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Abstract

MCMC algorithms for Bayesian computation for Gaussian process based models under
default parameterisations are slow to converge due to the presence of spatial and other in-
duced dependence structures. The main focus of this paper is to study the effect of the
assumed spatial correlation structure on the convergence properties of the Gibbs sampler
under the default non-centered parameterisation (NCP) and a rival centered parameterisa-
tion (CP), for the mean structure of a general multi-process Gaussian spatial model. Our
investigation finds answers to many pertinent, but as yet unanswered, questions on the
choice between the two. Assuming the covariance parameters to be known, we compare the
exact rates of convergence of the two by varying: the strength of the spatial correlation,
the level of covariance tapering, the scale of the spatially varying covariates, the number
of data points, the number and the structure of block updating of the spatial effects and
the amount of smoothness assumed in a Matérn covariance function. We also study the
effect of introducing differing levels of geometric anisotropy in the spatial model. The case
of unknown variance parameters is investigated by using well-known MCMC convergence
diagnostics. A simulation study and a real data example on modelling air pollution levels
in London are used for illustrations. A generic pattern emerges that the CP is preferable in
the presence of more spatial correlation or more information obtained through, for example,
additional data points or by increased covariate variability.

Keywords: Bayesian inference, Gibbs sampler, Hierarchical models, Rate of convergence,
Spatial data.

1 Introduction

Spatially correlated data is prevalent in many of the physical, biological and environmental
sciences. It is natural to model these processes in a Bayesian modelling framework, em-
ploying Markov chain Monte Carlo (MCMC) techniques for model fitting and prediction, in
particular Gibbs sampling type algorithms (Gelfand and Smith, 1990). There is a growing
interest among researchers in regression models with spatially varying coefficients (Gelfand
et al., 2003). Fitting these highly overparameterised and nonstationary models is challeng-
ing and computationally expensive. Latent process correlated across space produce dense
covariance matrices that require calculations of order O(n3) to invert, for n spatial locations
(Cressie and Johannesson, 2008).

For normal linear hierarchical models with independent random effects it is known that
the ratio of the variance parameters determines the convergence rates of the Gibbs samplers
(Papaspiliopoulos et al., 2003; Gelfand et al., 1995). When the data precision is relatively
high the centered parameterisation (CP) will yield an efficient Gibbs sampler and when the
data precision is relatively low the non-centered parameterisation (NCP) is most efficient.
Papaspiliopoulos et al. (2003) find that the NCP outperforms the CP for a Cauchy data
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model with Gaussian latent variables. Papaspiliopoulos and Roberts (2008) further investi-
gate how the model parameterisation and the tail behaviour of the distributions of the data
and the latent process all interact to determine the stability of the Gibbs sampler. They
look at combinations of Cauchy, double exponential, Gaussian and exponential power dis-
tributions for the CP and the NCP. The heuristic remark that follows from this comparison
is that the convergence of the CP is quicker when the data model has lighter tails than that
of the latent variables, with the opposite scenario favouring the NCP.

There has been little investigation into the influence of correlation across the random
effects on the rate of convergence of the Gibbs sampler. Simulation studies conducted by
Papaspiliopoulos et al. (2003) on the spatial Poisson-log-Normal model suggest that stronger
spatial correlation improves the sampling efficiency of the CP relative to that of the NCP.
However, there are several unresolved questions regarding the choice of the CP vs NCP for
the mean structure of a general multi-process Gaussian spatial model. Which of the two
parameterisations will converge faster when spatial correlation is increased? What happens
to the rates of convergence when tapering (Furrer et al., 2006; Kaufman et al., 2008) is
introduced? How does the smoothness parameter in an assumed Matérn covariance function
influence the rates? In addition, there are other unexplored issues regarding the choice and
the number of blocks for the random effects, the influence of the scale of spatially varying
covariates and the introduction of different levels of geometric anisotropy.

In this paper we cast the general spatial model with multiple spatially varying covari-
ates as a three stage normal linear hierarchical model. This model formulation allows us
to compute the exact rates of convergence for both CP and NCP for known prior covari-
ance matrices by following (Roberts and Sahu, 1997). These exact rates of convergence
facilitate comparison between the two rival parameterisations, CP and NCP. For an expo-
nential correlation function convergence for the CP is hastened when spatial correlation is
stronger, the opposite being true for the NCP. This is also demonstrated in the context of
tapered covariance matrices, geometric anisotropic correlation functions and the regression
process associated with a spatially varying covariate. The exponential correlation function
is a member of the broader Matérn family (Matérn, 1986). When we increase the smooth-
ness parameter the effect is to slow convergence for both the CP and NCP. In the limiting
case of the Gaussian correlation, when the smoothness parameter tends to infinity, both CP
and NCP may fail to converge when the sample size is large enough due to the associated
singularity of the covariance matrices, Section 3.3 invesigates the issues.

When the prior covariance matrices are unknown the exact convergence is intractable
and so the CP and NCP are compared by statistics based on well known convergence diag-
nostics on the potential scale reduction factor, see e.g., Gelman and Rubin (1992). We use a
simulation and a real data example to show that increasing the effective range for an expo-
nential correlation function improves the sampling efficiency of the CP, whereas shortening
the effective range helps the NCP.

The following remarks are in order. First, a related approach is to marginalise over the
random effects, thus reducing the dimension of the posterior distribution. This approach can
be employed when the error structures of the data and the random effects are both assumed
to be Gaussian. Marginalised likelihoods are used by Gelfand et al. (2003) for fitting spatially
varying coefficient models and by Banerjee et al. (2008) to implement Gaussian predictive
process models. However, marginalisation results in a loss of conditional conjugacy of the
variance parameters and means that they have to be updated by using Metropolis-type
steps, which require difficult and time consuming tuning. On the other hand, the Gibbs
sampler for the full model can potentially be completely automated and run without the
need for any tuning.

Secondly, it is possible to generate intermediate partially centered parameterisations by
considering CP and the NCP as extremes of a family of parameterisations. Indeed, this has
been followed up by Bass and Sahu (2016) in a companion paper. Interweaving of the CP
and NCP as proposed by Yu and Meng (2011) is particularly useful when the practitioner
has little knowledge of the convergence properties of either parameterisation. These authors
obtain an upper bound on the convergence rate of the interweaving algorithm based on an
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intractable maximal correlation between the latent variables under the two parameterisations
and to our knowledge the exact convergence rate for the interweaving algorithm has not yet
been computed. Lastly, both CP and NCP based computation methods are similar in spirit
to various data augmentation (DA) schemes (Liu and Wu, 1999; van Dyk and Meng, 2001;
Imai and van Dyk, 2005; Filippone et al., 2013). A direct theoretical comparison between the
exact convergence rates of the centering parameterisations for Gaussian process (GP) based
models and the DA algorithms is desirable, as has been done by Sahu and Roberts (1999)
for the EM algorithm and the Gibbs sampler. However, this requires further methodological
development of DA algorithms for the GP models and evaluation of their exact rates of
convergence.

The rest of this paper is laid out as follows. In Section 2 we give details of a general
spatial model and obtain expressions for the rates of convergence. A simple example here
illustrates the rates and brings out the rivalry between the two parameterisations. Section
3 is devoted to comparison of the rates of convergence under different settings of correlation
structures and introduction of geometric anisotropy. It also studies the effect of tapering
and the scale of the spatially varying covariates on the rates of convergence. In Section 4
we drop the assumption of known precision matrices and use two convergence diagnostics to
judge the sampling efficiency of the CP and NCP. Analysis is carried out on simulated data
and PM10 concentration data taken from Greater London in 2011. Section 5 contains some
concluding remarks. Appendices A and B, respectively, contain the technical details for
calculating the rates of convergence and the full conditional distributions needed for Gibbs
sampling.

2 General spatial model

2.1 Model specification

For data observed at a set of locations s1, . . . , sn we consider the following normal linear
model with spatially varying regression coefficients (Gelfand et al., 2003):

Y (si) =
p−1∑
k=0

{θk + βk(si)}xk(si) + ε(si) (i = 1, . . . , n). (1)

We model (measurement or micro-scale) errors ε(si) as independent and normally distributed
with mean zero and variance σ2

ε . Spatially indexed observations Y = {Y (s1), . . . , Y (sn)}T
are conditionally independent and normally distributed as

Y (si) ∼ N(xT(si){θ + β(si)}, σ2
ε ),

where x(si) = {1, x1(si), . . . , xp−1(si)}T is a vector containing covariate information for site
si and θ = (θ0, . . . , θp−1)T is a vector of global regression coefficients. The kth element
of θ is locally perturbed by a realisation of a zero mean independent Gaussian process,
denoted βk(si), which are collected into a vector β(si) = {β0(si), . . . , βp−1(si)}T. The n
realisations of the Gaussian process associated with the kth covariate are given by βk =
{βk(s1), . . . , βk(sn)}T ∼ N(0,Σk) (k = 0, . . . , p− 1), where Σk = σ2

kRk, and (Rk)ij =
corr{βk(si), βk(sj)}. The form of the model given in (1) is known as the NCP. The CP is
found by introducing the variables β̃k(si) = θk+βk(si). Therefore β̃k = {β̃k(s1), . . . , β̃k(sn)}T
∼ N(θk1,Σk),

Global effects θ are assumed to be multivariate normal a priori and so we write model
(1) in its hierarchically centered form as

Y |β̃ ∼ N(X1β̃,C1), β̃|θ ∼ N(X2θ,C2), θ ∼ N(m,C3),

where C1 = σ2
εI and X1 = (I,D1, . . . ,Dp−1) is the n × np design matrix for the first

stage where Dk is a diagonal matrix with entries xk = {xk(s1), . . . , xk(sn)}T. We denote
by β̃ = (β̃

T

0 , . . . , β̃
T

p−1)T the np× 1 vector of centered, spatially correlated random effects.
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The design matrix for the second stage, X2, is a np×p block diagonal matrix, the blocks
made of vectors of ones of length n. The p processes are assumed independent a priori and
so C2 is block diagonal where the kth block is Σk.

2.2 Prior distributions

The global effects θ = (θ0, θ1, . . . , θp−1)T are assumed to be independent a priori with the
kth element assigned an independent Gaussian prior distribution with mean mk and variance
σ2
kvk, hence we write θk ∼ N(mk, σ

2
kvk) for k = 0, . . . , p−1. Thereforem = (m0, . . . ,mp−1)T

and C3 is a diagonal matrix with diagonal entries σ2
kvk.

The realisations of the kth non-centered Gaussian process, βk, have a prior covariance
matrix Σk = σ2

kRk. This prior covariance matrix is shared by the kth centered Gaussian
process, β̃k. The prior distributions for the variance parameters are σ2

k ∼ IG(ak, bk) (k =
0, . . . , p−1), σ2

ε ∼ IG(aε, bε), where we write X ∼ IG(a, b) if X has a density proportional
to x−(a+1)e−b/x. The entries of the Rk are (Rk)ij = corr{βk(si), βk(sj)} = ρk(dij ;φk, νk)
where dij = ‖si−sj‖ denotes the distance between si and sj and ρk is a correlation function
from the Matérn family (Handcock and Stein, 1993; Matérn, 1986).

The Matérn correlation function for a pair of random variables at sites si and sj is

ρ(dij , φ, ν) =
21−ν

Γ(ν)
(
√

2νφdij)νKν(
√

2νφdij), φ > 0, ν > 0, (2)

where Γ(·) is the gamma function andKν(·) is the modified Bessel function of the second kind
of order ν (Abramowitz and Stegun, 1972, Section 9.6). The parameter φ controls the rate
of decay of correlation between two points as their separation increases. The smoothness of
the realised random field is controlled by ν, as the process realisations are bνc-times mean-
square differentiable. A number of parameterisations of the Matérn correlation function
exist, for examples see Schabenberger and Gotway (2004, Section 4.7.2). The form given
in (2) is taken from Rasmussen and Williams (2006, Section 4.2.1) and its special cases for
different values of ν are discussed in Section 3.2.

2.3 Exact rates of convergence

For a Gibbs sampler with Gaussian target distribution with a known precision matrix, we
can compute the exact rate of convergence (Roberts and Sahu, 1997). The convergence rate
λ is bounded in the interval [0, 1], with λ = 0 indicating immediate convergence and λ = 1
indicating sub-geometric convergence (Meyn and Tweedie, 1993).

Suppose we block update all random effects β, or β̃ in the case of the CP, and block
update all global effects θ. Using the results given in Appendix A we can show that the
respective rates of convergence for the CP and the NCP of model (2) are given by the
maximum modulus eigenvalue of

F c =
(
X ′2C

−1
2 X2 +C−1

3

)−1
X ′2C

−1
2

(
X ′1C

−1
1 X1 +C−1

2

)−1
C−1

2 X2, (3)

and the maximum modulus eigenvalue of

F nc =
(
X ′2X

′
1C
−1
1 X1X2 +C−1

3

)−1
X ′2X

′
1C
−1
1 X1

(
X ′1C

−1
1 X1 +C−1

2

)−1

X ′1C
−1
1 X1X2. (4)

In Section 3 we use this result to investigate how the entries of X1, C1 and C2 determines
the rate of convergence for the CP and the NCP.

2.4 A simple example

To illustrate how parameterisation effects the posterior correlation of the model parameters
and the rate of convergence of the Gibbs sampler, consider the following simple model, taken
from Gelfand et al. (1996, Section 2). Let

Yi = θ + βi + εi, (5)
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with βi ∼ N(0, σ2
β) and εi ∼ N(0, σ2

ε ) independently distributed for all i = 1, . . . , n. The
form of the model given by (5) is the NCP. The CP is found by replacing βi with β̃i = βi+θ,
and so Yi = β̃i + εi, and β̃i ∼ N(θ, σ2

β).
Assuming a locally uniform prior distribution for θ, and that σ2

β and σ2
ε are known,

Papaspiliopoulos et al. (2003) show that the exact convergence rates of the CP and the
NCP of model (5) are

λc =
σ2
ε

σ2
ε + σ2

β

,

and λnc = 1− λc.
The rates of convergence highlight two important features of the sampling efficiency of the

CP and the NCP. Firstly, that the ratio of the variance parameters is an important quantity
in determining which parameterisation should be employed for model fitting, and secondly,
that a change in variance ratio has opposing effects on each of the parameterisations.

3 CP versus NCP

In this section we investigate how the rates of convergence are affected by the variance
parameters and the correlation structure of the spatial processes. To focus on these rela-
tionships we let p = 1 in model (1), giving us the following hierarchically centred model

Y |β̃0 ∼ N(β̃0, σ
2
εI)

β̃0|θ0 ∼ N(θ01, σ2
0R0)

θ0 ∼ N(m0, v0). (6)

It follows from equations (3) and (4) that the respective rates of convergence for the CP and
the NCP of model (6) are

λc =
(
1/σ2

01TR−1
0 1 + 1/(σ2

0v0)
)−1

1/σ2
01TR−1

0

(
1/σ2

εI + 1/σ2
0R
−1
0

)−1
1/σ2

0R
−1
0 1, (7)

and
λnc =

(
n/σ2

ε + 1/(σ2
0v0)

)−1
1/σ2

ε1
T
(
1/σ2

εI + 1/σ2
0R
−1
0

)−1
1/σ2

ε1. (8)

For independent random effects the ratio of variance parameters is important in deter-
mining the rates of convergence and so we introduce the quantity δ0 = σ2

0/σ
2
ε . In Sections

3.1–3.5 we use expressions (7) and (8) to compare the convergence rates for the CP and the
NCP for different values of δ0 = σ2

0/σ
2
ε and forms of R0. In Section 3.6 we alter the model

to include a covariate.
In Sections 3.2–3.5 we confine ourselves to the case when 1/v0 = 0, such that we have

an improper prior distribution for θ0. This serves to clarify the effects of the other param-
eters on the convergence rates. To see the effect that the prior precision of θ0 has on the
convergence rate consider two different values for v0; v0,1 and v0,2, with corresponding rates
of convergence λc,1, λnc,1, λc,2 and λnc,2. Comparing the ratio of the convergence rates for
the two different priors we have

λc,1
λc,2

=
1TR−1

0 1 + 1/v0,2
1TR−1

0 1 + 1/v0,1
,

and clearly if v0,1 < v0,2 then λc,1 < λc,2. The same result can be seen for the NCP where

λnc,1
λnc,2

=
σ2

0n+ σ2
ε /v0,2

σ2
0n+ σ2

ε /v0,1
.

Therefore, a more precise prior distribution for θ0 will hasten convergence for both the CP
and the NCP.
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3.1 Convergence rates for equi-correlated random effects

To illustrate how changing the strength of correlation between the random effects influ-
ences the convergence rates of the different parameterisations, we begin by assuming a
equi-correlation model. We suppose that

(R0)ij =
{
ρ if i 6= j
1 if i = j,

(9)

for 0 ≤ ρ < 1. We restrict ρ to take only non-negative values, as is usual in spatial data
modelling. Roberts and Sahu (1997) consider a similar structure for the dispersion matrix
of a Gaussian target distribution but do not include a global mean parameter as we do here.

To assist in the computation of convergence rates λc and λnc we make use of the following
two matrix inversion identities. The first is the Sherman-Morrison-Woodbury formula, see
for example Harville (1997, p. 423). Let N be an n× n matrix, U be an n×m matrix, M
be an m×m matrix and V be an m× n matrix, then

(N +UMV )−1 = N−1 −N−1U(M−1 + V N−1U)−1V N−1. (10)

The second result takes I to be the n× n identity matrix and J the n× n matrix of ones,
then

(aI + bJ)−1 =
1
a
I − b

a(a+ nb)
J , (11)

for constants a > 0, b 6= −(a/n). This can be easily checked by direct multiplication and
noting that

JJ = 11′11′ = 1n1′ = nJ .

Note also that identity (11) follows from (10) if we set N = aI, U = 1, M = bI and
V = 1′.

To compute the convergence rates given in (7) and (8) we must invert matrices σ2
0R0

and (1/σ2
εI + 1/σ2

0R
−1
0 ). Using equation (10) we see that

(1/σ2
εI + 1/σ2

0R
−1
0 )−1 = σ2

εI − σ2
εI(σ2

εI + σ2
0R0)−1σ2

εI.

For R0 defined by (9) we write

σ2
0R0 = σ2

0(1− ρ)I + σ2
0ρJ , (12)

and
σ2
εI + σ2

0R0 = (σ2
ε + σ2

0(1− ρ))I + σ2
0ρJ , (13)

and we can be invert the matrices given in (12) and (13) by using equation (11).
After some cancellation we find the convergence rates for the CP and the NCP to be

λc =
nv0

σ2
0(1− ρ) + nσ2

0ρ+ nv0

(
σ2
ε

σ2
ε + σ2

0(1− ρ) + nσ2
0ρ

)
, (14)

and

λnc =
nσ2

0v0
σ2
ε + nσ2

0v0

(
σ2

0(1− ρ) + nσ2
0ρ

σ2
ε + σ2

0(1− ρ) + nσ2
0ρ

)
. (15)

If we assume an improper prior distribution, achieved by letting 1/v0 = 0, then λnc = 1−λc,
but otherwise equality does not hold. Note also that when ρ = 0 we recover the rates for
the independent random effects model, see Section 2.4.

It is useful to re-write equations (14) and (15) as

λ−1
c = {1 + v−1

0 [σ2
0(1− ρ)/n+ σ2

0ρ]}{1 + δ0[1 + (n− 1)ρ]}, (16)

and
λ−1
nc = [1 + (nδ0v0)−1](1 + {δ0[1 + (n− 1)ρ]}−1), (17)

respectively. Consider first the case when 1/v0 = 0 and recall that a lower rate indicates
faster convergence. For the CP, increasing either δ0, ρ or n speeds up convergence. Increasing
any one of these quantities has the opposing effect on the NCP. When 1/v0 6= 0, λnc behaves
as in the improper case. This is true of λc with respect to δ0 and ρ, but it is no longer
monotonic in n.
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3.2 Effect of spatial correlation

In spatial modelling the correlation between two realisations of a latent process is usually
assumed to be a function of their separation. Here we consider exponential correlation
functions, which are used widely in applications (Sahu et al., 2010; Berrocal et al., 2010;
Sahu et al., 2007; Huerta et al., 2004). We have that

(R0)ij = exp(−φ0dij),

where φ0 is the spatial decay parameter. The exponential correlation function belongs to
the Matérn family and is found by letting ν = 0.5 in equation (2). To see this we can use
the following results taken from Schabenberger and Gotway (2004, Section 4.3.2)

Γ(0.5) =
√
π, K0.5(t) =

√
π

2t
e−t.

We characterise the strength of correlation in terms of the effective range, which we define
as the distance, d0, such that corr{β0(si), β0(sj)} = 0.05. For an exponential correlation
function we have that

d0 = − log(0.05)/φ0 ≈ 3/φ0.

We cannot compute explicit expressions for the entries of R−1
0 and hence we cannot find

expressions for the convergence rate in terms of φ0. Therefore we use a simulation approach.
We take the unit square to be the spatial domain, randomly selecting n = 40 locations which
will be used throughout the rest of this section.

We consider five values of the variance ratio δ0 and vary the strength of spatial correlation
by controlling the effective range d0 = − log(0.05)/φ0. For each value of δ0 we compute the
convergence rates given in equations (7) and (8) for effective ranges between zero, implying
no spatial correlation, and

√
2, the maximum possible separation of two points in the domain.

0.0 0.4 0.8 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CP

d0

λ c

0.0 0.4 0.8 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NCP

d0

λ n
c

δ0=0.01

δ0=0.1

δ0=1

δ0=10

δ0=100

Figure 1: Convergence rate against effective range for the CP and the NCP at different levels
of δ0.

Convergence rates are plotted against the effective range for the CP and the NCP in
Figure 1, where again a lower rate indicates faster convergence. For a fixed d0 we can see
that increasing δ0 decreases the convergence rate for the CP but increases it for the NCP, as
we might expect given the results for independent random effects. We also observe that for a
fixed level of δ0 increasing d0, thus increasing the strength of correlation between the random
effects, decreases the convergence rate for the CP and increases it for the NCP. Hence the
complimentary nature of the CP and NCP is maintained when we vary the strength of
exponential correlation across the random effects. However, the two rates do not add to 1
unlike in the simpler case just below equation (15).
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The convergence rates are dependent on the set of sampling locations. For a different set
of locations the convergence rates are changed but our given a set of locations the overall
picture is not; increasing δ0 or d0 quickens convergence for the CP and slows convergence
for the NCP.

3.3 Effect of the smoothness parameter in the Matérn correlation
function

In this section we consider different correlation functions from the Matérn family, see equa-
tion (2) for the general form. When ν is a half integer, such that ν = b+0.5 for b = 0, 1, 2, . . . ,
the correlation function takes on a simpler form. Taken from Rasmussen and Williams (2006,
Section 4.2) we have that

ρ(dij , φ, ν) = exp(−
√

2νφdij)
Γ(b+ 1)
Γ(2b+ 1)

b∑
r=0

(b+ r)!
r!(b− r)!

(
√

8νφdij)b−r.

In particular when ν = 1.5 the correlation function is

ρ(dij , φ) = (1 +
√

3φdij) exp(−
√

3φdij), (18)

and when ν = 2.5 it becomes

ρ(dij , φ) =

(
1 +
√

5φdij +
5φ2d2

ij

3

)
exp(−

√
5φdij). (19)

As ν →∞ the correlation function goes to

ρ(dij , φ) = exp

(
−
φ2d2

ij

2

)
,

which is sometimes known as the squared exponential or Gaussian correlation function.
We consider model (6) and compare the convergence rates for the CP and the NCP for

the exponential, ν = 1.5, ν = 2.5 and Gaussian correlation functions. In Section 3.2 the
strength of correlation is considered in terms of the effective range, which for the exponential
correlation function is − log(0.05)/φ0. In terms of φ0, the effective range for the Gaussian
correlation function is given by

√
−2 log(0.05)/φ0. For other members of the Matérn class

there is no closed form expression for the effective range. Therefore, for the cases when ν is
equal to 1.5 and 2.5, we take an effective range d0 and search for the value of φ0 that solves

ρ(d0, φ0)− 0.05 = 0, (20)

where ρ(d0, φ0) is given by functions (18) and (19) respectively.
Convergence rates are computed for each parameterisation for effective ranges between 0

and
√

2 and for five values of δ0 = 0.01, 0.1, 1, 10, 100. Recall that as previously in Section 3.2
we take the unit square to be the spatial domain and randomly select 40 locations. The
results for the CP are given in Figure 2. We see that for fixed ν and φ0, increasing the δ0
reduces the convergence rate. Also we see that for fixed φ0 and δ0, the convergence rate is
increased when ν is increased, except for the δ0 = 0.1 case where the ordering only becomes
apparent as the effective range is increased. Unlike in the case of ν = 0.5, increasing the
effective range does not reduce the convergence rate for other values of ν.

The equivalent plot for the NCP is given in Figure 3. For fixed ν and φ0, increasing δ0
increases the convergence rate. For fixed φ0 and δ0, increasing ν slows convergence as it
does for the CP. The convergence rate is monotonically increasing with increasing effective
range for all four correlation functions. We also note that convergence rates for the NCP
are not as sensitive to changes in ν as they are for the CP.
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Figure 2: Convergence rates for the CP of model (6) for different values of ν. (a) δ0 = 0.01, (b)
δ0 = 0.1, (c) δ0 = 1, (d) δ0 = 10, (e) δ0 = 100.
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Figure 3: Convergence rates for the NCP of model (6) for different values of ν. (a) δ0 = 0.01,
(b) δ0 = 0.1, (c) δ0 = 1, (d) δ0 = 10, (e) δ0 = 100.

Figures 2 and 3 show that increasing ν, the smoothness parameter, leads to slower
convergence for both the CP and NCP, which contradicts the complimentary behaviour of
the rates of convergence seen in the previous two subsections. In order to understand this
further we investigate as follows. The rates of convergence, as obtained in (7) and (8) depend
on R−1

0 which is guaranteed to be positive definite for any n when a member of the Matérn
class of correlation functions is adopted. However, in practical numerical calculations with
a large value of n (much greater than 40 used in Figures 2 and 3) R0 becomes increasingly
singular in the presence of high level of spatial correlation and smoothness. The minimum
value of n for which this near singularity is observed depends on the minimum distance
between the nC2 pairs of the n locations and the values of the parameters φ and ν in the
Matérn correlation function. To investigate this minimum value of n, we randomly sample
500 points in the unit square where the minimum Euclidean distance between any two points
is greater than a threshold value, which is taken to be 0.01. This ensures that the singularity
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is not caused by very closely located points in the sample.
Next we find the minimum value of n for which R0 is approximately singular, viz., the

value of the determinant less than 10−7, for a given value of ν and a given value of d0. The
value of φ0 is chosen by (20) when ν = 1.5 and 2.5 and φ0 = − log(0.05)/d0 when ν = 0.5,
i.e. the case of Exponential correlation function and φ0 =

√
−2 log(0.05)/d0 in the case of

the Gaussian correlation function, when ν →∞. The minimum value is plotted in Figure 4
against d0 for all four correlation functions considered here. As expected, for smaller values
of d0, tending to the case of zero spatial correlation, the minimum value of n becomes very
large. Increasing spatial correlation, as effected by increasing d0, leads to a smaller value of
n at which near singularity of R0 is reached. Interestingly, increasing smoothness, through
values of ν hasten this except for the case of the exponential correlation function. This is
due to the non-linear effect of the ν and φ on the Matérn correlation function.

The near singularity in the limiting Gaussian case is related to the near predictability of
the associated spatial processes. In the limiting Gaussian case, it is possible to predict Y (s′)
for any s′ in the same spatial domain upon observing the same spatial process Y (s) at any
location s, see, e.g. page 62 of Banerjee et al. (2015). Such deterministic behaviour leads to
the near singularity of covariance matrices which in turn leads to non-convergence. Indeed,
Stein (1999) (page 70) explicitly recommends not to use the Gaussian correlation function
to model physical processes. The investigation here confirms this view by pointing to non-
convergence of the MCMC fitting algorithms for smooth and highly correlated processes for
large values of n. This also allows us to conclude that increasing n in an infill asymptotic
sense (Zhang, 2004), in the presence of high spatial correlation, will lead to near singularity
of the covariance matrices, which in turn will lead to non-convergence of either of the two
parameterisations. This asymptotic result, however, does not spell disaster for the CP and
NCP in practical problems where the strength of the spatial correlation is such that the
resulting effective range (d0 in the exponential case) is significantly less than the maximum
distance (

√
2 in the unit square) between any two points in a closed spatial domain. Such a

situation will allow modelling of a reasonably large number of spatial observations (e.g. low
100s) using the centering parameterisations.
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Figure 4: The minimum value of n for which R0 is nearly singular for different values of d0 and
ν.
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3.4 Effect of introducing geometric anisotropy

The class of Matérn correlation functions is isotropic. This means that the correlation
between the random variables at any two points, si and sj , depends on the distance between
them dij = ‖si − sj‖ (and parameters φ and ν) and hence the contours of iso-correlation
are circular. The assumption that spatial dependence is the same in all directions is not
always appropriate and therefore we may seek an anisotropic specification for the correlation
structure.

Anisotropic correlation functions are widely used and have been employed to model,
for example, scallop abundance in the North Atlantic (Ecker and Gelfand, 1999), extreme
precipitation in Western Australia (Apputhurai and Stephenson, 2013) and the phenotypic
traits of trees in northern Sweden (Banerjee et al., 2010).

Different forms of anisotropy exist, see Zimmerman (1993), but we consider only ge-
ometric anisotropy. Geometric anisotropic correlation functions can be constructed from
isotropic correlation functions by taking a linear transformation of the lag vector si − sj .
Let

d∗ij = ‖G(si − sj)‖, (21)

where G is a 2× 2 transformation matrix. In Euclidean space (21) is equivalent to

d∗ij = {(si − sj)TH(si − sj)}1/2 ,

where H = GTG. The matrix H must be positive definite, i.e. d∗ij > 0 for si 6= sj , which
is ensured if G is non-singular, see Harville (1997, Corrollary 14.2.14). By replacing dij
with d∗ij in (2) we have a geometric anisotropic Matérn correlation function with elliptical
contours of iso-correlation.

As an example we follow Schabenberger and Gotway (2004, Chapter 4) and let

G =
(
α 0
0 1

)(
cosψ sinψ
− sinψ cosψ

)
=
(
α cosψ α sinψ
− sinψ cosψ

)
, (22)

hence the axis are rotated anti-clockwise through an angle ψ and then stretched in the
direction of the x-axis by a factor 1/α > 0. The determinant of G is α and so it is non-
singular for α 6= 0, hence H is positive definite as required. For G given in (22) we have

H = GTG =
(
α2 cos2 ψ + sin2 ψ (α2 − 1) cosψ sinψ
(α2 − 1) cosψ sinψ cos2 ψ + α2 sin2 ψ

)
.

If α = 1, then H is the identity matrix and isotropy is recovered. If ψ = 0 ± 2πm,
m = 1, 2, . . ., then

H =
(
α2 0
0 1

)
which is equivalent to just a stretch of the x-axis by 1/α.

To illustrate the effect of the transformation matrix G, we consider α = 0.5, 1, 2 and
ψ = 0, π/4, π/2 with an anisotropic exponential correlation function such that

ρ(d∗ij , φ) = exp(−φd∗ij). (23)

We take the point s∗ = (0.5, 0.5)T in the unit square and fix decay parameter φ = 1. We
then compute the correlation between s∗ and all points on a 20× 20 grid, according to the
correlation function given in (23). The values are then smoothed to produce a correlation
surface. This is repeated for each of the nine combinations of α and ψ and displayed in
Figure 5.

We can see that setting α = 0.5 strengthens correlation in the x-direction. This is because
for the purposes of computing correlation, the separation of two points in the x-direction
is halved. When α = 1, the angle of rotation ψ does not effect the contours as they are
circular. Clearly, setting α = 2 has the effect of weakening correlation in the x-direction.
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To assess the impact of anisotropy on the convergence rates for the CP and the NCP
we return to model (6). We consider an anisotropic exponential correlation function for the
spatial process and so

(R0)ij = exp(−φ0d
∗
ij),

where d∗ij is given by equation (21). We begin by fixing ψ = 0 and letting α = 0.5, 1, 2.
This corresponds to panels 1 (a), 2 (a), and 3 (a), in Figure 5. We use five values for
δ0 = σ2

0/σ
2
ε = 0.01, 0.1, 1, 10, 100 and vary φ0 such that 3/φ0 ∈ (0,

√
2]. Here, the effective

range is direction dependent so we no longer refer to 3/φ0 as the effective range.
We compute convergence rates for the CP and the NCP and plot results in Figures 6

and 7 respectively. As α is reduced we increase the strength of correlation in the x-direction.
This result is faster convergence for the CP and slower convergence for the NCP. This is
consistent with the results of Section 3.2 which shows that increasing the effective range
of an isotropic exponential correlation function, thus strengthening the correlation in all
directions, helps the CP and hinders the NCP.

We now look at the effect of rotating the axis. If α = 1 then a rotation has no impact on
the correlation function as H is the identity. We consider four combinations of α = 0.5, 2
and ψ = π/4, π/2. These values correspond to panels 1 (b) and 1 (c) for α = 0.5, and 3 (b)
and 3 (c) for α = 2 in in Figure 5. Again, we let δ0 = 0.01, 0.1, 1, 10, 100 and vary φ0 such
that 3/φ0 ∈ (0,

√
2].

The results for the CP and the NCP are given in Figures 8 and 9 respectively. We can
see that changing ψ has very little effect on the convergence rates of either parameterisation
as expected since d∗ij is free of ψ. However, because we apply the rotation matrix first
the subsequent stretch effectively acts in a different direction, that direction depending
on ψ, and the resulting values for d∗ij may be different. Take the example we used here.
Let s = (s1, s2)T and si − sj = (si1 − sj1, si2 − sj2)T = (l1, l2)T. For ψ = π/4, d∗ij =√

0.5[(l1 − l2)2 + α2(l1 + l2)2], whereas if ψ = π/2 then d∗ij =
√
l21 + α2l22. The different

values of d∗ij may lead to different rates of convergence. Further investigation is needed to
determine whether similar results hold for patterned sampling locations.
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Figure 5: Correlation surface for β(s∗), s∗ = (0.5, 0.5)T, for exponential anisotropic correlation
functions with transformation matrix G given in (22). Panels are given an alpha-numeric label.
Numbers refer to three values of α = 0.5, 1, 2. Letters (a), (b) and (c) refer to three values of
ψ = 0, π/4, π/2.
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Figure 6: Convergence rates for the CP of model (6) with an anisotropic exponential correlation
function for different values of α. (a) δ0 = 0.01, (b) δ0 = 0.1, (c) δ0 = 1, (d) δ0 = 10, (e) δ0 = 100.

0.0 0.4 0.8 1.2

0.
0

0.
4

0.
8

(a)

3 φ0

λ n
c

0.0 0.4 0.8 1.2

0.
0

0.
4

0.
8

(b)

3 φ0

λ n
c

0.0 0.4 0.8 1.2

0.
0

0.
4

0.
8

(c)

3 φ0

λ n
c

0.0 0.4 0.8 1.2

0.
0

0.
4

0.
8

(d)

3 φ0

λ n
c

0.0 0.4 0.8 1.2

0.
0

0.
4

0.
8

(e)

3 φ0

λ n
c α=0.5

α=1
α=2

Figure 7: Convergence rates for the NCP of model (6) with an anisotropic exponential correla-
tion function for different values of α. (a) δ0 = 0.01, (b) δ0 = 0.1, (c) δ0 = 1, (d) δ0 = 10, (e)
δ0 = 100.
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Figure 8: Convergence rates for the CP of model (6) with an anisotropic exponential correlation
function for different values of α and ψ. (a) δ0 = 0.01, (b) δ0 = 0.1, (c) δ0 = 1, (d) δ0 = 10, (e)
δ0 = 100.
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Figure 9: Convergence rates for the NCP of model (6) with an anisotropic exponential correla-
tion function for different values of α and ψ. (a) δ0 = 0.01, (b) δ0 = 0.1, (c) δ0 = 1, (d) δ0 = 10,
(e) δ0 = 100.

3.5 Effect of introducing tapered covariance matrices

When spatial association is modelled as a Gaussian process the resulting covariances matrices
are dense and inverting them can be slow or even infeasible for large n. One strategy to
deal with this is covariance tapering (Furrer et al., 2006; Kaufman et al., 2008). The idea
is to force to zero the entries in the covariance matrix that correspond to pairs of locations
that are separated by a distance greater than a predetermined range. This results in sparse
matrices that can be inverted more quickly than the original. In this section we investigate
the effect covariance tapering on the convergence rates for the CP and the NCP. We take
model (6) with an exponential correlation function for R0 and compare the convergence
rates found in section 3.2 with those computed when we use a tapered covariance matrix.

The tapered correlation matrix, RTap, is the element wise product of the original corre-
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lation matrix R0 and the tapering correlation matrix T , where T is a sparse matrix with
ijth entry equal to zero if dij is greater than some threshold distance. Positive definiteness
of RTap is assured if T is positive definite (Horn and Johnson, 2012, Theorem 7.5.3).

Given that our original correlation function is an exponential one, we follow Furrer et al.
(2006) and use a spherical tapering function such that

T ij =

 1− 3dijχ
2

+
d3
ijχ

3

2
if dij < 1/χ, χ > 0

0 otherwise,

with decay parameter χ, where 1/χ is equal to the effective range, so that here we have
χ = −φ0/ log(0.05). Therefore

(RTap)ij =

 exp(−φ0dij)

(
1− 3dijχ

2
+
d3
ijχ

3

2

)
if dij < d0, φ0 > 0, χ > 0

0 otherwise,

where d0 = − log(0.05)/φ0 is the effective range.
We let δ0 = 0.01, 0.1, 1, 10 and 100 and vary d0 between 0 and

√
2. The convergence

rates for the CP and the NCP are given in Figure 10. The dashed line represents the use of
the tapered correlation matrix. The solid line for comparison are the rates achieved using
the original correlation matrix R0 and are identical to those given in Figure 1. Convergence
rates are slowed by tapering for the CP and hastened for the NCP. Intuitively we can say
that the under the CP stronger correlation is desirable and tapering reduces that, with the
opposite being true for the NCP.

We can illustrate this effect by considering a spatial model with just two locations s1

and s2 such that s1 6= s2. Let 0 ≤ corr(β(s1), β(s2)) = ρ < 1. Suppose that we use a
tapering function that takes values ρ∗ if d12 < d0 and zero otherwise, where 0 ≤ ρ∗ < 1.
The tapered correlation is

ρTap =
{
ρρ∗ if d12 < d0

0 otherwise.

Therefore ρTap ≤ ρ, with equality attained only when ρ = 0. We know from equations (16)
and (17) that for equi-correlated random effects if ρ decreases, λc is increased and λnc is
decreased. In other words, when n = 2, tapering can only worsen the performance of CP
and improve the performance of the NCP.
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Figure 10: Convergence rates with tapered covariance matrices for the CP and the NCP at
different levels of δ0.
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3.6 Effect of covariates

In this section we investigate the effect of the covariates upon the rate of convergence. We
consider the following model

Y (si) = {θ1 + β1(si)}x1(si) + ε(si) (i = 1, . . . , n), (24)

which may be found by letting k = 1, . . . , p − 1, and p = 2 in model (1). Recalling that
β̃1 = {β̃1(s1), . . . , β̃1(sn)}T, where β̃1(si) = β1(si) + θ1, and x1 = {x1(s1), . . . , x1(sn)}T
and D1 = diag(x1), we can write model (24) in the following form

Y | β̃1 ∼ N(D1β̃1, σ
2
εI)

β̃1 | θ1 ∼ N(θ11, σ2
1R1)

θ1 ∼ N(m1, σ
2
1v1). (25)

We consider only one covariate and so in the rest of this section we drop the subscript from
D1 and x1

First suppose that random effects are independent. This can be considered the limiting
case for weakening spatial correlation. For the sake of notational clarity, under the assump-
tion of spatial independence we write x(si) = xi (i = 1, . . . , n). The convergence rate for
the CP is

λc =
1

n+ 1/v1

n∑
i=1

σ2
ε

σ2
ε + σ2

1x
2
i

.

If we let 1/v1 = 0, thus implying and improper prior for θ1, we can write λc as

λc =
1
n

n∑
i=1

1
1 + (σ2

1/σ
2
ε )x2

i

. (26)

We introduce the variable δ1 = σ2
1/σ

2
ε . For fixed x, we can see that as δ1 tends to zero the

convergence rate for the CP of model (24) tends to one. As δ1 gets larger the convergence
rate goes to zero. To see the effect of the scale of x we introduce variables ui, where

ui =
xi − x̄
sdx

, i = 1, . . . , n, (27)

and x̄ and sdx are the sample mean and sample standard deviation of x respectively. Sub-
stituting equation (27) into equation (26) we have

λc =
1
n

n∑
i=1

1
1 + (σ2

1/σ
2
ε ) (uisdx + x̄)2

.

We suppose that the xi’s have already been centered on zero and so x̄ = 0. For fixed variance
parameters, the effect of the scale of x is clear; an increase in sdx results in a decrease in
the convergence rate and vice versa.

For the NCP the convergence rate is

λnc =
1∑n

i=1 x
2
i + σ2

ε /(σ2
1v1)

n∑
i=1

σ2
1x

4
i

σ2
ε + σ2

1x
2
i

.

Letting 1/v1 = 0, we can write λnc as

λnc =
1∑n
i=1 x

2
i

n∑
i=1

x4
i

(σ2
ε /σ

2
1) + x2

i

. (28)

For fixed x, if σ2
ε /σ

2
1 goes to zero then λnc goes to one. Contrastingly, as the data variance

dominates that of the random effects the convergence rate falls. Note that in general λc +
λnc 6= 1.
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To see the effect of the scale of x upon λnc we substitute equation (27) into equation
(28). Then we have

λnc =
1∑n

i=1(uisdx + x̄)2

n∑
i=1

(uisdx + x̄)4

(σ2
ε /σ

2
1) + (uisdx + x̄)2

.

Again, assuming x̄ = 0, we get

λnc =
1∑n

i=1(uisdx)2

n∑
i=1

(uisdx)4

(σ2
ε /σ

2
1) + (uisdx)2

=
1∑n
i=1 u

2
i

n∑
i=1

u4
i

(σ2
ε /σ

2
1sd

2
x) + u2

i

.

Fixing σ2
ε and σ2

1 , as sdx tends to infinity, λnc tends to 1, as sdx tends to zero, λnc tends to
0.
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Figure 11: A comparison of convergence rates for the CP and the NCP at different levels of δ1.

Now we investigate the effect that increasing the strength of correlation between re-
alisations of the slope surface has upon the performance of the CP and the NCP. We let
(R1)ij = exp(−φ1dij) and so the effective range d1 = − log(0.05)/φ1. To generate the values
of x we select a point sx, which we may imagine to be the site of a source of pollution. We
assume that the value for the observed covariate at site s decays exponentially at a rate φx
with increasing separation from sx, so that

x(si) = exp(−φx‖si − sx‖) (i = 1, . . . , n).

The spatial decay parameter φx is chosen such that there is an effective spatial range of√
2/2, i.e. if ‖s − sx‖ =

√
2/2 then x(s) = 0.05. The values of x are standardised by

subtracting their sample mean and dividing by their sample standard deviation.
We compute the convergence rate for the CP and the NCP for model (25) for five values

of δ1 = 0.01, 0.1, 1, 10, 100, and for an effective range d1 between 0 and
√

2. Results are given
in Figure 11. We see that for the CP for a fixed d1, increasing δ1 achieves faster convergence.
If we fix δ1 the performance of the CP is improved as the effective range is increased. The
opposite is seen for the NCP, whose performance is improved by decreasing δ1 or shortening
the effective range. Therefore, the variance ratio δ1 and the decay parameter φ1 have same
influence on the convergence rates of the CP and NCP as δ0 and φ0.
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4 Practical examples with unknown covariance param-
eters

In this section we focus on the practical implementation of the Gibbs sampler for the CP
and the NCP for spatially varying coefficient models. The joint posterior distribution is
unaffected by hierarchical centering and so inferential statements are the same under either
parameterisation. However, what is affected is the efficiency of the Gibbs sampler used to
make those statements.

In Section 3 the CP and the NCP are compared in terms of the exact convergence rates
of the associated Gibbs samplers. The key assumption needed to compute these rates is that
the joint posterior distribution is Gaussian with known precision matrix. Here we allow for
the more common scenario that the precision matrix is known only up to a set of covariance
parameters. In this case we cannot compute the exact convergence rate. Therefore, we use
the MCMC samples to assess the efficiency of the Gibbs samplers induced by the CP and the
NCP. The full conditional distributions needed to construct the Gibbs samplers are given in
Appendix B.

We employ two diagnostic statistics to compare parameterisations. The first statistic
we use is based on the multivariate potential scale reduction factor (MPSRF) (Brooks and
Gelman, 1998). We define the MPSRFM (1.1) to be the number of iterations required for
the MPSRF to fall below 1.1. To compute the MPSRFM (1.1) we run five chains of length
25,000 from widely dispersed starting values. In particular, we take values that are outside
of the intervals described by pilot chains. Moreover, the same starting values are used for
both the CP and the NCP. At every fifth iteration the MPSRF is calculated and number
of iterations for its value to first drop below 1.1 is the value that we record. The second
statistic we use is the effective sample size (ESS) of the model parameters (Robert and
Casella, 2004). The ESS is computed using all 125,000 MCMC samples and gives us a
measure of the Markovian dependence between successive MCMC iterates, with values of
125,000 indicating independence. There is a negligible difference in the run times for the
CP and the NCP and so we do not adjust these measures by computation time.

4.1 A simulation study

We simulate data from model (6) for n = 40 randomly chosen locations across the unit square
assuming an exponential correlation function for the spatial process. We set θ0 = 0 and
generate data with five variance parameter ratios such that δ0 = σ2

0/σ
2
ε = 0.01, 0.1, 1, 10, 100.

This is done by letting σ2
0 = 1 and varying σ2

ε accordingly. For each of the five levels of δ0
we have four values of the decay parameter φ0, chosen such that there is an effective range
of 0,

√
2/3, 2

√
2/3 and

√
2, where

√
2 is the maximum possible separation of two points in

the unit square. Hence there are 20 combinations of σ2
0 , σ2

ε and φ0 in all. Each of these
combinations is used to simulate 20 datasets, and so there are 400 data sets total.

We fix the decay parameter at its known value and sample from the marginal posterior
distributions of θ0, σ2

0 and σ2
ε . We let hyperparameters m0 = 0 and v0 = 104. Recall that

the variance parameters are given inverse gamma prior distributions with π(σ2
0) = IG(a0, b0)

and π(σ2
ε ) = IG(aε, bε). We let a0 = aε = 2 and bε = bε = 1, implying a prior mean of one

and infinite prior variance for σ2
0 and σ2

ε . These are common hyperparameters for inverse
gamma prior distributions, see Sahu et al. (2010, 2007); Gelfand et al. (2003).

Figure 12 shows boxplots of the MPSRFM (1.1) (top row) and the ESS of θ0 (bottom
row) for the CP. Each panel contains the results for a fixed value of δ0, increasing from
0.01 on the left to 100 on the right. Each panel contains four boxplots corresponding to the
four effective ranges of 0, x/3, 2x/3, and x, where x =

√
2. As the effective range increases

we have stronger spatial correlation between the random effects. Each boxplot is produced
from the 20 values obtained for a given combination of δ0 and φ0. We can see that the
performance of the CP improves with increasing δ0 and also with increasing strength of
correlation between the random effects.

The equivalent plot for the NCP is given in Figure 13. We can see a reverse of the

18



pattern displayed by the CP. The performance of the NCP is worsened as δ0 increases and
the detrimental effect of increasing the strength of correlation between the random effects
is also clearly evident. Therefore, δ0 and the d0 have the same influence on the CP and the
NCP as we saw for the exact convergence rates when the variance parameters were assumed
to be known in Section 3.2.
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Figure 12: MPSRFM (1.1), panels (a)–(e), and the ESS of θ0, plots (f)–(j), for the CP.
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Figure 13: MPSRFM (1.1), panels (a)–(e), and the ESS of θ0, plots (f)–(j), for the NCP.

Figure 14 gives the ESS of σ2
0 (top row) and the ESS of σ2

ε (bottom row) for the CP.
We can see a general increasing trend in the ESS of σ2

0 for increasing δ0, but a downward
trend is seen for σ2

ε . However, for a fixed value of δ0 we can see an improvement as the
effective range increases, particularly in σ2

ε . This is because for the case when there is zero
effective range, marginally the data variance is (σ2

0 + σ2
ε )I, and so increasing the effective

range moves us away from the unidentifiable case which can result in poor mixing of the
chains.

Figure 15 shows the ESS of σ2
0 and σ2

ε for the NCP. We see that the ESS of σ2
0 is stable

under changes in δ0 and d0, with the exception being the case where δ0 = 0.1 and d0 = 0.
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In this case the results are again explained by the lack of identifiability of the variance
parameters for independent random effects. The ESS of σ2

ε is reduced by increasing δ0. For
a fixed value of δ0 we can see an improvement in the ESS as d0 increases. This was also
observed σ2

ε under the CP and is similarly explained.
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Figure 14: ESS of σ2
0, panels (a)–(e), and σ2

ε , panels (f)–(j) for the CP.
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Figure 15: ESS of σ2
0, panels (a)–(e), and σ2

ε , panels (f)–(j) for the NCP.

4.2 Real data example

In this section we compare the sampling efficiency of the CP and the NCP when they are
fitted to a real data set. We have annual PM10 concentrations, in micrograms per cubic
meter (µg/m3), taken from 70 monitoring sites in Greater London, UK. We use data from
50 sites for model fitting, leaving out data from 20 sites for model validation, see Figure
16. The mean and standard deviation for the 50 data sites is 26.47 µg/m3 and 5.00 µg/m3

respectively.
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Figure 16: Sampling locations for PM10 concentration data. Blue stars indicate locations used
for model fitting and red crosses indicate locations used for model validation.

In addition to the observed data we have output from the Air Quality Unified Model
(AQUM), a numerical model giving air pollution predictions at 1km grid cell resolution
(Savage et al., 2013). The AQUM is used as a covariate in the model, where x(s) is the
AQUM output for the grid cell containing s. Therefore we use have downscaler model as
employed by Berrocal et al. (2010).

To stabilise the variance we model the data on the square root scale. However, in order
not to underestimate their variability, predictions are obtained on the original scale.

We fit model (1) with p = 2 and so we have two processes, an intercept and a slope
process. Each process has a corresponding global variance and decay parameters and so
θ = (θ0, θ1)T, σ2 = (σ2

0 , σ
2
1)T and φ = (φ0, φ1)T. In addition we have the data variance, σ2

ε .
For the prior distribution of θ we letm = (0, 0)T and v0 = v1 = 104. We let a0 = a1 = aε = 2
and b0 = b1 = bε = 1, so that each variance parameter is assigned an IG(2, 1) prior
distribution.

We begin by estimating the decay parameters using an empirical Bayes method by per-
forming a grid search over a small number of values, then choosing those values that minimise
some calibration criterion. This is a common approach adopted by many authors, e.g., Sahu
et al. (2011); Berrocal et al. (2010); Sahu et al. (2007) since Zhang (2004) showed that it is
not possible to consistently estimate these in a model with Matérn covariance function in
the presence of other unknown parameters. In our Bayesian inference setting this will imply
weak identifiability in the posterior distribution when non-informative prior distributions
are assumed.

The greatest distance between any two of the 70 monitoring stations is 96.2 kilometers
(km) and so we select values of φ0 and φ1 corresponding to effective ranges of 5, 10, 25, 50
and 100 km. Predictions are made at the 20 validations sites and we compute the values
of three measures of prediction error; the mean absolute prediction error (MAPE), the
root mean square prediction error (RMSPE) and the continuous ranked probability score
(CRPS), see for example Gneiting et al. (2007).

For each of the 25 pairs of spatial decay parameters we generate a single chain of 25,000
iterations and discard the first 5,000. The values of the MAPE, RMSPE and CRPS are
given in Table 1. Recall that d0 and d1 denote the effective ranges implied by φ0 and φ1

respectively. By all three measures the prediction error is minimised when d0 = 5 and
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d1 = 50 and so our estimates for the spatial decay parameters are

φ̂0 = − log(0.05)/5 ≈ 0.6, φ̂1 = − log(0.05)/50 ≈ 0.06.

We now compare the sampling efficiencies of the CP and NCP for the London PM10
data when the values of the decay parameters are fixed at the above optimal values. For
each parameterisation we generate five Markov chains of length 25,000 from the same widely
dispersed starting values. The MPSRFM (1.1) and the ESS of θ = (θ0, θ1)′, σ2 = (σ2

0 , σ
2
1)′

and σ2
ε are computed and given in Table 2. We can see that the CP requires far fewer

iterations for the MPSRF to drop below 1.1 than the NCP, 275 versus 1985. The ESS of the
mean parameters and is greater for the CP than the NCP, especially for θ1 reflecting the
stronger spatial correlation for the slope process and the estimate for δ1. For the variance
parameters σ2

0 and σ2
1 the ESS is for the CP is around double that of the NCP. The NCP

achieves better mixing in the σ2
ε coordinate than the CP.

Table 1: Prediction error for different combinations of d0 and d1

d0 d1 MAPE RMSPE CRPS
5 5 5.494 6.224 3.720

10 5.476 6.200 3.704
25 5.416 6.164 3.701
50 5.375 6.126 3.695

100 5.418 6.160 3.735
10 5 5.534 6.281 3.740

10 5.497 6.256 3.728
25 5.480 6.230 3.733
50 5.436 6.207 3.736

100 5.452 6.193 3.753
25 5 5.618 6.534 3.878

10 5.585 6.492 3.862
25 5.492 6.351 3.801
50 5.485 6.330 3.809

100 5.476 6.314 3.828
50 5 5.620 6.741 4.003

10 5.615 6.711 4.002
25 5.549 6.572 3.944
50 5.505 6.500 3.924

100 5.499 6.470 3.938
100 5 5.644 6.910 4.129

10 5.586 6.820 4.093
25 5.541 6.658 4.035
50 5.491 6.595 4.015

100 5.482 6.581 4.046

Table 2: MPSRFM (1.1) and the ESS of the model parameters

MPSRFM (1.1) ESS θ0 ESS θ1 ESS σ2
0 ESS σ2

1 ESS σ2
ε

CP 275 22161 63137 31876 16689 24171
NCP 1985 15596 2958 15407 8275 31806
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For making inference we generate a single long chain for 50,000 iterations and discard
the first 10,000. Parameter estimates and their 95% credible intervals are given in Table 3.
An estimate for the global intercept θ0 of 5.148 reflects that the data are modelled on the
square root scale. The global regression parameter θ1 for the AQUM output is not significant
given the inclusion in the model of the regression process. Of particular interest to us are
the estimates of the variance parameters. Weak spatial correlation in the intercept process
means that the estimate for σ2

0 is the smallest of the three variance parameters. More of
the spatial variability is explained by the intercept process and so the estimate for σ2

1 is
the greatest of the three variance parameters. We also include estimates and 95% credible
intervals for the variance ratios δ0 = σ2

0/σ
2
ε and δ1 = σ2

1/σ
2
ε .

Table 3: Parameter estimates and their 95% credible intervals (CI)

Parameter Estimate 95% CI
θ0 5.148 (4.942, 5.352)
θ1 0.093 (−0.396, 0572)
σ2

0 0.172 (0.093, 0.299)
σ2

1 0.224 (0.101, 0.469)
σ2
ε 0.177 (0.096, 0.307)
δ0 1.070 (0.412, 2.268)
δ1 1.376 (0.487, 3.256)

5 Conclusion

We have compared the efficiencies of the CP and the NCP of spatial models. We find that
in addition to the ratio of the variance parameters, the correlation structure between the
random effects play a key role in determining the rate of convergence.

For known variance and correlation parameters the exact rate of convergence has been
examined. We have shown that for spatial models with an exponential correlation func-
tion, increasing the variance of the random effects relative to that of the data, as well as
increasing the strength of correlation, works to hasten the convergence of the CP but slows
the convergence of the NCP. However, when the covariance matrix is tapered to remove
long range correlation, convergence for the CP is hindered but convergence for the NCP
is helped. Introducing geometric anisotropy to strengthen the correlation in one direction
has, for randomly selected locations, a similar effect to strengthening it in all directions; the
CP is helped and the NCP hindered. Both of these results are consistent with the notion
that the performance of CP is improved in the presence of greater spatial correlation but
the performance of the NCP is worsened. We have seen that as the smoothness parameter
in the Matérn correlation function is increased both the CP and the NCP are slower to
converge and in the presence of moderate spatial correlation both parameterisations will fail
to converge when the sample size is large enough.

When the variance parameters are unknown the sampling efficiency of the parameteri-
sations is compared via the MPSRFM (1.1) and the ESS of the unknown model parameters.
We have seen that the relationships between the sampling efficiency of the respective param-
eterisations, and the ratio of the variance parameters and the strength of spatial correlation,
still hold for unknown variance parameters. The CP performs better when the data precision
is relatively high and when the correlation is strong. Contrary to this, the NCP performs
best when the data is less informative and the correlation is weak.
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A Computing the exact convergence for the CP and
NCP

For Gibbs samplers with Gaussian target distributions with known precision matrices, we
have analytical results for the exact convergence rate (Roberts and Sahu, 1997). We let
ξ denote the set of all mean parameters in the model, i.e. ξ = (βT,θT)T. Suppose that
ξ | y ∼ N(µ,Σ), and letQ = Σ−1 be the posterior precision matrix (PPM). Further suppose
that ξ is partitioned into l blocks for updating within the Gibbs sampler. To compute the
convergence rate first partition Q according to the l blocks where the ijth block is denoted
by Qij , i, j = 1, . . . l.

Let A = I − diag(Q−1
11 , . . . ,Q

−1
ll )Q and F = (I − L)−1U , where L is the block lower

triangular matrix of A, and U = A − L. Roberts and Sahu (1997) show that the Markov
chain induced by the Gibbs sampler with components block updated according to the above
blocking scheme, has a Gaussian transition density with mean E{ξ(t+1)|ξ(t)} = Fξ(t) + f ,
where f = (I − F )µ and covariance matrix Σ − FΣF T. Their observation leads to the
following theorem:

Theorem A.1 (Roberts and Sahu, 1997, Theorem 1) A Markov chain with transition den-
sity

N{Fξ(t) + f ,Σ− FΣF T},
has a convergence rate equal to the maximum modulus eigenvalue of F .

Corollary A.2 If we update ξ in two blocks so that l = 2 then

Q =
(
Q11 Q12

Q21 Q22

)
, F =

(
0 −Q−1

11 Q12

0 Q−1
22 Q21Q

−1
11 Q12

)
,

and the convergence rate is the maximum modulus eigenvalue of

F 22 = Q−1
22 Q21Q

−1
11 Q12

.

26



We use theorem A.1 to compare the convergence rates of Gibbs samplers associated
with the CP and the NCP. First we must compute the PPM for each parameterisation. To
identify the PPM for the CP write

π(β̃,θ|y) ∝ π(Y |β̃)π(β̃|θ)π(θ)

∝ exp
{
− 1

2

[(
Y −X1β̃

)T
C−1

1

(
Y −X1β̃

)
+
(
β̃ −X2θ

)T
C−1

2

(
β̃ −X2θ)

+(θ −m)TC−1
3 (θ −m)

]}
= exp

{
− 1

2

[
. . .+ β̃

T(
XT

1C
−1
1 X1 +C−1

2

)
β̃ − 2β̃

T
C−1

2 X2θ

+θT
(
XT

2C
−1
2 X2 +C−1

3

)
θ + . . .

]}
,

where the last equation only includes the terms containing both β̃ and θ. Therefore the
posterior precision matrix for the CP is given by

Qc =

(
XT

1C
−1
1 X1 +C−1

2 −C−1
2 X2

−XT
2C
−1
2 XT

2C
−1
2 X2 +C−1

3

)
.

By corollary A.2 if we update all random effects as one block and all global effects as another
then the convergence rate for the CP is the maximum modulus eigenvalue of

F c22 =
(
XT

2C
−1
2 X2 +C−1

3

)−1
XT

2C
−1
2

(
XT

1C
−1
1 X1 +C−1

2

)−1
C−1

2 X2.

Similarly for the NCP we find the PPM by writing

π(β,θ|y) ∝ π(Y |β,θ)π(β|θ)π(θ)

∝ exp
{
− 1

2

[(
Y −X1β −X1X2θ

)T
C−1

1

(
Y −X1β −X1X2θ

)
+

+βTC−1
2 β + (θ −m)TC−1

3 (θ −m)
]}

= exp
{
− 1

2

[
. . .+ βT

(
XT

1C
−1
1 X1 +C−1

2

)
β + 2βTXT

1C
−1
2 X1X2θ

+θT
(
XT

2X
T
1C
−1
1 X1X2 +C−1

3

)
θ + . . .

]}
,

and hence we have

Qnc =

(
XT

1C
−1
1 X1 +C−1

2 XT
1C
−1
1 X1X2

XT
2X

T
1C
−1
1 X1 XT

2X
T
1C
−1
1 X1X2 +C−1

3

)
.

By Corollary A.2, the convergence rate of the Gibbs sampler for the NCP is the maximum
modulus eigenvalue of

F nc22 =
(
XT

2X
T
1C
−1
1 X1X2 +C−1

3

)−1
XT

2X
T
1C
−1
1 X1

(
XT

1C
−1
1 X1 +C−1

2

)−1

XT
1C
−1
1 X1X2.

B Full conditional distributions

B.1 Posterior distributions for the CP

In this section we give the joint posterior and full conditional distributions for the CP of
model (1). We denote by σ2 = (σ2

0 , . . . , σ
2
p−1)T the vector containing the variance parameters
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of the random effects and let φ = (φ0, . . . , φp−1)T contain the decay parameters. We let
ξ = (β̃

T
,θT,σ2T

, σ2
ε ,φ

T)T contain all np random effects, p global effects, p + 1 variance
parameters and p decay parameters. The joint posterior distribution of ξ is

π(ξ|y) ∝ π(Y |β̃, σ2
ε )π(β̃|θ,σ2,φ)π(θ|σ2)π(σ2)π(σ2

ε )π(φ)

∝
p−1∏
k=0

(
σ2
k

)−(n/2+1/2+ak+1) |Rk|−1/2
(
σ2
ε

)−(n/2+aε+1)

exp

− 1
2σ2

ε

(Y − p−1∑
k=0

Dkβ̃k

)T(
Y −

p−1∑
k=0

Dkβ̃k

)
+ 2bε


exp

{
−1

2

p−1∑
k=0

(
β̃k − θk1

)T

Σ−1
k

(
β̃k − θk1

)}

exp

{
−1

2

p−1∑
k=0

1
σ2
k

(
(θk −mk)2

vk
+ 2bk

)} p−1∏
k=0

π(φk), (29)

where D0 is defined to be the identity matrix I.
We use Gibbs sampling to sample from π(ξ|y) for the CP, given in (29). We assume that

the random effects will be block updated according to their process, i.e. we jointly update
the n-dimensional vector βk, for k = 0, . . . , p − 1. All other parameters in ξ are updated
as single univariate components. The full conditional distributions we need for the CP are
given below.

• The full conditional distribution for the centered spatially correlated random effects
β̃k, k = 0, . . . , p− 1, is

β̃k|β̃−k,θ,σ2, σ2
ε ,φ,y ∼ N(m∗k,Σ

∗
k),

where we denote by β̃−k the vector of all random effects β̃ without the realisations of
the kth process β̃k and

Σ∗k =
(

1
σ2
ε

DT
kDk + Σ−1

k

)−1

, m∗k = Σ∗k

 1
σ2
ε

Dk

y − p−1∑
j=0
j 6=k

Djβ̃j

+ Σ−1
k θk1

 .
• The full conditional distribution for the global effects θk, k = 0, . . . , p− 1, for the CP

is
θk|β̃,θ−k,σ2, σ2

ε ,φ,y ∼ N(m∗k, v
∗
k),

where

v∗k =
(

1TΣ−1
k 1 +

1
σ2
kvk

)−1

, m∗k = v∗k

(
1TΣ−1

k β̃k +
mk

σ2
kvk

)
.

• The full conditional distribution for the random effects variance σ2
k, k = 0, . . . , p − 1,

for the CP is

σ2
k|β̃,θ,σ2

−k, σ
2
ε ,φ,y ∼ IG

{
n+ 1

2
+ ak,

1
2

[ (
β̃k − θk1

)T

R−1
k

(
β̃k − θk1

)
+

(θk −mk)2

vk
+ 2bk

]}
.

• The full conditional distribution for data variance σ2
ε for the CP is

σ2
ε |β̃,θ,σ2,φ,y ∼ IG

n2 + aε,
1
2

(Y − p−1∑
k=0

Dkβ̃k

)T(
Y −

p−1∑
k=0

Dkβ̃k

)
+ 2bε

 .
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B.2 Posterior distributions for the NCP

We now look at the joint posterior and full conditional distributions of the model parameters
for the NCP. For the NCP we have ξ = (βT,θT,σ2T

, σ2
ε ,φ

T)T, and

π(ξ|y) ∝ π(Y |β,θ, σ2
ε )π(β|σ2,φ)π(θ|σ2)π(σ2)π(σ2

ε )π(φ)

∝
p−1∏
k=0

(σ2
k)−(n/2+1/2+ak+1)|Rk|−1/2

(
σ2
ε

)−(n/2+aε+1

exp

− 1
2σ2

ε

(Y − p−1∑
k=0

(Dkβk + xkθk)

)T(
Y −

p−1∑
k=0

(Dkβk + xkθk)

)
+ 2bε


exp

{
−1

2

p−1∑
k=0

βT
kΣ
−1
k βk

}
exp

{
−1

2

p−1∑
k=0

1
σ2
k

(
(θk −mk)2

vk
+ 2bk

)}
p−1∏
k=0

π(φk), (30)

where we define x0 to be the vector of ones.
The full conditional distributions for the NCP are given below.

• The full conditional distribution for the non-centered spatially correlated random ef-
fects βk, k = 0, . . . , p− 1, is

βk|β−k,θ,σ2, σ2
ε ,φ,y ∼ N(m∗k,Σ

∗
k),

where

Σ∗k =
(

1
σ2
ε

DT
kDk + Σ−1

k

)−1

, m∗k = Σ∗k

 1
σ2
ε

xT
k

y − p−1∑
j=0
j 6=k

Djβj −
p−1∑
j=0

xjθj


 .

• The full conditional distribution for the global effects θk, k = 0, . . . , p−1, for the NCP
is

θk|β,θ−k,σ2, σ2
ε ,φ,y ∼ N(m∗k, v

∗
k),

where

v∗k =
(

1
σ2
ε

xT
kxk +

1
σ2
kvk

)−1

, m∗k = v∗k

 1
σ2
ε

xT
k

y − p−1∑
j=0

Djβj −
p−1∑
j=0
j 6=k

xjθj

+
mk

σ2
kvk

 .
• The full conditional distribution for the random effects variance σ2

k, k = 0, . . . , p − 1,
for the NCP is

σ2
k|β,θ,σ2

−k, σ
2
ε ,φ,y ∼ IG

{
n+ 1

2
+ ak,

1
2

(
βT
kR
−1
k βk +

(θk −mk)2

vk
+ 2bk

)}
.

• The full conditional distribution for the data variance σ2
ε for the NCP is

σ2
ε |β,θ,σ2,φ,y ∼ IG

{
n

2
+ aε

1
2

(Y − p−1∑
k=0

(
Dkβk + xkθk

))T(
Y −

p−1∑
k=0

(
Dkβk + xkθk

))
+ 2bε

 .
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