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Abstract

MCMC algorithms for Bayesian computation for Gaussian process based models under
default parameterisations are slow to converge due to the presence of spatial and other in-
duced dependence structures. The main focus of this paper is to study the effect of the
assumed spatial correlation structure on the convergence properties of the Gibbs sampler
under the default non-centered parameterisation (NCP) and a rival centered parameterisa-
tion (CP), for the mean structure of a general multi-process Gaussian spatial model. Our
investigation finds answers to many pertinent, but as yet unanswered, questions on the
choice between the two. Assuming the covariance parameters to be known, we compare the
exact rates of convergence of the two by varying: the strength of the spatial correlation,
the level of covariance tapering, the scale of the spatially varying covariates, the number
of data points, the number and the structure of block updating of the spatial effects and
the amount of smoothness assumed in a Matérn covariance function. We also study the
effect of introducing differing levels of geometric anisotropy in the spatial model. The case
of unknown variance parameters is investigated by using well-known MCMC convergence
diagnostics. A simulation study and a real data example on modelling air pollution levels
in London are used for illustrations. A generic pattern emerges that the CP is preferable in
the presence of more spatial correlation or more information obtained through, for example,
additional data points or by increased covariate variability.

Keywords: Bayesian inference, Gibbs sampler, Hierarchical models, Rate of convergence,
Spatial data.

1 Introduction

Spatially correlated data is prevalent in many of the physical, biological and environmental
sciences. It is natural to model these processes in a Bayesian modelling framework, em-
ploying Markov chain Monte Carlo (MCMC) techniques for model fitting and prediction, in
particular Gibbs sampling type algorithms (Gelfand and Smith, 1990). There is a growing
interest among researchers in regression models with spatially varying coefficients (Gelfand
et al., 2003). Fitting these highly overparameterised and nonstationary models is challeng-
ing and computationally expensive. Latent process correlated across space produce dense
covariance matrices that require calculations of order O(n?) to invert, for n spatial locations
(Cressie and Johannesson, 2008).

For normal linear hierarchical models with independent random effects it is known that
the ratio of the variance parameters determines the convergence rates of the Gibbs samplers
(Papaspiliopoulos et al., 2003; Gelfand et al., 1995). When the data precision is relatively
high the centered parameterisation (CP) will yield an efficient Gibbs sampler and when the
data precision is relatively low the non-centered parameterisation (NCP) is most efficient.
Papaspiliopoulos et al. (2003) find that the NCP outperforms the CP for a Cauchy data



model with Gaussian latent variables. Papaspiliopoulos and Roberts (2008) further investi-
gate how the model parameterisation and the tail behaviour of the distributions of the data
and the latent process all interact to determine the stability of the Gibbs sampler. They
look at combinations of Cauchy, double exponential, Gaussian and exponential power dis-
tributions for the CP and the NCP. The heuristic remark that follows from this comparison
is that the convergence of the CP is quicker when the data model has lighter tails than that
of the latent variables, with the opposite scenario favouring the NCP.

There has been little investigation into the influence of correlation across the random
effects on the rate of convergence of the Gibbs sampler. Simulation studies conducted by
Papaspiliopoulos et al. (2003) on the spatial Poisson-log-Normal model suggest that stronger
spatial correlation improves the sampling efficiency of the CP relative to that of the NCP.
However, there are several unresolved questions regarding the choice of the CP vs NCP for
the mean structure of a general multi-process Gaussian spatial model. Which of the two
parameterisations will converge faster when spatial correlation is increased? What happens
to the rates of convergence when tapering (Furrer et al., 2006; Kaufman et al., 2008) is
introduced? How does the smoothness parameter in an assumed Matérn covariance function
influence the rates? In addition, there are other unexplored issues regarding the choice and
the number of blocks for the random effects, the influence of the scale of spatially varying
covariates and the introduction of different levels of geometric anisotropy.

In this paper we cast the general spatial model with multiple spatially varying covari-
ates as a three stage normal linear hierarchical model. This model formulation allows us
to compute the exact rates of convergence for both CP and NCP for known prior covari-
ance matrices by following (Roberts and Sahu, 1997). These exact rates of convergence
facilitate comparison between the two rival parameterisations, CP and NCP. For an expo-
nential correlation function convergence for the CP is hastened when spatial correlation is
stronger, the opposite being true for the NCP. This is also demonstrated in the context of
tapered covariance matrices, geometric anisotropic correlation functions and the regression
process associated with a spatially varying covariate. The exponential correlation function
is a member of the broader Matérn family (Matérn, 1986). When we increase the smooth-
ness parameter the effect is to slow convergence for both the CP and NCP. In the limiting
case of the Gaussian correlation, when the smoothness parameter tends to infinity, both CP
and NCP may fail to converge when the sample size is large enough due to the associated
singularity of the covariance matrices, Section 3.3 invesigates the issues.

When the prior covariance matrices are unknown the exact convergence is intractable
and so the CP and NCP are compared by statistics based on well known convergence diag-
nostics on the potential scale reduction factor, see e.g., Gelman and Rubin (1992). We use a
simulation and a real data example to show that increasing the effective range for an expo-
nential correlation function improves the sampling efficiency of the CP, whereas shortening
the effective range helps the NCP.

The following remarks are in order. First, a related approach is to marginalise over the
random effects, thus reducing the dimension of the posterior distribution. This approach can
be employed when the error structures of the data and the random effects are both assumed
to be Gaussian. Marginalised likelihoods are used by Gelfand et al. (2003) for fitting spatially
varying coefficient models and by Banerjee et al. (2008) to implement Gaussian predictive
process models. However, marginalisation results in a loss of conditional conjugacy of the
variance parameters and means that they have to be updated by using Metropolis-type
steps, which require difficult and time consuming tuning. On the other hand, the Gibbs
sampler for the full model can potentially be completely automated and run without the
need for any tuning.

Secondly, it is possible to generate intermediate partially centered parameterisations by
considering CP and the NCP as extremes of a family of parameterisations. Indeed, this has
been followed up by Bass and Sahu (2016) in a companion paper. Interweaving of the CP
and NCP as proposed by Yu and Meng (2011) is particularly useful when the practitioner
has little knowledge of the convergence properties of either parameterisation. These authors
obtain an upper bound on the convergence rate of the interweaving algorithm based on an



intractable maximal correlation between the latent variables under the two parameterisations
and to our knowledge the exact convergence rate for the interweaving algorithm has not yet
been computed. Lastly, both CP and NCP based computation methods are similar in spirit
to various data augmentation (DA) schemes (Liu and Wu, 1999; van Dyk and Meng, 2001;
Imai and van Dyk, 2005; Filippone et al., 2013). A direct theoretical comparison between the
exact convergence rates of the centering parameterisations for Gaussian process (GP) based
models and the DA algorithms is desirable, as has been done by Sahu and Roberts (1999)
for the EM algorithm and the Gibbs sampler. However, this requires further methodological
development of DA algorithms for the GP models and evaluation of their exact rates of
convergence.

The rest of this paper is laid out as follows. In Section 2 we give details of a general
spatial model and obtain expressions for the rates of convergence. A simple example here
illustrates the rates and brings out the rivalry between the two parameterisations. Section
3 is devoted to comparison of the rates of convergence under different settings of correlation
structures and introduction of geometric anisotropy. It also studies the effect of tapering
and the scale of the spatially varying covariates on the rates of convergence. In Section 4
we drop the assumption of known precision matrices and use two convergence diagnostics to
judge the sampling efficiency of the CP and NCP. Analysis is carried out on simulated data
and PM10 concentration data taken from Greater London in 2011. Section 5 contains some
concluding remarks. Appendices A and B, respectively, contain the technical details for
calculating the rates of convergence and the full conditional distributions needed for Gibbs
sampling.

2 (General spatial model

2.1 Model specification

For data observed at a set of locations si,...,8, we consider the following normal linear
model with spatially varying regression coefficients (Gelfand et al., 2003):

p—1

Y(s:) =Y {0k + Br(si)}ar(si) +e(s;)) (i=1,...,n). (1)

k=0

We model (measurement or micro-scale) errors €(s;) as independent and normally distributed
with mean zero and variance 2. Spatially indexed observations Y = {Y(s1),...,Y(s,)}"
are conditionally independent and normally distributed as

Y(si) ~ N(x"(s:){0 + B(si)}, 02),

where x(s;) = {1,z1(si),...,2zp—1(8:)}" is a vector containing covariate information for site
s; and @ = (Bp,...,0,_1)" is a vector of global regression coefficients. The kth element
of @ is locally perturbed by a realisation of a zero mean independent Gaussian process,
denoted [(s;), which are collected into a vector B(s;) = {8o(8:i),...,0p—1(s;)}". The n
realisations of the Gaussian process associated with the kth covariate are given by B, =
{Bk(81), -+ Bre(8n)}T ~ N(0,2;) (k=0,...,p—1), where £y = 0iRy;, and (Ry);; =
corr{Bi(si), Br(s;)}. The form of the model given in (1) is known as the NCP. The CP is
found by introducing the variables 3 (s;) = 0x+0k(s;). Therefore B, = {Br(s1), ..., Br(sn)}"
~ N(0:1,%}),

Global effects @ are assumed to be multivariate normal a priori and so we write model
(1) in its hierarchically centered form as

Y|B~ N(X18,C1), Bl6~N(X20,C2), 6~ N(m,Cs),

where C; = 021 and X; = (I,Dy,...,D,_1) is the n x np design matrix for the first
stage where Dy, is a diagonal matrix with entries @y = {xx(s1),...,2k(sn)}". We denote

by 8= (,@g yens ,BZ?QT the np x 1 vector of centered, spatially correlated random effects.



The design matrix for the second stage, X, is a np X p block diagonal matrix, the blocks
made of vectors of ones of length n. The p processes are assumed independent a priori and
so C is block diagonal where the kth block is Xj.

2.2 Prior distributions

The global effects 6 = (6,61, ...,60,—1)" are assumed to be independent a priori with the
kth element assigned an independent Gaussian prior distribution with mean my, and variance
o?vk, hence we write 0, ~ N(my, o3vg) for k = 0,...,p—1. Therefore m = (mg,...,my_1)"
and C3 is a diagonal matrix with diagonal entries oZvy.

The realisations of the kth non-centered Gaussian process, 8;, have a prior covariance
matrix 3 = a,%Rk. This prior covariance matrix is shared by the kth centered Gaussian
process, 3. The prior distributions for the variance parameters are o2 ~ IG(ay,by) (k=
0,...,p—1), 02~ IG(ac,b.), where we write X ~ IG(a,b) if X has a density proportional
to 27 (@+De=b/7  The entries of the Ry are (Ry)ij = corr{Bx(si), Bk(s;)} = pr(dij; o, Vi)
where d;; = ||s; — s;|| denotes the distance between s; and s; and py, is a correlation function
from the Matérn family (Handcock and Stein, 1993; Matérn, 1986).

The Matérn correlation function for a pair of random variables at sites s; and s; is

21—1/
L(v)

where I'(+) is the gamma function and K, (-) is the modified Bessel function of the second kind
of order v (Abramowitz and Stegun, 1972, Section 9.6). The parameter ¢ controls the rate
of decay of correlation between two points as their separation increases. The smoothness of
the realised random field is controlled by v, as the process realisations are |v|-times mean-
square differentiable. A number of parameterisations of the Matérn correlation function
exist, for examples see Schabenberger and Gotway (2004, Section 4.7.2). The form given
in (2) is taken from Rasmussen and Williams (2006, Section 4.2.1) and its special cases for
different values of v are discussed in Section 3.2.

p(dij, o, v) = (V2ved;;)' K,(V2ved;j), ¢ > 0,0 >0, (2)

2.3 Exact rates of convergence

For a Gibbs sampler with Gaussian target distribution with a known precision matrix, we
can compute the exact rate of convergence (Roberts and Sahu, 1997). The convergence rate
A is bounded in the interval [0, 1], with A = 0 indicating immediate convergence and A = 1
indicating sub-geometric convergence (Meyn and Tweedie, 1993).

Suppose we block update all random effects 3, or 3 in the case of the CP, and block
update all global effects 8. Using the results given in Appendix A we can show that the
respective rates of convergence for the CP and the NCP of model (2) are given by the
maximum modulus eigenvalue of

Fo = (X4C; ' Xo+C3 ) X405 (X,CTI X, + C5Y) T Oy X, (3)
and the maximum modulus eigenvalue of
F* = (X,X\C7'X X, +C5Y) X,X\Cr X, (X(CT' X, +C5 )
X'C7 X, X, (4)

In Section 3 we use this result to investigate how the entries of X1, C; and Cy determines
the rate of convergence for the CP and the NCP.

2.4 A simple example

To illustrate how parameterisation effects the posterior correlation of the model parameters
and the rate of convergence of the Gibbs sampler, consider the following simple model, taken
from Gelfand et al. (1996, Section 2). Let

Y;;Ze—f-ﬁi—f—ﬁi, (5)



with 8; ~ N(0,0’%) and ¢; ~ N(0,0?) independently distributed for all i = 1,...,n. The
form of the model given by (5) is the NCP. The CP is found by replacing ; with B; = i+,
and so Y; = f3; + ¢;, and 3; ~ N(Q,J%).

Assuming a locally uniform prior distribution for 6, and that 0% and o? are known,

Papaspiliopoulos et al. (2003) show that the exact convergence rates of the CP and the
NCP of model (5) are

2

2
O¢

2 27
o: +0j

.=
and A\, =1 — A..

The rates of convergence highlight two important features of the sampling efficiency of the
CP and the NCP. Firstly, that the ratio of the variance parameters is an important quantity
in determining which parameterisation should be employed for model fitting, and secondly,
that a change in variance ratio has opposing effects on each of the parameterisations.

3 CP versus NCP

In this section we investigate how the rates of convergence are affected by the variance
parameters and the correlation structure of the spatial processes. To focus on these rela-
tionships we let p = 1 in model (1), giving us the following hierarchically centred model

¥|Bo ~ N(BOaafI)
Bolfo ~ N(6o1,05R0)
Oy ~ N(m071}0). (6)

It follows from equations (3) and (4) that the respective rates of convergence for the CP and
the NCP of model (6) are

Ae = (1/01"Ry "1 + 1/(0300))‘1 1/01"Ry " (1/021 + 1/a§R51)‘1 1/oRy'1,  (7)

and
Ane = ()02 +1/(0300)) " 1/0217 (1/62T +1/02R; ") ™' 1/021. (8)

For independent random effects the ratio of variance parameters is important in deter-
mining the rates of convergence and so we introduce the quantity §y = 02/02. In Sections
3.1-3.5 we use expressions (7) and (8) to compare the convergence rates for the CP and the
NCP for different values of 6o = 02/0? and forms of Ry. In Section 3.6 we alter the model
to include a covariate.

In Sections 3.2-3.5 we confine ourselves to the case when 1/vg = 0, such that we have
an improper prior distribution for 6y. This serves to clarify the effects of the other param-
eters on the convergence rates. To see the effect that the prior precision of 8y has on the
convergence rate consider two different values for vg; vp 1 and vg 2, with corresponding rates
of convergence A¢ 1, Ane,1; Ac,2 and A,c 2. Comparing the ratio of the convergence rates for
the two different priors we have

Ael lTRall +1/v9.2
Ae2 1TR611+1/1}0717

)

and clearly if vg 1 < vp 2 then A;; < ;2. The same result can be seen for the NCP where

2 2
)\nc,l _ agn + Oe¢ /U072

5 .
>\nc,2 aon—i-ag/vo,l

Therefore, a more precise prior distribution for 6y will hasten convergence for both the CP
and the NCP.



3.1 Convergence rates for equi-correlated random effects

To illustrate how changing the strength of correlation between the random effects influ-
ences the convergence rates of the different parameterisations, we begin by assuming a
equi-correlation model. We suppose that
= {7 B2 0
for 0 < p < 1. We restrict p to take only non-negative values, as is usual in spatial data
modelling. Roberts and Sahu (1997) consider a similar structure for the dispersion matrix
of a Gaussian target distribution but do not include a global mean parameter as we do here.
To assist in the computation of convergence rates A, and \,. we make use of the following
two matrix inversion identities. The first is the Sherman-Morrison-Woodbury formula, see
for example Harville (1997, p. 423). Let IN be an n X n matrix, U be an n X m matrix, M
be an m X m matrix and V' be an m X n matrix, then

(N+UMV)'=N'-N'UM*'+VN'U)'VN L (10)
The second result takes I to be the n x n identity matrix and J the n X n matrix of ones,
then

1 b
1 — - 1
(eI +bJ)" =-1 (a+nb) J, (11)

for constants a > 0, b # —(a/n). This can be easily checked by direct multiplication and
noting that
JJ =1111" = 1n1' = nJ.
Note also that identity (11) follows from (10) if we set N = al, U = 1, M = bl and
V=1
To compute the convergence rates given in (7) and (8) we must invert matrices o2 Ry
and (1/021 +1/02R;"). Using equation (10) we see that
(1/02I +1/02Ry ")~ = 02T — 021 (0?1 + 02 Ry) " '0>1.
For Ry defined by (9) we write
a3 Ry = a3(1 = p)I +ogpJ, (12)
and
o2l + o3 Ry = (02 + 03 (1 — p))I + 05pJ, (13)
and we can be invert the matrices given in (12) and (13) by using equation (11).
After some cancellation we find the convergence rates for the CP and the NCP to be

nvy 2
Ae =

g
_ c : 14
= AT T TR ) (14

and

)\nc _ TLO’%’UO ( O—g(]‘ - p) + TLO'(Z)p ) ) (15)

02+ nodvyg \ 02+ 02(1—p) +noip
If we assume an improper prior distribution, achieved by letting 1/vy = 0, then A,. = 1— A,
but otherwise equality does not hold. Note also that when p = 0 we recover the rates for
the independent random effects model, see Section 2.4.
It is useful to re-write equations (14) and (15) as

At = {1+t o5 (1= p)/n+ ofplH1 + 6oL+ (n — Dpl}, (16)

and
Ave = [1 4 (ndovo) (1 + {do[L + (n — 1)p]} ), (17)
respectively. Consider first the case when 1/vg = 0 and recall that a lower rate indicates
faster convergence. For the CP, increasing either dg, p or n speeds up convergence. Increasing
any one of these quantities has the opposing effect on the NCP. When 1/vg # 0, A, behaves

as in the improper case. This is true of . with respect to §y and p, but it is no longer
monotonic in n.



3.2 Effect of spatial correlation

In spatial modelling the correlation between two realisations of a latent process is usually
assumed to be a function of their separation. Here we consider exponential correlation
functions, which are used widely in applications (Sahu et al., 2010; Berrocal et al., 2010;
Sahu et al., 2007; Huerta et al., 2004). We have that

(RO)ij = eXp(_¢Odij)7

where ¢g is the spatial decay parameter. The exponential correlation function belongs to
the Matérn family and is found by letting v = 0.5 in equation (2). To see this we can use
the following results taken from Schabenberger and Gotway (2004, Section 4.3.2)

F(05) = \/’7(', Kovg,(t) = \/iet.

We characterise the strength of correlation in terms of the effective range, which we define
as the distance, do, such that corr{8y(s;), Bo(s;)} = 0.05. For an exponential correlation
function we have that

do = —10g(0.05) /b = 3/ 0.

We cannot compute explicit expressions for the entries of Ry 1 and hence we cannot find
expressions for the convergence rate in terms of ¢g. Therefore we use a simulation approach.
We take the unit square to be the spatial domain, randomly selecting n = 40 locations which
will be used throughout the rest of this section.

We consider five values of the variance ratio §g and vary the strength of spatial correlation
by controlling the effective range dy = —1log(0.05)/¢¢. For each value of §; we compute the
convergence rates given in equations (7) and (8) for effective ranges between zero, implying
no spatial correlation, and /2, the maximum possible separation of two points in the domain.

CP NCP
Q | e N
— \ -]
g | g E 60=001
© | ’ | | T 60:0.1
o e O=1
~< <
S S %=10
A I — =100
N N X
o =}
O | nmmmmmrn o | /
o . . . . . . . . o . . . . . . . .
0.0 04 08 1.2 00 04 08 1.2
0 do

Figure 1: Convergence rate against effective range for the CP and the NCP at different levels
of 50.

Convergence rates are plotted against the effective range for the CP and the NCP in
Figure 1, where again a lower rate indicates faster convergence. For a fixed dy we can see
that increasing §p decreases the convergence rate for the CP but increases it for the NCP, as
we might expect given the results for independent random effects. We also observe that for a
fixed level of §y increasing dy, thus increasing the strength of correlation between the random
effects, decreases the convergence rate for the CP and increases it for the NCP. Hence the
complimentary nature of the CP and NCP is maintained when we vary the strength of
exponential correlation across the random effects. However, the two rates do not add to 1
unlike in the simpler case just below equation (15).



The convergence rates are dependent on the set of sampling locations. For a different set
of locations the convergence rates are changed but our given a set of locations the overall
picture is not; increasing &g or dy quickens convergence for the CP and slows convergence
for the NCP.

3.3 Effect of the smoothness parameter in the Matérn correlation
function

In this section we consider different correlation functions from the Matérn family, see equa-
tion (2) for the general form. When v is a half integer, such that v = b+0.5forb=0,1,2, ...,
the correlation function takes on a simpler form. Taken from Rasmussen and Williams (2006,
Section 4.2) we have that

b

pldss 1) = exp(— B ot S S (Vv )

7“'(

=

In particular when v = 1.5 the correlation function is
p(dij, @) = (1+ V3¢di;) exp(—v/3¢dy), (18)

and when v = 2.5 it becomes

2 2

p(dij7 QS) = (1 + \/7¢)dlj > eXp( f¢dlj) (19)

As v — oo the correlation function goes to

242
p(dlj7¢) = eXp <_¢22J> )

which is sometimes known as the squared exponential or Gaussian correlation function.
We consider model (6) and compare the convergence rates for the CP and the NCP for
the exponential, v = 1.5, v = 2.5 and Gaussian correlation functions. In Section 3.2 the
strength of correlation is considered in terms of the effective range, which for the exponential
correlation function is —1log(0.05)/¢g. In terms of ¢g, the effective range for the Gaussian
correlation function is given by /—210g(0.05)/¢¢. For other members of the Matérn class
there is no closed form expression for the effective range. Therefore, for the cases when v is
equal to 1.5 and 2.5, we take an effective range dy and search for the value of ¢g that solves

p(do, $o) —0.05 =0, (20)

where p(dp, ¢o) is given by functions (18) and (19) respectively.

Convergence rates are computed for each parameterisation for effective ranges between 0
and /2 and for five values of §p = 0.01,0.1, 1, 10, 100. Recall that as previously in Section 3.2
we take the unit square to be the spatial domain and randomly select 40 locations. The
results for the CP are given in Figure 2. We see that for fixed v and ¢, increasing the dg
reduces the convergence rate. Also we see that for fixed ¢y and §y, the convergence rate is
increased when v is increased, except for the Jg = 0.1 case where the ordering only becomes
apparent as the effective range is increased. Unlike in the case of v = 0.5, increasing the
effective range does not reduce the convergence rate for other values of v.

The equivalent plot for the NCP is given in Figure 3. For fixed v and ¢q, increasing dg
increases the convergence rate. For fixed ¢y and dy, increasing v slows convergence as it
does for the CP. The convergence rate is monotonically increasing with increasing effective
range for all four correlation functions. We also note that convergence rates for the NCP
are not as sensitive to changes in v as they are for the CP.
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Figure 2: Convergence rates for the CP of model (6) for different values of v. (a) 4o = 0.01, (b)
50 = 0.1, (C) 50 = 1, (d) 50 = 10, (e) (50 = 100.
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Figure 3: Convergence rates for the NCP of model (6) for different values of v. (a) dp = 0.01,
(b) 50 = 0.1, (C) 50 = 1, (d) 50 = 10, (e) 50 = 100.

Figures 2 and 3 show that increasing v, the smoothness parameter, leads to slower
convergence for both the CP and NCP, which contradicts the complimentary behaviour of
the rates of convergence seen in the previous two subsections. In order to understand this
further we investigate as follows. The rates of convergence, as obtained in (7) and (8) depend
on Ry ! which is guaranteed to be positive definite for any n when a member of the Matérn
class of correlation functions is adopted. However, in practical numerical calculations with
a large value of n (much greater than 40 used in Figures 2 and 3) Ry becomes increasingly
singular in the presence of high level of spatial correlation and smoothness. The minimum
value of n for which this near singularity is observed depends on the minimum distance
between the "Csy pairs of the n locations and the values of the parameters ¢ and v in the
Matérn correlation function. To investigate this minimum value of n, we randomly sample
500 points in the unit square where the minimum Euclidean distance between any two points
is greater than a threshold value, which is taken to be 0.01. This ensures that the singularity



is not caused by very closely located points in the sample.

Next we find the minimum value of n for which Ry is approximately singular, viz., the
value of the determinant less than 10~7, for a given value of v and a given value of dy. The
value of ¢ is chosen by (20) when v = 1.5 and 2.5 and ¢g = —10g(0.05)/dy when v = 0.5,
i.e. the case of Exponential correlation function and ¢g = 1/—210g(0.05)/dy in the case of
the Gaussian correlation function, when v — co. The minimum value is plotted in Figure 4
against dy for all four correlation functions considered here. As expected, for smaller values
of dy, tending to the case of zero spatial correlation, the minimum value of n becomes very
large. Increasing spatial correlation, as effected by increasing dj, leads to a smaller value of
n at which near singularity of Ry is reached. Interestingly, increasing smoothness, through
values of v hasten this except for the case of the exponential correlation function. This is
due to the non-linear effect of the v and ¢ on the Matérn correlation function.

The near singularity in the limiting Gaussian case is related to the near predictability of
the associated spatial processes. In the limiting Gaussian case, it is possible to predict Y (s')
for any s’ in the same spatial domain upon observing the same spatial process Y (s) at any
location s, see, e.g. page 62 of Banerjee et al. (2015). Such deterministic behaviour leads to
the near singularity of covariance matrices which in turn leads to non-convergence. Indeed,
Stein (1999) (page 70) explicitly recommends not to use the Gaussian correlation function
to model physical processes. The investigation here confirms this view by pointing to non-
convergence of the MCMC fitting algorithms for smooth and highly correlated processes for
large values of n. This also allows us to conclude that increasing n in an infill asymptotic
sense (Zhang, 2004), in the presence of high spatial correlation, will lead to near singularity
of the covariance matrices, which in turn will lead to non-convergence of either of the two
parameterisations. This asymptotic result, however, does not spell disaster for the CP and
NCP in practical problems where the strength of the spatial correlation is such that the
resulting effective range (do in the exponential case) is significantly less than the maximum
distance (v/2 in the unit square) between any two points in a closed spatial domain. Such a
situation will allow modelling of a reasonably large number of spatial observations (e.g. low
100s) using the centering parameterisations.

400
1

300
1

200
1

100
1

Figure 4: The minimum value of n for which Ry is nearly singular for different values of dy and
v.
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3.4 Effect of introducing geometric anisotropy

The class of Matérn correlation functions is isotropic. This means that the correlation
between the random variables at any two points, s; and s;, depends on the distance between
them d;; = ||s; — s;|| (and parameters ¢ and v) and hence the contours of iso-correlation
are circular. The assumption that spatial dependence is the same in all directions is not
always appropriate and therefore we may seek an anisotropic specification for the correlation
structure.

Anisotropic correlation functions are widely used and have been employed to model,
for example, scallop abundance in the North Atlantic (Ecker and Gelfand, 1999), extreme
precipitation in Western Australia (Apputhurai and Stephenson, 2013) and the phenotypic
traits of trees in northern Sweden (Banerjee et al., 2010).

Different forms of anisotropy exist, see Zimmerman (1993), but we consider only ge-
ometric anisotropy. Geometric anisotropic correlation functions can be constructed from
isotropic correlation functions by taking a linear transformation of the lag vector s; — s;.
Let

d; = |G (s — ;)] (21)

where G is a 2 x 2 transformation matrix. In Euclidean space (21) is equivalent to
X 1/2
diy = {(s: = ;) H(s: = 5,)}'/7,

where H = G"G. The matrix H must be positive definite, i.e. di; > 0 for s; # s;, which
is ensured if G is non-singular, see Harville (1997, Corrollary 14.2.14). By replacing d;;
with dj; in (2) we have a geometric anisotropic Matérn correlation function with elliptical
contours of iso-correlation.

As an example we follow Schabenberger and Gotway (2004, Chapter 4) and let

G- (¢ 0 cosy siny)  [(acosy asiny (22)
“\0 1) \—siny cosy) \—siny cosvp )’
hence the axis are rotated anti-clockwise through an angle ¢ and then stretched in the

direction of the x-axis by a factor 1/a > 0. The determinant of G is a and so it is non-
singular for a # 0, hence H is positive definite as required. For G given in (22) we have

e o?cos? Y +sin®Y  (a? —1)costpsingy
H=G G_<(a21)cosd)sin1/1 cos2 ) + a2sin?vy )

If « = 1, then H is the identity matrix and isotropy is recovered. If ¢p = 0 4+ 27m,

m=1,2,..., then
a? 0
=5 1)

which is equivalent to just a stretch of the x-axis by 1/a.
To illustrate the effect of the transformation matrix G, we consider o = 0.5,1,2 and
¥ = 0,7/4,7/2 with an anisotropic exponential correlation function such that

p(d;'kja ¢) = eXP(“?dfj)- (23)

We take the point s* = (0.5,0.5)" in the unit square and fix decay parameter ¢ = 1. We
then compute the correlation between s* and all points on a 20 x 20 grid, according to the
correlation function given in (23). The values are then smoothed to produce a correlation
surface. This is repeated for each of the nine combinations of o and v and displayed in
Figure 5.

We can see that setting o = 0.5 strengthens correlation in the x-direction. This is because
for the purposes of computing correlation, the separation of two points in the x-direction
is halved. When « = 1, the angle of rotation ¥ does not effect the contours as they are
circular. Clearly, setting o = 2 has the effect of weakening correlation in the x-direction.
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To assess the impact of anisotropy on the convergence rates for the CP and the NCP
we return to model (6). We consider an anisotropic exponential correlation function for the
spatial process and so

(Ro)ij = exp(—od;;),

where dj; is given by equation (21). We begin by fixing ¢ = 0 and letting o = 0.5,1,2.
This corresponds to panels 1 (a), 2 (a), and 3 (a), in Figure 5. We use five values for
S0 = 03 /0? = 0.01,0.1,1,10, 100 and vary ¢o such that 3/¢g € (0,+/2]. Here, the effective
range is direction dependent so we no longer refer to 3/¢q as the effective range.

We compute convergence rates for the CP and the NCP and plot results in Figures 6
and 7 respectively. As « is reduced we increase the strength of correlation in the x-direction.
This result is faster convergence for the CP and slower convergence for the NCP. This is
consistent with the results of Section 3.2 which shows that increasing the effective range
of an isotropic exponential correlation function, thus strengthening the correlation in all
directions, helps the CP and hinders the NCP.

We now look at the effect of rotating the axis. If & = 1 then a rotation has no impact on
the correlation function as H is the identity. We consider four combinations of o = 0.5, 2
and ¢ = w/4,7/2. These values correspond to panels 1 (b) and 1 (c) for a = 0.5, and 3 (b)
and 3 (c) for & = 2 in in Figure 5. Again, we let 69 = 0.01,0.1,1,10,100 and vary ¢ such
that 3/¢o € (0, v/2].

The results for the CP and the NCP are given in Figures 8 and 9 respectively. We can
see that changing 1) has very little effect on the convergence rates of either parameterisation
as expected since d;; is free of 1. However, because we apply the rotation matrix first
the subsequent stretch effectively acts in a different direction, that direction depending
on ¢, and the resulting values for d7; may be different. Take the example we used here.
Let s = (51,82)T and S; — 85 = (Sil — S51,8i2 — Sjg)T = (ll,lg)T. For ’(/) = 71'/47 d:} =
VO.5[(I1 — 12)? + 2(ly + 12)?], whereas if ¢ = 7/2 then dj; = /12 + a23. The different
values of df; may lead to different rates of convergence. Further investigation is needed to

ij
determine whether similar results hold for patterned sampling locations.
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Figure 5: Correlation surface for 5(s*), s* = (0.5,0.5)", for exponential anisotropic correlation
functions with transformation matrix G given in (22). Panels are given an alpha-numeric label.
Numbers refer to three values of a = 0.5,1,2. Letters (a), (b) and (c) refer to three values of

v =0,7/4,7/2.
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Figure 6: Convergence rates for the CP of model (6) with an anisotropic exponential correlation
function for different values of . (a) dp = 0.01, (b) 6o = 0.1, (c) dg = 1, (d) dp = 10, (e) do = 100.
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Figure 7: Convergence rates for the NCP of model (6) with an anisotropic exponential correla-
tion function for different values of a.. (a) d9 = 0.01, (b) dp = 0.1, (c) dp = 1, (d) dp = 10, (e)
dp = 100.
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Figure 8: Convergence rates for the CP of model (6) with an anisotropic exponential correlation
function for different values of o and . (a) 6o = 0.01, (b) dp = 0.1, (c) dp = 1, (d) dp = 10, (e)
6o = 100.
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Figure 9: Convergence rates for the NCP of model (6) with an anisotropic exponential correla-
tion function for different values of o and . (a) 9 = 0.01, (b) dp = 0.1, (c) do = 1, (d) Jp = 10,
(e) 50 = 100.

3.5 Effect of introducing tapered covariance matrices

When spatial association is modelled as a Gaussian process the resulting covariances matrices
are dense and inverting them can be slow or even infeasible for large n. One strategy to
deal with this is covariance tapering (Furrer et al., 2006; Kaufman et al., 2008). The idea
is to force to zero the entries in the covariance matrix that correspond to pairs of locations
that are separated by a distance greater than a predetermined range. This results in sparse
matrices that can be inverted more quickly than the original. In this section we investigate
the effect covariance tapering on the convergence rates for the CP and the NCP. We take
model (6) with an exponential correlation function for Ry and compare the convergence
rates found in section 3.2 with those computed when we use a tapered covariance matrix.
The tapered correlation matrix, Rrqp, is the element wise product of the original corre-

14



lation matrix Ry and the tapering correlation matrix T', where T is a sparse matrix with
ijth entry equal to zero if d;; is greater than some threshold distance. Positive definiteness
of Rypgyp is assured if T is positive definite (Horn and Johnson, 2012, Theorem 7.5.3).

Given that our original correlation function is an exponential one, we follow Furrer et al.
(2006) and use a spherical tapering function such that

3dix A
Tij: 1_T+T lfdij<]./X,X>O

0 otherwise,

with decay parameter x, where 1/x is equal to the effective range, so that here we have
X = —¢o/10og(0.05). Therefore

3dijx | di;x’
exp(—(;ﬁodij) <]. - TJX + ]TX lf dij < do, ¢0 > 0, X > 0

0 otherwise,

(RTap)ij =

where dg = —10g(0.05)/¢g is the effective range.

We let 6o = 0.01,0.1,1,10 and 100 and vary do between 0 and /2. The convergence
rates for the CP and the NCP are given in Figure 10. The dashed line represents the use of
the tapered correlation matrix. The solid line for comparison are the rates achieved using
the original correlation matrix Ry and are identical to those given in Figure 1. Convergence
rates are slowed by tapering for the CP and hastened for the NCP. Intuitively we can say
that the under the CP stronger correlation is desirable and tapering reduces that, with the
opposite being true for the NCP.

We can illustrate this effect by considering a spatial model with just two locations s;
and s such that s; # s3. Let 0 < corr(B(s1),8(s2)) = p < 1. Suppose that we use a
tapering function that takes values p* if di2 < dp and zero otherwise, where 0 < p* < 1.
The tapered correlation is

_ pp* if dig < dy
PTap = { 0 otherwise.

Therefore prqp < p, with equality attained only when p = 0. We know from equations (16)
and (17) that for equi-correlated random effects if p decreases, \. is increased and A, is
decreased. In other words, when n = 2, tapering can only worsen the performance of CP
and improve the performance of the NCP.

CP NCP

——  5=0.01
— 8=0.1
&=l
5,=10
——— §=100

Figure 10: Convergence rates with tapered covariance matrices for the CP and the NCP at
different levels of .
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3.6 Effect of covariates

In this section we investigate the effect of the covariates upon the rate of convergence. We
consider the following model

Y(Si) = {91 +ﬁl(si)}xl(5i) +6(Si) (7/ = 17"'7’”‘)’ (24)

Wthh may be found by letting & = 1,...,p — 1, and p = 2 in model (1). Recalling that

By = {Bi(s1),...,B1(sn)}", where ﬁ1( i) = B1(si) + 61, and 1 = {z1(81), ..., 71(8n)}"
and D; = diag(x), we can write model (24) in the following form

Y|B, ~ N(Dipy,0lI)
ﬂl ‘91 ~ N(Gll,a%Rl)
91 ~ N(ml,a%ul). (25)

We consider only one covariate and so in the rest of this section we drop the subscript from
D and x;

First suppose that random effects are independent. This can be considered the limiting
case for weakening spatial correlation. For the sake of notational clarity, under the assump-
tion of spatial independence we write x(s;) = x; (i = 1,...,n). The convergence rate for
the CP is N ,

1 o
Ae = < .
n+1/v ; o2+ oix?

If we let 1/v; = 0, thus implying and improper prior for 61, we can write A, as

1 1
Ae = — D e 26
w2 TT (oD (20)

We introduce the variable §; = 07 /02. For fixed @, we can see that as d; tends to zero the
convergence rate for the CP of model (24) tends to one. As d; gets larger the convergence
rate goes to zero. To see the effect of the scale of  we introduce variables u;, where

r; — &

sdy

i=1,...,n, (27)

and & and sd, are the sample mean and sample standard deviation of @ respectively. Sub-
stituting equation (27) into equation (26) we have

is
n =1+ (02/02) (uisdy + x)*

We suppose that the x;’s have already been centered on zero and so & = 0. For fixed variance
parameters, the effect of the scale of x is clear; an increase in sd, results in a decrease in
the convergence rate and vice versa.

For the NCP the convergence rate is

A\ 1 olxt
ne — mn D) ) D) E 2 5 92-
i1 ¥ +02/(ofv) & 02 + oia;

Letting 1/v; = 0, we can write A, as

n

Ane = (@2 Z 02/01 + 2 (28)

= i=1

For fixed x, if 02 /0} goes to zero then \,. goes to one. Contrastingly, as the data variance
dominates that of the random effects the convergence rate falls. Note that in general A, +

Ane # 1.



To see the effect of the scale of @ upon A,. we substitute equation (27) into equation
(28). Then we have

/\nc =

Z UZSd +.’B)
S 1(uzsd + )2 (02/02) + (uisdy, + )2

(uisd,)*
Ane =
Yo 1(ulsd 21 (02/02) + (u;sd,)?

n 4
Ug

(02 /otsd3) + uf

e
9

2
=1

Fixing 062 and 0‘%, as sd, tends to infinity, \,. tends to 1, as sd, tends to zero, A\,. tends to

0.
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Figure 11: A comparison of convergence rates for the CP and the NCP at different levels of 4.

Now we investigate the effect that increasing the strength of correlation between re-
alisations of the slope surface has upon the performance of the CP and the NCP. We let
(R1)i; = exp(—¢1d;;) and so the effective range d; = —10g(0.05)/¢1. To generate the values
of & we select a point s,, which we may imagine to be the site of a source of pollution. We
assume that the value for the observed covariate at site s decays exponentially at a rate ¢,
with increasing separation from s, so that

x(8;) = exp(—dz||si — szl]) (E=1,...,n).

The spatial decay parameter ¢, is chosen such that there is an effective spatial range of
V2/2, ie. if ||s — sz|| = v/2/2 then z(s) = 0.05. The values of x are standardised by
subtracting their sample mean and dividing by their sample standard deviation.

We compute the convergence rate for the CP and the NCP for model (25) for five values
of 61 = 0.01,0.1,1, 10, 100, and for an effective range d; between 0 and /2. Results are given
in Figure 11. We see that for the CP for a fixed dy, increasing ¢; achieves faster convergence.
If we fix d; the performance of the CP is improved as the effective range is increased. The
opposite is seen for the NCP, whose performance is improved by decreasing §; or shortening
the effective range. Therefore, the variance ratio §; and the decay parameter ¢; have same
influence on the convergence rates of the CP and NCP as §p and ¢.
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4 Practical examples with unknown covariance param-
eters

In this section we focus on the practical implementation of the Gibbs sampler for the CP
and the NCP for spatially varying coefficient models. The joint posterior distribution is
unaffected by hierarchical centering and so inferential statements are the same under either
parameterisation. However, what is affected is the efficiency of the Gibbs sampler used to
make those statements.

In Section 3 the CP and the NCP are compared in terms of the exact convergence rates
of the associated Gibbs samplers. The key assumption needed to compute these rates is that
the joint posterior distribution is Gaussian with known precision matrix. Here we allow for
the more common scenario that the precision matrix is known only up to a set of covariance
parameters. In this case we cannot compute the exact convergence rate. Therefore, we use
the MCMC samples to assess the efficiency of the Gibbs samplers induced by the CP and the
NCP. The full conditional distributions needed to construct the Gibbs samplers are given in
Appendix B.

We employ two diagnostic statistics to compare parameterisations. The first statistic
we use is based on the multivariate potential scale reduction factor (MPSRF') (Brooks and
Gelman, 1998). We define the MPSRF,(1.1) to be the number of iterations required for
the MPSRF to fall below 1.1. To compute the MPSRF;(1.1) we run five chains of length
25,000 from widely dispersed starting values. In particular, we take values that are outside
of the intervals described by pilot chains. Moreover, the same starting values are used for
both the CP and the NCP. At every fifth iteration the MPSRF is calculated and number
of iterations for its value to first drop below 1.1 is the value that we record. The second
statistic we use is the effective sample size (ESS) of the model parameters (Robert and
Casella, 2004). The ESS is computed using all 125,000 MCMC samples and gives us a
measure of the Markovian dependence between successive MCMC iterates, with values of
125,000 indicating independence. There is a negligible difference in the run times for the
CP and the NCP and so we do not adjust these measures by computation time.

4.1 A simulation study

We simulate data from model (6) for n = 40 randomly chosen locations across the unit square
assuming an exponential correlation function for the spatial process. We set 6y = 0 and
generate data with five variance parameter ratios such that g = o /0? = 0.01,0.1, 1, 10, 100.
This is done by letting 0 = 1 and varying o2 accordingly. For each of the five levels of &y
we have four values of the decay parameter ¢, chosen such that there is an effective range
of 0, v/2/3, 24/2/3 and /2, where /2 is the maximum possible separation of two points in
the unit square. Hence there are 20 combinations of o2, 02 and ¢q in all. Each of these
combinations is used to simulate 20 datasets, and so there are 400 data sets total.

We fix the decay parameter at its known value and sample from the marginal posterior
distributions of 6y, o and o2. We let hyperparameters mgo = 0 and vo = 10*. Recall that
the variance parameters are given inverse gamma prior distributions with (o) = IG(ag, bo)
and 7(0?) = IG(ac,b.). We let ap = a. = 2 and b, = b. = 1, implying a prior mean of one
and infinite prior variance for o and o2. These are common hyperparameters for inverse
gamma prior distributions, see Sahu et al. (2010, 2007); Gelfand et al. (2003).

Figure 12 shows boxplots of the MPSRF,(1.1) (top row) and the ESS of 6y (bottom
row) for the CP. Each panel contains the results for a fixed value of ¢y, increasing from
0.01 on the left to 100 on the right. Each panel contains four boxplots corresponding to the
four effective ranges of 0, x/3, 22:/3, and z, where x = /2. As the effective range increases
we have stronger spatial correlation between the random effects. Each boxplot is produced
from the 20 values obtained for a given combination of dg and ¢g. We can see that the
performance of the CP improves with increasing dg and also with increasing strength of
correlation between the random effects.

The equivalent plot for the NCP is given in Figure 13. We can see a reverse of the
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pattern displayed by the CP. The performance of the NCP is worsened as ¢y increases and
the detrimental effect of increasing the strength of correlation between the random effects
is also clearly evident. Therefore, §g and the dy have the same influence on the CP and the
NCP as we saw for the exact convergence rates when the variance parameters were assumed
to be known in Section 3.2.
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Figure 12: MPSRF(1.1), panels (a)—(e), and the ESS of 6y, plots (f)—(j), for the CP.
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Figure 13: MPSRF,(1.1), panels (a)-(e), and the ESS of 6y, plots (f)—(j), for the NCP.

Figure 14 gives the ESS of o2 (top row) and the ESS of 02 (bottom row) for the CP.
We can see a general increasing trend in the ESS of o3 for increasing dp, but a downward
trend is seen for o2. However, for a fixed value of §; we can see an improvement as the
effective range increases, particularly in o2. This is because for the case when there is zero
effective range, marginally the data variance is (62 + ¢2)I, and so increasing the effective
range moves us away from the unidentifiable case which can result in poor mixing of the
chains.

Figure 15 shows the ESS of 02 and o2 for the NCP. We see that the ESS of o2 is stable

under changes in §y and dy, with the exception being the case where g = 0.1 and dy = 0.
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In this case the results are again explained by the lack of identifiability of the variance
parameters for independent random effects. The ESS of o2 is reduced by increasing &y. For
a fixed value of §y we can see an improvement in the ESS as dy increases. This was also
observed o2 under the CP and is similarly explained.
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Figure 14: ESS of o2, panels (a)—(e), and o2, panels (f)—(j) for the CP.
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Figure 15: ESS of o2, panels (a)—(e), and o2, panels (f)—(j) for the NCP.

4.2 Real data example

In this section we compare the sampling efficiency of the CP and the NCP when they are
fitted to a real data set. We have annual PM10 concentrations, in micrograms per cubic
meter (ug/m?), taken from 70 monitoring sites in Greater London, UK. We use data from
50 sites for model fitting, leaving out data from 20 sites for model validation, see Figure
16. The mean and standard deviation for the 50 data sites is 26.47 pg/m?® and 5.00 pug/m?®
respectively.
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Figure 16: Sampling locations for PM10 concentration data. Blue stars indicate locations used
for model fitting and red crosses indicate locations used for model validation.

In addition to the observed data we have output from the Air Quality Unified Model
(AQUM), a numerical model giving air pollution predictions at lkm grid cell resolution
(Savage et al., 2013). The AQUM is used as a covariate in the model, where z(s) is the
AQUM output for the grid cell containing s. Therefore we use have downscaler model as
employed by Berrocal et al. (2010).

To stabilise the variance we model the data on the square root scale. However, in order
not to underestimate their variability, predictions are obtained on the original scale.

We fit model (1) with p = 2 and so we have two processes, an intercept and a slope
process. Each process has a corresponding global variance and decay parameters and so
0 = (00,01)%, 0 = (62,07)T and ¢ = (¢o, #1)*. In addition we have the data variance, o2.
For the prior distribution of @ we let m = (0,0)" and vy = v; = 10*. Welet ag = a; = a, = 2
and by = by = b = 1, so that each variance parameter is assigned an IG(2,1) prior
distribution.

We begin by estimating the decay parameters using an empirical Bayes method by per-
forming a grid search over a small number of values, then choosing those values that minimise
some calibration criterion. This is a common approach adopted by many authors, e.g., Sahu
et al. (2011); Berrocal et al. (2010); Sahu et al. (2007) since Zhang (2004) showed that it is
not possible to consistently estimate these in a model with Matérn covariance function in
the presence of other unknown parameters. In our Bayesian inference setting this will imply
weak identifiability in the posterior distribution when non-informative prior distributions
are assumed.

The greatest distance between any two of the 70 monitoring stations is 96.2 kilometers
(km) and so we select values of ¢g and ¢; corresponding to effective ranges of 5, 10, 25, 50
and 100 km. Predictions are made at the 20 validations sites and we compute the values
of three measures of prediction error; the mean absolute prediction error (MAPE), the
root mean square prediction error (RMSPE) and the continuous ranked probability score
(CRPS), see for example Gneiting et al. (2007).

For each of the 25 pairs of spatial decay parameters we generate a single chain of 25,000
iterations and discard the first 5,000. The values of the MAPE, RMSPE and CRPS are
given in Table 1. Recall that dy and d; denote the effective ranges implied by ¢y and ¢
respectively. By all three measures the prediction error is minimised when dy = 5 and
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di; = 50 and so our estimates for the spatial decay parameters are
bo = —10g(0.05)/5 ~ 0.6, ¢; = —log(0.05)/50 ~ 0.06.

We now compare the sampling efficiencies of the CP and NCP for the London PM10
data when the values of the decay parameters are fixed at the above optimal values. For
each parameterisation we generate five Markov chains of length 25,000 from the same widely
dispersed starting values. The MPSRF ;(1.1) and the ESS of 8 = (0y,61)’, 02 = (03,037’
and o2 are computed and given in Table 2. We can see that the CP requires far fewer
iterations for the MPSRF to drop below 1.1 than the NCP, 275 versus 1985. The ESS of the
mean parameters and is greater for the CP than the NCP, especially for 6; reflecting the
stronger spatial correlation for the slope process and the estimate for é;. For the variance
parameters of and o7 the ESS is for the CP is around double that of the NCP. The NCP
achieves better mixing in the o2 coordinate than the CP.

Table 1: Prediction error for different combinations of dy and d;

dy di MAPE RMSPE CRPS
5] 5 5.494 6.224  3.720
10 5.476 6.200 3.704

25 5.416 6.164 3.701

50  5.375 6.126 3.695

100 5.418 6.160  3.735

10 5 5.534 6.281  3.740
10 5.497 6.256  3.728

25 5.480 6.230 3.733

50 5.436 6.207  3.736

100 5.452 6.193  3.753

25 5 5.618 6.534  3.878
10 5.585 6.492  3.862

25 5.492 6.351  3.801

50 5.485 6.330  3.809

100 5.476 6.314  3.828

50 ) 5.620 6.741  4.003
10 5.615 6.711  4.002

25 5.549 6.572  3.944

50 5.505 6.500  3.924

100 5.499 6.470  3.938

100 5 5.644 6.910 4.129
10 5.586 6.820 4.093

25 5.541 6.658  4.035

50 5.491 6.595 4.015

100 5.482 6.581  4.046

Table 2: MPSRF,(1.1) and the ESS of the model parameters

MPSRF )/ (1.1) ESS 6y, ESS6# ESSo3 ESSof ESSo?
CP 275 22161 63137 31876 16689 24171
NCP 1985 15596 2958 15407 8275 31806
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For making inference we generate a single long chain for 50,000 iterations and discard
the first 10,000. Parameter estimates and their 95% credible intervals are given in Table 3.
An estimate for the global intercept 6y of 5.148 reflects that the data are modelled on the
square root scale. The global regression parameter 6; for the AQUM output is not significant
given the inclusion in the model of the regression process. Of particular interest to us are
the estimates of the variance parameters. Weak spatial correlation in the intercept process
means that the estimate for o2 is the smallest of the three variance parameters. More of
the spatial variability is explained by the intercept process and so the estimate for o7 is
the greatest of the three variance parameters. We also include estimates and 95% credible
intervals for the variance ratios 6y = o2/0? and 6, = 0% /o2

Table 3: Parameter estimates and their 95% credible intervals (CI)

Parameter Estimate 95% CI
0o 5.148  (4.942,5.352)
01 0.093 (—0.396,0572)
ol 0.172  (0.093,0.299)
o? 0.224  (0.101,0.469)
o2 0.177  (0.096,0.307)
5o 1.070  (0.412,2.268)
51 1.376  (0.487,3.256)

5 Conclusion

We have compared the efficiencies of the CP and the NCP of spatial models. We find that
in addition to the ratio of the variance parameters, the correlation structure between the
random effects play a key role in determining the rate of convergence.

For known variance and correlation parameters the exact rate of convergence has been
examined. We have shown that for spatial models with an exponential correlation func-
tion, increasing the variance of the random effects relative to that of the data, as well as
increasing the strength of correlation, works to hasten the convergence of the CP but slows
the convergence of the NCP. However, when the covariance matrix is tapered to remove
long range correlation, convergence for the CP is hindered but convergence for the NCP
is helped. Introducing geometric anisotropy to strengthen the correlation in one direction
has, for randomly selected locations, a similar effect to strengthening it in all directions; the
CP is helped and the NCP hindered. Both of these results are consistent with the notion
that the performance of CP is improved in the presence of greater spatial correlation but
the performance of the NCP is worsened. We have seen that as the smoothness parameter
in the Matérn correlation function is increased both the CP and the NCP are slower to
converge and in the presence of moderate spatial correlation both parameterisations will fail
to converge when the sample size is large enough.

When the variance parameters are unknown the sampling efficiency of the parameteri-
sations is compared via the MPSRF,(1.1) and the ESS of the unknown model parameters.
We have seen that the relationships between the sampling efficiency of the respective param-
eterisations, and the ratio of the variance parameters and the strength of spatial correlation,
still hold for unknown variance parameters. The CP performs better when the data precision
is relatively high and when the correlation is strong. Contrary to this, the NCP performs
best when the data is less informative and the correlation is weak.
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A Computing the exact convergence for the CP and

NCP

For Gibbs samplers with Gaussian target distributions with known precision matrices, we
have analytical results for the exact convergence rate (Roberts and Sahu, 1997). We let
¢ denote the set of all mean parameters in the model, i.e. € = (8%,0")*. Suppose that
€|y~ N(pX), and let Q = X! be the posterior precision matrix (PPM). Further suppose
that £ is partitioned into [ blocks for updating within the Gibbs sampler. To compute the
convergence rate first partition @ according to the [ blocks where the ijth block is denoted
by Q;; 1,5 =1,...1L

Let A = I — diag(Qy/,.. .,Qfll)Q and F = (I — L)"'U, where L is the block lower
triangular matrix of A, and U = A — L. Roberts and Sahu (1997) show that the Markov
chain induced by the Gibbs sampler with components block updated according to the above
blocking scheme, has a Gaussian transition density with mean E{é(t+1)|£(t)} = F!;'(t) + f,
where f = (I — F)p and covariance matrix 3 — FXF". Their observation leads to the
following theorem:

Theorem A.1 (Roberts and Sahu, 1997, Theorem 1) A Markov chain with transition den-
Sity
N{F¢Y 4+ f. % - FXF"},
has a convergence rate equal to the maximum modulus eigenvalue of F.
Corollary A.2 If we update & in two blocks so that | = 2 then
Q- (Qn Qu) F— (0 1—Q1_11Q112 )
Qa1 Q)7 0 Q3Q2Q1,Q1)’

and the convergence rate is the maximum modulus eigenvalue of

Fo = Q3 Q5,Q11 Q)
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We use theorem A.1 to compare the convergence rates of Gibbs samplers associated
with the CP and the NCP. First we must compute the PPM for each parameterisation. To
identify the PPM for the CP write

m(3,0ly) < w(Y|B)n(B|6)r(6)
x exp{ - xB)CT (Y - X0B) + (B X06)"C3 (B~ Xu0)

+6—m)*C5' (0 - m)] }
1 - -
- exp{z[...+ﬁ (XTCi'X1+C3")B—-2B C;' X120
+9T(X§CQIX2+C31)9+...”,

where the last equation only includes the terms containing both B and 6. Therefore the
posterior precision matrix for the CP is given by

oo Xicr'x, +c3t -Cy'X,
—xicy! XiCy;' X, +C5t)

By corollary A.2 if we update all random effects as one block and all global effects as another
then the convergence rate for the CP is the maximum modulus eigenvalue of

FS, = (X3C; X+ C3 1) X305 (XTCT' X, +CY) ' O X,
Similarly for the NCP we find the PPM by writing
m(B,0ly) o w(Y|B,0)r(B|6)7(6)

1 T
X eXp{—Q{(Y—Xlﬂ—XlXQB) Cl_l(Y_Xl,B—XlXQB)—i—

07058+ (0~ m)*C; 0 - m)] |
1 T T — — T T —
- exp{ — 5[...+ﬁ (XTCT'X1+C3")B+2B"XTC5' X 1X,0
+0" (X3XTCT' X1 X, +C51 )0+ .. ] }

and hence we have
Q" — XiCr' X1+ Gy XTCT X1 X,
XIXTCT'X, XIXTCi'X,X,+C3')

By Corollary A.2; the convergence rate of the Gibbs sampler for the NCP is the maximum
modulus eigenvalue of

F5 = (XIXTCT'X, X,+C3Y)  XIXTCi'X, (XICi'X,+¢;Y)™"
XTCT XX,
B Full conditional distributions

B.1 Posterior distributions for the CP

In this section we give the joint posterior and full conditional distributions for the CP of
model (1). We denote by 02 = (03, ..., 012,71)T the vector containing the variance parameters
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of the random effects and let ¢ = (¢o,...,¢p—1)" contain the decay parameters. We let

¢ = (BT,HT,0'2T, 02,¢")T contain all np random effects, p global effects, p + 1 variance
parameters and p decay parameters. The joint posterior distribution of £ is

m(€ly) < 7(Y|B,02)n(B]0,02, )1 (8]0 (o) (c?)m ()

(
. 1‘[1( ]3) (n/241/24ar+1) \Ry|” 1/2( ) (n/24ac+1)
k=0

1 p—1 N\ p—1 3
P | ~503 (Y — kZZODkﬂk> (Y — kzzopkﬂk) + 2b,
1 =l T .
exp{—2 <6k_9k1) > (5k, —9k1)}
k=0
1

% (e .
e p{ kazogi ( o +2bk>} H ¢k (29)

where Dy is defined to be the identity matrix I.

We use Gibbs sampling to sample from 7(€|y) for the CP, given in (29). We assume that
the random effects will be block updated according to their process, i.e. we jointly update
the n-dimensional vector 8y, for £ = 0,...,p — 1. All other parameters in £ are updated
as single univariate components. The full conditional distributions we need for the CP are
given below.

e The full conditional distribution for the centered spatially correlated random effects
Bi, k=0,....,p—1,is
Bk;'/é—kv 07 0.2’ 052; ¢a y ~ N(mZ? Elt)’

where we denote by 37 . the vector of all random effects B without the realisations of
the kth process 3, and

—1 —
* 1 — * * 1 pe —
o = (UQD;D,c + zkl) . mi =% | 5Dy [y > D;B; |+ 01
€ € =0
g#’f
e The full conditional distribution for the global effects 8y, k = 0,...,p — 1, for the CP
is
9k|ﬂa 071@7 027 Jza ¢)7 Yy~ N(mltv Ult)7

1 -1 ~ my
* = ]_TE 11 * = v 1T271 - a— .
o ( " kvk) TR < o Bt TRk

e The full conditional distribution for the random effects variance o7, k =0,...,p — 1
for the CP is

0?1B.0,0% 1, 0%, b,y ~ IG{1 + a, %[ (B —0i1) B (B, - 011)

0 _ 2
+( e — M) +2bk} }
Uk

where

9

e The full conditional distribution for data variance o2 for the CP is

T
~ n 1 Lk ~ p] ~
ol|B.0,0% ¢y ~IG {5 +ac 5 (Y—ZDkﬁk> (Y—ZDkﬁk + 2be

k=0 k=0
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B.2 Posterior distributions for the NCP

We now look at the joint posterior and full conditional distributions of the model parameters
for the NCP. For the NCP we have & = (8",07,02",02,¢")", and

w(Ely) o w(Y[B,0,0)m(Blo?, ¢)m(0lo?)n(o?)n(0?) ()

p—1

- H(Oi)—(n/2+1/2+ak+1)|Rk|—1/2 (Uz)*(n/2+ae+1

k=0

) p—1 T p—1
PN 7952 (Y — > (DiBy + CCIﬁk)) (Y — > (DB + wkek)) + 2be

k=0 k=0
1 p—1 1 p—1 1 0. —m 2

exp{ Zﬁ ﬁk}eXP{_Q 2<M+2bk>

k: o Tk Uk
p—1
H m(Pk), (30)
k=0

where we define xg to be the vector of ones.
The full conditional distributions for the NCP are given below.

e The full conditional distribution for the non-centered spatially correlated random ef-
fects By, k=0,...,p—1, s

,3k|/37k»970'27052a ¢)ay ~ N(m2722)7

where

. (1 N\ R—
* = <02D;Dk + 2k1> . mp =% § D;B; — § j:c]
€ =0
J#k =

e The full conditional distribution for the global effects 0y, k = 0,...,p—1, for the NCP
is
0k|ﬁ7 O—ka 0-27O'e2a ¢ay ~ N(m;:?l);:)a

where
vf = 1aca:k+ AN mi = v} ZDﬁ Zm —
k o2 k 2o ) k k J J O'kUk
J#k
e The full conditional distribution for the random effects variance o7, k = 0,...,p — 1,

for the NCP is

1 0 2
le|ﬁ707027k70527¢7 NIG{n+ +ak» <5ER_ ﬂk—’_(l}]:nk)—’_Qbk)}

e The full conditional distribution for the data variance o2 for the NCP is

a§|ﬁye,oz,¢,y~m{”+ae

2
P
<y

I
-

(DB + wkek)> (Y - pi:l (DB + wkék)> +92b,

k=0

DN | =
=
Il

0
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