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ABSTRACT

To study systematically the evolution on the angular extents of the galaxy,

ICM, and dark matter components in galaxy clusters, we compiled the optical

and X-ray properties of a sample of 340 clusters with redshifts < 0.5, based on all

the available data with the Sloan Digital Sky Survey (SDSS) and Chandra/XMM-

Newton. For each cluster, the member galaxies were determined primarily with

photometric redshift measurements. The radial ICM mass distribution, as well as
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the total gravitational mass distribution, were derived from a spatially-resolved

spectral analysis of the X-ray data. When normalizing the radial profile of galaxy

number to that of the ICM mass, the relative curve was found to depend signifi-

cantly on the cluster redshift; it drops more steeply towards outside in lower red-

shift subsamples. The same evolution is found in the galaxy-to-total mass profile,

while the ICM-to-total mass profile varies in an opposite way. The behavior of

the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting

that the detected redshift-dependence is not due to mass-related effects, such as

sample selection bias. Also, it cannot be ascribed to various redshift-dependent

systematic errors. We interpret that the galaxies, the ICM, and the dark matter

components had similar angular distributions when a cluster was formed, while

the galaxies travelling interior of the cluster have continuously fallen towards

the center relative to the other components, and the ICM has slightly expanded

relative to the dark matter although it suffers strong radiative loss. This cos-

mological galaxy infall, accompanied by an ICM expansion, can be explained

by considering that the galaxies interact strongly with the ICM while they are

moving through it. The interaction is considered to create a large energy flow of

1044−45 erg s−1 per cluster from the member galaxies to their environment, which

is expected to continue over cosmological time scales.

Subject headings: galaxies: clusters: general — galaxies: evolution — intergalac-

tic medium — X-rays: galaxies: clusters

1. INTRODUCTION

In the standard cosmological model, the formation of large-scale structure is dominated

by gravitational dynamics, while the gas physics plays a minor role. The gravitational col-

lapse of cosmic matter over several megaparsecs creates galaxy clusters, the largest virialized

system in the Universe. On small-scale domains (e.g, galaxies), instead, non-gravitational

processes, related to the dynamics and evolution of baryons, become more and more impor-

tant. The physical states of galaxies and intracluster medium (ICM) are shaped by complex

processes such as radiative cooling, feedback from supernovae and active galactic nuclei, star

formation, and interactions between galaxies and ICM. Because galaxy clusters stand at

the transition between the two scale domains, they are often studied for both cosmological

and astrophysical aims. It is hence crucial to quantify how the astrophysical processes have

affected the cosmological properties of the cluster baryons.

So far, the cluster member galaxies and the ICM have been assumed in many cases to be
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subject to different sets of astrophysical processes, and evolve separately over cosmological

time scales. However, based on X-ray observations of the ICM with ASCA, Makishima et

al. (2001; M01 hereafter) proposed a novel picture: physical interactions occur universally

between member galaxies and the ICM, which transfer free energy from galaxies to the ICM,

and drag the galaxies to ultimately fall to the cluster center over the Hubble time. Indeed,

possible remnants of the interaction have been observed around many galaxies in H i (e.g.,

Oosterloo & van Gorkom 2005), Hα (e.g., Yoshida et al. 2008), and X-ray bands (e.g., Sun

et al. 2006; Gu et al. 2013b).

This simple idea can potentially shed light on several unsolved issues. First, it immedi-

ately explains why the ICM in nearby clusters has a much more extended angular distribution

than the member galaxies. The implied member galaxy infall may also be intimately linked

to the formation of central brightest cluster galaxies (or the cD galaxies), as well as that of

diffuse intracluster light. At the same time, it can potentially answer to a long-standing ques-

tion: why galaxies evolve differently in- and out-side clusters? The fraction of blue galaxies,

which are considered to be gas-rich and star forming objects, increases with redshift up to

z ∼ 0.4 in the cores of rich clusters (known as Butcher-Oemler effect; Butcher & Oemler

1984); such a feature is not found in low-density environments. This kind of “environmental

effects”, of which the ultimate driving force remained unknown, may be understood as a

consequence of the proposed interactions of the moving galaxies with the ICM. As recently

reported in Stroe et al. (2015), star formation in member galaxies appears to be excited by

cluster-scale merging shocks in the ICM. The massive star formation would rapidly consume

the molecular content in the galaxies, and eventually transforms them to the red population.

The M01 scenario can also explain, in a natural way, how the large amount of metals, which

must have originally been synthesized in galaxies, are presently distributed to much larger

radii than the galaxies (e.g., Kawaharada et al. 2009; Matsushita et al. 2013), and the ICM

in nearby clusters is metal-enriched uniformly up to the periphery (e.g., Werner et al. 2013);

the galaxies used to be distributed to larger radii, and enriched that portion of the ICM

while they gradually fall to the center.

Another important consequence expected from the M01 scenario is the energy transfer

towards ICM. The high ICM density in cluster center would result in a runaway cooling,

which leads to the formation of enormous cooling flow of gas, and massive star formation

in the cD galaxy. However, broad-band X-ray spectroscopy, starting with ASCA, found

that the effect of cooling is much weaker than previously predicted (e.g., M01; Peterson et

al. 2001), suggesting that some heating mechanisms are in operation. In the galaxy infall

scenario, the energy flow from galaxies provides an important and inherent heating source

for the ICM, to be operating essentially in all clusters.
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To verify the M01 scenario, the key is to compare the spatial extents of member galaxies

and the ICM in clusters at different ages. As reported in Gu et al. (2013a; Paper I hereafter),

we studied the expected galaxy infall phenomenon using a statistical sample of 34 massive

clusters with redshift range of 0.1−0.9. We detected, for the first time, a significant evolution

spanning a time interval of ∼ 6 Gyr in the relative spatial distributions of the cluster galaxies

and the ICM; while the galaxy component was as spatially extended as the ICM at z > 0.5,

towards the lower redshifts, it has indeed become more centrally-concentrated relative to

the ICM sphere. Since the concentration was found to be rather independent of the galaxy

mass, it cannot be explained by pure gravitational drag. This result provides an important

support to the galaxy-ICM interaction scenario proposed by M01.

Although the results in paper I are quite firm, the implied view is so novel that fur-

ther efforts are still needed to make them more convincing and detailed. To minimize the

statistical uncertainty (currently ∼ 20%; Fig. 8 of paper I), it is necessary to increase sig-

nificantly the sample size. To strengthen the detection of the evolutionary effects, our new

study should also include the redshift-dependent angular distributions of the baryon versus

dark matter components, which was only briefly studied in paper I. In addition, we would

like to examine in details how the relative distributions of member galaxy, ICM, and dark

matter components evolve as a function of such parameters as the cluster mass, dynamical

state, ICM density, galaxy mass, and galaxy color. Such a comprehensive study will enable

us to establish conclusively the view of galaxy infall proposed in M01.

We present the new study in the present paper, which has the layout as follows. Section

2 gives a brief description of the sample selection and data reduction procedure. The data

analysis and results are described in §3. We discuss the physical implication of our results in

§4, and summarize our work in §5. Throughout the paper, we assume a Hubble constant of

H0 = 70h71 km s−1 Mpc−1, a flat universe with the cosmological parameters of ΩM = 0.27

and ΩΛ = 0.73, and quote errors by the 68% confidence level unless stated otherwise. The

optical magnitudes used in this paper are all given in the AB system.

2. OBSERVATION AND DATA PREPARATION

2.1. Sample Selection

To correlate the ICM and galaxy evolution, it is important to construct a large statistical

sample of X-ray bright clusters, which is based on high quality X-ray and optical data, and

has a large coverage in the cluster mass and redshift. Usually the sample size is limited

by the availability of X-ray data, which is often much less complete than the optical ones.
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Therefore we started with selecting all clusters available in the Chandra and XMM-Newton

archives till 2015, 509 and 442, respectively. The two archives have an overlap of 262, so

that the total number available in X-ray is 689. For the 262 clusters in both X-ray archives,

we selected the data with better signal-to-background ratio (see §3.5.2 for definition). Then,

as shown in Table 1, about two-thirds of the X-ray clusters, 468, were found to be covered

by the Sloan Digital Sky Survey (SDSS) up to the data release 12. The list, consisting of

468 clusters, forms our “Preliminary Sample”.

We have applied two basic filters to our Preliminary Sample. First, the nearby Virgo,

Coma, and Perseus clusters were discarded for their oversized angular extents. Second,

it was further screened to remove those with poor X-ray data quality (i.e., net count <

5000). The remaining number is 381, to be called “Intermediate Sample”. They were

further categorized into three subsamples by their redshift, i.e., low-redshift subsample with

138 objects (z ∼ 0.0 − 0.08, hereafter subsample L), intermediate-redshift subsample with

130 objects (z ∼ 0.08−0.22, hereafter subsample M), and high-redshift subsample consisting

of 113 clusters (z ∼ 0.22− 0.45, hereafter subsample H). The superposed optical and X-ray

images of six example clusters, two for each subsample, are shown in Figure 1.

2.2. Completeness Check

As described above, the sample selection is primarily based on observational limitations,

e.g., archival state and X-ray data quality, rather than on some objective criteria (e.g., flux-

or redshift- limited). Therefore, our Intermediate Sample may be subject to some selection

biases. To examine this issue, we investigate in detail the sample completeness. In essence,

minor incompleteness is acceptable for our purpose, since we already found in Paper I that

the major aim of our study, the systematic correlation between X-ray and optical structures

of the clusters, does not depend strongly on the cluster richness.

To test X-ray completeness of the Intermediate Sample, we compared it with existing

flux-limited catalogs of the NORAS and REFLEX surveys, which are known to be fairly

complete (∼ 80% and > 90%, respectively; Böhringer et al. 2000, 2004). In Figure 2a, the

fraction of NORAS/REFLEX clusters covered by our sample are plotted as a function of

the 0.1− 2.4 keV X-ray flux. Our sample recovers ∼ 90%/73% of the sky density of clusters

compared to the NORAS/REFLEX survey at 5×10−12 ergs s−1. Even at 1×10−12 ergs s−1,

the relative completeness reaches 60%. This means that most of the X-ray detected clusters

in the SDSS sky coverage are included in our sample.

To characterize the sample in another way, we calculated the X-ray luminosity functions
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of sample clusters, normalized to the effective survey volume, i.e., a sphere centred on Earth

and extending up to the most distant object. Here, the X-ray fluxes were taken from the

NORAS/REFLEX catalogs. As shown in Figure 2b, the obtained luminosity function is

consistent with that of the REFLEX II survey (Böhringer et al. 2014) for bright objects,

i.e., LX > 1044 erg/s, while at the fainter end, our Intermediate Sample is less complete, by

∼ 30− 40%, than the REFLEX II catalog.

A more vital test for this study is to investigate the sample coverage in the cluster mass

vs. redshift space. In Figure 2c, we plot M500−z relation of our sample clusters, where M500

is the total gravitating mass within R500, the radius corresponding to a density contrast of

500 above the cosmological critical value. We measured M500 by using the X-ray hydrostatic

method described in §3.3. Most of the clusters have M500 = (0.1 − 2) × 1015 M�, in which

range the M500 − z space is rather uniformly covered, without strong z−dependent biases.

In contrast, clusters with M500 < 1014 M� are mostly found in low-redshift subsamples,

probably due to an obvious selection effect. To quantify the effect, we projected the M500−z
plot onto the M500 axis to derive a mass function for each subsample. As shown in Figure

2d, the three subsamples define similar mass functions at > 1014 M�, while the subsample

L contains twice more objects with M500 ≤ 1014 M� than the other two, thus reconfirming

Figure 2c. To avoid this selection bias, we limit the subsequent study to the clusters with

M500 in the range of (0.1 − 2) × 1015 M�. This defines our “Final Sample” containing 340

clusters, which are subdivided into 119, 117, and 104 objects in the subsamples of L, M, and

H, respectively.

2.3. X-ray Data

Our Final Sample includes 141 and 199 clusters with X-ray data from Chandra and

XMM-Newton archives, respectively.

2.3.1. Chandra

The Chandra data obtained with its advanced CCD imaging spectrometer (ACIS) were

screened with the CIAO v4.6 software and CALDB v4.6.3. Following the standard procedure

described in, e.g., Gu et al. (2009), we discarded bad pixels and columns, as well as events

with ASCA grades 1, 5, and 7, and corrected the event files for the gain, charge transfer

inefficiency, astrometry and cosmic ray afterglow. By examining the lightcurves extracted

in 0.3 − 10.0 keV from source-free regions, we identified and excluded time intervals con-
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taminated by flare-like particle background with count rate more than 20% higher than the

mean quiescent value. The ACIS-S1 data were also used to crosscheck the flare detection.

This usually reduced the exposure time by 1 − 3 ks; in a few cases the flares occupy ∼ 10

ks. All point sources detected above the 3σ threshold with the CIAO tools celldetect and

wavdetect were masked out. The spectral ancillary response files and redistribution matrix

files were created with mkwarf and mkacisrmf, respectively.

To determine the background for each observation, we extracted a spectrum from a

region ≥ 1− 2 Mpc away from the cluster X-ray peak, and fit it with a model consisting of

an absorbed thermal component for the ICM, an absorbed power law component (photon

index set to 1.4) for the cosmic X-ray background (hereafter CXB), and another absorbed

low temperature thermal component (temperature = 0.2 keV and abundance = 1 Z�) for

the Galactic foreground. The quiescent particle background was calculated based on the

stowed ACIS observations (e.g., Markevitch et al. 2013). The normalizations of the ICM,

CXB, and Galactic components, as well as the ICM temperature and abundance, were set

free in the fitting. The best-fit sample-average CXB flux is 6.8× 10−8 ergs cm−2 s−1 sr−1 in

2.0 − 10.0 keV, which agrees well with the ASCA result reported in Kushino et al. (2002).

The combined uncertainties of the CXB and Galactic components were measured to be

∼ 15% and ∼ 30% for typical high-count and low-count data, respectively. These values will

be used in §3.2 to determine the uncertainties of the ICM mass profiles.

2.3.2. XMM-Newton

The SAS software v13.5.0 was used to screen and calibrate the data obtained with

the XMM-Newton European Photon Imaging Camera (EPIC). Following the procedure in

e.g., Gu et al. (2012), we selected FLAG = 0 events, and set the PATTERN ranges to be

0 − 12 and 0 − 4 for the MOS and pn data, respectively. Then we defined a source-free

region for each observation, and extracted lightcurves in both 10.0− 14.0 keV and 1.0− 5.0

keV bands. By investigating the lightcurves, we discarded time intervals contaminated by

flare-like background, in which the count rate exceeds 2σ above the quiescent mean value in

either of the two bands (e.g., Katayama et al. 2004; Nevalainen et al. 2005). We detected

and removed point sources with the SAS tool edetect chain, and created the ancillary

responses and redistribution matrices with xissimarfgen and xisrmfgen, respectively. The

background model for the XMM-Newton data was determined in a similar way as that

for the Chandra data. The EPIC spectra extracted from ≥ 1 − 2 Mpc away from the

cluster center were fit with a model combining the ICM, CXB, and the Galactic foreground

components. The same region in a wheel-closed dataset was used to calculate quiescent
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particle background. The MOS1, MOS2, and pn spectra were fitted simultaneously with the

same model, but leaving free the cross normalizations among the three. The best-fit sample-

average CXB flux is 7.2× 10−8 cm−2 s−1 sr−1 in 2.0− 10.0 keV, which agrees well with the

Chandra result. The typical uncertainty of the X-ray background (CXB + Galactic), ∼ 20%,

will be later included in the error of the ICM mass profiles (§3.2).

2.4. Optical Data

Our prime purpose of using the SDSS-III data is to select a relatively complete set of

member galaxies of each cluster, and derive their radial distribution around the cluster center.

For this purpose, we used all the available photometric data. For each target cluster in the

sample, a sky region of projected radius R < 2.5 Mpc was defined, and all galaxies within

this region were initially selected. For each of them, we used photometric redshift (hereafter

zphot), K-correction, and absolute magnitude Mr from a table Photoz which is based on

the method of Csabai et al. (2007). Saturated star-like objects and those with blending

problems were removed using object flags1. To exclude zphot determinations with apparently

bad photometry, we discarded objects when the zphot errors exceed 0.08(1 + zphot). This

removed about 20% of galaxies. Then, following Wen et al. (2009), the member galaxies

of each sample cluster were selected with a redshift filter of zcl − 0.04(1 + zcl) < zphot <

zcl +0.04(1+zcl), where zcl is cluster redshift measured with spectroscopy. As shown in Wen

et al. (2012) as well as in Figure 3, the zphot values of the member galaxies in the SDSS

sample determined in this way are consistent with their spectroscopic redshifts (hereafter

zspec), when available, within an average scatter of ≈ 0.02− 0.03.

Since the SDSS data become slightly less complete in the faint end at high redshift, it is

necessary to define a redshift-dependent limiting magnitude to keep a constant completeness

in the whole redshift range. Following Wen & Han (2015b), the limiting magnitude was set

as M e
r ≤ −20.5, where M e

r is the r band absolute magnitude corrected for passive evolution,

M e
r (z) = Mr(z)+Qz, and Q = 1.16 is an evolution coefficient. To estimate the possible light

lost by the magnitude cut, we examined the composite luminosity function of nearby clusters

based on the WINGS survey (Fasano et al. 2006), which is complete down to MV = −15.15.

Our limiting magnitude would filter out ≈ 37% of the total light; when focusing on the

non-dwarf members with MV < −19 (Moretti et al. 2015), ≈ 17% of the light would be lost

due to the magnitude cut. This suggests that most of the bright galaxies retain after the

1(flags & 0x20) = 0 and (flags & 0x80000) = 0 and ((flags & 0x400000000000) = 0 or psfmagerrr <= 0.20)

and ((flags & 0x40000) = 0)
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filtering.

To further enhance the completeness of member galaxy selection, we incorporated the

zspec values of the candidate galaxies measured with the SDSS DR12 (Alam et al. 2015).

As shown in Figure 3a, measurements of galaxy zspec are available for ∼ 80% of the sam-

ple clusters, although the completeness relative to the photometric measurements decreases

significantly towards higher redshifts. For each cluster, we selected objects for which the

zspec-specified recession velocity is within ±2500 km s−1 of the cluster system velocity in

the cluster frame. By further applying the limiting magnitude M e
r ≤ −20.5, a new member

galaxy catalog was then created. The results of spectroscopic and photometric selections

were combined to form the final catalog: all galaxies selected by zspec were automatically

considered as members, while the zphot selection was used in case zspec was not available.

The sample is roughly zphot-based, since the zspec selection contributes only about 20% of

the total members.

For later use in §3 when cross-checking results to be obtained with the zphot-based

sample, we have also constructed a pure zspec-based sample by selecting objects with recession

velocities within ±2500 km s−1 of the cluster velocities. The zspec sample thus has a typical

galaxy number of ∼ 100 per cluster at z < 0.1, while at higher redshifts, the number becomes

≤ 50 per cluster for most objects. In this work we focus on clusters with relatively good

completeness, i.e., detected number ≥ 50. This gives a zspec subsample with 80 clusters.

Details of the zspec subsample is discussed in §3.1.3.

We measure the galaxy luminosity function of each cluster by binning the selected

members into an interval of 0.4 in absolute magnitude and counting the number in each

bin. To take into account the detection limit of the SDSS dataset, we corrected the derived

luminosity functions by the completeness in the observed r-band. The completeness was

determined by comparing the number of objects in each magnitude bin found by the SDSS,

to that from the WINGS database, in a sky region that has been covered by both surveys.

The SDSS sample is reasonably complete, at levels of > 90% and ≈ 85%, for Mr < −21.5 and

Mr ∼ −20.5, respectively. After applying the correction for the detection limit, we have also

corrected the luminosity function for a photometric-redshift background, which is described

in detail in §3.1, as well as for the effect of passive evolution of red sequence galaxies. As

shown in Figure 4, the obtained luminosity functions are nearly the same among the three

redshift subsamples, and agree well with the luminosity function of a more extensive SDSS

sample reported in Wen & Han (2015b).
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2.5. Determination of R500 and the Cluster Center

To compensate for the difference of the sample clusters in their physical scales, we

normalize the galaxy and ICM radial profiles to a characteristic radius R500 (see §2.2 for def-

inition). For this purpose, the R500 values of the clusters in our final sample were determined

through two independent approaches. First we calculated a total mass distribution for each

cluster based on the X-ray data and hydrostatic method, and determined directly its R500,X.

Details of the mass calculation are in §3.3. The second method is based on an empirical scal-

ing relation between the optical luminosity integrated over member galaxies and the cluster

radius. As reported in, e.g., Popesso et al. (2004), the total optical luminosity Lop can be

used to estimate R500,op by

logR500,op = 0.44 log(Lop/1012L�)− 0.15. (1)

As shown in Figure 5, the two determinations of R500 are consistent with each other within

a typical scatter of 30%. Similar scatter is seen in other works (e.g., Wen et al. 2012). We

employ R500,X in the subsequent study, since it is closer to the original definition.

Next, the central point for each cluster was determined. Following Paper I, we set

the cluster center as the centroid of the X-ray brightness, around which the X-ray emission

becomes most circularly symmetric, because the X-ray deprojection analyses (§3.2 and §3.3)

must be precisely centralized on the X-ray centroid. The position of the brightest cluster

galaxy is not employed for this purpose, because it can sometimes differ from the X-ray

centroid by a few tens to hundreds kpc (Shan et al. 2010) in cases of merging clusters. As

shown in Paper I, the X-ray centroid was calculated in an iterative way for each cluster. By

using a CIAO task dmstat on the central r1 = 5′ region, the first centroid was derived. Then

we carried out iterations by reducing gradually the radius ri+1 = ri − 1′, and calculated the

new centroid as well as the shift from the previous one. The iteration was considered as

converged when the shift became less than 10′′. The X-ray centroid is compared in details

to the optical center in §3.5.1.

3. DATA ANALYSIS AND RESULTS

3.1. Galaxy Number Density Profiles

For each cluster, the galaxies selected with the zphot-based method (§2.4) were combined

to calculate surface number density profiles. These profiles might still contain a residual

background component due to possible false member selection with zphot. To remove such
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a component, we calculated the mean galaxy density in a surrounding region, i.e., between

4 Mpc to 8 Mpc from the cluster center. To exclude possible large-scale structures in the

background region, we further divided it into 48 sectors with equal area. Those sectors with

galaxy densities larger than 2σ of the mean value were discarded, and a new mean background

density was then obtained from the remaining sectors. The same method was used in Popesso

et al. (2004). After subtracting the background for each cluster, we normalized the density

profile by dividing the radius r by R500. This compensates the difference of cluster scale

along the sky plane; to further correct it in the line-of-sight direction, we further divided the

surface galaxy number density by R500.

In Figure 6, we show the sample-averaged radial number density profile of galaxies in

comparison with the one reported in Budzynski et al. (2012; B12 hereafter). The B12 profile

was obtained by stacking over 50000 clusters and groups in 0.15 < z < 0.4, and the number

density of each cluster was calculated by a direct background subtraction approach instead

of member selection. Though derived with quite different methods, the two profiles nicely

agree with each other up to 2R500.

3.1.1. Error modelling

In order to estimate uncertainties in the galaxy number density profiles, we considered

two error sources: the Poisson error on the number of selected member galaxies in each radial

bin, and the systematic uncertainty on the zphot measurements. The former was calculated

using the formulae of Gehrels (1986), while the latter was determined using a Monte-Carlo

simulation in the redshift space. For each cluster field, zphot of all galaxies (both members

and non-members) were shifted randomly within the measurement error, i.e., σz = 0.03 and

0.07 for objects with zphot < 0.5 and zphot > 0.5, respectively. Then, we re-selected member

galaxies by using the method in §2.4, and re-calculated the number density profiles. By

1000 Monte-Carlo realizations for each cluster, we determined the systematic uncertainty to

be associated with the zphot measurement. Typically the systematic error is larger than the

Poisson one by a factor of ∼ 5. The two errors were combined in quadrature to make up the

total error. As shown in Figure 6, the combined uncertainty is ∼ 8% in the central bin, and

∼ 10% at outer radii.
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3.1.2. Dependence on cluster mass and redshift

It has been expected that the dark matter and member galaxy distributions should

in general show self-similarity, i.e., the density profiles of different systems become nearly

identical after some scaling (e.g., Navarro et al. 1997). To explore any additional processes

beyond this simple self-similarity, we examine the possible mass- and redshift- dependence of

the galaxy density profiles. First we split the sample into three mass groups, i.e., 1× 1014−
2× 1014 M�, 2× 1014− 5× 1014 M�, and 5× 1014− 2× 1015 M�. Details of the cluster mass

calculation are given in §3.3. The choice of the three mass groups is to have similar number

of clusters in each group. The average number density profiles of the three mass groups are

shown in Figure 7b. The scaling by R500 has removed most of the mass dependence in the

galaxy distribution. The only small difference is seen at the second radius bin, where the

high mass profile is ∼ 20% lower than the other two profiles.

The essence of Paper I was a discovery of significant evolution of the member galaxy

distribution, relative to that of the ICM. As a major step to confirm this discovery, we

calculated number density profiles individually for the entire sample clusters, and then took

their ensemble averages over the redshift-sorted subsamples L, M, and H (§2.1). Unlike

the case of mass-sorting, the three galaxy distributions reveal, as shown in Figure 7d, a

clear evolution; towards lower redshifts, the profile becomes systematically steeper, with a

stronger central increment within 0.2R500, and a quicker outward drop at > 0.5R500. The

average ratio between the subsamples L and H is ∼ 1.6 at the central bin, and ∼ 0.8 at

the outermost. A similar result was reported in Ellingson et al. (2001). As shown in their

Figure 9, the populations of red-sequence and field-like + post-star formation galaxies both

become more concentrated towards lower redshifts.

3.1.3. zspec sample

To crosscheck the above results, we repeated the same analysis on the zspec-based sample

constructed in §2.4. Compared to the zphot-based sample, the spectroscopic one gives more

reliable determination of cluster members, but it is more biased to high-flux galaxies (r <

19.2; e.g., Eisenstein et al. 2001). As described in §2.4, the zspec sample was constructed to

include 80 clusters. Then, for each cluster, we calculated in the same way the radial profile of

surface galaxy number density. As shown in Figure 8, the galaxy profiles are averaged over

two redshift ranges, z < 0.075 and z > 0.075. Error bars show only the Poisson error on the

number of galaxies. The two averaged profiles clearly exhibit different gradients: the nearby

one is more centrally-peaked than the distant counterpart. The central bin of nearby clusters

is on average ∼ 40% higher, while the outer bins are ∼ 20% lower, than those of distant
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objects. Compared to the zphot-measured profiles (Fig. 7d), the zspec ones are systematically

lower by ∼ 20− 50% due to the relatively low completeness. The redshift-resolved gradients

of the galaxy profiles are found consistent between the two zphot and zspec samples.

3.1.4. Concentration

To quantify the difference in the member galaxy distributions, we measured the con-

centrations of the density profiles as described by a standard NFW model (Navarro et al.

1997), which can be written as

ρ(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 . (2)

Here ρ(r) is the galaxy density, ρ0 is the normalization, and Rs is the scale radius. Since

the galaxy profiles typically extend out of R500, the ratio c500 = R500/Rs is used here as

the concentration parameter. The same or similar definition is often used to describe the

structure of dark matter halos (e.g., Vikhlinin et al. 2006; Dolag et al. 2004). Then we

projected the NFW model along line-of-sight, and fit the galaxy profiles in Figure 7d over

the radius of 0.05R500 to 2.4R500. The best-fit concentrations are 2.5 ± 0.2, 2.1 ± 0.1, and

1.8 ± 0.1 for the subsamples L, M, and H, respectively, re-confirming the evolution found

in §3.1.2. The range of the concentration parameter agrees with those reported in previous

works (e.g., Lin et al. 2004; Muzzin et al. 2007; B12)

3.2. ICM Density Profiles

Next we address whether or not the same evolution is present in the ICM component.

To determine the ICM mass distribution, the 3-D ICM density profile was calculated for

each cluster in a standard way based on deprojection spectral analysis with the XMM-

Newton and Chandra data (e.g., Paper I). After removing point sources, we extracted spectra

from several concentric annulus regions for each cluster. The radial boundaries of each

annulus were determined to include sufficient net counts, i.e., 1000 and 3000 for low-flux

and high-flux clusters, respectively. The extracted spectra were fit in 0.7− 8.0 keV with an

absorbed, single-temperature APEC model in XSPEC. All annuli were linked by a PROJCT

model, which assumes the plasma parameters (e.g., emission measure and temperature) of

the corresponding 3-D shells individually, calculates via projection a set of X-ray spectra to

be observed from the specified 2-D annuli, and compares them with the actual data. For

each 3-D shell, the gas temperature and metal abundance were set free. When the model
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parameters cannot be well constrained in some annuli due to relatively low statistics, we tied

them to the values of their adjacent regions. The column density of neutral absorber was

fixed to the Galactic value given in Kalberla et al. (2005). We have also calculated spectral

parameters with a more direct deprojection method presented in Sanders & Fabian (2007),

which gave consistent results with the PROJCT method. All the fits were acceptable, with

reduced chi-squares ∼ 0.8−1.2 for a typical number of degrees of freedom being ∼ 300−1000.

The 3-D ICM density profile was then calculated from the best-fit model normalization of

each annulus. Errors was estimated by taking into account both statistical and systematic

uncertainties. The former was estimated by scanning over the parameter space with an

XSPEC tool steppar iteratively, while the latter was assessed by renormalizing the level of

CXB component for each region by 20% (§2.3). The two kinds of errors are comparable for

most annuli. The sample-average gas density profile is then obtained and plotted in Figure

9. It decreases from ∼ 10−2 cm−3 in the central 100 kpc, to a few 10−4 cm−3 at r > 1 Mpc.

In the same plot, our profile is compared with a previous result by Croston et al. (2008),

which reports the ICM density profiles of 31 nearby clusters (z < 0.2). The two results agree

nicely with each other at all radii.

As shown in Figures 10a and 10b, the R500-scaled ICM density profiles were firstly

grouped by the cluster mass as introduced in §3.1.2. At small to intermediate radii (<

0.5R500), vertical separation can be clearly seen among the average profiles of the three mass

groups: the value of the high-mass group at 0.3R500 is larger than those of the medium-mass

and low-mass ones by a factor of ∼ 1.4 and 1.6, respectively. At larger radii, however, the

dependence becomes weaker, and the three profiles are consistent at ≥ R500. Such a feature

agrees well with those reported in previous observations (e.g., Croston et al. 2008) and

simulation works (e.g., Borgani et al. 2004).

Then we investigate how the spatial distribution of hot ICM evolves with time. As

shown in Figures 10c & 10d, the scaled ICM density profiles were binned, as before, by

their redshifts. In the inner region, the average profiles of the three subsamples show weak

dependence on redshift, in contrast to the cluster mass-sorting. The core density at 0.1R500

decreases by ∼ 10% from subsample H to subsample M, and by ∼ 15% from subsample M to

subsample L. Similar to the case of the mass-sorting, this correlation becomes further weaker

and vanishes at > 0.5R500. The evolutionary trend of ICM density profiles is opposite to

that found in Figure 7d in the galaxy density profiles.
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3.3. Total Gravitating Mass

To study the most dominant mass component, the dark matter, we calculated the total

gravitating mass profile for each cluster. Here we employed the standard hydrostatic mass

estimates using the X-ray data (e.g., Sarazin 1988; M01). Based on the best-fit 3-D gas

temperature profiles TX(R) and density profiles ng(R) obtained with the deprojected analysis

(§3.2), and assuming spherical symmetry and a hydrostatic equilibrium, the total gravitating

mass within a 3-D radius R can be calculated generally as

M(R) =
−kTX(R)R

Gµmp

(
dlnng(R)

dlnR
+
dlnTX(R)

dlnR

)
, (3)

where G is the gravitational constant, µ = 0.609 is the assumed average molecular weight,

and mp is the proton mass. The associated errors were calculated combining those on the

temperature and the density. By stacking the mass profiles obtained from individual clusters,

we show the sample-average mass profile in Figure 11. The radius R and mass M(R) are

normalized to R500 and M500, respectively.

To verify our mass measurements, we compare the results derived in this way with those

reported in previous X-ray and weak lensing studies. As shown in Figure 11, our sample-

average mass profile agrees nicely with those presented in Zhang et al. (2008), which were

calculated with the same X-ray technique for 37 clusters at z = 0.14 − 0.3. Most objects

in their sample are also present in this work. The profiles of the two samples, this work

and Zhang et al. (2008), also give similar scatter, ≈ 0.25 and ≈ 0.2 of the mean value

at r = 0.3R500. For a further test, we compared our mass profiles with those obtained in

previous weak lensing studies (e.g., Dahle et al. 2002). Since the lensing gives aperture

mass projected along the line-of-sight, we have projected the X-ray mass profiles which

were originally obtained in 3-D. The X-ray and weak lensing results are generally consistent

with each other in most radii, albeit with some differences seen at central ∼ 0.1R500 in

several objects. These discrepancies cannot affect the key profiles shown in §3.4, which have

innermost bins at ∼ 0.25R500.

Having derived the X-ray mass profiles, let us investigate how the matter distribution

varies with the cluster mass M500. The mass profiles for clusters in the three mass groups

(§3.1.2) are plotted in Figures 12a and 12b in different colors. The total gravitating masses

of the low-mass clusters thus exhibit higher concentration than those of the high-mass ones.

To quantify this effect, we again calculated the concentration parameter as c500 = R500/Rs

(§3.1.4), where Rs is the scale radius determined by fitting the mass density profiles with the

NFW model (Eq.2). The central region r < 0.05R500 was excluded in the fitting, because

the mass density at these radii are often found biased from the universal model (e.g., Gu

et al. 2012). The obtained c500 is plotted as a function of M500 in Figure 13. Thus, c500
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decreases significantly as a function of mass; the average value of high-mass clusters is about

two-thirds of that of low-mass ones. Our result is generally consistent with the expected

c −M relation by cluster simulations (Dolag et al. 2004) and those from previous X-ray

observations (e.g., Vikhlinin et al. 2006).

Following this, the total gravitating mass profiles were regrouped in redshift. As shown

in Figure 12d, the average profiles of the three subsamples in general trace each other, and

shape of the profiles does not vary strongly across the redshift range. The mean value of the

subsample L is shifted to be slightly lower, by 20−30%, than those of the distant subsamples,

probably due to the sample selection effect as noticed in Figure 2d. Combining Figure 12b

and Figure 12d, it is suggested that the concentration of dark matter halo depends primarily

on the cluster mass rather than the redshift.

3.4. Comparison of Galaxy/ICM/Dark Matter Distributions

To compare directly the spatial distributions of the three mass components, here we

calculated three types of radial profiles, i.e., galaxy number vs. ICM mass ratio (hereafter

GNIMR), galaxy number vs. total mass ratio (hereafter GNTMR), and ICM mass vs. total

mass ratio (hereafter IMTMR). As a first step, the obtained radial profiles of the three

mass components were transformed to have the same form and dimension. For each cluster,

the galaxy number density enclosed in each 2-D radius r (§3.1) were integrated to obtain a

quasi-continuous integral profile. To match with the optical profile, the ICM mass profile was

calculated by projecting numerically the ICM density distribution (§3.2) along the line-of-

sight, and integrating over the same set of radius bins. As for the total mass, we converted the

mass profile (§3.3) into the 3-D mass density profile, ρ(R) = (4πR2)−1dM(R)/dR, projected

ρ(R) onto the sky plane, and integrated it over each radius r to obtain a 2-D mass profile. The

radially-integrated profiles of the three components, now in the same form and dimension,

were further normalized to their central value at r = 0.25R500 (∼ 250 kpc), because we are

interested in their relative shape differences. This radius was chosen to be in line with paper

I. Finally, by dividing one component to another, we obtained the GNIMR, GNTMR, and

IMTMR profiles for each cluster. The ratio profiles were again averaged over subsamples

as a function of either the cluster redshifts or the masses, and are shown in Figure 14.

Uncertainties of the averaged profiles were calculated by combining in quadrature the errors

of all clusters in the subsample.
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3.4.1. Dependence on cluster mass and redshift

As shown in Figure 14b, the GNIMR profiles exhibit apparent evolution with the red-

shift: the average profile of subsample H is significantly flatter than that of subsample L,

and that of subsample M shows an intermediate gradient. This result is a direct consequence

of the opposite evolutionary trends revealed in Figure 7d and Figure 10d. Furthermore, it is

consistent with the one reported in Paper I (in its Fig. 13b), which is obtained with a very

different galaxy selection method. As expected, the high-redshift (z = 0.4 − 0.9) profile of

Paper I appears to be clearly flatter than that of subsample H of this work. This indicates

that the observed evolution might extend continuously to high redshifts. Furthermore, the

shape of the GNIMR profile does not depend strongly on the cluster mass (Figure 14a),

which proves that the redshift dependence cannot be attributed to the obvious selection bias

that we tend to select more massive objects at higher redshifts (§2.2).

Similar to the GNIMR, the shape of the GNTMR profile also depends clearly on redshift,

as shown in Figure 14d. While the galaxies used to be less concentrated than the underlying

dark matter in subsample H, they have evolved to become slightly more concentrated than

the latter in subsample L. As can be inferred by comparing Figure 7d, Figure 10d, and Figure

12d, the redshift dependences of the GNIMR and GNTMR profiles are mainly contributed

by the z-dependent changes in the galaxy number distributions. On the other hand, as

shown in Figure 14c, the GNTMR profiles do not depend significantly on the cluster mass

in the central 0.7R500. The only difference is seen in the outer radii, where the low-mass

clusters show relatively flatter GNTMR than the high-mass ones. This is mainly due to the

mass-concentration effect of the dark matter halos (Fig. 13).

The ICM exhibits the most extended distribution among the three components. Fur-

thermore, as shown in Figures 14e and 14f, the IMTMR profile depends on both redshift

and the cluster mass: the X-ray size relative to that of dark matter increases with decreas-

ing redshift and cluster mass. While the two dependences are both caused mainly by the

behavior of the ICM density profiles shown in Figures 10b and 10d, the mass dependence is

also contributed by the trend of mass concentration (Fig. 13).

Figure 15 provides another presentation of the above results, where the subsamples

(either redshift- or mass- sorted) are plotted on the GNTMR vs. IMTMR plane. Thus,

relative to the dark matter, the stellar component kept shrinking from z = 0.5 to z = 0, while

the ICM component evolved to be more and more extended even though it suffers strong

radiation loss. Any mass-related effect cannot be a major driving force of this evolution,

since the mass-sorted subsamples are seen to behave in quite different way on the same plot.
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3.4.2. Galaxy light vs. ICM mass ratio

In order to examine consistency with Paper I, we may need to slightly modify the

GNIMR calculation by replacing the galaxy number profile with a galaxy light profile. We

calculated the rest-frame r-band luminosity of all galaxies selected by zphot, corrected it

for passive evolution (§2.4), subtracted a residual background to eliminate possible false

selection (§3.1), and integrated the galaxy light in each radius. The galaxy light vs. ICM

mass ratio (hereafter GLIMR) profile was then obtained for each cluster. As shown in Figure

16, the subsample-averaged GLIMR profiles exhibit strong evolution in gradient as a function

of redshift; the distribution of stellar-to-ICM ratio is more concentrated in lower redshifts.

This feature is in good agreement with those obtained in paper I. When compared to Figure

14b, the GLIMR profiles appear to be steeper than the GNIMR ones in subsample L and M,

indicating that the brighter galaxies, hence more massive objects, preferably reside in the

central regions for the nearby clusters. This feature is less significant in subsample H.

3.5. Systematic Errors and Biases

Here we examine in details the possible systematic errors and biases that might be

involved in the galaxy-to-ICM comparison.

3.5.1. Selection of cluster center

In the above studies, the center of each cluster was defined as the X-ray centroid (§2.5).

It is however known that the X-ray center could be offset from the true bottom of the

potential, if, e.g., the ICM is not in hydrostatic equilibrium. An obvious alternative is

to identify the cluster center with the position of the brightest cluster galaxy (although

this could also be biased). To assess the possible bias due to the center selection, we have

calculated another set of galaxy number profiles, and hence the GNIMR profiles, by re-setting

the center to the brightest cluster galaxy of each cluster. For the reason described in §2.5,

the ICM mass profiles, centralized on the X-ray centroid, were kept unchanged. As shown in

Figure 17a, the new GNIMR profiles appear to be systematically steeper than the original

ones. This is because the new galaxy number profiles, with optically-defined center points,

often give a higher value in the inner regions. Nevertheless, the main result obtained in

§3.4.1, i.e., the redshift-dependence on the gradients of the GNIMR profiles, remains intact

after the center shifting.
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3.5.2. X-ray background

The largest source of systematic error on the X-ray profiles is uncertainties in the back-

ground subtraction, and the effect must be severer in X-ray faint clusters. If the X-ray back-

ground was systematically over-subtracted in low-flux clusters, the ICM density at large radii

would be suppressed, and the GNIMR profiles would thus be flattened. To examine this pos-

sible effect, we calculated the X-ray source-to-background ratio at 0.6 R500 (S/B0.6 hereafter)

for each cluster. The mean ratios are 2.2, 2.2, and 2.1 for subsample L, M, and H, respec-

tively, which show no redshift dependence. These values are larger than the limiting S/B in

previous studies (e.g., S/B∗ = 0.6, Leccardi & Molendi 2008). To further clarify the back-

ground effect, we divided each subsample into two groups by the mean source-to-background

ratio, S/B0.6 = 2.2. As shown in Figure 17b, such effects of the X-ray background is actually

visible to some extent, but the GNIMR profiles of the low S/B and high S/B groups are

still consistent with each other in each subsample, and the evolution discovered in §3.4.1

is seen in both groups. This indicates that the observed evolution cannot be explained by

background uncertainties of the X-ray data.

3.5.3. Cosmological growth

As noticed in paper I, there is one additional effect involved in the cluster evolution-

ary study. Since clusters are considered to grow via matter accretion onto their outskirts,

the cluster scale (i.e., the mass and radius) should increase continuously over cosmological

timescales. This makes R500 of each cluster a time-dependent quantity. To compensate for

such underlying differences in the cluster evolution stage, we have attempted to re-calculate

the cluster profiles by defining a new scale, Rz=0
500 , the expected R500 that a cluster will

achieve after evolving to z = 0. Based on the empirical cosmic growth function derived

from N-body numerical simulation, e.g., Wechsler et al. (2002), the cluster mass is expected

to increase by a factor of ∼ e1.33z0 from z = z0 to z = 0, so that Rz=0
500 can be estimated

by Rz=0
500 ≈ Rz=z0

500 × e0.56z0E(z0)0.58, where E(z0) is the cosmological evolution factor. The

new radial scale is utilized to calculate a new set of GNIMR profiles shown in Figure 17c.

Although the profiles, especially those of the high redshift subsamples, are modified to be

slightly steeper, the new result is still consistent with the original one within error bars, and

the GNIMR evolution still remains significant. The systematic uncertainties caused by such

a “cosmological growth” effect in cluster outer regions should be ≤ 10%.
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3.5.4. Dynamical states

Since the sample clusters have a wide scatter in morphology, it is important to examine

whether or not the detected evolution on galaxy-to-ICM profiles is created by the evolving

dynamical state of clusters. Based on the spatial distributions of member galaxies, we

can divide the sample into merging and relaxed clusters, while the X-ray data allow us to

define cool-core and non-cool-core objects. Both of these classifications can be considered

to represent the dynamical state of clusters (e.g., West et al. 1988; Allen et al. 2008).

First we utilized the two-dimensional galaxy distributions. As shown in Wen & Han (2013),

unrelaxed clusters tend to exhibit asymmetrical galaxy distribution and bumpy brightness

profiles in outer regions, while relaxed ones are on the opposite. Such features are quantified

by three parameters, i.e., asymmetry factor α, ridge flatness β, and normalized deviation δ

defined in Eqs.(7), (9), and (12) of Wen & Han (2013), respectively. As described in Eq.14 of

their paper, the three factors can be further combined into one characteristic parameter Γ,

which is most sensitive to the dynamical state. By applying the same analysis, we define a

relaxation type for each cluster. As seen in Figure 18, this provides a clear separation of the

sample into 46% relaxed and 54% unrelaxed clusters. The GNIMR profiles were rebinned

by the dynamical type for each redshift-dependent subsample. As shown in Figure 17d, the

differences between the two types are ≤ 10%, ≤ 20%, and ≤ 8% for the subsample L, M,

and H, respectively. Although subsample M is somewhat affected, the evolution suggested

in §3.4.1 is still clearly seen in both types.

Then we crosscheck the above result with the X-ray data. It is well known that the

relaxed clusters frequently possess cool ICM cores, while merging clusters have relatively

flat cores (e.g., Santos et al. 2010). Hence, the sample should be separated into cool-core

and non-cool-core subsamples. Following Sanderson et al. (2006), we measured the core

temperatures using spectra of the < 0.1R500 regions, and the cluster mean temperatures

in the 0.1 − 0.2R500 regions. We defined cool-core objects as those systems in which the

mean temperature exceeds the core temperature at > 3σ significance. The sample was thus

divided in to 44% cool-core and 56% non-cool-core objects. As shown in Figure 18, this X-ray

classification is in fact close to the optical method. This is probably because that the optical

Γ factor has been somewhat calibrated to the X-ray sample (Wen & Han 2013). Then, we

rebinned the GNIMR profiles by the ICM core state (Fig. 17e). Again, the GNIMR profiles

are not strongly affected by this operation, and the resulting variations are ≤ 6%, ≤ 12%,

and ≤ 5% for the subsample L, M, and H, respectively. The detected evolution remains

intact for both cool-core and non-cool-core objects.
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3.5.5. Galaxy color

Another major concern with the GNIMR evolution is possible redshift-dependence of

member galaxy type (e.g., color), coupled with the decreasing detecting efficiency of blue

galaxies towards higher redshift (e.g., Csabai et al. 2003). To assess the effects of galaxy

evolution, we here divided our sample, by a color-magnitude diagram employing the (g− r)
color, into red sequence galaxies and blue galaxies. To determine the color-magnitude relation

for each cluster, first we calculated the zeropoint of the (g − r) vs. r diagram by fitting it

with a straight line, assuming a uniform slope of -0.02 for all redshifts. This is valid because

the slope is primarily a result of metallicity and has little evolution with the stellar age

(e.g., Kodama et al. 1998). We utilized a robust biweight linear least square method (Beers,

Flynn & Gebhardt 1990), which is insensitive to data points that are much deviated from the

relation. The fitting was repeated for a few times, as the data points outside the 3σ range of

the fitted relation were rejected in the next iteration. In performing the fitting, we included

those cluster members which have been confirmed by spectroscopic measurements. The

best-fit zeropoint increases from 1.1 to 2.5 towards high redshift. The zeropoint vs. redshift

relation is in good agreement with the metallicity sequence model reported in Kodama &

Arimoto (1997).

Then, we created color-magnitude diagram of all member galaxies of the zphot sample,

and selected red-sequence members as those within ±0.15 magnitudes of the best-fit color-

magnitude relation. This simultaneously defines the blue members as those in the blue cloud.

Figure 19 shows six examples of the color-magnitude selection. Since the color cut extends

to the blue side below the color-magnitude relation, most red-sequence galaxies have been

selected, although the red sample is inevitably contaminated by blue galaxies in the faint end.

To examine the effect of blue contamination, we carried out two independent approaches.

First, we selected galaxies only on the redder side of the best-fit color-magnitude relation,

and mirrored the distribution about the relation to determine the blue side. A similar

selection was used in Gilbank et al. (2008). This affected the average galaxy surface number

density profiles only by ∼ 5%. Second, we excluded the faint end, Mr > −20, from the

red galaxy sample. Although the resulting number density profiles are systematically lower

in the second approach, the slopes of the profiles are consistent within 1σ between the two

methods. Hence, we applied the first approach to separate the red and blue galaxies.

Next we examine the possible evolution in the spatial distributions of red and blue

galaxies. In Figure 20 we show the surface number density profiles of red and blue galaxies

as a function of redshift. The red-sequence members have a higher density, together with a

more centrally-peaked distribution, than the blue galaxies detected within r500. This feature

has been reported in many previous works, e.g., Kodama et al. (2005), Koyama et al.
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(2011). When comparing the three redshift bins, the red members exhibit clear evidence of

evolution which is analogous to that of the total profiles (Fig. 7d); the nearby clusters show

more peaked galaxy distributions than the distant ones. As for the blue component, the

similar feature is again seen in the cluster outer regions (r > 0.2R500). Towards the center,

the blue profiles of the three redshift subsamples do not show marked differences, within

rather large errors which are probably due to the relatively poor capacity of the blue galaxy

selection with zphot. As shown in Figure 17f and 17g, similar properties are present on the

GNIMR profiles of the red and blue galaxies; both exhibit signs of evolution, while those of

the blue galaxies are overpowered by error bars. Hence, we prove that the observed redshift-

dependence on the galaxy-to-ICM profiles cannot be fully ascribed to the time evolution of

the galaxy colors.

4. DISCUSSION

4.1. Evolution of the GNIMR/GNTMR/IMTMR Profiles

By analyzing the optical and X-ray data of a large, X-ray bright cluster sample with

z < 0.5, we studied radial distributions of the three major mass components, i.e., the member

galaxies, the hot ICM, and dark matter. The galaxy membership was determined primarily

with the photometric redshift. The total 340 clusters were grouped into three subsamples (L,

M, and H) by their redshifts. The GNIMR and GNTMR profiles were found to drop towards

outer regions, with a slope that clearly steepens from subsamples H through M to L. The

IMTMR profiles exhibited opposite (positive) slopes and an opposite evolution compared to

GNIMR. The behavior of GNTMR was explained as a composite of the above two effects.

The combined evolution on GNIMR, GNTMR, and IMTMR profiles cannot be mimicked by

mass-related effects (Figs. 14 and 15). As shown in Figure 16, these results quantitatively

confirm and substantially expand the discoveries of Paper I, which is based on 34 galaxy

clusters with z = 0.1− 0.9.

In §3.5, we examined all conceivable sources of systematic errors and biases that could

potentially produce, as artifacts, the apparent GNIMR/GNTMR/IMTMR evolution. How-

ever, none of them was found to affect the observed GNIMR profiles by > 20%; the detected

evolution remains intact. All the pieces of evidence consistently indicate that the radial

distribution of member galaxies has indeed been evolving to be more centrally-concentrated

relative to the ICM and dark matter components, while the ICM has slightly expanded

relative to dark matter in spite of its strong radiation loss.

The behavior of GNIMR/GNTMR could be grossly explained in at least three different
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ways. First, the higher galaxy density in the centers of nearby clusters could be directly

created by enhanced star/galaxy formation therein towards lower redshifts. However, this

idea is opposite to the currently understood evolution in the star forming rate, which is

thought to have decreased from z ∼ 2 (e.g., Tresse et al. 2007). Furthermore, this scenario

cannot explain the central decrease of the iron-mass to light ratio (IMLR; the mass of iron

in the ICM to the galaxy light), observed in some nearby galaxy groups (Kawaharada et al.

2009). Second, the GNIMR evolution could be explained by successive addition of primordial

gas onto the outermost periphery of individual clusters as they grow up. However, this

disagrees with the recent X-ray results that the ICM of nearby clusters is metal-enriched

uniformly out to their virial radii (Fujita et al. 2008; Werner et al. 2013) with a rather

constant IMLR (Sato et al. 2012). A third idea is hierarchical cluster growth combined

with static galaxy evolution. As clusters grow up from inside out, their outer regions would

contain more newly-formed galaxies, which should be optically dimmer due to the decreasing

star formation rate towards lower redshifts. Then, nearby clusters would have lower galaxy

densities in the outer regions (relative to dark matter) than distant objects. However, this

view can explain neither the observed gradual increase with time in the galaxy density at

the cluster central regions (Fig. 7d), nor the evolution of the number density profiles of old

population galaxies (i.e., red sequence, Fig. 20).

We are hence left with the fourth view, first proposed by Makishima et al. (2001)

and reinforced in Paper I, that the member galaxies have actually been falling, relative to

the ICM and dark matter, towards the cluster center on a cosmological timescale. At the

same time, the ICM is considered to have somewhat expanded relative to the dark-matter

distribution. This simple yet so-far unexplored dynamical scenario can explain all essential

results presented in §3. Furthermore, it can explain some important features of the metal

distribution in the ICM, namely, the central decrease and outward flatness of IMLR. However,

the postulated infall of galaxies clearly requires dissipation of their dynamical energies. In

the next two subsections, we consider two possible origins of such energy dissipation.

4.2. Dynamical Friction

As a mechanism which causes galaxies to fall to the cluster center, we first consider dy-

namical friction, which occurs as gravitationally-induced energy exchange between a moving

galaxy and surrounding cluster media including dark matter, ICM, and other galaxies/stars

(Dokuchaev 1964; Rephaeli & Salpeter 1980; Miller 1986). As shown in, e.g., El-Zant et

al. (2004), the dynamical friction can create a strong energy flow of 1044 erg s−1 per cluster

out of the member galaxies, and effectively drag the galaxies inward. To be quantitative,
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consider a model galaxy with a mass m, on a circular orbit with a radius of R and an orbit

velocity of v =
√

GM(R)/R, where M(R) is the gravitating mass of the cluster inside R.

Due to the gravitational interaction, the galaxy receives drag force as

FDF(R) ≈ 4πρ(R)(Gm)2

v2
(4)

(e.g., Ostriker 1999; Nath 2008), where ρ(R) is the cluster mass density. The angular

momentum of the galaxy, L ∼ mvR, decreases with time by dL/dt ∼ FDF(R) × R, so that

the galaxy moves in a spiral trajectory with the radius changing by

dR

dt
≈ 4πρ(R)G2mR

(k + 1)v3
, (5)

where k ≡ dlnv/dlnR is the logarithmic velocity gradient. Employing typical parameters,

the infall distance can be written as

∆R ≈ 10

(
ρ

10−4M�pc−3

)(
m

1012M�

)(
R

500kpc

)(
∆t

109yr

)(
v

1000km/s

)−3

kpc. (6)

As the most prominent characteristic of this mechanism, more massive galaxies are thus

predicted to fall faster than less massive ones.

To investigate the effect of dynamical friction, it is hence important to examine whether

or not the GNIMR profiles depend on the galaxy mass. By adopting the observed total

mass-to-light vs. luminosity relation given in Cappellari et al. (2006; Eq.9 therein), we

calculated the mass m for each galaxy. Then, all galaxies were divided into two groups by

a limiting mass m∗ = 1 × 1011 M�, below which the effect of dynamical friction becomes

negligible (with the infall rate ∼ 2 kpc per Gyr; Eq.6). Figure 21 shows the GNIMR profiles

as a function of redshift for the less massive member galaxies. Although the significance is

slightly lower than the original result shown in Figure 14b, the average GNIMR profiles of the

three subsamples are still clearly separated from each other. Therefore, the dynamical friction

between individual galaxies and the host cluster cannot be the sole mechanism to explain

the observed galaxy-to-ICM distribution. This reconfirms a conclusion already derived in

Paper I.

4.3. ICM Effects

Besides the gravitational effects considered in §4.2, galaxies are also affected by their

direct interaction with the ambient ICM. One well-known ICM effect is ram pressure caused
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by motion of galaxies through the ICM (Gunn & Gott 1972). The ram pressure force on a

single galaxy is written as

FRP(R) ≈ πR2
intρICM(R)v2 (7)

(Sarazin 1988), where Rint is the effective interaction radius of the moving galaxy, and

ρICM(R) is the ICM density distribution. Since the galaxies and ICM have similar specific

energy per unit mass, while galaxies have much lower specific entropy, the free energy would

flow from galaxies to the ICM. As a result of the continuous ram pressure, the galaxy orbit

will decay by

∆R ≈ 10

(
Rint

5kpc

)2 ( nICM

10−3cm−3

)( v

1000km/s

)(
R

500kpc

)(
∆t

109yr

)(
m

1011M�

)−1

kpc,

(8)

where nICM is the ICM number density. Contrary to the dynamical friction (Eq.6) which is

more effective on more massive galaxies, the ram pressure can thus drag less massive ones

more effectively. In addition, the ICM can also affect the galaxy motion via viscosity. As

shown in, e.g., Nulsen (1982), the viscous force by the laminar ICM flow through a galaxy

can be written as

FVIS(R) ≈ πR2
intρICM(R)v212/Re, (9)

where Re is the Reynolds number of the ICM. This has the same form as Eq.7, and its effect

would be comparable to the ram pressure when the Reynolds number of ICM is low.

The influence of the ICM ram pressure on the stellar component of galaxies has been

extensively investigated in the last decade (e.g., Yoshida et al. 2004, Kenney et al. 2004).

By analyzing the combined UV to radio data of the Virgo galaxies, Boselli et al. (2009)

discovered that the ram pressure would be responsible for morphological disturbances of

both the gas and the young stellar population in the disk. The underlying physics may be

revealed in the simulation work of Vollmer (2003) and Steinhauser et al. (2012), that the

stars formed in the ram-pressure tails can interact gravitationally with the parent galaxy

and eventually make its disk thicker. They also discovered that, when exposed to a medium-

level ram pressure, the interstellar medium would not be immediately stripped, but remains

displaced to the downstream direction (i.e., backward) on a timescale of several hundred Myr,

to gravitationally pull the entire galaxy backwards. In such a way, the ICM ram pressure

can induce drag on not only the gaseous component, but also on the other mass components

(stars and dark matter, in particular) of a galaxy.

As shown in Eq.7, the strength of galaxy-ICM interaction is proportional to the galaxy

velocity squared and the ambient gas density. Since the galaxy velocity measurements are

less complete with the current data (§3.1.3), it is natural to examine whether the GNIMR

evolution depends on the ICM density. Here we calculated the ICM density at r = 0.5R500
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for each cluster using the X-ray spectroscopy results (§3.2), and divided each subsample

into two parts by a dividing value ρ∗ICM = 10−3cm−3. As shown in Figure 22a and 22b,

in a high-ρICM environment, galaxies have in fact been concentrated to within ≤ 0.1 R500,

whereas such an evolution in galaxy distribution is weaker in low-ρICM clusters. As a result,

the GNIMR profiles of the high-ρICM objects (Fig. 22d) exhibit nearly the same pattern of

evolution as the sample-average one shown in Figure 14b, while the low-ρICM profiles (Fig.

22c) suggest a less significant evolution. Therefore, in z < 0.5, the clusters with relatively

lower ICM densities have a slightly smaller number of galaxies infalling towards the center

than those with higher ICM densities. These results support the prediction in Paper I, that

the galaxy-ICM interaction contributes significantly to the observed GNIMR evolution. On

the other hand, for the subsample H, the average GNIMR profile of the relatively low-ρICM

clusters appears to be as steep as the one of high-ρICM objects, indicating that the galaxy-

to-ICM concentration was already in place at z ∼ 0.5 for the entire ρICM range considered

in this work.

The above scenario describes the interaction between individual galaxies and its envi-

ronment. In reality, galaxies are not always travelling alone; a fraction of infalling galaxies

are bound to subcluster-scale groups before fully merged with the cluster. In such a group-

in-cluster configuration, both the galaxy-cluster and group-cluster interactions are naturally

expected. Based on a weak lensing study in the central 1.6 Mpc region of the Coma cluster,

Okabe et al. (2014) discovered 32 subcluster-scale halos, each with a mass of several times

1012 M� to 1013 M�. According to Eq.6, the dynamical friction can affect the clustocentric

distances of these halos by 50−150 kpc per Gyr. Meanwhile, Sanders et al. (2013) observed

the same cluster in X-rays, and discovered two coherent linear ICM structures up to 650

kpc. These structures provide smoking-gun evidence for strong direct interactions, e.g., ram

pressure, between infalling subclusters and cluster ICM on several Myr. The interaction

between the ICM and individual galaxies in the group may also be enhanced due to a large

relative velocity v. As reported in Yagi et al. (2015), most of the galaxies showing features

of strong interaction, e.g., extended Hα emission, in two z = 0.4 clusters are found to belong

to infalling subclusters. In addition, in such subclusters, pairs of galaxies orbiting each other

will lose their angular momentum, via interaction with the cluster environment, and will

merge together on the infalling timescales. Thus, the interaction is considered to enhance

morphological evolution of member galaxies.
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4.4. An Energy Flow on Cosmological Timescales

The observed persistent and large-scale matter infall, first predicted by M01 and con-

firmed through Paper I and the present study, is expected to generate a large energy flow

from galaxies to the ICM. The energy loss rate of a single galaxy in the interactions can be

represented by L = (FDF + FRP)× v. Employing typical values, the energy flow per galaxy

can be written as

L ≈ 1× 1041
(

ρ
10−4M�pc−3

)(
m

1011M�

)2 (
v

1000km/s

)−2

+2× 1041
(
Rint

5kpc

)2 (
nICM

10−3cm−3

) (
v

1000km/s

)3

ergs−1.
(10)

The energy thus transfers silently from thousands of galaxies to the environment, creating

a flow of 1044−45 erg s−1 per cluster on several Gyr. This makes it one of the largest en-

ergy events in the Universe, comparable to outbursts of most luminous AGNs, and to the

X-ray luminosity from each cluster. Furthermore, the spatial distribution of L is highly

concentrated in cluster center, where the galaxy-ICM term FRP has a larger contribution

than gravitational term FDF due to larger galaxy velocities therein. As a result, more than

half of the energy is expected to transfer directly to the ICM component, which significantly

contributes to the ICM heating to suppress cooling flows (M01). Furthermore, this can ex-

plain how the ICM component has been evolving to achieve larger angular extents than the

galaxy and dark matter components in nearby clusters (Fig. 14f). Such a gas heating by

galaxy infall has been successfully reproduced with recent numerical simulations (e.g., Asai

et al. 2007, Ruszkowski & Oh 2011, Parrish et al. 2012).

Besides the possible ICM heating, the current scenario has several other important im-

plications. First, it immediately explains how the centrally concentrated galaxy distributions

in nearby clusters were formed. Second, it provides an important clue to the origin of the

environmental effects and evolution seen in member galaxies (Butcher & Oemler 1984; Wen

& Han 2015a). Third, it may potentially explain the observed central drop in IMLR, and

the large-scale (≥ Rvir) abundance uniformity in the ICM (Werner et al. 2013).

5. CONCLUSION

In Paper I, we measured radial profiles of stellar light and ICM mass for 34 galaxy

clusters with redshifts of 0.1 − 0.9, and detected, for the first time, a significant evolution

that the member galaxies get more centrally-concentrated with time relative to the ICM

and dark matter. By using the SDSS photometric and Chandra/XMM-Newton data, now

we have greatly enhanced our study by constructing an unprecedented cluster catalog with
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340 X-ray bright clusters, although the redshift range (z < 0.5) became somewhat narrower.

Using this new sample, we have quantitatively confirmed and reinforced the results reported

in Paper I. While the member galaxies are continuously falling to the center relative to

the ICM and dark matter, the ICM has been slightly expanded relative to the dark matter

even though it keeps radiating. The observed evolution cannot be explained by various

systematic errors or z-dependent selection biases. The galaxy infall is seen both in more

massive and smaller member galaxies, and is enhanced in clusters with higher ICM densities.

Therefore, the observed effects cannot be explained by dynamical friction alone, but require

more direct galaxy-ICM interaction. These interactions are considered to create a large

energy flow of 1044−45 erg s−1 per cluster from the member galaxies to their environment,

which is estimated to continue over cosmological timescales. The present results have several

important implications for the evolution of clusters and galaxies within them.
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Table 1. Sample Statistics

raw selected SDSS X-ray quality a M500 filter

Chandra 509 332 223 161 141

XMM-Newton 442 357 245 220 199

Total 951 689 468 381 340

aThe neighboring Virgo, Perseus, and Coma clusters are also removed.
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Fig. 1.— RGB-colored composite images (red for SDSS-i, green for SDSS-g, and blue for

Chandra/XMM-Newton 0.3 − 0.8 keV) of six example clusters in our sample. Detected

member galaxies (§2.4) are marked by small green boxes. X-ray determined R500 of each

cluster is shown with a white circle.
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Fig. 2.— (a) Completeness of the Intermediate Sample compared to the existing X-ray-

selected cluster catalogs (NORAS and REFLEX in black and red, respectively). (b) Com-

parison between the X-ray luminosity functions of the sample (black) and that of the RE-

FLEX II sample (red; Böhringer et al. 2014). (c) A plot of M500 vs. redshift of the sample.

Subsamples L, M, and H are shown with blue, green and red points, respectively. (d) Cluster

mass functions of the three subsamples. Two vertical lines are the limiting values used in

this work.
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Fig. 7.— (a) Galaxy density profiles of all sample clusters, divided into three groups by the

cluster mass. The low mass, intermediate mass, and high mass systems are presented in

black, red, and green. (b) The mean profiles of the three mass-bins. (c) The same as panel

(a), but the color specifies the redshift subsamples. The subsample L, M, and H are shown

with blue, green, and red, respectively. (d) The mean profile of the three subsamples.
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Fig. 8.— Same as Figure 7d, but using only the spectroscopically measured galaxies, and

dividing the clusters into two redshift-dependent subsamples instead of the three.
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Fig. 9.— The mean ICM density profile of the our sample clusters (black data points). The

68% error is also plotted, although it is too small to be visually apparent. The reference

ICM density profiles obtained by Croston et al. (2008) are shown in grey thin lines.
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Fig. 10.— (a) ICM density profiles of all clusters in the sample. The black, red, and green

curves are low-mass, intermediate-mass, and high-mass systems, respectively. All profiles

are scaled to the characteristic radius R500. (b) Mean gas density of the three mass groups.

(c) The same as panel (a), but the color specifies the redshift subsamples. The subsample

L, M, and H are shown in blue, green, and red, respectively. (d) Subsample-averaged ICM

density profiles.
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Fig. 11.— Mean radially integrated profile of the gravitating mass distributions of the sample

(black data points). The reference mass profiles presented in Zhang et al. (2008) are plotted

in grey error bars and thin lines.
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Fig. 12.— (a) Gravitating mass profiles of the Final Sample clusters. The black, red, and

green points specify the low-mass, intermediate-mass, and high-mass ranges, respectively.

The radii are scaled to the characteristic value R500. (b) Mean mass profiles for the three

mass ranges. (c) The same as (a), but the subgrouping is based on the redshift; subsample

L, M, and H are represented in blue, green, and red, respectively. (d) Mean mass profiles

for the three subsamples.
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Fig. 13.— The concentration parameters of the NFW model, c500 = R500/Rs, as a function

of the cluster mass M500. The black, red, and green points are the mean values for the low-

mass, intermediate-mass, and high-mass clusters, respectively. The grey points are those

measured in X-rays by Vikhlinin et al. (2006). Solid line is the c500 −M500 relation from

a numerical simulation by Dolag et al. (2004), and the dotted lines specify the 2-σ scatter

around the simulated relation.
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Fig. 14.— (a) Mean galaxy number vs. ICM mass ratio (GNIMR) profiles of the low-mass

clusters (black), intermediate-mass clusters (red), and high-mass clusters (green). (b) Mean

GNIMR profiles of clusters in the subsample L (blue), M (green), and H (red). Grey points

and error bars show the GNIMR profiles measured in Paper I. (c) Mean galaxy number vs.

total mass ratio (GNTMR) profiles of the three mass groups. (d) Mean GNTMR profiles of

the three redshift subsamples. (e) Mean ICM mass vs. total mass ratio (IMTMR) profiles

of the three mass bins. (f) Mean IMTMR profiles of the three subsamples.
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Fig. 15.— Characterization of the clusters on the GNTMR vs. IMTMR plane. The data

points with cross are the mean values of the three redshift-sorted subsamples (subsample

L, M, and H in blue, green, and red, respectively). The mean values of the three mass-

sorted subsamples are shown in diamonds, and the black, red, and green stand for low-mass,

intermediate-mass, and high-mass bins, respectively.
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L, M, and H, shown in blue, green, and red colors, respectively. As a reference, the GLIMR

results from Paper I are given in open grey symbols.
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Fig. 17.— Effects of various biases on the subsample-averaged GNIMR profiles. The sub-

sample L, M, and H are plotted in blue, green, and red, respectively. (a) Subsample-averaged

GNIMR profiles calculated with optically-defined center (solid lines) and those with X-ray-

defined center (dashed fainter lines). The difference of the centers applies only to the galaxy

profiles, while the ICM profiles are the same. (b) Those of clusters with high (solid lines)

and low (dashed lines) X-ray signal-to-background ratio. (c) Those calculated based on the

predicted evolutionary scale Rz=0
500 . (d) Comparison of the clusters with relaxed optical mor-

phology (Γ > 0; solid lines) and those with unrelaxed morphology (Γ < 0; dashed fainter

lines). (e) Comparison between the clusters with a likely cool-core (solid lines) and those

without a cool-core (dashed fainter lines). (f) Results using only selected red galaxies. (g)

Those obtained with only blue galaxies.
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(blue), as a function of the ratio between the core ICM temperature and the cluster average

temperature. The black and red histograms show the cool-core and non-cool-core systems,

respectively.
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Fig. 19.— Galaxy color-magnitude diagrams (mg −mr vs. mr) of six cluster examples. The

selected red-sequence and blue galaxies are shown in red and blue, respectively.
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Fig. 20.— Subsample-averaged galaxy density profiles of the color-selected red galaxies (solid

lines), and the blue ones (dashed line). The blue, green, and red colors stand for subsample

L, M, and H, respectively.
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Fig. 21.— Subsample-averaged GNIMR profiles calculated based on low-mass galaxies (m ≤
1 × 1011M�; solid lines), and those with all members (dashed lines). The color of the

subsamples is the same as in Figure 14b.
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Fig. 22.— Subsample-averaged galaxy number density profiles of clusters with relatively low

(panel a; ρICM ≤ 10−3 cm−3) and high (panel b; ρICM > 10−3 cm−3) ICM densities. The

corresponding subsample-averaged GNIMR profiles are given in panels (c) and (d), where

the original GNIMR profiles (Fig. 14b) are plotted as reference in dashed lines. The color

of each subsample is the same as in Figure 14b.
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