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This work investigates the application of Gaussian processes to capturing the probability distribution
of a set of aircraft trajectories from historical measurement data. To achieve this, all data are assumed
to be generated from a probabilistic model that takes the shape of a Gaussian process. The approach
to Gaussian process modelling used here is based on a linear expansion of trajectory data into set of
basis functions that may be parametrized by a multivariate Gaussian distribution. The parameters
are learned through maximum likelihood estimation. The resulting probabilistic model can be used
for both modelling the dispersion of trajectories along the common flightpath and for generating new
samples that are similar to the historical data. The performance of this approach is evaluated using
three trajectory datasets; toy trajectories generated from a Gaussian distribution, sounding rocket
trajectories that are generated by a stochastic rocket flight simulator and aircraft trajectories on
a given departure path from Dallas Fort Worth airport, as measured by ground-based radar. The
results indicate that the maximum deviation between the probabilistic model and test data obtained
for the three data sets are respectively 4.9%, 7.6% and 13.1%.
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o standard deviation

7 normalized time

7 normalized time vector

t time, seconds

t time vector, seconds

w single weight

w weight vector

x single point

x vector of a single dimension
Y dataset of N trajectories

y vector of a single trajectory

I. Introduction

Technological developments in the last decade have increasingly provided means to gather trajectory data. This has
enabled access to an abundance of sources, ranging from tracking cars and aircraft to people and wildlife. A conse-
quence of this is a large amount of trajectory data, also called spatio-temporal data. In most cases, these trajectories
have patterns in them, as the tracked objects perform repetitive motions and/or follow specific paths. Extracting these
patterns from aircraft trajectories specifically may be important for air traffic controllers wishing to monitor the highly
regulated airspace around airports [1], or environmental policy makers wishing to investigate aircraft noise abate-
ment [2], researchers who predict high-altitude gas balloon trajectories [3], researchers who fly unguided atmospheric
sounding rockets and wish to predict safe regions of splashdown [4] and for a range of other applications.

This paper is concerned with the statistical analysis of the dispersion of trajectories from a common path. Given a
large set of trajectories that are correlated — for example aircraft following the same flightpath — we would like to
learn the underlying probabilistic model that effectively characterizes both the common path and the dispersion of the
trajectories.

Most existing approaches to modelling the common path and dispersion do so in discrete-space. [5] capture pedestrian
movement via visual surveillance, and after clustering based on a common path, they model the two-dimensional
trajectories in a route model. This route model contains a mean function, the average of all trajectories, described by
a discrete number of equidistant nodes. Furthermore, the dispersion of the trajectories at each node is calculated by
examining the cross-section perpendicular to the local node direction, and fitting a univariate Gaussian to the points
where the trajectories cut this cross-section. The result is an envelope with a spline-like representation, capturing a
given percentage of trajectories in a two-dimensional space. [6] extended this approach to aircraft trajectories. Here
the nodes are again discrete, but in a three-dimensional space, and as a result the cross-section perpendicular to the
nodes is no longer a line, but a surface. This is visualised as a window frame, constructed by a vertical and lateral line,
through which the trajectories manoeuvre. The variance in the vertical and lateral direction is calculated independently
by fitting a univariate Gaussian distribution, which is the same approach [5] took, but now seen from two sides (vertical
and lateral).

In both [7] and [8] the common path and dispersion is also captured in a model. However, while the mean func-
tion is captured in a similar fashion (using a discrete number of equidistant nodes), the dispersion is captured via a
two-dimensional multivariate Gaussian. Therefore, the bounds of the envelope based on a constant variance are not vi-
sualised as a single line (corresponding to a univariate Gaussian), but as an ellipse (corresponding to a two-dimensional
multivariate Gaussian). Here the envelope capturing a given percentage is shown by merging the ellipses (evaluated at
each node) into an area.

These papers and corresponding models have already demonstrated the usefulness of assuming that the trajectories are
Gaussian distributed. However, one of the limitations is that the data are handled in discrete space. As a result, input
data has to be re-sampled, causing the model to only be valid at specific, discrete, points. Now, the trajectory data seen
in this paper can, in a more general context, also be called functional data. The reason is, that each dimension (e.g.
longitude and latitude) can be described as a function of another parameter (e.g. time). Consequently it is possible
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to apply Gaussian Process Regression (GPR), a technique that provides a mathematical framework to deal with these
functional data in a continuous and probabilistic manner. A Gaussian Process (GP) is defined by its mean function
m(7) and covariance kernel k(z, "), where 7 and ¢’ are two (possibly multidimensional) values of some functional value
(e.g. time). The interested reader is directed to [9] for a complete description of GP. However, in relation to the
practical problem at hand, creating a statistical analysis of the dispersion of trajectories from a common path, it is
important to understand that the common path relates directly to the mean function m(7) and the dispersion of the
trajectories from a common path is captured in the covariance kernel k(z, ).

In the work by [10], the Gaussian mixture model is used to discover groups in the data (i.e. clustering). Each cluster
is modelled independently as a regression model with a polynomial basis, after which the mean function m(7) and
the linear covariance kernel k(z, ") is used to assign the membership of each individual trajectory found in the data
in a probabilistic manner. However, while the trajectory data are (or can be) multi-dimensional, each dimension is
modelled with an independent GPR model. Though this assumption is not an issue when clustering, it is important to
capture the relation between dimensions when modelling the dispersion or generating new trajectories, as discussed in
detail in section 1.

In [11], the authors model trajectories as a Gaussian process and clustered based on the Gaussian mixture model.
They point out that the framework provided by GP naturally lends itself to the analysis of trajectories. However, the
trajectories used for training the model are re-sampled, so the information (data-points and smoothness) is lost; The
authors of [10] sidestep this by introducing basis functions. Furthermore, the covariance kernel k(z, ') is expressed
as the squared exponential kernel. It is important to note that this kernel is stationary, meaning that the value only
depends on the difference ¢ — #’. This implies that a change is only dependent on the time difference. For example,
the covariance kernel k(7,1") can capture the behaviour where trajectories that are on the outside of a turn at the start
(time 1), are more likely to also be at the outside of the turn once the manoeuvre has been completed (time #’). The
inverse can be true for the next turn — this behaviour can only be captured using a non-stationary kernel, e.g. the
linear covariance kernel. Additionally, the envelope containing 95% of the trajectories is only represented as a ‘bar’
(a minimum and maximum value) in both dimensions separately. While for a single dimension the envelope is indeed
described by a minimum and maximum value, for two dimensions the envelope should be represented by a merger of
ellipses, analogous to [7] and [8]. In conclusion the focus is on clustering, however, when it comes to modelling the
individual clusters as a GP, there are other elements to consider, as discussed later in this paper.

Moreover, the authors of [12] use GPR to learn the underlying model structure for further analysis. While they do
mention trajectory analysis, the primary focus is on calculating the model parameters using GPR and relating these
values to phenomena seen in cognitive psychology.

In this paper, we propose a method that enables the reconstruction of the probabilistic model that governs a set of
aircraft trajectories using the GP technique. The primary goal is to establish a method supported by a theoretical
basis, with the purpose of estimating the dispersion seen in a aircraft trajectories that follow a common flightpath. In
order to capture this dispersion, a probabilistic model is reconstructed from the trajectory data, hence turning into a
data-driven method. The probabilistic model itself is expressed as a Gaussian process, where the mean function m(r)
is described as a continuous function using basis functions. The covariance kernel k(7,#’) is a combination of a linear
covariance kernel and a noise term, in which the linear covariance kernel has the property of being non-stationary and
the noise term captures the precision of the probabilistic model in emulating the training data. To our knowledge,
Gaussian processes have never been applied for capturing the dispersion found in trajectory data to this extent. The
application of basis functions in both the mean- and covariance function is particularly suitable when analysing civil
aircraft trajectories, as their trajectories tend to be smooth. In other words, when looking at the individual time-series
(altitude, latitude and longitude) all the derivatives are continuous, as the flight dynamics of transport aircraft does not
allow abrupt changes. Thus, it is possible to capture the characteristics of the trajectories using a set of pre-defined
radial basis functions, as done in this paper. Some advantages of this approach are:

 The training data can be treated as continuous functions, avoiding re-sampling and thus also capturing smooth-
ness information.

* The output of the probabilistic model is continuous, allowing the rendering of a smooth volume as a confidence
interval.

e The variation of the model with respect to the training data is captured in a precision parameter, preventing
over-fitting.

» Co-variances between dimensions of the trajectory are accounted for.
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* The model is generative, allowing an infinite number of sample trajectories to be produced for a reconstructed
model.

* The evaluation of the marginal likelihood function allows for quantification of model performance.
A potential limitation, which will be discussed in more detail in the paper is:

 The entirely statistical approach to modelling trajectories can lead to some of the trajectories sampled from the
model exhibiting physically implausible behaviours (see results in section 2).

By capturing trajectory data in a probabilistic model, any subsequent calculation can be done on this model, and not
the vast amount of measured trajectory data, thus reducing the computational cost. Furthermore, the model can be
used as a support tool for Air Traffic Management (ATM): As a method to generate aircraft proximity maps [6], i.e.
creating a map that holds the probability an aircraft is present at any given point. As well as a method to construct
containment regions to deal with conformance monitoring [13], where it is possible to create a priority listing to
observe which aircraft deviate most (based on historical data) from the common flight paths. Finally, the method is
capable of assisting with the evaluation of noise abatement [2], where weighted aircraft trajectories can be generated
from historical data, as done in [14].

The remainder of the paper is organised as follows. In section II, the mathematics of the method, written for D-
dimensional trajectories, are explained. Following this, three different datasets of trajectories are comprehensively
evaluated using the method in section III. The first two datasets (presented in section A) act as benchmarks, validating
the method by applying it on trajectories with known characteristics. The first dataset contains simple two-dimensional
‘toy’ trajectories that follow a circular path where the radius is sampled from a Gaussian distribution. This dataset
sets a baseline performance for the method based on trajectories that truly have a Gaussian distribution. It also helps
to illustrate the importance of modelling the co-variances between spatial dimensions. The second dataset contains
three-dimensional flight trajectories for sounding rockets that have been generated by a stochastic flight simulator.
This dataset is useful for evaluating the method in three dimensions, and to observe the limitations of the statistical
approach when it comes to producing physically plausible sample trajectories. Once the method has been validated
on the benchmarks, it is applied on the three-dimensional flight trajectories for aircraft departing from Dallas Fort
Worth (DFW) airport in section B. These are measured trajectories collected using ground radar. This dataset is useful
for evaluating the performance of the method on a ‘real’ dataset where the distribution over trajectories may not be
truly Gaussian. It also allows a demonstration of how the method presented here can be combined with a clustering
algorithm to fully model all flight paths around an airport. Finally, in section IV, our conclusions are presented.

II. Modelling of multi-dimensional trajectories

The task at hand is to analyse a set of trajectories and model the mean trajectory and the dispersion from the mean
trajectory. The emphasis here lies on obtaining a method that includes the dependence between each dimension (e.g.
latitude, longitude and altitude) of the trajectories by capturing the co-variance. This allows for a generative model
that achieves a higher performance when it comes to modelling the dispersion in comparison to an independent model.

A. Data

Given the dataset Y = {yy,...,yn} of N trajectories, each D-dimensional trajectory y, has D concatenated vectors x4,
resulting in y, = [x;...xp]T. Furthermore, all x, in y, have M, data points, resulting in x; = [xz(11) ... xq(ta,)]T.
Where the M, X 1 vector t, = [f;...1),]7 is identical for all x,. Therefore, y, is an DM, X 1 vector, where no
assumption is made on the number of data points per trajectory. As a result, each trajectory is described by a set
of coordinates x; ...xp in D-dimensional Euclidean space, at each time-step 7, ...7y,. Finally, in order to allow a
sensible comparison between the individual dimensions x4, the entire dataset Y is normalised per individual dimension,
resulting in x; = [0, 1].

B. Time-warping

As the interest lies in finding the spatial distribution of trajectories and we are not concerned with their variation in
time, it is convenient to normalise each trajectory into the interval 7 = [0, 1], where we use 7 to indicate normalised
time. This procedure scales the velocity component over the whole trajectory, letting each object spend an equal
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amount of time in the controlled area, and as a result, all trajectories start at 7 = 0 and end at 7 = 1. Another approach
is presented in [15], where the Dynamic Time Warping (DTW) technique used in the speech recognition field is applied
in a pattern detection algorithm. In this approach, the points in each trajectory are shifted (time-warped), such that
if one person was walking faster than the other, or even if there are changes in velocity during the observation, the
trajectories would be identical. The important difference here is that normalising works only when the objects have a
constant velocity, while DTW also works when the objects have a variable velocity.

C. Linear representation
We capture each trajectory x, as a linear combination of basis functions. Thus for a vector of discrete times 7, a single
dimension x,; can be approximated using equation (1).

J

Xa(T) % ) wib(T) = PalTa)Wa ()

J=1

where ¢4(7,) = [¢1(Ty) ... d;(t,)]T and w, is a J X 1 vector taking the values that minimize the square error between
a single dimension x,; and the right hand side of equation (1).

However, as stated in section A, each trajectory y, has D individual dimensions, each described by x,. Therefore, the
trajectory y, is approximated using equation (2).

Yn & @p(T)Wy 2
where w, is a DJ X 1 vector and ®,, is a block-diagonal DM,, X DJ matrix:

$(tn) - 0
0 - ¢p(tn)
where the dependency of @, on 7, is not explicitly shown to keep the notation uncluttered. In this paper, identical
basis functions are used for all dimensions (¢; = ¢;,Vi, j € D), however, if desired, it is possible to define these
individually per dimension d.

D. Maximum likelihood formulation

In a dataset of N trajectories the probability of each weight vector w, is assumed to be Gaussian with mean p and
covariance X
p(wn) = N(Wnlﬂ, Z), YneN (4)

where p is a DJ X 1 vector and X is a DJ X DJ matrix.

Each trajectory y, is modeled as zero-mean Gaussian white noise added to the function described by equation (2),
resulting in equation (5).
PlWs B) = Nl @ Wy, B7'1,), Y0 € N (5)

where 7! is the variance of the white noise and I, is a DM,, x DM, identity matrix.

From Bayes’ theorem for Gaussian variables [16] the marginal distribution of y, is given by
P(Yn) = N(ynl(l)nﬂv (I)nzq)r.[ +/3,_]ln), YneN (6)

and the conditional distribution of w, given y, is equal to

PWalyn) = N(W,lSu(B®Yy, + 7' 1), S,), ¥n € N @)
where
S;'=x27"+p0]D, (8)
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The likelihood function £, which represents the probability of the data given the parameters and viewed as a function
of those parameters is given by

N
L= [tpalwas B) p(wa)) ©)

n=1

By maximizing £ the values of the parameters for which the probability of the observed data is maximized can be
determined. Equivalently we can minimize the negative log of £, as this is more convenient both analytically and
numerically. It can be shown by substituting equation (5) and equation (4) in equation (9), that the negative log of £
is given by equation (10).

DM* DM*
-InL= In2m) — —— In(B)+
ﬁ N
= D AYAYn = 2Y8 (@ W) + TH( @] @, w, Wi}
2 n=1
D
+ In(27) + N In(|Z))+
2 2
1 N
5 DT W] = 2wl + )} (10)
n=1
where v
M=) (M,) (11)

Minimization with respect to , X and 3 can be done numerically using the Expectation-Maximization (EM) algorithm.
The expected log-marginal likelihood is given by equation (10) where the terms w, and w,w, take their expected
values.

From equation (7) the expected values are given by
E[w,] = S,(6®Ty, + X' 10) (12)

Elw,w;] =S, + E[w,]E[w;] 13)

A

Minimizing the expected negative log likelihood with respect to u, X and 3 respectively give the expressions for fi, X
and 3 as seen in equations (14) to (16).

S Ix
A=~ ;{E[wn]} (14)
3 1 N T T T
£= 5 D EIWawT] = 2E[W] Ju + ppeT) (15)
n=1
1 1 S T T T T
%= Dir D U¥TYn = 2¥H(@E[W,]) + Tr(®TOE[w,wi D) (16)
n=1

Equations (12) to (16) can be solved iteratively for /i, ¥ and B.

Once the likelihood given by equation (10) has converged (in this paper a convergence limit of 107! is used), it
is possible to find the probability distribution of y at any given 7 using equation (6). The solution fits into a GP
framework, where a function is defined as a Gaussian process by a mean function m(7) and a covariance kernel
k(r,7’):

y(1) ~ GP(m(7), k(r, 7)) a7
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where
m(7) = E[y] = ®(7)u (18)

k(r,7') = E[(y(r) - m(D))(y(r') - m(x"))] = ®(OZ®T(7) + 7' 19)

A more intuitive representation of the mean function m(7), given by equation (18), is a point that moves along a
D-dimensional trajectory as a function of 7. In turn, the covariance kernel k(z,7"), given by equation (19), can be
represented as a D-dimensional (hyper-)volume at a constant probability.

When sampling from equation (6) it can be convenient to ignore the white noise term (57'1,). This term is there to
capture the uncertainty remaining between the parametrised model and the data. For this reason, when taking samples
from a probability distribution, it is done according to equation (20).

() = N(¥al®ppt, @, @),V € N (20)

E. Model selection

The likelihood function £ being maximized is also known as the marginal likelihood, as the model parameters ,
X and S have been marginalised out. This marginal likelihood is a useful quantity for comparing models, as Bayes
factors are defined as ratios of marginal likelihoods of two competing models. For this reason, the model with the
highest likelihood is the best model - if, and only if, the data are Gaussian distributed. This approximation is referred
to as type II maximum likelihood [9].

Hence by evaluating the likelihood at different values of the model complexity J, the optimal complexity can be
calculated. Note that in this paper only the uniform distributed Gaussian basis functions (as seen in appendix A) are
considered, however it is possible to compare any model structure (e.g. linear, exponential, polynomial, or even Bézier
curves [17]).

Furthermore, for the uniform distributed Gaussian basis functions the model complexity J has an upper limit for
which the likelihood function £ (equation (10)) can be evaluated, this is a direct result from the term In(|X[). As one
of the eigenvalues of X turns zero, the log-term goes to infinity, indicating redundancy in the model. In other words,
there is a value in w,, that has no (or a very small) contribution to the final model. When this happens, it becomes
impossible to evaluate the likelihood unless resorting to computational tricks such as assuming a minimum value for
the eigenvalues of X. For the model selection in section III, the model is trained up to the point where the redundancy
is introduced. This allows for evaluation of £ without introducing tricks, and thus permitting a convergence check of
the EM algorithm.

F. Evaluation of the model using the Kolmogorov-Smirnov statistic

In a typical experiment, data collected in one situation is compared to the data in another situation with the aim of
seeing if the results differ. The Kolmogorov-Smirnov (K-S) statistic does exactly this for probability distributions and
quantifies the difference by returning the maximum difference between the cumulative distribution function. Here the
probability distribution p(y) returns the odds of event y occurring, where the cumulative distribution function is the
integral of a range of y, and returns the expected percentage of samples drawn from p(y) to fall within this range. The
range of interest for this test is the area around the mean, bounded by the standard deviation o, making it possible for
a D-dimensional multivariate Gaussian to capture the area (D = 2), volume (D = 3) or even hyper-volume (D > 3) at
any given 0.

For the application to trajectories, p(y) is numerically integrated over the interval 7 = [0, 1], of which can be deter-
mined whether the points of the trajectories are inside (< o) or outside (> o) the bounded range. In this paper the
trajectory data used in the experiments are compartmentalized in a training and an evaluation dataset. While the train-
ing trajectory data are used to create a probabilistic model p(y) according to the method described in this section, the
evaluation trajectory data are kept apart, only to be used for this test. The Empirical Cumulative Distribution Function
(ECDF) is therefore created by increasing the bound o and calculating the percentage of points from the evaluation
trajectory data that are within the range. For this reason the ECDF represents the true distribution as observed without
any modelling. In case of the uni-variate Gaussian probability distribution, there is an analytical solution to evalu-
ate the Cumulative Distribution Function (CDF) belonging to the model; such a formulation is not available for the
multivariate Gaussian probability distribution. However, [18] showed that this function can be approximated using a
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large number of generated samples. Hence, 2000 sample trajectories are drawn from p(y,) (seen in equation (17)) over
7 = [0, 1] in 100 uniform steps to represent the CDF. These values for sampling p(y) and integrating over 7 have been
selected to assure a ‘good enough’ approximation when performing the test, meaning that re-running the test 5 times
does not cause a difference larger than 0.5%. After all, when sampling there is always a component of randomness
included in the system.

Additionally, to reduce the computational cost of this test, the method presented in [19] is implemented. This paper
describes an approach to obtain similar results at a lower computational complexity by making use of the Mahalanobis
distance to see whether a point falls within a given bound.

In simple terms, we create an area/volume/hyper-volume at a standard deviation o, which expands as o increases.
Here, the percentage of points (not complete trajectories) inside, is counted for both the evaluation trajectory data
(representing the ECDF) and the generated samples (approximating the CDF belonging to the model). Of these
functions, the maximum difference represents the Kolmogorov-Smirnov (K-S) statistic.

Finally, it’s important to note that the K-S statistic remains an approximation, where both the sampling to create
the CDF, and the numerical integration play a part. This cannot be avoided as both sampling from a probabilistic
distribution and integrating numerically are an approximation by nature.

III. Results

In this section, the previously described method is applied to three different datasets. In section A, two datasets are
analysed to benchmark the performance of the method. First, foy trajectories are analysed with the aim to determine the
baseline performance. This also visualises the importance of modelling dependence between dimensions and the time-
warping of the trajectories. Secondly, the analysis is extended to three dimensions using a stochastic rocket simulator.
This analysis validates the approach to trajectories in a three-dimensional space, and describes the limitations of using
a probability function to describe a physical process. Once the methodology has been validated on the benchmarks,
the technique is applied to a dataset containing aircraft trajectories as measured by the ground radar in section B. It
also combines the method presented in this paper with the clustering algorithm as described in appendix D to obtain
an overview of all trends present in the data.

A. Benchmark experiments
1. Dataset I — Gaussian distributed trajectories

This dataset contains two-dimensional ‘toy’ trajectories that follow a circular path where the radius is sampled from a
Gaussian distribution, all according to the equations presented in appendix B. The aim here is to determine a baseline
performance and investigate two important concepts, the modelling of dependence between dimensions and the time-
warping method.

As for the time-warping, these results are visible in figure 1. On the left, 50 trajectories at a constant velocity are
visible, where the dots indicate the points between the start = Os and the end time of the longest trajectory r = 10s
in 10 steps. On the right, all trajectories have been normalised to interval 7 = [0, 1], and the dots represents the start
7 = 0and the end 7 = 1 in 10 steps. The trajectory data are expected to have a Gaussian distributed radius; the mean
is expected to run through the middle. For the trajectories with a constant velocity this is not the case, as it represents
more a wave-like effect, however, for the normalised trajectories, the average of each set of points does run through the
middle. This indicates the method of normalising is indeed suitable for the purpose of time-warping the trajectories.

In this experiment, the model selection is done based on the likelihood as suggested in section E. The maximum value
for the marginal likelihood occurs at the model complexity J = 21, and is therefore selected to be the best model. The
50 trajectories used as training data are seen in figure 2a. Furthermore, the mean trajectory m(7) is visualised as a
dashed line and the region captured by one standard deviation (1 o) is shown by a shaded area. From the probabilistic
model p(y), 50 sample trajectories are generated using equation (20). These sampled trajectories S are shown in
figure 2b.

One of the key contributions of this paper is that it models the dependence between each dimensions by including the
co-variance, and how it allows the probabilistic model to generate trajectory data (sampled data) similar to the input
trajectory data (training data). An additional claim is that it also provides an improvement when it comes to modelling
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a) un-normalised time, 1 = {Os, 1s,...10s}
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Figure 1. Examining the effect of normalising time
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b) sampled data S

Figure 2. Visualisation of Gaussian distributed training and sampled trajectory data.
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Figure 3. Visualisation of Gaussian distributed sampled trajectory data from an independent model.

the dispersion. To simulate what will happen when the covariance between dimensions is not taken into account, only
the off-diagonal blocks X; ; and X, in the co-variance matrix as seen in equation (21) need to be removed.

i Zip
v o (P Z, 21
(22,1 22,2) @D

The sampled trajectory data, generated from p(y) using this reduced covariance matrix is visible in figure 3. Besides
the 50 sampled trajectory data, the mean trajectory (m(7)) is visualised as a dashed line and the region captured by one
standard deviation (1 o) is shown by a shaded area. It shows that the sampled trajectory data overlap, a trend not seen
in the training data. Furthermore, the area of one standard deviation is narrowed halfway through the corner (around
7 =.5), an effect supported by the sample trajectories as none move along the outer edges.

To conclude, the performance of the model is evaluated according to the technique discussed in section F. For this
experiment, the ECDF is created using 2000 trajectories from the evaluation dataset. Figure 4 displays both the
ECDF (evaluation trajectory data) and the CDF (sampled trajectory data), showing that the K-S statistic is 0.049,
corresponding to a maximum deviation of 4.9%. And while the training and evaluation data were actually drawn from
a Gaussian distribution, it is not surprising to see a number like this as only 50 trajectories were used as training data.
However, the point being made here, is that it allows for the approximation of a probabilistic model using (limited)
available data.

2. Dataset Il — Sounding rocket trajectories

The second benchmark experiment analyses sounding rocket flight trajectories. In order to have access to a large
number of rocket flight trajectories, the stochastic rocket flight simulator based on [4] was used. The data are generated
from a Monte-Carlo simulation, where a number of stochastic variables in the underlying deterministic simulator are
sampled over a Gaussian distribution with each run. The simulator includes a physical model, making the trajectories
representative of trajectories that can occur in reality. The rocket considered here is passively controlled and consists
of two stages, which results in a sudden acceleration of the rocket at second stage ignition. The launching rail, which
guides the rocket at the launch, is pointed towards the North-East at a declination angle of 45 degrees. Ordinarily
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Figure 4. Comparing the Gaussian distributed evaluation and sampled trajectory data.

this simulator, which is designed for sounding rockets, models a parachute deployment at apogee and descent under
parachute. However, for simplicity the trajectories generated for this work are all ‘ballistic’, that is without parachute
deployment. This, combined with atmospheric data simulating a wind from the west, results in the trajectories as seen
in this section. The specific settings of the simulator to generate the trajectories seen in this section, can be reviewed
in appendix C.

The model selection is done based on the likelihood as described in section E. The maximum value for the marginal
likelihood occurs at the model complexity J = 18, and is therefore selected to be the best model.

The 50 trajectories used as training data are seen in figures 5a and 6a. It shows the trajectories seen from two directions,
the top-view and a side-view. Furthermore, the mean trajectory (m(7)) is visualised as a dashed line and the region
captured by one standard deviation (1 o) is shown by a shaded area. From the probabilistic model p(y), 50 sample
trajectories (described as S) are generated using equation (20). These sampled trajectories S are shown in figures 5b
and 6b. Additionally, a three-dimensional representation of the training data Y, sampled data S and the volume
containing one standard deviation is presented in figures 7 to 9 respectively.

The sampled trajectory data S behaves as expected when assuming a Gaussian distribution in so far as they exhibit
greater symmetry about the mean than the training data. As the trajectories are based on physics, i.e. follow specific
rules, generating samples based purely on a probability distribution can lead to samples that conflict with the expected
behaviour. An example of this is visible when looking at the time-series in figure 10, where during 7 = [0.3,0.55]
the second stage is activated for the training data. As the training data shows many trajectories at a higher altitude
than the mean, the probabilistic model assumes there are also trajectories at a lower altitude, causing the samples to
dive. However, based on the physical model at the core of the simulator, the sounding rockets would require unusual
circumstances to make such a manoeuvre.

Similar to the previous experiment, the performance of the model is evaluated according to the technique discussed
in section F. For this experiment, the ECDF is created using 2000 trajectories from the evaluation dataset. Figure 11
displays both the ECDF (evaluation trajectory data) and the CDF (sampled trajectory data), showing that the K-S
statistic is 0.076, corresponding to a maximum deviation of 7.6%. This reduction in performance corresponds with
the differences seen in the training data and sampled data.
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Figure 5. Visualisation (top-view) of sounding rocket training and sampled trajectory data.
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Figure 6. Visualisation (side-view) of sounding rocket training and sampled trajectory data.
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Figure 7. A three-dimensional representation of the sounding rocket training trajectory data Y.
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Figure 8. A three-dimensional representation of the volume containing one standard deviation for the sounding rocket trajectories.

15 of 28

This is a pre-print draft of the paper, which was accepted for publication in the Journal of Guidance, Control, and Dynamics on 17/06/2016



0.8
T 0.6

X 0.4

0.2

0 02 04 o6 gp
X5 [-]

Figure 9. A three-dimensional representation of the sounding rocket sampled trajectory data S.

B. Modelling aircraft trajectories using Gaussian processes

This dataset contains three-dimensional flight trajectories for aircraft taking off at DFW. These are measured trajecto-
ries collected using ground-based radar. The aim here is evaluating the performance of the method on a real dataset
where the distribution over trajectories may not be truly Gaussian. Furthermore, it includes a demonstration of how the
method presented in this paper can be combined with a clustering algorithm for aircraft [1] to provide an overview of
all flight paths around an airport. The clustering step is essential as the method presented in section II is only valid for
sets of trajectories that follow a common flightpath. The clustering algorithm used here relies on re-sampling the tra-
jectories, reducing the dimension via Principle Component Analysis (PCA), and finally cluster via the Density-Based
Spatial Clustering of Applications (DBSCAN) technique. A detailed description of the entire algorithm is included in
appendix D. It should be noted, that when combining the proposed technique with clustering algorithms a trade-off
arises between choosing a few large clusters, or many smaller clusters. Having larger clusters provides more data,
resulting in a capturing of more information with a single model. However, with the agglomeration of 2 or 3 clusters,
the distribution will be more similar to a mixture of Gaussian distributions. And as a result, the maximum deviation
between the probabilistic model and the test data, the K-S statistic, is expected to increase.

From the clustered data, the largest cluster of 82 trajectories is analysed in this section. These 82 aircraft trajectories
are compartmentalized, where 50 trajectories are used as training data Y to build the probabilistic model p(y) according
to the approach described in section II. The model selection is done based on the likelihood as indicated in section E.
The maximum value for the marginal likelihood occurs at the model complexity J = 22, and is therefore selected to
be the best model. The remaining 32 trajectories are kept apart as evaluation trajectory data, to be used in determining
the K-S statistic later on in this section.

The 50 aircraft trajectories in the training data Y are visible in figures 12a and 13a for both the top- and side-view.
Furthermore, the mean trajectory (m(7)) is visualised as a dashed line and the region captured by one standard deviation
(1 o) is shown by a shaded area. From the probabilistic model p(y), 50 sample trajectories (described as S) are
generated using equation (20). These sampled trajectories S are shown in figures 12b and 13b. While the side-view
shows similar trajectories, the top-view shows a greater symmetry in the sampled data, an identical effect was seen
when modelling the sounding rocket trajectories (section 2). The training data has a few trajectories on the inside of
the curve, which causes the sampled data shows a similar effect on the outside. Again, this is a direct consequence

16 of 28

This is a pre-print draft of the paper, which was accepted for publication in the Journal of Guidance, Control, and Dynamics on 17/06/2016



0.25

0.2

X5 [-]

0.15

1

0-1 I I )
0.3 0.35 0.4 0.45 0.5 0.55

7 [-]
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Figure 10. Altitude time-series of the sounding rocket trajectories at 7 = [0.3,0.55], illustrating the difference between the physical and
probabilistic model.
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Figure 11. Comparing the sounding rocket evaluation and sampled trajectory data.

of using a Gaussian probability distribution, which is assuming symmetry around the average. Additionally, a three-
dimensional representation of the training data Y, sampled data S and the volume containing one standard deviation is
presented in figures 14 to 16 respectively.

Similar to the previous two experiments, the performance of the model is evaluated according to the technique dis-
cussed in section F. For this experiment, the ECDF is created using the 32 trajectories from the evaluation dataset.
Figure 17 displays both the ECDF (evaluation trajectory data) and the CDF (sampled trajectory data), showing that the
K-S statistic is 0.131, corresponding to a maximum deviation of 13.1%. This reduction in performance is attributed to
the differences seen in the training data and sampled data and the limited number of trajectories in the evaluation data.

When performing a similar procedure on all clusters seen in figure 18a, a spatial analysis of the complete dataset,
provides the overview as seen in figure 18b. Here, by displaying the standard deviation for each cluster, a quick
overview of activities of the dataset is provided. The three-dimensional view of all aircraft trajectory data can be seen
in figure 19a, with the corresponding overview in figure 19b. Using an Intel(R) Core(TM) i7-3770 CPU 3.40 GHz
with 8 GB 1600 MHz DDR3, the complete analysis of 13 datasets was done in under 2 minutes. In this, the largest
dataset containing 82 trajectories takes up 24 seconds, and the smallest dataset containing 20 trajectories only takes 4
seconds.

The overview as seen in figure 18b is a snapshot of the specific conditions captured in the trajectory data. For an
airport, the conditions would include the time of day (e.g. alteration of runway use due to noise regulations), date
(e.g. holiday season), and weather conditions. In this particular dataset, as the trajectory data only shows aircraft
departing towards the south, indicating there was a southern wind throughout the entire measurement period. It is up
to the user to decide whether an average over all conditions is desired, or the dataset should be separated such that the
probabilistic model represent specific conditions.

IV. Conclusion

This paper explores the application of a Gaussian processes approach to the analysis of aircraft trajectories. The
method works in a continuous framework and has been evaluated in a range of tests, giving an insight into the maxi-
mum difference between the trajectory data generated by the probabilistic model and the measured trajectory data.
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a) aircraft trajectory training data Y

b) aircraft trajectory sampled data S

Figure 12. Visualisation (top-view) of aircraft training and sampled trajectory data.
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Figure 13. Visualisation (side-view) of aircraft training and sampled trajectory data.
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Figure 14. A three-dimensional representation of the aircraft training trajectory data Y.
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Figure 15. A three-dimensional representation of the volume containing one standard deviation for the aircraft trajectories.
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Figure 16. A three-dimensional representation of the aircraft sampled trajectory data S.
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Figure 17. Comparing the aircraft evaluation and sampled trajectory data.
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Figure 18. A top-view of all departing aircraft trajectories from two runways at DEW.
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Figure 19. A three-dimensional view of all departing aircraft trajectories from two runways at DFW.
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A benchmark test — using a dataset that is known to have a Gaussian distribution — showed a maximum deviation
between the model and test data of 4.9%. Further analysis indicated that including the co-variance between dimensions
is important when trying to capture the longitudinal correlations between trajectories.

Another benchmark test on sounding rocket trajectories showed a maximum deviation between the model and test data
of 7.6%. Further analysis also demonstrated the presence of physically implausible behaviours in sample trajectories
generated over the model. It follows that caution should be exercised when using the generative capabilities of this
type of probabilistic model in applications where the physical dynamics of trajectories are important.

The analysis of a set of commercial airline trajectories recorded for departures from Dallas Fort Worth (DFW) airport
showed a maximum deviation of 13.1%. Further analysis showed that — by combining the proposed modelling ap-
proach with a clustering algorithms — large sets of trajectories covering multiple discrete flightpaths may be analysed.
A key point here is the ability to visualise the trends of large amounts of data in a single figure (or perhaps in the near
future, a hologram). Ultimately, this method captures trajectory data in a probabilistic model, allowing subsequent
calculations to be done a model and not the vast amount of measured trajectory data, thus reducing the computational
cost.
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A. Equal spaced Gaussian shaped basis functions

In some cases there is a particular set of basis functions best suited to model the output function. However, in the
case where this is not known we propose using a set of equal spaced Gaussian shaped basis functions. Note that this
Gaussian shape is not related to a probability function, but is only this particular shape is used in the function, here it
is also known as a radial basis function and takes the shape of:

_ _ 2
(D) = exp[%)

k

(22)

with ¢ as the centre location and ry as the optimal width for that particular basis function. The equation for optimal
width for uniformly distributed data is found in [20] to be:

dnax _ dnax 03

n=rmn=...=r=—=
VnK K

where n = 1, representing the single dimension of the data, d,,,, denotes the maximal distance among the data and K
is the number of Gaussian basis functions.

In practice, in order not to have less approximation power along the borders 7 = {0, 1}, as a rule of thumb, an extra
1/K width is added on either side when placing the centre locations. An example where K = 5 and the data ranges
7 = [0, 1], is visible in figure 20. The basis functions are spaced uniformly at ¢, = {-0.2,0.15,0.5,0.85, 1.2} and
Tk = dmax/K = 1.4/5 = 0.28.

Finally, there is also an additional bias parameter (not a ‘bias’ in a statistical sense) added to correct for any fixed
offset of the data. Therefore, when considering a model of J basis functions (also referred to as model complexity J),
there are K = J — 1 Gaussian basis functions.
B. Generating toy trajectories
This section summarises the equations that governs the data as seen in section 1. The radius r is selected using:
1
r= N(rll,E) (24)

and the N data-points are generated using this array of angle 6:

S =) (25)
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Figure 20. Example of K = 5 over 7 = [0, 1], including the extra width

These values are converted to the Cartesian coordinate system by these relations:

X = rcos(6) (26)
y = rsin(@) 27

C. Simulator settings
This section summarises the settings used to generate the data as seen in section 2. These settings are the input for the

stochastic rocket simulator as seen in [4]. The MATLAB version of the Cambridge Rocketry Simulator is available
for download at http://cambridgerocket.sourceforge.net/.

% Loads the rocket data into a variable called INTAB
load intab_CLV2sl_K660.mat;

% Loads the atmospheric data into a

% variable called INTAB4

load intab4_2006100809.mat;

Altitude [m] at which the rockets second parachute
will deploy

Parachute2Alt = 300;

% Length of the launching rail in meters

RailLength = 2;

Angle of declination of the launching rail

in degrees

[
s
o
s

RailDeclination = 45;

Bearing of the launching rail in degrees from

% true north

RailBearing = 45;

% Number of monte carlo iterations to be performed

noi = 2500;

% Starts the simulator

[AscDat, DesDat, Land, Apo] = rocketflight_monte (INTAB,
INTAB4, Parachute2Alt, RaillLength,RailDeclination,
RailBearing, noi,"ballisticfailure");

o

D. Clustering aircraft trajectories

The clustering technique implemented uses the approach and departure labelling, runway location and the clustering
technique for aircraft trajectories as seen in [1].

1. approach or departure.
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2. assign nearest runway based on start location.

3. re-sampling, Principle Component Analysis (PCA) (dimension reduction) and Density-Based Spatial Clustering

of Applications (DBSCAN) clustering.

While the first two steps reduce the generality of the clustering method, it allows for a clean separation of the trajecto-

ries.

In the third step, the feature vector (a vector of set size containing numbers that describe each trajectory) contains

30 data-points spread uniformly over the total length of each individual trajectory. The dimension is then reduced to
5 using PCA. The resulting vector is used as input for the DBSCAN algorithm. The e-neighbourhood parameter € of
the DBSCAN algorithm is set to 0.20 and the minimum number of trajectories in each cluster is 20. This can be con-
sidered an aggressive clustering approach, resulting in one-fourth of the data being seen as noise (outliers). However,
as a result, the remaining trajectories display common trends.
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