresponding analytic filter is required to have 

a step transition through zero Hz 21.  

 
Figure 2: Lower half-space field produced at 1 kHz for a step function weighting  

The results can be improved by providing a smooth transition through m = 0. This can 

be achieved by convolving the sequence mµ  with a smoothing filter mg  which 

multiplies the spectrum ( )U φ′  by the low-pass response ( )G φ′ , producing the 

modified spectrum (from (8) and (9)) 
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( ) ( ) ( )
( )tan 2g

iG
U

φ
φ δ φ

φ
′

′ ′= +
′

,    (22) 

where it is assumed that ( )0 1G = . The convolution has no effect on the real part but 

reduces the amplitudes of the imaginary part for 0φ′ > . 

In practice it is simpler to directly generate a smoothed step sequence. For example, 

defining a transition length NT, the function  

( )
( ) ( ) ( )

( )
,

0, 1 / 2
1 sin , 1 2, 1 2

2, 1 / 2
T

T

m N T T T

T

m N
m N m N N

m N

µ π

 < − −


= + ∈ − − −   
 > −

  (23) 

produces a sinusoidal transition through m = 0 with transition width NT. The resulting 

plane wave relative amplitude ( ), ,k Rψ φ  is shown in Fig. 3 for NT = 15, and for 

kR = 10 and kR = 30. The ripple is reduced compared to Fig. (1). The corresponding 

lower half space field at 1 kHz is shown in Fig. 4. The amplitude of the sound field in 

the upper half space has a lower amplitude compared to Fig. (2), but is still not zero at 

all angles between 0 and 180 degrees.  

 

 
Figure 3: ( ), ,R kψ φ  for kR=30, NT = 15 transition width 
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Figure 4: Lower half-space field produced at 1 kHz for NT = 15 transition width 

B. Half space fields for more complex fields 
The examples above are for a single plane wave. The Hilbert transform of an arbitrary 

field as in (12) does not produce a half-space field. A plane wave with arbitrary angle 

of incidence iφ   will produce a half space with transition boundary given by the line 

( )tan iy xφ= . Therefore a sum of plane waves will produce a sum of half spaces with 

different transition boundaries.  However, fields can be generated with a limited range 

of angles of incidence and still produce a significant zone of silence. For example, 

Fig. 5 shows the magnitude in dB for a field consisting of a sum of three plane waves 

with equal amplitudes and incidence angles –30, 0 and 30 degrees. The zone of 

silence is reduced approximately to ( )tan 6y xπ< −  compared to Fig. 4, but a 

useful area of silence is still produced. Hence, fields with a limited range of 

directionality, such as produced by stereo reproduction systems, can be produced over 

a region less than a half-space. 
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Figure 5: Half-space field at 1 kHz for three plane waves of equal amplitude with incidence angles –30, 0 and 30 
degrees, with NT=15 and offset 10 

 

A half space can also be generated for a 2D point source. For example the 2D Green’s 

function with source position ( ),S S SR φ=r  has the interior expansion 22  

( ) ( ) ( ) ( ) ( )
0, , ,Sim

S S m m S S
m

p R k H k J kR H kR e R Rφ φφ
∞

−

=−∞

= − = <∑r r ,  (24) 

where ( )mH   is the m-th order Hankel function of the second kind 16. (We ignore the 

additional 4i−  factor in the Greens function which is not required.) The analytic 

field (14) with ( ) ( )expm
m m S Si H kR imα φ−= −  is a half space point source field with 

half space boundary ( )tan Sy xφ= . An example is given in Fig. 6 for a line source at 

an angle of 45Sφ =  degrees and at radius RS = 4m. 
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Figure 6: Half-space field at 1 kHz for a line source at ( ) ( ), 4, / 4s sR φ π= , NT = 15  

C. Shifting the half-space boundary using offset mode 
weighting  
The half space fields in Figures 4 and 6 do not reduce to zero at the half-space 

boundary (y=0) and intrude slightly into the zero-field half space. This intrusion may 

be reduced by shifting the sound field by an offset y0. The sound field expansion 

coefficients for a translation of the sound field by an arbitrary offset ( )0 0,R φ  are those 

obtained for a shift of the origin by ( )0 0,R φ π+ . Using the addition theorem, it can be 

shown that the coefficients of the translated field, mα
  , are given by 6 

( ) ( )( )0
0

i n mm n
m n n m

n
i i J kR e φ πα α

∞
− +

−
=−∞

= ∑ ,    (25) 

which is the convolution of the original coefficients with the sequence

( ) ( )( )0 0expmJ kR im φ π+ ,  

( ) ( )0
0

imm m
m m mi i J kR e φ πα α + = ∗  
 .   (26) 

The resulting coefficients are shown in Figure 7(c) for 0 0.5R =  and 0 / 2φ π= −  (a shift 

of y0 = –0.5 m). The effect of the convolution is to shift the mode weighting by an 

offset of approximately 0 0m kR= . The sound field translation may be more efficiently 

implemented by simply offsetting the mode weighting function.  
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Figure 7: Coefficients for a 1 kHz half space field (a), Bessel coefficients (b) and the coefficients obtained by the 

convolution of the two for a translation of –0.5 m in y, (c) 

For example, the magnitude of the half-space sound field in dB produced for the same 

mode weighting as in Fig. 4 with the transition centred at 0om = and 10om =  are 

shown in Figures 8 and 9. The transition region is shifted in the negative y direction 

by Ro = 0.5 m by the offset. Hence, the overlap between two half-spaces can be 

reduced. 

 
Figure 8: Half-space field in dB at 1 kHz, NT = 15 and offset 0 
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Figure 9: Half-space field in dB at 1 kHz, NT = 15 and offset 10 

D. Generation of 3D half-space sound fields at a single 
frequency 
It will now be briefly shown that a similar approach may be taken to producing half 

space fields in the 3D case, where the two half spaces are defined in spherical 

coordinates ( ), ,r θ φ=r  for [ ]0,φ π∈  and for [ ], 2φ π π∈ .  

The general solution to the Helmholtz equation may be written as the 3D Herglotz 

wave function  

( ) ( )
2

0 0

1, , , , sin
4

ip r k B e d d
π π

θ φ θ φ θ θ φ
π

′ ′ ′ ′ ′= ∫ ∫ k r ,   (27) 

where ( ),B θ φ′ ′  is the plane-wave angular spectrum at wavenumber k. This can be 

expanded as 

( ) ( )
0

, ,
n

m m
n n

n m n
B Yθ φ β θ φ

∞

= =−

′ ′ ′ ′=∑ ∑ ,    (28) 

where m
nβ  are the plane-wave expansion coefficients and the spherical harmonics are 

defined as 15 

( ) ( ) ( )
( ) ( )

!2 1
, cos

4 !
mm im

n n

n mn
Y P e

n m
φθ φ θ

π
−+

=
+

,   (29) 
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where ( ).m
nP  is the associated Legendre function 16. Substituting this and the 

spherical expansion for the plane wave16 into (27) yields  

( ) ( ) ( )
0

, , , ,
n

n m m
n n n

n m n
p r k i j kr Yθ φ β θ φ

∞

= =−

=∑ ∑ .   (30) 

For a finite value of kr, the expansion can be truncated to a maximum order N kr=     

in a similar manner to the 2D case 17.  

The expansion in (30) can be rearranged as 

( ) ( ) ( ) ( ), , , ,n m m
n n n

m n m
p r k i B k j kr Yθ φ θ φ

∞ ∞

=−∞ =

= ∑ ∑ .   (31) 

An analytic sound field in the azimuthal angle φ  may now be formed in the same 

manner as for the 2D case. Using the weighting (5), the analytic field can be written 

( ) ( ) ( ) ( ) ( )*ˆ , , , , ,n m m m
m n n n n i i

m n m

p r k i B k j kr Y Yθ φ µ θ φ θ φ
∞ ∞

=−∞ =

= ∑ ∑ .  (32) 

For a single plane wave with an angle of incidence – and for a point source with 

source angle – in the ( ),x y  plane this produces a lower half-space field. It also 

produces half space fields for source angles out of the ( ),x y  plane. However, as the 

source elevation angle tends to 0 or 180 degrees the half space field tends to 

increasingly intrude into the other half space and for 0iθ =  or 180iθ =  degrees the 

sound field has only vertical incidence and a half space field is no longer possible. 

This may be demonstrated for the general plane wave case, for which  

( ) ( )*,m m
n n i iB k Y θ φ= ,     (33) 

by writing (32) in the equivalent cylindrical form  

( ) ( ) ( )cosˆ , , , sin ii imikz m
m m i

m
p R z k e i J kR e φ φθφ µ θ

∞
−

=−∞

= ∑ .  (34) 

From (34) it can be seen that for 0iθ =  or iθ π=  the argument of the Bessel function 

is zero, the expansion order reduces to 0 and the plane wave becomes ( )exp ikz  or 

( )exp ikz− , which is no longer a half space field. 

For the point source case the behaviour is similar to that of the plane wave. For 

example, the sound field produced in the ( ),x y  plane at a frequency of 1 kHz for a 

point source at a radius of 6 m and at source angles 90sθ =  and 45sφ =  degrees and 
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using the smoothed step function (23) with NT = 15 is shown in Fig. 10. The sound 

field is a half space field similar to that produced for the 2D case, for example as in 

Fig. (6). 

For source angles near 0iθ =  or 180 degrees the half space is no longer produced. For 

example, the magnitude of the complex sound pressure at 1 kHz as a function of y is 

shown in Fig. 11 for a point source at 0sφ =  degrees azimuth and at angles in 

elevation from 5sθ = to 90 degrees. As sθ  approaches 0 the transition through y = 0 

is slower and the lower halfspace field increasingly intrudes into the upper halfspace. 

 
Figure 10: Half-space 3D field for 1 kHz point source at rs=6m, θs=90 and φs=45 degrees  
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Figure 11: Half space sound pressure in y for a 1 kHz source at 0sφ =  degrees 

IV. GENERATION OF WIDE BAND HALF-SPACE SOUND FIELDS 
The previous section outlined the generation of a half-space field at a single 

frequency. The extension of this approach to the wideband case is now considered. A 

simulation will be presented of the generation of a wide band pulse that traverses the 

upper or lower half-space within a circular loudspeaker array. For simplicity we 

consider only the 2D plane wave case. 

Consider a circular array of 2D point sources at vector positions lr  with radius 

l LR=r  and angles [ ]2 , 0, 1l l L l Lφ π= ∈ − . The spatial aliasing frequency of the 

array is 23 

( )1
4alias

L

c L
f

Rπ
−

= .     (35) 

The array is able to reproduce with good accuracy a plane wave sound field up to falias 

for all radii LR R≤ . 

Each point source produces a sound field inside the array of the form (24). The sum of 

these L fields, weighted by amplitudes ( )lw k , are required to equal that of a general 

field with coefficients m
miα , from Eq. (4), where 1mα =  for a plane wave with angle 

of incidence equal to zero, weighted by , Tm Nµ , from (23). The simple source solution 

for the weights is given by 23  
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( ) ( )
,1 l

T

immM
m N

l
m M m L

i e
w k

L H kR

φµ

=−

= ∑ .     (36) 

The total field is then given by  

( ) ( )0
1

, ( )
L

l l
l

p R w k H kφ
=

= −∑ r r .    (37) 

In the following example, a circular array of 351 sources at a radius of 2 m is used, 

producing a spatial aliasing frequency of 4.7 kHz. A sample rate of fs = 8 kHz is used 

and the signal length is N = 200 samples, producing a time duration of 25 ms. The 

weight solutions in Eq. (33) are generated for N/2 = 100 equally-spaced positive 

frequencies [ ], 1: 2q sf qf N q N= ∈  up to 4 kHz. The zero frequency weights, q = 0, 

are set to zero. All computed loudspeaker weights wl(k) are multiplied by the linear 

phase term ( )exp /q si Nf fπ−  to produce causal solutions with the main wave front 

arriving at the center of the array at time 12.5 ms. 

The complex sound field at each frequency, ( ), , qp R kφ , is generated on a grid of 100 

by 100 uniformly-spaced locations spanning an area of 4 by 4 m.  

In order to produce a similar half space transition width with frequency (see Fig. 3) a 

linear increase in transition width NT with frequency is used from a value NTL at low 

frequencies to NTH at high frequencies of the form  

( ) [ ]2 , 1, 2T TL TH TL
qN N N N q N

N
= + − ∈ .   (38) 

The simulations use NTL = 5 and NTH = 35. 

To generate the physical sound field at a given time t, each spatial sound field 

( ), , qp R kφ  is multiplied by its corresponding temporal factor ( )exp 2 /si qf Ntπ  and 

summed to produce the complete field at time t.  The real part of the total field is then 

plotted. For the array radius RL = 2m the propagation time of the pulse across the 

array is 2R cτ =  = 11.8 ms. The sound fields are produced for times 9.6 ms, when 

the pulse is one quarter of the way across the array, at 12.5 ms when it is at the center, 

and at 15.4 ms at three-quarters of the distance across the array.  

The sound fields at the three stated times are shown in Fig.s 12 to 14. Also shown are 

the lower half-space fields obtained using the complementary weights in Eq. (6). The 

pulses at 9.6 ms are reasonably well confined to their corresponding half-space, 

although there is a small residual curved wave front extending partially into the other 
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half-space in each case. At 12.5 ms the pulses are well-confined to their half-space. At 

15.4 ms a similar performance to that in Fig. 12 is seen.  

 
Figure 12: Sound pressure level of wideband pulse at time 9.6 ms for upper (a) and lower (b) half-space  
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Figure 13: Sound pressure level of wideband pulse at time 12.5 ms for upper (a) and lower (b) half-space 

 
Figure 14: Sound pressure level of wideband pulse at time 15.4 ms for upper (a) and lower (b) half-space 
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Finally, the two fields at time 12.5 ms are shown in Figure 15 for L = 81 2D point 

sources, which produces a spatial aliasing frequency of 1 kHz, one quarter  of the 

Nyquist frequency. Compared to Figure 13, the sound field demonstrates pre- and 

post-oscillations in the reproduced pulse. However, the half-space field is maintained 

for radii less than max/ 0.54MR M k= =  where kmax is the wavenumber at the Nyquist 

frequency 4 kHz.  

 
Figure 15: Sound pressure level of wideband pulse at time 12.5 ms for upper (a) and lower (b) half-space, using 

L = 81 2D sources and a corresponding spatial aliasing frequency of 1 kHz 

 

V. CONCLUSIONS 
 

This paper has shown that a sound field can be generated in a half-space without the 

need for a physical boundary, and reproduced using a circular array of loudspeakers. 

Half-space fields are produced by suppressing the positive or negative modes in the 

cylindrical or spherical harmonic sound field expansion. This operation is equivalent 

to adding to the sound field, in quadrature, a second field which is the Hilbert 
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transform of the original sound field. The half space field may be equivalently termed 

an analytic sound field.  

It has been shown that both plane wave and point source half-space fields can be 

produced. The use of a smooth transition between negative and positive mode 

weightings improves the accuracy of the half-space field and the extent of overlap 

between two half-space fields can be controlled by offsetting the weighting 

sequences. A simulation has been carried out to demonstrate the generation of 

wideband signals using a circular array of sources.  

The advantage of the half-space approach is that two independent sound fields can be 

created over half the area within the array. The disadvantage is that the direction of 

sound propagation is limited to two directions parallel to the half-space boundary. 

However, in many applications for personal sound, a single direction of propagation is 

acceptable; for example when using line arrays. Furthermore it has been shown that it 

is possible to produce a field over less than 180 degrees in which a limited range of 

angles of arrival is produced allowing, for example, the reproduction of stereo sound 

over a confined region of the space.  

Other techniques allow arbitrary directions of propagation, but when the direction of 

propagation in one zone is in-line with another zone, this produces interference. At 

low frequencies, it is possible to create a field that avoids intrusion into the other 

zone, but at high frequencies, the problem remains. Hence, the half space approach 

avoids interference between multiple zones by controlling the direction of 

propagation.    

It has also been shown that a similar mode weighting approach applies for the 3D 

case, including the generation of half-space fields for out-of-plane sources, provided 

that the angle of arrival in elevation is not too close to 0 or 180 degrees (vertical 

incidence). However, since sound field expansions can be calculated under rotation of 

coordinates, it is likely that a half space field can be generated for any angle of arrival, 

although this has not been further investigated, or verified, here. 

Finally, the simulations presented here have typically used a large number of sources 

and a sufficiently low sample rate to avoid spatial aliasing effects. An example of 

aliasing effects is given which shows that, within the reduced radius where 

reproduction is accurate, the half-space field is maintained.  
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Appendix A 
 

The Fourier transform of the discrete signum function is 

( ) ( )
1 1

sgn im im im

m m m
S m e e eφ φ φφ

∞ ∞ ∞
−

=−∞ = =
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This may be calculated by approximating the sum as 
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Taking out the first term of each summation and evaluating the geometric series 
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Letting γ   tend to zero yields 
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Figure captions 

Figure 1: ( ), ,R kψ φ  for kR = 10 and kR = 30 

Figure 2: Lower half-space field produced at 1 kHz for a step function weighting 

Figure 3: ( ), ,R kψ φ  for kR=30, NT = 15 transition width 

Figure 4: Lower half-space field produced at 1 kHz for NT = 15 transition width 

Figure 5: Half-space field at 1 kHz for three plane waves of equal amplitude with 
incidence angles –30, 0 and 30 degrees, with NT=15 and offset 10 

Figure 6: Half-space field at 1 kHz for a line source at ( ) ( ), 4, / 4s sR φ π= , NT = 15 

Figure 7: Coefficients for a 1 kHz half space field (a), Bessel coefficients (b) and the 
coefficients obtained by the convolution of the two for a translation of –0.5 m in y, (c) 

Figure 8: Half-space field in dB at 1 kHz, NT = 15 and offset 0 

Figure 9: Half-space field in dB at 1 kHz, NT = 15 and offset 10 

Figure 10: Half-space 3D field for 1 kHz point source at rs = 6m, θs = 90 and φs = 45 
degrees 

Figure 11: Half space sound pressure in y for a 1 kHz source at 0sφ =  degrees 

Figure 12: Sound pressure level of wideband pulse at time 9.6 ms for upper (a) and 
lower (b) half-space 

Figure 13: Sound pressure level of wideband pulse at time 12.5 ms for upper (a) and 
lower (b) half-space 

Figure 14: Sound pressure level of wideband pulse at time 15.4 ms for upper (a) and 
lower (b) half-space 

Figure 15: Sound pressure level of wideband pulse at time 12.5 ms for upper (a) and 
lower (b) half-space, using L = 81 2D sources and a corresponding spatial aliasing 
frequency of 1 kHz 
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