	Word count for abstract and text: 245/2876 No. of references: 23
1	No. of figures/tables: 0/4 Baseline and change in uric acid concentration over time are associated
2	with incident hypertension in large Korean cohort
3	
4	Running title: uric acid and hypertension
5	
6	Ki-Chul Sung ^{1*} , MD, PhD; Christopher D Byrne ^{2*} MB BCh, PhD; Seungho Ryu ³ ,
7	MD, PhD; Jong-Young Lee ¹ , MD, PhD; Sung Ho Lee ¹ MD, PhD; Jang-Young Kim ⁴
8	MD, PhD; Seong Hwan Kim ⁵ MD, PhD; Sarah H Wild ⁶ MB BCh, PhD; Eliseo
9	Guallar ⁷
10	
11	¹ Division of Cardiology, Department of Medicine, Kangbuk Samsung Hospital,
12	Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
13	² Nutrition and Metabolism Unit, IDS Building, Southampton General Hospital,
14	(University of Southampton) and Southampton National Institute for Health
15	Research Biomedical Research Centre, MP 887, Southampton, UK
16	³ Department of Occupational and Environmental Medicine, Kangbuk Samsung
17	Hospital, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
18	⁴ Department of Cardiology, Yonsei University Wonju College of Medicine,
19	Republic of Korea.
20	⁵ Division of Cardiology, Department of Internal Medicine, Korea University Ansan
21	Hospital, Ansan, Republic of Korea
22	⁶ Centre for Population Health Sciences, University of Edinburgh, UK
23	⁷ Departments of Epidemiology and Medicine, and Welch Center for Prevention,
24	Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public

- 25 Health, Baltimore, MD, USA
- **Contact Information:** Address all correspondence and requests for reprints to:
- 27 Ki-Chul Sung, M.D., Ph.D., Division of Cardiology, Kangbuk Samsung
- 28 Hospital, Sungkyunkwan University School of Medicine
- 29 #108, Pyung Dong, Jongro-Ku, Seoul 110-746, Republic of Korea
- 30 Telephone: 82-2-2001-2001
- 31 Fax: 82-2-2001-2400
- 32 E-mail: <u>kcmd.sung@samsung.com</u>.
- *KS, *CB contributed equally to the manuscript as a first author
- **Disclosure:** There is no conflict of interest.

50 Abstract

Background It is uncertain whether high baseline uric acid (UA) or change in UA
concentration over time is related to development of incident hypertension. To
investigate relationships between: a) baseline serum uric acid concentration and
b) change in UA concentration and incident hypertension.

Methods 96,606 Korean individuals (with follow up UA data available for 56,085
people) participating in a health check program was undertaken. Cox regression

57 models were used to estimate adjusted hazard ratios (aHRs) and 95% confidence

58 intervals (CI) for incident hypertension according to UA quartiles regarding the

59 lowest UA quartile as the reference, and also according to change in UA

60 concentration comparing individuals with an increase in UA to those with a

61 decrease in UA concentration over time.

62 **Results** Total follow up time was 8 years (median follow-up 3.3 years; interquartile

range, 1.9-5.1). 10,405 cases of incident hypertension occurred. In the fully

64 adjusted regression models, the hazard ratios (95% CI) for incident hypertension

65 comparing the highest vs. the lowest quartiles of UA were 1.29 (1.19–1.38) in men

and 1.24 (1.09–1.42) in women, with statistically significant p for trend for both

67 gender. Additionally, stable or increasing UA concentration over time was

68 associated with increased risk of incident hypertension, particularly in participants

69 with baseline UA concentration ≥median (aHRs 1.14; 95% CI [1.03-1.26] and 1.18;

70 95% CI [0.98-1.40] in men and women, respectively).

71 **Conclusions** High initial UA concentration and increases in UA concentration

72 over time should be considered independent risk factors for hypertension.

73 Keywords: uric acid, hypertension, blood pressure, risk factors, risk

74

75 Introduction

76 High serum uric acid (UA) concentrations are associated with increased all-cause mortality¹, cardiovascular disease^{2,3}, metabolic syndrome⁴⁻⁷, and kidney 77 disease^{8,9} and also with hypertension¹⁰⁻¹². However, the causal nature of the 78 79 relationship has been questioned, with a Mendelian randomization study 80 suggesting that body mass index may confound the association between UA and ischemic heart disease and hypertension ¹³. There has been a resurgence of 81 82 interest in the relationship between UA metabolism and development of disease 83 states, since experimental data demonstrates that oxidative stress is one of the 84 earliest phenomena observed in vascular, renal, liver and adipocyte cells exposed to UA¹⁴, potentially explaining a link between increased serum UA concentrations 85 86 and incident disease.

87

88 A major unresolved question is the role of UA in the development of hypertension. 89 A meta-analysis of 18 prospective cohorts including 55,607 participants found a 90 13% increase in incident hypertension associated with 1mg/dL increase in uric acid level¹⁵, but there was substantial heterogeneity across studies and control for 91 92 confounding was limited. Importantly, none of those studies was able to adjust 93 simultaneously for kidney function and for insulin resistance, two major 94 confounders of the association between UA and hypertension. Furthermore, no 95 studies to date have investigated the relationship between change in UA 96 concentrations over time and development of incident hypertension. 97

We hypothesized that both higher initial UA concentrations and further increasesin UA concentration over time would be associated with increased risk of incident

100 hypertension. We have thus investigated the relationship between: a) baseline

101 serum UA concentrations and b) change in UA concentrations over time, with the

102 development of incident hypertension over 8 years of follow-up, adjusting for key

103 potential confounders, including measures of renal function and insulin resistance.

104

105 Methods

106 The study population included South Korean men and women \geq 18 years old who 107 underwent a comprehensive health examination at the Kangbuk Samsung 108 Hospital Health Screening Centers in Seoul and Suwon, South Korea, between 109 2002 and 2010. The purpose of the comprehensive health screening program is to 110 promote health through early detection of chronic diseases and their risk factors. 111 In Korea, the Industrial Safety and Health Law requires employees to participate in 112 annual or biennial health examinations. About 80% of the participants were 113 employees of various companies and local governmental organizations and their 114 spouses with the remaining participants registering individually for the program. 115 116 The present analysis initially included all study participants with at least one follow-117 up visit for endpoint ascertainment between 2002 and 2010 (N = 136,158; 84,045 118 men and 52,113 women). Participants were excluded at baseline if they had 119 hypertension (defined as self-reported history of hypertension, current use of 120 antihypertensive medications, a systolic blood pressure > 140 mm Hg or a 121 diastolic blood pressure > 90 mm Hg; N = 20,585), or if they reported a history of 122 coronary artery disease, cardiovascular disease (CVD), cancer, diabetes, 123 metabolic syndrome (N = 24,978). We further excluded participants with missing 124 data at baseline for serum UA (N = 2) or any relevant adjustment covariates (N =

125 6,181). The final number of study participants was 96,606 (55,035 men and 126 41,571 women). To test the association between UA concentration change and 127 incident hypertension, we restricted the analysis to participants with at least 3 128 visits (N = 61,777). The first two visits were used to determine UA concentration 129 change (calculated as UA concentration in the second visit minus baseline UA 130 concentration), and incident hypertension was determined from the second visit 131 through the rest of follow-up. After excluding 5,692 individuals from the original 132 cohort who had incident hypertension diagnosed at the second visit, this analysis 133 included 56,085 participants (33,073 men and 23,012 women). The study was 134 approved by the Institutional Review Board of Kangbuk Samsung Hospital. 135 Individual informed consent was not required because all personal identifiable 136 information was removed prior to accessing data collected for screening purposes. 137 138 Data on medical history, medication use, and health-related behaviors were

collected through a self-administered questionnaire. Questionnaire data included
years of education, smoking status (never, current, or former), weekly frequency of
physical activity, and average amount of alcohol intake each day.

142

Physical measurements and serum biochemical parameters were measured by trained staff. Body weight was measured in light clothing and no shoes to the nearest 0.1 kilogram using a digital scale. Height was measured to the nearest 0.1 centimeter. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared. Waist circumference was measured as the midpoint between iliac crest and rib cage at end-expiration. Blood pressure was measured in the seated position after a period of resting sitting upright with standard mercury 150 sphygmomanometers. If the systolic blood pressure was \ge 140 mm Hg or diastolic 151 blood pressure \ge 90 mm Hg, the measurement was repeated two more times after 152 a rest at the same visit and then the values were averaged. At baseline and at 153 each follow-up visit, hypertension was defined as a self-reported history of 154 hypertension, current use of antihypertensive medications, a systolic blood 155 pressure \ge 140 mm Hg or a diastolic blood pressure \ge 90 mm Hg.

156

157 Blood specimens were sampled from the antecubital vein after an overnight 12-158 hour fast. Biochemical analyses were performed centrally. The clinical laboratory 159 has been accredited and participates annually in inspections and surveys by the 160 Korean Association of Quality Assurance for Clinical Laboratories. Serum levels of 161 glucose, total cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, 162 and high-density lipoprotein (HDL) cholesterol were measured using Bayer 163 Reagent Packs (Bayer Diagnostics, Leverkusen, Germany) on an automated 164 chemistry analyzer (Advia 1650™Autoanalyzer; Bayer Diagnostics, Leverkusen, 165 Germany). Serum UA was measured using the Fossati enzymatic reaction using 166 uricase with a Trinder-like endpoint (Advia 1650 auto analyzer; Bayer Diagnostics, 167 Leverkusen, Germany). Insulin concentration was measured with an 168 immunoradiometric assay (Biosource, Nivelle, Belgium) with an intra- and 169 interassay coefficient of variation of 2.1–4.5% and 4.7–12.2%, respectively. Insulin 170 resistance was estimated using fasting plasma insulin and the homeostasis model 171 assessment of insulin resistance (HOMA-IR), calculated as insulin × glucose / 172 22.5. Fatty liver was diagnosed by the presence of liver fat identified by liver 173 ultrasound examination. Serum creatinine was measured with the kinetic alkaline 174 picrate (Jaffe) method. The within-batch and total coefficients of variation for

175 creatinine determinations were 1.4–3.9% for the duration of the study. We

176 calculated eGFR using the Modification of Diet in Renal Disease Study equation.

177

178 Statistical analyses

179 Comparisons of the baseline characteristics of the study population were done

180 with the χ^2 -test and student t-tests and transformations were conducted for

181 nonparametric variables. The distributions of continuous variables were evaluated.

182 The final number of study participants was categorized into 4 groups according to

183 baseline serum uric acid level.

184 Cox proportional hazards models were used to estimate adjusted hazard ratios

185 (HR) and 95% confidence intervals (CI) for incident hypertension, adjusted for pre-

186 specified potential confounders measured at the baseline visit.

187

188 Since UA levels are higher in men compared to women, we conducted all 189 analyses separately by sex. For the primary analyses, the study sample was 190 divided in sex-specific quartiles of UA, and we estimated adjusted hazard ratios for 191 incident hypertension comparing the three highest quartiles of UA to the lowest 192 quartile in each sex. As secondary analysis, UA was modeled as a continuous 193 variable in the regression models. The models were first adjusted for age, smoking 194 status, alcohol intake, regular exercise and educational level (Model 1). Model 2 195 was further adjusted for systolic blood pressure and for BMI. Model 3 was further 196 adjusted for insulin concentration and eGFR. For testing linear risk trends, we 197 used the quartile rank as a continuous variable in the models. We checked the 198 proportional hazards assumption by examining graphs of estimated log (-log) 199 survival and there was no violation of the proportional hazards assumption.

200 To test the association between UA concentration change and incident

201 hypertension, the study sample was classified in 4 groups depending on baseline

202 (visit 1) UA concentrations (above vs. below median) and change in UA between

- visit 1 and 2 (decreased vs. stable or increased concentrations). The four groups
- 204 generated were (a) baseline UA concentration < median and decline in UA
- 205 concentration (reference group); (b) baseline UA concentration < median and
- stable or increased UA concentration; (c) baseline UA concentration \geq median and
- 207 decline in UA concentration; and (d) baseline UA concentration \geq median and
- 208 stable or increased UA concentration.
- 209 Sensitivity and subgroup analyses were undertaken by repeating the analyses

after: a) exclusion of all subjects who were taking antihypertensive medications

211 during follow up, b) stratification according to age and drinker.

- 212
- The statistical analysis was performed using STATA version 11.2 (StataCorp LP,
 College Station, TX, USA). All reported *p* values are two-tailed, and P < 0.05 was
 considered statistically significant.

216

217 Results

218 We followed 96,606 non-hypertensive subjects at baseline for up to 8 years (total

219 median follow-up time 3.3 years; interquartile range (IQR), 1.9 to 5.1 years). The

220 median follow up time from baseline to 1st visit was 1.88 years, and 3.59 years

- from 1st visit to 2nd visit. At the end of follow-up, 10,405 participants had developed
- hypertension (incidence rate 30.9 per 1,000 person-years). As expected,

223 participants who developed hypertension were more likely to be male, older, to

have a higher baseline BMI, blood pressure, HOMA-IR, and to have a lower eGFR

compared to those who did not develop hypertension (Supplement Table 1).

226 Baseline mean (SD) UA concentration was 309.30 (83.27) µmol/L [5.2 (1.4) mg/dL]

in individuals without hypertension at follow up, compared with 344.98 (83.27)

 μ mol/L [5.8 (1.4) mg/dL] in those with hypertension at follow up (P <0.001). In both

229 men and women, UA concentrations were inversely associated with age and

eGFR, and positively associated with BMI, blood pressure, and HOMA-IR (Table 1

231 and 2).

232

233 The risk of incident hypertension increased progressively across the quartiles of 234 UA in both men and women (Table 3). In the fully adjusted regression model, 235 including adjustments for insulin concentration and eGRF, the hazard ratios (95%) 236 CI) for incident hypertension comparing the highest vs. the lowest guartiles of UA 237 were 1.29 (1.19–1.38) in men and 1.24 (1.09–1.42) in women, with statistically 238 significant P value for trend for both gender. When UA was included as a 239 continuous variable in the models, the fully adjusted hazard ratios for incident 240 hypertension associated with a 1 SD increase in UA [1 SD = 82.68 µmol/L (1.39 241 mg/dL)] were 1.11 (1.08-1.15) and 1.17 (1.08-1.26) for men and women, 242 respectively.

UA concentration increased in 3,266 participants (2,555men and 711 women)
among those who had more than 3 visits and no hypertension at baseline. Among
participants with baseline UA concentrations ≥median, the fully adjusted hazard
ratios for incident hypertension comparing participants with stable or increased to
those with decreased UA concentration were 1.14 (1.03–1.26) and 1.18 (0.98–
1.40) in men and women, respectively (Table 4). Among participants with baseline

UA concentration < median, the corresponding hazard ratios were 1.05 (0.94–1.17)
and 1.00 (0.82–.22) for men and women, respectively.

251 Since those with a history of coronary artery disease, CVD, cancer, diabetes and 252 metabolic syndrome at baseline were excluded, the cox proportional methods 253 were repeated after inclusion of these populations to warrant the robustness of the 254 results. Including those subjects did not alter the results with the fully adjusted 255 hazard ratio (95% CI) for incident HTN 1.22(1.15-1.30) in men and 1.25(1.10-1.41) 256 in women (Supplement Table 2). Other additional analyses of risk for incident 257 hypertension in individuals not on antihypertensive treatment during follow up, 258 stratified according to age and drinking status, and stratified according to incident 259 diabetes are described, respectively (Supplement Table 3-5). Excluding those 260 who were on antihypertensive medication during follow up did not change the 261 results with aHR(95% CI) 1.26(1.17-1.36) for men and 1.24(1.07-1.44) for women. 262 Stratification according to drinking status did not affect the results whereas age 263 and incident diabetes showed significant P value for interaction, 0.015, 0.017 264 respectively. We also conducted an additional analyses to seek whether control of 265 gender difference and family history of hypertension would affect the result, 266 respectively, which found to be not (Supplement Table 6 and 7).

267 Discussion

In this large cohort of apparently healthy men and women, high UA concentrations were associated with an increased risk of incident hypertension, independent of age, smoking status, alcohol intake, exercise, education level, insulin resistance and renal function. The increase in risk was particularly evident in participants with high initial UA concentrations and increasing UA concentrations between the first and second visits. Our findings support the hypothesis that high and increasing
UA concentration over time should be considered risk factors for the development
of hypertension.

276

277 The association between UA concentrations and incident hypertension has been 278 controversial, partly due to heterogeneity across multiple small studies reported in 279 the literature. A meta-analysis of 18 prospective cohorts that included data from 280 55,607 people found a 13% increased risk in incident hypertension in subjects with hyperuricemia ¹⁵. Heterogeneity across the studies was considerable 281 282 $(I^2=73.4\%)$, and some of these studies adjusted for very few confounders, 283 including one study reporting only unadjusted findings. In this meta-analysis, the 284 association between UA and hypertension was stronger in younger study 285 populations. Our study, with almost double the combined sample size of the 286 studies included in the previous meta-analysis, found a graded association 287 between UA concentrations and incident hypertension across the range of UA 288 levels which persisted after adjusting for multiple risk factors. Moreover, a recent 289 Mendelian randomization study suggested that body mass index may confound the association between UA and ischemic heart disease and hypertension ¹³. That 290 291 said, it is plausible that the genetic probe (SLC2A9) used in the Mendelian randomization study was not ideal, since SLC2A9 is involved in renal UA transport 292 and may only affect UA concentration in subjects with renal impairment ¹⁶. 293 294 295 There is very limited data in the literature as to whether changes in UA 296 concentrations over time influence the risk of developing hypertension. Our data

support the notion that stable or increasing UA concentrations over time in

subjects with higher baseline UA concentrations are associated with increased risk
of developing incident hypertension and add to the relevance of UA in the
development of hypertension.

301

302 Several mechanisms may explain a hypertensive effect of UA. Inhibition of uricase 303 in rat models results in a rise in serum UA concentration and in the development 304 of systemic hypertension that is preventable by lowering UA with either xanthine oxidase inhibitors or uricosuric agents¹⁷⁻¹⁹. A recent meta-analysis of xanthine 305 306 oxidase found that, following xanthine oxidase inhibition, brachial artery flow 307 mediated dilatation and forearm blood flow responses to acetylcholine infusion increased compared with changes in the non-infused control arm ²⁰. Reduction of 308 309 UA concentration lowers blood pressure, suggesting a direct pathophysiological 310 role of UA in the development of hypertension, and consequently there has been 311 renewed interest in whether allopurinol treatment lowers blood pressure. The change in blood pressure after allopurinol initiation has been studied ²¹ and 312 313 allopurinol usage was independently associated with a fall in both systolic and 314 diastolic blood pressure.

315

UA has both pro-oxidant and anti-oxidant capabilities and it has been suggested that there may be a molecular switch to regulate the role of UA as anti- or prooxidant in different tissues¹⁴. This may contribute to the difficulty in establishing a relationship between serum UA and chronic diseases. UA upregulates RAS and angiotensin II and causes an increase in reactive oxygen species production in human endothelial cells²² and in adipose tissue²³. This mechanism may thus provide a direct pathway by which UA may affect blood pressure. 323

324 There are some limitations to our study that need to be considered. First of all, the 325 diagnoses of hypertension at each screening visit were based on measurement 326 taken at a single visit, which may induce unreliable result and lead to 327 misclassification of blood pressure status. Furthermore, random measurement 328 error may also affect UA and other confounders, after the effect of random 329 measurement error is likely to attenuate the observed associations. As with other 330 observational studies, we cannot exclude the possibility of residual confoundings. 331 although we adjusted for BMI, eGFR, insulin concentration and several other risk 332 factors. Finally, our study comprised of apparently healthy young and middle-aged 333 Korean men and women. Approximately 80% of the participants were employees 334 of various companies and therefore these individuals are not entirely 335 representative of the whole population of Korea. Thus our findings may not apply 336 to other age groups or to other race/ethnicities.

337

338 Several advantages of this cohort, however, add to the strength of the findings. In 339 addition to the large sample size, the data was collected under standardized 340 conditions and followed uniform procedures by trained staffs. Laboratory methods 341 also were carefully standardized with rigorous internal and external guality controls. 342 Finally a major advantage of our study is that our sample was comprised of young 343 and middle-aged apparently healthy men and women, while participants in many 344 other cohorts tended to be older. Our findings are thus less likely to be affected by 345 selection bias and other biases due to disease development, presence of co-346 morbidities, and use of multiple medications that affect older cohorts.

347	In co	nclusion, high initial UA concentration and increases in UA concentration over
348	time	increase the risk for incident hypertension therefore UA concentration should
349	be co	onsidered as independent risk factors for hypertension.
350		
351		
352	Disc	losure
353	Sour	ce of funding CDB is supported in part by the Southampton National
354	Instit	ute for Health Research Biomedical Research Centre.
355	Conf	lict of Interest All authors have no conflicts of interest.
356		Reference List
357		
358	1.	Puddu PE, Bilancio G, Terradura Vagnarelli O, Lombardi C, Mancini M,
359		Zanchetti A, Menotti A. Serum uric acid and eGFR_CKDEPI differently
360		predict long-term cardiovascular events and all causes of deaths in a
361		residential cohort. International journal of cardiology 2014; 171 (3): 361-367.
362		
363	2.	Zhao G, Huang L, Song M, Song Y. Baseline serum uric acid level as a
364		predictor of cardiovascular disease related mortality and all-cause mortality:
365		a meta-analysis of prospective studies. Atherosclerosis 2013; 231(1): 61-
366		68.
367		
368	3.	Zoppini G, Targher G, Negri C, Stoico V, Perrone F, Muggeo M, Bonora E.
369		Elevated serum uric acid concentrations independently predict
370		cardiovascular mortality in type 2 diabetic patients. Diabetes care 2009;
371		32 (9): 1716-1720.

373	4.	Goncalves JP, Oliveira A, Severo M, Santos AC, Lopes C. Cross-sectional
374		and longitudinal associations between serum uric acid and metabolic
375		syndrome. Endocrine 2012; 41(3): 450-457.
376		
377	5.	Lin JD, Chiou WK, Chang HY, Liu FH, Weng HF. Serum uric acid and leptin
378		levels in metabolic syndrome: a quandary over the role of uric acid.
379		Metabolism: clinical and experimental 2007; 56(6): 751-756.
380		
381	6.	Liu M, He Y, Jiang B, Wu L, Yang S, Wang Y, Li X. Association between
382		Serum Uric Acid Level and Metabolic Syndrome and Its Sex Difference in a
383		Chinese Community Elderly Population. International journal of
384		endocrinology 2014; 2014: 754678.
385		
386	7.	Yoo TW, Sung KC, Shin HS, Kim BJ, Kim BS, Kang JH, Lee MH, Park JR,
387		Kim H, Rhee EJ, Lee WY, Kim SW, Ryu SH, Keum DG. Relationship
388		between serum uric acid concentration and insulin resistance and metabolic
389		syndrome. Circulation journal : official journal of the Japanese Circulation
390		Society 2005; 69 (8): 928-933.
391		
392	8.	Katsiki N, Papanas N, Fonseca VA, Maltezos E, Mikhailidis DP. Uric acid
393		and diabetes: Is there a link? Current pharmaceutical design 2013; 19 (27):
394		4930-4937.

396	9.	Kim ES, Kwon HS, Ahn CW, Lim DJ, Shin JA, Lee SH, Cho JH, Yoon KH,
397		Kang MI, Cha BY, Son HY. Serum uric acid level is associated with
398		metabolic syndrome and microalbuminuria in Korean patients with type 2
399		diabetes mellitus. Journal of diabetes and its complications 2011; 25(5):
400		309-313.
401		
402	10.	Wang J, Qin T, Chen J, Li Y, Wang L, Huang H, Li J. Hyperuricemia and
403		risk of incident hypertension: a systematic review and meta-analysis of
404		observational studies. PLoS One. 2014; 9(12):e114259.
405	11.	Lee JJ, Ahn J, Hwang J, Han SW, Lee KN, Kim JB, Lee S, Na JO, Lim HE,
406		Kim JW, Rha SW, Park CG, Seo HS, Oh DJ, Kim EJ. Relationship between
407		uric acid and blood pressure in different age groups. Clin Hypertens. 2015;
408		21 :14.
409		
410	12.	Mellen PB, Bleyer AJ, Erlinger TP, Evans GW, Nieto FJ, Wagenknecht LE,
411		Wofford MR, Herrington DM. Serum uric acid predicts incident
412		hypertension in a biethnic cohort: the atherosclerosis risk in communities
413		study. <i>Hypertension</i> 2006; 48 (6):1037-1042.
414		
415	13.	Palmer TM, Nordestgaard BG, Benn M, Tybjaerg-Hansen A, Davey Smith
416		G, Lawlor DA, Timpson NJ. Association of plasma uric acid with ischaemic
417		heart disease and blood pressure: mendelian randomisation analysis of two
418		large cohorts. <i>Bmj</i> 2013; 347: f4262.

419

420	14.	Kang DH, Ha SK. Uric Acid Puzzle: Dual Role as Anti-oxidantand Pro-
421		oxidant. Electrolyte & blood pressure : E & BP 2014; 12 (1): 1-6.
422		
423	15.	Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident
424		hypertension: a systematic review and meta-analysis. Arthritis care &
425		research 2011; 63 (1): 102-110.
426		
427	16.	Neogi T. Clinical practice. Gout. The New England journal of medicine
428		2011; 364 (5): 443-452.
429		
430	17.	Albinus M, Finkbeiner E, Sosath B, Osswald H. Isolated superfused
431		juxtaglomerular cells from rat kidney: a model for study of renin secretion.
432		The American journal of physiology 1998; 275(6 Pt 2): F991-997.
433		
434	18.	Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, Lan
435		HY, Kivlighn S, Johnson RJ. Elevated uric acid increases blood pressure in
436		the rat by a novel crystal-independent mechanism. Hypertension 2001;
437		38 (5): 1101-1106.
438		
439	19.	Sanchez-Lozada LG, Tapia E, Santamaria J, Avila-Casado C, Soto V,
440		Nepomuceno T, Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J. Mild
441		hyperuricemia induces vasoconstriction and maintains glomerular
442		hypertension in normal and remnant kidney rats. Kidney international 2005;
443		67 (1): 237-247.
444		

445	20.	Higgins P, Dawson J, Lees KR, McArthur K, Quinn TJ, Walters MR.
446		Xanthine oxidase inhibition for the treatment of cardiovascular disease: a
447		systematic review and meta-analysis. Cardiovascular therapeutics 2012;
448		30 (4): 217-226.
449		
450	21.	Beattie CJ, Fulton RL, Higgins P, Padmanabhan S, McCallum L, Walters
451		MR, Dominiczak AF, Touyz RM, Dawson J. Allopurinol initiation and
452		change in blood pressure in older adults with hypertension. Hypertension
453		2014; 64 (5): 1102-1107.
454		
455	22.	Yu MA, Sanchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with
456		an activation of the renin-angiotensin system in human vascular endothelial
457		cells as a novel mechanism of uric acid-induced endothelial dysfunction.
458		Journal of hypertension 2010; 28 (6): 1234-1242.
459		
460	23.	Zhang JX, Zhang YP, Wu QN, Chen B. Uric acid induces oxidative stress
461		via an activation of the renin-angiotensin system in 3T3-L1 adipocytes.
462		Endocrine 2015; 48 (1): 135-14

			Uric acid			
Characteristics	Overall	Q1	Q 2	Q 3	Q 4	<i>P</i> for trend
		(<5.5mg/dl)	(5.5-6.1mg/dl)	(6.2-6.8mg/dl)	(≥6.9 mg/dl)	
N=55,035						
Age (years)	37.1 (6.8)	38.2 (7.4)	37.2 (6.7)	36.7 (6.5)	36.4 (6.2)	<0.001
BMI (kg/m²)	23.7 (2.6)	22.9 (2.5)	23.4 (2.5)	23.9 (2.5)	24.6 (2.6)	<0.001
Systolic BP (mmHg)	112.5 (9.0)	112.0 (9.2)	112.3 (9.0)	112.7 (9.0)	113.1 (8.8)	<0.001
Diastolic BP (mmHg)	73.4 (6.9)	72.8 (7.0)	73.2 (6.9)	73.5 (6.8)	74.0 (6.6)	<0.001
Higher education (%) ^a	83.5	80.2	83.4	85.1	85.7	<0.001
Regular exercise (%) ^b	14.0	14.0	13.6	13.6	15.2	0.014
Smoking status (%)						
Never smoker	29.4	30.2	30.1	29.0	28.3	<0.001
Former smoker	26.3	25.1	25.8	26.7	27.8	<0.001
Current smoker	44.3	44.7	44.2	44.3	44.0	0.278
Alcohol intake (%)						
0g/day	18.1	20.5	18.3	17.7	15.7	<0.001
10g/day	64.1	62.7	64.7	64.4	64.7	0.002
20g/day	17.8	16.8	17.0	17.9	19.6	<0.001
Alcohol Intake	8(3-15)	6(3-15)	8(3-15)	8(3-15)	8(3-15)	<0.001

Table 1. Baseline characteristics of men by uric acid quartile

(g/d) ^c

Insulin (pmol/L) ^c	52.09(41.04-66.32)	49.03(38.68-62.57)	51.11(40.56-65.07)	52.99(42.02-67.02)	55.56(43.34-70.21)	<0.001
Glucose (mg/dl)	91.9(8.0)	91.6(8.2)	91.8(7.9)	92.1(7.9)	92.4(7.9)	<0.001
Total cholesterol (mg/dl) $^{\circ}$	197.0(33.9)	190.7(32.6)	194.5(32.9)	198.5(33.5)	205.2(35.0)	<0.001
LDL-C (mg/dl)	117.1(28.5)	112.0(27.8)	115.4(27.7)	118.5(28.5)	122.9 (29.1)	<0.001
HDL-C (mg/dl)	53.0(10.5)	54.4(11.1)	53.2(10.5)	52.7(10.3)	51.7(9.7)	<0.001
Triglycerides (mg/dl)	115(85-156)	103(77-138)	110(82-147)	118(88-160)	132(97-184)	<0.001
HOMA IR [°]	1.70(1.31-2.19)	1.60(1.24-2.06)	1.66(1.30-2.13)	1.73(1.35+-2.22)	1.82(1.40-2.34)	<0.001
eGFR (ml/min)	79.1(9.2)	81.4(9.4)	79.9(9.1)	78.4(8.8)	76.3(9.0)	<0.001
HOMA IR 75%	16.1	12.3	14.4	16.8	21.2	<0.001
Glucose ≥ 100mg/dl (%)	14.7	14.8	14.1	15.1	15.0	0.228
SBP ≥ 130 or DBP ≥85 (%)	7.7	7.6	7.5	7.8	7.9	0.328

^a≥ college graduate

^b≥3 times per week

^c =Median (IQR)

Data are % or means±SD unless otherwise specified

SI unit conversion (Multiply the conversion factor to obtain SI unit): glucose, 0.0555(mmol/L); total cholesterol, 0.0259(mmol/L); LDL-C,

0.0259(mmol/L); HDL-C, 0.0259(mmol/L); Triglyceride, 0.0113(mmol/L); uric acid, 59.48(µmol/L)

		Uric acid quartiles					
Characteristics	Overall	Q1	Q 2	Q 3	Q 4	P for trend	
		(<3.7mg/dl)	(3.7-4.1mg/dl)	(4.2-4.7mg/dl)	(≥4.8 mg/dl)		
N=41,571							
Age (years)	36.8(6.8)	37.1(6.5)	37.0(6.7)	36.6(6.8)	36.5(7.3)	<0.001	
BMI (kg/m²)	21.7(2.6)	21.2(2.4)	21.5(2.4)	21.7(2.5)	22.3(2.8)	<0.001	
Systolic BP (mmHg)	106.2(10.6)	106.0(10.6)	106.3(10.6)	106.2(10.6)	106.6(10.6)	<0.001	
Diastolic BP (mmHg)	67.8(7.8)	67.5(7.8)	67.8(7.8)	67.9(7.8)	68.1(7.8)	<0.001	
Higher education (%) ^a	65.6	64.7	65.6	66.1	66.0	0.058	
Regular exercise (%) ^b	15.1	14.8	14.8	15.0	16.0	0.018	
Smoking status (%)							
Never smoker	94.8	95.4	95.2	94.9	93.6	<0.001	
Former smoker	3.1	2.8	2.8	3.1	3.8	<0.001	
Current smoker	2.1	1.9	2.0	2.0	2.6	<0.001	
Alcohol intake (%)							
0g/day	70.3	73.1	71.0	69.2	67.6	<0.001	
10g/day	28.7	26.2	28.0	30.0	31.1	<0.001	
20g/day	1.0	0.7	1.0	0.8	1.4	<0.001	

Table 2. Baseline characteristics of women by uric acid quartile

Alcohol						
intake	0(0-3)	0(0-3)	0(0-3)	0(0-3)	0(0-3)	<0.001
(g/d) ^c						
Insulin (pmol/L) ^c	53.82(43.06)	53.06(42.78-65.91)	53.34(42.57-66.46)	54.24(43.34-67.30)	54.93(43.55-69.52)	<0.001
Glucose (mg/dl)	89.8(7.7)	89.5(7.7)(89.7(7.5)	89.9(7.7)	90.2(7.9)	<0.001
Total cholesterol (mg/dl)	184.8(32.6)	180.6(31.7)	183.6(31.5)	185.2(32.3)	190.4(34.0)	<0.001
LDL-C (mg/dl)	103.5(27.0)	99.6(25.6)	102.4(26.2)	104.0(26.7)	108.6(28.9)	<0.001
HDL-C (mg/dl)	60.7(12.6)	61.1(12.7)	61.0(12.6)	60.4(12.5)	60.0(12.6)	<0.001
Triglycerides (mg/dl) ^c	77(59-103)	74(58-97)	75(58-99)	77(59-103)	82(62-112)	<0.001
HOMA IR ^c	1.71(1.34-2.18)	1.68(1.33-2.13)	1.69(1.33-2.15)	1.72(1.35-2.18)	1.76(1.36-2.27)	<0.001
eGFR (ml/min)	78.8(9.8)	81.2(10.1)	79.0(9.4)	78.1(9.5)	76.3(9.6)	<0.001
HOMA IR 75%	15.8	13.8	14.5	15.6	19.6	<0.001
Glucose ≥ 100mg/dl (%)	9.5	9.0	8.7	9.9	10.6	<0.001
SBP ≥ 130 or DBP ≥85 (%)	3.5	3.3	3.7	3.6	3.6	0.289

^a≥ college graduate, ^b≥3 times per week, ^c =Median (IQR)

Data are % or means±SD unless otherwise specified

SI unit conversion (Multiply the conversion factor to obtain SI unit): glucose, 0.0555(mmol/L); total cholesterol, 0.0259(mmol/L);

LDL-C, 0.0259(mmol/L); HDL-C, 0.0259(mmol/L); Triglyceride, 0.0113(mmol/L); uric acid, 59.48(µmol/L)

			Incidence		Μι	ultivariable HR [*] (95%)	CI)
Uric acid quartiles (mg/dL)	Person-years	Number people	Rate (1000 person-	Age-adjusted HR (95% Cl)	Model 1	Model 2	Model 3
			years)				
Men (N=55,035)							
Q1 (0.6-5.4)	50,021.8	1,803	36.0	1.00 (reference)	1.00 (reference)	1.00 (reference)	1.00 (reference)
Q2 (5.5-6.1)	50,326.9	1,989	39.5	1.16 (1.09-1.24)	1.16(1.08-1.24)	1.11(1.03-1.19)	1.10(1.02-1.18)
Q3 (6.2-6.8)	51,779.9	2,248	43.4	1.30(1.22-1.39)	1.30(1.21-1.39)	1.14(1.07-1.22)	1.15(1.07-1.23)
Q4 (6.9-15.1)	41,883.2	2,189	52.3	1.59(1.49-1.69)	1.57(1.46-1.68)	1.28(1.19-1.37)	1.29(1.19-1.38)
P for trend				<0.001	<0.001	<0.001	<0.001
Women(N=41,571)							
Q1 (0.3-3.6)	40,611.8	520	12.8	1.00 (reference)	1.00 (reference)	1.00 (reference)	1.00 (reference)
Q2 (3.7-4.1)	36,166.9	520	14.3	1.13(1.00-1.28)	1.11(0.97-1.26)	1.04(0.92-1.19)	1.05(0.92-1.20)
Q3 (4.2-4.7)	32,511.4	512	15.7	1.27(1.12-1.43)	1.22(1.07-1.39)	1.12(0.98-1.28)	1.13(0.99-1.30)
Q4 (4.8-11.4)	33,154.8	624	18.8	1.50(1.33-1.68)	1.49(1.32-1.69)	1.25(1.10-1.42)	1.24(1.09-1.42)
P for trend				<0.001	<0.001	<0.001	0.001

Table 3. Risk of incident hypertension according to baseline uric acid quartiles by cox proportional model

* Model 1: adjustment for age, smoking status, alcohol intake, regular exercise, education level; Model 2: Model 1 plus adjustment for systolic blood pressure and BMI; Model 3: Model 2 plus insulin and eGFR

Table 4. Risk of hypertension according to lower (<50th centile) versus higher (≥50th centile) uric acid concentration at baseline and change in uric acid concentration over time in men and women by cox proportional model

Uric acid group	Person- years	Number of events	Inciden ce Rate (1000 person-	Age- adjusted HR (95% Cl)	Multivariable HR [*] (95%Cl) Model 1 Model 2 Mo		%CI) Model 3
Men (N=33,073)			years)				
Baseline uric acid <50 th centile							
uric acid decline over time	28,796.6	580	20.1	REFERENCE	REFERENCE	REFERENCE	REFERENCE
uric acid change stable/increased over time	52,126.9	1,138	21.8	1.11(1.00-1.22)	1.09(0.98-1.21)	1.06(0.95-1.18)	1.05(0.94-1.17)
Baseline uric acid ≥50 th centile							
uric acid decline over time	42,610.6	1,031	24.2	REFERENCE	REFERENCE	REFERENCE	REFERENCE
uric acid change stable/increased over time	31,546.0	869	27.5	1.15(1.05-1.26)	1.15(1.05-1.27)	1.14(1.03-1.26)	1.14(1.03-1.26)
Women (N=23,012)							
Baseline uric acid <50 th centile							
uric acid decline over time	19,403.0	174	9.0	REFERENCE	REFERENCE	REFERENCE	REFERENCE
uric acid change stable/increased over time	37,803.3	359	9.5	1.07(0.89-1.28)	1.07(0.89-1.29)	1.04(0.86-1.26)	1.00(0.82-1.22)

Baseline uric acid ≥50 th centile							
uric acid decline over time	28,566.8	311	10.9	REFERENCE	REFERENCE	REFERENCE	REFERENCE
uric acid change stable/increased over time	18,598.9	251	13.5	1.23(1.04-1.45)	1.17(0.99-1.39)	1.16(0.98-1.38)	1.18(0.98-1.40)

Model 1: adjustment for age, smoking status, alcohol intake, regular exercise, education level; Model 2: Model 1 plus adjustment

for systolic blood pressure and BMI; Model 3: Model 2 plus insulin and eGFR

Deceline characteristics	No HTN	New HTN	D
Baseline characteristics	N=86,201	N=10,405	Р
Number=96,606			
N (%) Men	54.3	79.1	
Age (years)	36.7(6.6)	39.8(7.6)	<0.001
BMI (kg/m²)	22.6(2.7)	24.2(2.7)	<0.001
Systolic BP (mmHg)	109.0 (10.1)	116.2 (8.9)	<0.001
Diastolic BP (mmHg)	70.4 (7.7)	75.8 (6.5)	<0.001
Higher education (%) ^a	76.2	72.6	<0.001
Regular exercise (%) ^b	14.1	18.1	<0.001
Smoking status (%)			
Never smoker	59.5	41.5	<0.001
Former smoker	15.4	23.9	<0.001
Current smoker	25.1	34.6	<0.001

Supplement Table 1. Baseline characteristics of the cohort according to incident hypertension during follow up

Alcohol intake (%)

	0g/day	42.2	26.9	<0.001
	10g/day	48.3	53.7	<0.001
	20g/day	9.5	19.4	<0.001
Median (IQR) Alcohol intake (g/d)		3 (0-10)	6 (0-15)	<0.001
Median (IQR) Insulin (pmol/L)		52.71(41.95-66.46)	53.96(41.88-68.34)	<0.001
Glucose (mg/dl)		90.9(7.9)	92.3(8.3)	<0.001
Total cholesterol (mg/dl)		190.2(33.5)	204.1(34.6)	<0.001
LDL-C (mg/dl)		110.1(28.4)	120.9(29.3)	<0.001
HDL-C (mg/dl)		56.5(12.1)	54.6(11.4)	<0.001
Triglycerides (mg/dl)		94(68-131)	119(87-164)	<0.001
HOMA IR		1.70(1.32-2.17)	1.78(1.35-2.28)	<0.001
HOMA IR ≥75 th centile		15.7	18.3	<0.001
eGFR (ml/min)		79.1(9.5)	77.3(9.5)	<0.001
eGFR <60ml/min (%)		1.3	2.5	<0.001
Glucose ≥ 100mg/dl (%)		13.5	13.1	<0.001

^a≥ college graduate

^b≥3 times per week

Data are % or means±SD unless otherwise specified

SI unit conversion (Multiply the conversion factor to obtain SI unit): glucose, 0.0555(mmol/L); total cholesterol, 0.0259(mmol/L);

LDL-C, 0.0259(mmol/L); HDL-C, 0.0259(mmol/L); Triglyceride, 0.0113(mmol/L); uric acid, 59.48(µmol/L)

Supplement Table 2. Risk of incident hypertension according to baseline uric acid quartiles (including people with CAD, CVD, cancer, DM, MetS)

			Incidence		Multivariable HR [*] (95% CI)			
Uric acid quartiles (mg/dL)	Person- years	Number people	Rate (1000 person- years)	Age-adjusted HR (95% CI)	Model 1	Model 2	Model 3	
Men (N=65,235)								
Q1 (0.6-5.4)	63,015.0	2,683	42.6	1.00 (reference)	1.00 (reference)	1.00 (reference)	1.00 (reference)	
Q2 (5.5-6.1)	57,305.0	2,556	44.6	1.12(1.06-1.18)	1.09(1.03-1.16)	1.02(0.97-1.09)	1.03(0.97-1.09)	

Q3 (6.2-6.8)	51,226.2	2,536	49.5	1.26(1.20-1.33)	1.26(1.19-1.34)	1.08(1.02-1.15)	1.09(1.03-1.16)
Q4 (6.9-15.1)	51,651.7	3,157	61.1	1.57(1.50-1.66)	1.54(1.46-1.63)	1.21(1.14-1.28)	1.22(1.15-1.30)
<i>P</i> for trend				<0.001	<0.001	<0.001	<0.001
Women(N=45,106)							
Q1 (0.3-3.6)	42,559.3	597	14.0	1.00 (reference)	1.00	1.00	1.00
	42,000.0	001	14.0	(refere		(reference)	(reference)
Q2 (3.7-4.1)	37,949.3	605	15.9	1.15(1.03-1.29)	1.13(1.00-1.27)	1.06(0.94-1.19)	1.06(0.93-1.20)
Q3 (4.2-4.7)	39,928.2	724	18.1	1.33(1.19-1.48)	1.31(1.16-1.47)	1.15(1.03-1.30)	1.16(1.03-1.32)
Q4 (4.8-11.4)	31,509.7	766	24.3	1.70(1.53-1.89)	1.68(1.50-1.89)	1.27(1.13-1.43)	1.25(1.10-1.41)
<i>P</i> for trend				<0.001	<0.001	<0.001	<0.001

* Model 1: adjustment for age, smoking status, alcohol intake, regular exercise, education level,; model 2: model 1 plus adjustment for systolic blood pressure and BMI. Model 3 model2 plus insulin, eGFR,

CAD, coronary artery disease; CVD, cardiovascular disease; DM, diabetes melliatus; MetS. Metabolic syndrome

Supplement Table 3. Risk of incident hypertension according to baseline uric acid quartiles (after excluding those who

were taking antihypertensive medications (n= 1,960) during follow up)

		Uric acid qua	rtiles (mg/dL)		P for trend	P for	
	Q1	Q2	Q3	Q4		interaction	
Men							
Multivariable HR [*] (95% CI)	1.00 (reference)	1.09(1.01-1.18)	1.13(1.05-1.22)	1.26(1.17-1.36)	<0.001	0.107	

Women

Multivariable					
HR [*] (95% CI)	1.00 (reference)	1.09(0.94-1.27)	1.11(0.95-1.29)	1.24(1.07-1.44)	0.001

*adjusted for age, smoking status, alcohol intake, regular exercise, education level, systolic blood pressure, BMI, insulin and

eGFR

Supplement Table 4. Risk of incident hypertension according to baseline uric acid quartiles (stratification according to

<u>age and drinker)</u>

			P for	P for		
	Q1 Q2 Q3 Q4 trer		trend	interaction		
Drinking						
No drinker (N=39,211)						0.344
Multivariable HR*(95% CI)	1.00 (reference)	1.01(0.90-1.12)	1.13(0.98-1.31)	1.32(1.12-1.56)	0.002	
Drinker (N=57,395)						
Multivariable HR [*] (95% CI)	1.00 (reference)	1.11(0.99-1.25)	1.16(1.03-1.31)	1.33(1.18-1.50)	<0.001	

Age<50 (N=91,851)						0.015
Multivariable HR [*] (95% CI)	1.00 (reference)	1.04(0.95-1.13)	1.04(0.95-1.14)	1.12(1.01-1.23)	0.008	
Age>=50(N=4,755)						
Multivariable HR [*] (95% CI)	1.00 (reference)	0.94(0.76-1.17)	1.08(0.85-1.37)	1.16(0.89-1.51)	0.125	

*adjusted for age, smoking status, alcohol intake, regular exercise, education level, systolic blood pressure, BMI, insulin and

eGFR

Supplement Table 5. Risk of incident hypertension according to baseline uric acid <u>quartiles (stratification according to</u>

<u>incident diabetes)</u>

		Uric acid qua	rtiles (mg/dL)			P for
	Q1	Q2	Q3	Q4	P for trend	interactior
No incident DM						
Multivariable	1.00 (reference)	1 10/1 02 1 19)	1 14(1 06 1 22)	1 20(1 20 1 20)	<0.001	
HR [*] (95% CI)	1.00 (reference)	1.10(1.02-1.18)	1.14(1.06-1.23)	1.29(1.20-1.39)	<0.001	0.017
Incident DM						0.017
Multivariable	1.00 (reference)	1.31(0.64-2.70)	1 32/0 65 2 70)	1.69(0.84-3.39)	0.158	
HR [*] (95% CI)	1.00 (reference)	1.31(0.04-2.70)	1.32(0.65-2.70)	1.09(0.04-3.39)	0.150	

*adjusted for age, sex, smoking status, alcohol intake, regular exercise, education level, systolic blood pressure, BMI, insulin

and eGFR

Supplement Table 6. Risk of incident hypertension according to baseline uric acid quartiles (including sex as an

<u>adjustment variable)</u>

	Uric acid quartiles (mg/dL)						
	Q1	Q2	Q3	Q4	P for trend		
Multivariable	4.00 (mfamma)	1 10/1 00 1 10	4 45(4 07 4 00)	4 00/4 40 4 00)	-0.004		
HR [*] (95% CI)	1.00 (reference)	1.10(1.02-1.18)	1.15(1.07-1.23)	1.29(1.19-1.38)	<0.001		

*adjusted for age, sex, smoking status, alcohol intake, regular exercise, education level, systolic blood pressure, BMI, insulin

and eGFR

Supplement Table7. Risk of incident hypertension according to baseline uric acid quartiles (including family history of

hypertension as an adjustment variable)

Uric acid quartiles (mg/dL)				D for the od	P for
Q1	Q2	Q3	Q4	P for trena	interaction
1.00 (reference)	1.09(1.02-1.17)	1.14(1.06-1.22)	1.28(1.19-1.38)	<0.001	0.057
1.00 (reference)	1.06(0.92-1.21)	1.15(1.00-1.31)	1.24(1.09-1.42)	<0.001	
	1.00 (reference)	Q1 Q2 1.00 (reference) 1.09(1.02-1.17)	Q1 Q2 Q3 1.00 (reference) 1.09(1.02-1.17) 1.14(1.06-1.22)	Q1 Q2 Q3 Q4 1.00 (reference) 1.09(1.02-1.17) 1.14(1.06-1.22) 1.28(1.19-1.38)	Q1 Q2 Q3 Q4 1.00 (reference) 1.09(1.02-1.17) 1.14(1.06-1.22) 1.28(1.19-1.38) <0.001

HR^{*}(95% CI)

*adjusted for age, smoking status, alcohol intake, regular exercise, education level, systolic blood pressure, insulin, eGFR, BMI,

family history of hypertension