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a b s t r a c t

Health and demographic surveillance systems, formed into net-
works of sites, are increasingly being established to circumvent
unreliable national civil registration systems for estimates of
mortality and its determinants in low income countries. Health
outcomes, as measured by morbidity and mortality, generally
correlate strongly with socioeconomic and environmental charac-
teristics. Therefore, to enable comparison between sites, under-
standwhich sites can be grouped andwhere additional sites would
aid understanding of rates and determinants, determining the en-
vironmental and socioeconomic representativeness of networks
becomes important. This paper proposes a full Bayesian method-
ology for assessing current representativeness and consequently,
identification of future sites, focusing on the INDEPTH network in
sub-Saharan Africa as an example. Using socioeconomic and envi-
ronmental data from the current network of 39 sites, we develop
a multi-dimensional finite Gaussian mixture model for clustering
the existing sites. Using the fitted model we obtain the posterior
predictive probability distribution for cluster membership of each
1 × 1 km grid cell in Africa. The maximum of the posterior pre-
dictive probability distribution for each grid cell is proposed as the
criterion for representativeness of the network for that particular
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grid cell. We demonstrate the conceptual superiority and practical
appeal of the proposed Bayesian probabilistic method over previ-
ously applied deterministic clustering methods. As an example of
the potential utility and application of themethod, we also suggest
optimal site selection methods for possible additions to the net-
work.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Health and demographic indices related to births, deaths, migration, economic activity, morbidity
and child mortality are used by governments and many other organizations for effective planning,
health policy formulation and other decision-making processes (Ngom et al., 2001; WHO, 2013). The
data used for estimating these indices are usually obtained from censuses and national civil registra-
tion systems. However, data from these sources in low-income countries are often inconsistent and
unreliable (Sankoh and Byass, 2012; Ye et al., 2012). To circumvent this problem, longitudinal data
collection systems known as Health and Demographic Surveillance Systems (HDSS) were established
to provide more informative and accurate long-term monitoring data. Such systems involve the de-
scription of a target population through an initial census,which is then succeeded by regular collection
of vital statistics and other relevant data. To provide a comprehensive picture of health and popula-
tion dynamics across much wider geographical areas, many HDSS sites have joined networks such as
the International Network of field sites with continuous Demographic Evaluations of Populations and
Their Health (INDEPTH) (Baiden et al., 2006; Sankoh and Byass, 2012). At the time of writing, the IN-
DEPTH network comprises of 52 HDSS sites, of which 39 are located in sub-Saharan Africa.1 Moreover,
new networks are being established, such as the Child Health and Mortality Prevention Surveillance
Network (CHAMPS),2 a network of disease surveillance sites in developing countries.

With networks of surveillance sites attempting to provide standardized and representative data on
a range of health and demographic indicators, and pooling data to provide information on wide-area
demographic patterns and their determinants, understanding the coverage and representativeness of
the network becomes important. This is particularly necessary when it is of interest to determine
where additions to the networks would help improve utility and coverage or to characterize
the uncertainty associated with extrapolations using information from the network. Also, when
performing site selection for establishing new networks of sites, understanding how the network can
be effectively configured to capture the range of variabilities that exist in the regions of interest can
be valuable.

Morbidity, mortality and health equity measures generally correlate and are influenced strongly
by socioeconomic and environmental conditions. These have therefore previously been used as
surrogate measures for assessing the coverage and representativeness of the INDEPTH network
(Tatem et al., 2006; Jia et al., 2015). These studies used deterministic approaches such as hierarchical
clustering (Ward, 1963) for grouping the sites based on gridded datasets depicting factors such as
temperature, rainfall andpopulationdensity, and the Euclideanmetric formapping the socioeconomic
and environmental coverage of the sites. These studies provided a basic assessment of the similarities
between existing sites, representativeness of the network and grouping of sites in terms of available
gridded covariate layers, but did not account for or quantify the uncertainties inherent in undertaking
this.

1 See http://www.indepth-network.org/index.php?option=com_content&task=view&id=1306&Itemid=1070 for details.
2 See http://www.gatesfoundation.org/Media-Center/Press-Releases/2015/05/Child-Health-and-Mortality-Prevention-

Surveillance-Network.
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Model-based clustering methods offer a more statistically principled approach to clustering than
heuristic methods such as hierarchical clustering. Model-based methods quantify the uncertainty
in assigning observations to the clusters through a probability distribution. Finite mixture models
(McLachlan and Peel, 2000; Fraley and Raftery, 2002) in which each mixing component corresponds
to a cluster are well-known in this category. Inference in such models is concerned with estimating
the model parameters and choosing the number of components to best describe the data. The models
are estimated usingmaximum likelihoodmethods implemented using the expectation–maximization
(EM) algorithm (Dempster et al., 1977) or Bayesian methods (Diebolt and Robert, 1994; Dey et al.,
1995). Bayesian approaches are more flexible and they allow for greater coherency in model
estimation and, in particular, the predictive clustering proposed in this work. Also, during model
estimation, uncertainty about the number of components can be incorporated in a Bayesian setting
through a Dirichlet process prior (Escobar and West, 1995) or the use of a reversible jump MCMC
sampler (Richardson and Green, 1997).

In this paper, we propose a probabilistic Bayesian approach to assess the representativeness of
the INDEPTH HDSS network in sub-Saharan Africa as an alternative to previous approaches (Tatem
et al., 2006; Jia et al., 2015). Our analyses are based on 1 × 1 km spatial resolution data for Africa
using covariate layers representing eight variables described in Section 2. The probabilistic predictive
approach is presented in two stages. First, we propose a multi-dimensional finite Gaussian mixture
model fully implemented in a Bayesian framework for clustering the HDSS sites as discussed in
Section 3. The Bayesian framework incorporates a recently developed central clustering procedure
(see Mukhopadhyay et al., 2011) for summarizing the posterior distribution of the clustering
configurations. This enables us to find the most representative clustering configuration along with its
uncertainty as provided by a 95% credible region. In the second stage,we performpredictive clustering
of all the 1 × 1 km grid cells to determine which HDSS sites can realistically be clustered together
in terms of the socioeconomic and environmental characteristics of the regions in which they are
located. In the predictive clustering method, the grid cells are assigned to the clusters of the HDSS
sites using their maximum predictive probabilities; see Section 4. Using the resulting probability map
which clearly reveals inadequately covered areas, we employ a space-filling design to demonstrate
how the location of new sites could be determined to help improve the coverage of the network, in
terms of the covariate layers considered. Our analysis and the results are discussed in Section 5. A few
summary remarks are placed in Section 6. Appendix contains details of the adopted prior distributions
and also the details for the MCMC implementation.

2. Data description and exploratory analysis

Data for our analysis come from the 39 member sites of the African INDEPTH HDSS network at
the time of writing; see Fig. 3 for their locations. Table 1 provides the name, along with the country,
population density and the size of the catchment area for each of these 39 sites. The table shows
considerable variation in both the population density and the size and nature of the catchment area.
The catchment areas of the sites were delineated through a combination of approaches. In some
cases, the catchments were either digitized within ArcGIS from maps of the sites available on the
INDEPTHwebsite or obtained from the organizers of the network. In other caseswhere the catchments
were administrative boundarieswithin countries, thesewere extracted from shapefiles obtained from
national statistical offices or www.gadm.org.

Gridded socioeconomic and environmental data, for eight variables described in Table 2, are
available for all 37 million 1 × 1 km grid cells covering all of the African continent. The first two
socioeconomic variables, denoted by acc50k and gecon, measure respectively the travel time (in min)
to nearest settlement of greater than 50k people3 and grid cell economic output in purchasing power
parity in 2000 (Nordhaus, 2006). The third variable, popdens, is the population density per square
kilometremeasured in 2010 (Linard et al., 2012). The remaining five variablesmeasure environmental

3 http://forobs.jrc.ec.europa.eu/products/gam/.

http://www.gadm.org
http://forobs.jrc.ec.europa.eu/products/gam/
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Table 1
INDEPTH HDSS sites in sub-Saharan Africa.
Source:www.indepth-network.org.

Site name Country Population Catchment area (km2)

1. Butajira Ethiopia 74,400 262
2. Ifakara Tanzania 161,000 2080
3. Rufiji Tanzania 97,000 2313
4. Manhica Mozambique 89,617 190
5. Agincourt South Africa 87,040 97
6. Dikgale South Africa 35,000 21
7. ACDIS South Africa 93,500 983
8. Nouna Burkina Faso 93,000 1841
9. Farafenni Gambia 47,331 882
10. Navrongo Ghana 156,735 2289
11. Bandim Guinea Bissau 105,000 990
12. Bandafassi Senegal 13,000 990
13. Mlomp Senegal 8,200 80
14. Niakhar Senegal 43,000 96
15. Rakai Uganda 50,000 4581
16. Ouagadougou Burkina Faso 82,387 182
17. Nairobi Kenya 61,695 899
18. Kisumu Kenya 230,000 619
19. Kintampo Ghana 142,977 100
20. Karonga Malawi 35,730 4087
21. Cross River Nigeria 31,124 2057
22. Nahuche Nigeria 136,106 902
23. Gilgel Gibe Ethiopia 54,476 419
24. Magu Tanzania 35,000 167
25. Kyamulibwa Uganda 22,000 945
26. Iganga/Mayuge Uganda 79,794 218
27. Chókwè Mozambique 99,834 3137
28. MBITA Kenya 54,014 187
29. Kombewa Kenya 123,456 416
30. Kilifi Kenya 260,000 1037
31. Dodowa Ghana 111,976 1813
32. West Kiang Gambia 14,364 803
33. Kilite Awlaelo Ethiopia 65,848 768
34. Kersa Ethiopia 52,480 174
35. Nanoro Burkina Faso 61,632 649
36. Taabo Côte d’Ivoire 38,478 629
37. Kaya Burkina Faso 64,480 1090
38. Sapone Burkina Faso 86,089 803
39. Dabat Ethiopia 46,984 379

characteristics and are given by: (i) alt, altitude above sea level (in metres), (ii) tmpmean, annual
mean temperature, (0C), (iii) pretot, annual total precipitation, (iv) tmpseas, temperature seasonality
as expressed by the coefficient of variation (100× standard deviation divided by the annual mean),
(v) preseas, precipitation seasonality (coefficient of variation). For temperature and precipitation, the
measurements are based on annual averages between 1950 and 2000. (More information on the
methods used to obtain these environmental variables can be found in Hijmans et al., 2005.) Each of
these eight variables is called a layer, as in GIS terminology. The variables are plotted in Fig. 1. These
maps show obvious variation in the eight layers.

Given the focus on population health and demographics, unpopulated or lowly populated areas
were masked out (the areas covered by the grid cells where the population density is less than one
person per square kilometre). Hence, we work with the remaining 18,496,629, denoted by N , grid
cells. The ranges of gecon and popdens are very large (see Fig. 1) and also they are positively skewed
as is usually the case for population density and the socioeconomic indicator, gecon. Henceforth, we
workwith the logarithm of these variables which reduces skewness and encourages normality for the
modelling proposed in Section 3. To avoid having to take logarithm of zero, we added 0.5 to gecon
before applying the transformation.

http://www.indepth-network.org
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Table 2
Socioeconomic and environmental variables used in the study.

Variable/layer Description Period

• acc50k Travel time to nearest settlement of greater than 50,000 population (min) 2000a

• gecon Measure of grid cell economic output in purchasing power parity (GCP by grid
cell = (population by grid cell) × (GCP/population)) by grid cell (USD)

2000b

• popdens Population density (persons per km2) 2010c

• alt Altitude above sea level (metres) 1950–2000d

• tmpmean Annual mean temperature (°C × 10) 1950–2000d

• pretot Total precipitation (mm) 1950–2000d

• tmpseas Temperature seasonality (standard deviation × 100) (°C) 1950–2000d

• preseas Precipitation seasonality (coefficient of variation) (mm) 1950–2000d

Source:.
a http://forobs.jrc.ec.europa.eu/products/gam/.
b http://gecon.yale.edu/.
c www.worldpop.org.uk.
d http://www.worldclim.org/.

Fig. 1. Plots of the socioeconomic and environmental layers. See Table 2 for details.

There is still considerable variability between the values of the eight variables (after masking)
even after taking the logarithm transformation. To eliminate the large layer specific variability we
standardize all the variables to have unit variance simply by dividing each variable by the sample
standard deviation of the N grid cell values. This allows us to conduct the representativeness study
without having to deal with large numbers due to scale differences. Our mixture modelling effort and
the Bayesian predictive probabilities are not affected by this change of scale because the scales of the
layers are automatically modelled and taken care of in the probability calculation in Sections 3 and 4.

These pre-processed data for each of the eight layers for each of the 39 HDSS sites were extracted
for all the 1×1 kmgrid cells fallingwithin the catchment area of the particularHDSS site. The summary
statistics of the extracted data for the 39 sites are reported in Table 3. These summaries are unit-free
due to the standardization performed in the previous paragraph.

The catchment area of each of the 39 sites containsmultiple 1×1 km grid cells (see the last column
of Table 1) which poses a potential problem of spatial misalignment while performing the compari-
son between each site and an arbitrary 1 × 1 km grid cell from the total N . To alleviate this problem,
we simply average the values of each of the 8 layers for all the 1 × 1 km grid cells falling within the

http://forobs.jrc.ec.europa.eu/products/gam/
http://gecon.yale.edu/
http://www.worldpop.org.uk
http://www.worldclim.org/
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Table 3
Summary statistics for the 39 HDSS sites.

Variable Min. Ist Qu. Median Mean 3rd Qu. Max.

acc50k 0.0000 0.0995 0.1920 0.2778 0.3372 2.0320
log(gecon+0.5) −1.1050 −0.5083 0.1661 0.1095 0.6510 2.0350
log(popdens) −10.8900 2.1730 2.9860 2.7880 3.6750 8.6530
alt 0.0000 0.1761 0.6597 1.3930 2.6790 6.6220
tmpmean 3.1050 5.7980 6.8700 6.6160 7.4750 7.8590
pretot 0.9072 1.2740 1.5640 1.6700 1.9350 4.7720
tmpseas 0.1453 0.4966 0.7794 0.7228 1.0140 1.5630
preseas 0.6466 1.4670 2.0890 2.1220 2.8600 3.8050

catchment so that a unique value for each layer was obtained for each of the 39 sites. We studied the
sensitivity of this choice by taking the median and the mode of the catchment area grid cells both of
which yielded the same clustering as the averages. This analysis assures us that the results are not
affected unduly by our choice of the average as representative of the catchment area grid cells. More-
over, themisalignment problemdisappears since themedian corresponds to a particular 1×1 kmgrid
cell within the site catchment area and the clustering predictions are performed for 1×1 kmgrid cells.

3. Bayesian model-based clustering methods

3.1. The Bayesian finite Gaussian mixture model

Let yi ∈ Rd denote the d averagemeasurements from the ithHDSS site, i = 1, . . . , n = 39. To group
these n d-dimensional observations into an unknown number of clusters, we seek an appropriate
model. Here none of the components of yi stands out as a natural dependent variable, hence a typical
regression modelling setup is not applicable. This is why, we treat each yi as a multi-dimensional
random variable assumed to follow the Gaussian mixture model with K components:

yi|2K ∼

K
j=1

πjNd(yi; θj), i = 1, . . . , n; (1)

where 2K = (π1, . . . , πK , θ1, . . . , θK ), θj = (µj, 6j), and the parameters µj, 6j and πj (πj ∈ (0, 1)
and

K
j=1 πj = 1) denote themean vector, the covariancematrix and themixing proportion of the jth

component respectively.
Inference using (1) is often facilitated by itsmissing data representation. Let the categorical random

variables zi, i = 1, . . . , n, denote the cluster index of the ith site. That is, zi = j if the ith site belongs to
the jth cluster (j = 1, . . . , K). For future reference, let z = (z1, . . . , zn) denote the unknown cluster
indicators and y = (y1, . . . , yn) denote the full set of data from the 39 HDSS sites. The model can now
be expressed in a hierarchical form as

yi|zi = j, 2K ∼ Nd(yi; θj);

p(zi = j|2K ) = πj. (2)

In themodel, each component is characterized by its mean vectorµj and covariancematrix6j. The
µj’s form the centres of the clusters whereas the6j’s determine the geometric features of the clusters;
see Fraley and Raftery (2007). Each 6j in the model contains d(d + 1)/2 parameters. With large and
even moderate d as seen in Section 2, it is often the case that we do not have enough data to obtain
reliable estimates of these parameters for each component. Small n and moderate or large d would
usually lead to a distortion of the geometric attributes of the clusters, culminating inwrong estimation
of the number of components and misclassification of the data. Hence, to preserve parsimony in the
model, different parameterizations of the covariance matrix describing varying geometric attributes
– shape, size and orientation – of the clusters in the Euclidean space could be considered (Fraley and
Raftery, 2007; Bouveyron and Brunet-Saumard, 2014). These parameterizations can also be viewed as
constrained versions of the full model in (1), with the constraints designed to reduce the number of
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parameters to be estimated. In this work, we consider the following parameterizations:

M1 : 6j = σ 2I ∀ j; (3)
M2 : 6j = 6 ∀ j; (4)

M3 : 6j = diag(σ 2
1 , . . . , σ 2

d ) ∀ j; (5)

M4 : 6j = σ 2
j I; (6)

M5 : 6j = diag(σ 2
1j, . . . , σ

2
dj); (7)

M6 : 6j = 6j; (8)

with model M6 in (8) being the full unconstrained model specified in (1). Model M1 as well as mod-
els M3 to M5 constrain the covariance matrix to be diagonal and thus assume that the variables are
conditionally independent. In model (4), the mixture components are assumed to have the same co-
variancematrix. Clearly, these constrainedmodels reduce the number of covariance parameters to be
estimated significantly. Several other model parameterizations based on the eigenvalue decomposi-
tion of 6j as given in Banfield and Raftery (1993) and Celeux and Govaert (1995) are also possible.

The Bayesian model specification in each case of the full and constrained models must be
completed by assuming prior distributions for all the unknown parameters. Details of these prior
distributions and the implementation of the models including the MCMC algorithms are provided
in Appendix.

3.2. Choosing the best model

To fit the finite mixture model in (1), it is necessary to specify a suitable method for choosing the
number of clusters aswell as determining the bestmodel parameterization. In the statistical literature,
many approaches have been proposed for dealing with model choice in a Bayesian framework.
These include: Bayesian information criterion (BIC) (Schwarz, 1978), Bayes factors (Kass and Raftery,
1995), deviance information criterion (DIC) (Spiegelhalter et al., 2002) and the distance-basedmethod
of Sahu and Cheng (2003). In the analysis of finite Gaussian mixture models, Steele and Raftery
(2009) compared the performance of full and empirical Bayesian methods for selecting the number
of components in mixture models. They found that BIC outperformed all the other methods they
considered. Based on their findings, we use the BIC – an approximation to the Bayes factor – to
determine the best model as well as the best K .

The modified version of the BIC used is defined as

BIC = −2 log p(2̂M,K ; y) + γK log n, (9)

where p(.) is the ‘complete-data’ likelihood of model M with K components evaluated using the
maximum a posteriori (MAP) estimate, n is the sample size and γK is the number of free parameters
in the model, which for model (8) is (K − 1)+Kd+Kd(d+ 1)/2. In our MCMC sampling schemewith
T samples from the posterior distribution, we choose 2̂M,K to be the MAP estimate given by:

2̂M,K ≈ arg max
2

(t)
M,K ;1≤t≤T


p(2(t)

M,K ; y) × p(2(t)
M,K )


, (10)

where p(2M,K ) denotes the prior distribution for2M,K . The best fittingmodel and number of clusters
both have the minimum BIC value, which we denote by k∗. We found that this BIC specification
performed well in simulation studies for selecting the best model and K , outperforming the DIC (and
even its modifications—see Celeux et al., 2006) which under-penalizes complex models.

3.3. Central clustering

Once the number of clusters, k∗, corresponding to the best model, is chosen by the BIC as detailed
above, we aim to identify the most representative clustering configuration based on the recently
developed idea of central clustering (see, for example, Mukhopadhyay et al., 2011) as follows.
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Each iteration of the MCMC algorithm yields a particular clustering of the HDSS sites, even when
the number of clusters remain unchanged between iterations. When T draws are obtained, a suitable
method for summarizing the posterior distribution of the clustering configurations, z1, . . . , zT , is
required. In so doing, we aim to obtain the clustering that is ‘‘central’’ and most representative of
all the clusterings obtained alongside its corresponding credible region. Empirically, z∗ is a central
clustering if for a given small ϵ > 0 (typically, 0 < ϵ < 1),

z∗
= arg max

1≤t≤T

1
T
# {zl; 1 ≤ l ≤ T : d(zt , zl) < ϵ} , (11)

where d(·, ·) is a suitably chosen metric that measures the dissimilarity or otherwise of a pair of
clusterings and #{A} denotes the cardinality of the set A. Note that for the multimodal posterior
distribution of clusterings, varying ϵ over (0,1) and letting ϵ → 0 will lead to the detection of all
the modes and the global mode.

Let nij denote the number of observations in the ith cluster of zl and jth cluster of zt for any l and
t , 1 ≤ l, t ≤ T . The nij’s are easily determined from a k∗

× k∗ cross-tabulation of the clusterings. An
approximate metric for determining the distance between clusterings zl and zt is given by

d(zl, zt) = max

d̃(zl, zt), d̃(zt , zl)


, (12)

where d̃(zl, zt) = 1−

k∗
i=1 max1≤j≤k∗ nij

n00
with n00 =

k∗
i=1

k∗
j=1 nij. An approximate 95% credible region

for the central clustering z∗ is defined as the set {zt; 1 ≤ t ≤ T : d(zt , z∗) < ϵ∗
}, where the quantity

ϵ∗ is such that
1
T
#


zt; 1 ≤ t ≤ T : d(zt , z∗) < ϵ∗


≈ 0.95. (13)

This credible region is constructed by initially setting ϵ∗
= 0 and then successively adding a very small

quantity (e.g. 10−10) until (13) is satisfied. When there are multiple modes (i.e. more than one central
clustering), a highest posterior density region can also be constructed adaptively. Further details about
this concept including theoretical properties are given in Mukhopadhyay et al. (2011).

4. Probabilistic predictive clustering and site selection

4.1. Cluster representativeness via predictive clustering

To determine the spatial coverage or representativeness of the HDSS sites, we now detail the
method for performing predictive clustering of the 1×1 kmgrid cells. Let ym denote the 8-dimensional
socioeconomic and environmental measurements for the mth 1 × 1 km grid cell, m = 1, . . . ,N(=
18, 496, 629). Let zm denote the unknown cluster index for ym. Our objective here is to find, p(zm =

j|y, ym, k∗) for j = 1, . . . , k∗ where k∗ is the chosen value of the optimum number of clusters. This
probability can be expressed as

p(zm = j|y, ym, k∗) =


p(zm = j|ym, 2k∗ , z)p(2k∗ , z|y, ym)d2k∗dz, (14)

where2k∗ contains the parameters of the chosen, k∗-componentmodel. From (14), it can be seen that
the inclusion of an additional data (grid cell) will change the posterior distribution of the parameters.
This requires that theMCMC sampler (or, in our case, the Gibbs sampler) is rerunwith all the ym’s to be
classified. This is infeasible and computationally prohibitive given the massive number of predictions
to be made. As a solution to this problem, we propose a retrospective prediction strategy which
involves approximating the integral in (14) as follows:

p(zm = j|y, ym, k∗) ≈


p(zm = j|ym, 2k∗ , z)p(2k∗ , z|y)d2k∗dz,

= E2k∗ ,z (p(zm = j|ym, 2k∗ , z)) . (15)



C.E. Utazi et al. / Spatial Statistics 17 (2016) 161–178 169

Eq. (15), also known as the posterior predictive distribution of zm, can then be computed using the
MCMC estimates of (2k∗ , z) by taking the empirical average of

p(zm = j|ym, 2k∗ , z) =
πjNd(ym; θj)

k∗
l=1

πlNd(ym; θl)

, j = 1, . . . , k∗, (16)

over all the MCMC samples (see Richardson and Green, 1997 for a related discussion). Given the
probabilities from (16), the cluster membership of themth grid cell is given by

ẑm = argmax
j

{p(zm = j|y, ym, k∗)}. (17)

Thus, each grid cell is assigned to the cluster in which it has the maximum probability. The
maximum probabilities used in clustering the grid cells provide insights as to the representativeness
of the clusters of the HDSS sites. Grid cells in poorly represented areas will be equally likely to be
classified into any of the k∗ clusters. To identify these areas, we simply search for grid cells whose
maximum classification probabilities are ≈ 1/k∗. In general, and depending on the application at
hand, a threshold classification probability can be established for the identification of poorly covered
areas. These areaswill further constitute candidate locations for the establishment of new sites to help
maximize the socioeconomic and environmental coverage of the network.

4.2. Sampling design for site selection

We now describe a spatial sampling design to demonstrate the utility of the classification
probabilities for the establishment of new sites using poorly covered areas as candidate locations.

Let N0 = #{m : max{p(zm = j|y, ym, k∗)} < p0; 1 ≤ m ≤ N, 1 ≤ j ≤ k∗
} denote the

number of grid cells whose classification probabilities were less than the threshold probability, p0.
Let D = {s1, . . . , sN0} denote the spatial (longitude and latitude) coordinates of the N0 grid cells.
To select n0 candidate sites whilst keeping the current n sites fixed, we use the space-filling design
algorithm of Royle and Nychka (1998) as implemented in the fields package in R (R Core Team, 2013).
The algorithm seeks to minimize the coverage criterion

Q (D̃,D) =


si∈D


s̃i∈D̃

ω(si, s̃i)r1

r2/r11/r2

; (18)

where ω(·, ·) denotes a spatial distance measure (e.g. the geodetic distance used here) of its
arguments, and the parameters r1 < 0 and r2 > 0 are suitably chosen to yield a reasonable design,
the set of n + n0 locations in D̃ represents the design set optimized by the algorithm. See Royle and
Nychka (1998) for details of the algorithm.

In this sampling design, certain eligibility conditions can be straightforwardly imposed to further
restrain the set of candidate sites. For example, if grid cells in poorly covered areas whose population
densities are below a pre-specified value are not to be considered, these can bemasked out before the
site selection is performed.

5. Data analysis

In this section, we discuss the application of the methodology to determine the socioeconomic
and environmental representativeness of the INDEPTH HDSS network in sub-Saharan Africa.
Implementation details are as provided in Appendix. Table 4 reports the BIC values of models M1 to
M6 for the given values of K . The BIC values are also plotted in Fig. 2. It can be seen that the constrained
models, M1 to M5, are clearly better than the full model, M6 according to the BIC. Further, models
M2 and M3 with the same covariance matrix for all the components fit the data better than other
constrained models. The best fitting model is M3 (BIC = 643.51) with k∗

= 5 components.
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Table 4
BIC values for the models.

Model Number of components
2 3 4 5 6 7 8 9 10

M1 755.44 736.88 754.14 752.73 757.65 780.15 797.35 862.73 886.49
M2 700.07 706.47 691.51 677.41 678.71 705.58 735.57 757.21 783.38
M3 673.75 655.03 654.13 643.51 653.76 667.40 674.31 717.55 759.38
M4 755.12 725.43 733.03 729.54 775.42 782.45 820.11 865.03 891.06
M5 690.24 703.45 762.03 763.87 835.50 979.84 991.90 1033.41 1152.67
M6 732.30 870.14 1056.34 1160.66 1360.93 1524.65 1661.94 1862.36 2040.59

Fig. 2. Plot of BIC against number of components for each of the six models.

From the application of the central clustering methodology of Section 3.3 to the posterior
distribution of the clustering configurations, we obtained one central clustering (z∗) provided in
Table 5. The value of ϵ corresponding to z∗ is 0.05. (This ϵ value was determined as the centre of
the distances between the clusterings. We note that for other values within ±0.03 of this ϵ value and
for ϵ → 0, no other central clustering was detected.) Fig. 3 plots the central clustering reported in
Table 5. It can be seen that Cluster 2 is the largest cluster with 13 sites, Clusters 1 and 3 each have 7
sites while each of Clusters 4 and 5 contains 6 sites. The figure shows that two clusters – Clusters 2
and 3 – were identified inWestern Africa. Interestingly, Cluster 3 is also made up of some sites in East
Africa. This shows that these groups of sites are similar in characteristics although they are located
in different regions of the continent. The other two clusters identified in East Africa are Clusters 1
and 4. All the sites in Southern Africa are shown to be similar. The 95% credible region for the central
clustering, which also happens to the 95% highest posterior density region due to unimodality, was
obtained as {z : d(z∗, z) < 0.1282}. The empirical probability of the credible region is 0.9608, which
indicates a close approximation.

Comparison with K-means and hierarchical clustering: To demonstrate the superiority of the
Bayesian clustering approach (using a finite Gaussian mixture model) with regard to clustering of
the HDSS sites and accounting for the associated uncertainty, the K -means (MacQueen, 1967) and
hierarchical clustering (with complete linkage method) algorithms were used to cluster the sites. In
both analyses, we set the number of clusters equal to that of the central clustering as these methods
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Table 5
Clusters of the central clustering.

Cluster Sites

1 Rakai, Kisumu, Magu, Kyamulibwa, Iganga/Mayuge, MBITA, Kombewa
2 Nouna, Farafenni, Navrongo, Bandim, Bandafassi, Mlomp, Niakhar,

Nanoro, Kaya, Sapone, Ouagadougou, Cross River, West Kiang
3 Ifakara, Rufiji, Kintampo, Nahuche, Kilifi, Dodowa, Taabo
4 Butajira, Nairobi, Gilgel Gibe, Kilite Awlaelo, Kersa, Dabat
5 Manhica, Agincourt, Dikgale, ACDIS, Karonga, Chókwè

Fig. 3. A map of Africa showing the INDEPTH HDSS sites and their clusters. See Tables 1 and 5 for the numbering of the sites
and their clusters, respectively.

offer no principled approach for determining the number of clusters. This meant that for hierarchical
clustering, the dendrogram was cut at a height that yielded five clusters. The plots of the clusterings
in the space of the first two principal components of the data are shown in Fig. 4. (Note that the
clusterings do not have the same numbering.) These plots show clearly the variation among these
clustering methods. Using the dissimilarity measure in (12), the distance between the K -means
clustering and the central clustering was found to be 0.1026. Coincidentally, the distance between
hierarchical clustering and the central clusteringwas also 0.1026. (The distance betweenK -means and
hierarchical clustering was 0.0513.) This shows that the central clustering is close to the clusterings
obtained using the K -means and hierarchical methods with both clusterings falling within its 95%
credible region. We note that the central clustering was obtained taking into account the uncertainty
regarding the clustering of the data and, hence, is more representative of other possible clusterings.

To assess the spatial coverage/representativeness of the clusters of the HDSS sites, we extrapolated
the clusterings obtained to the 1×1 km grid cells across Africa as discussed in Section 4.1. The results
of this analysis are displayed in Figs. 5 and 6. From the cluster map in Fig. 5, it can be seen that the
sites in Cluster 2 cover mainly the Sahel and other arid regions of the continent, where climatic and
environmental conditions often show significant seasonal fluctuations (see Tatem et al., 2006). Cluster
3 generally alignswith the highly vegetated, tropical regions of the continentwhereas Clusters 1 and 4
correspondmore to the highland areas—the demographic and environmental characteristics of which
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Fig. 4. Comparison of the central clustering with the K -means and hierarchical clustering. The clusterings are plotted in the
space of the first two principal components of the data from the 39 HDSS sites.

are visible from examining Fig. 1(c)–(f). Lastly, the sites in Cluster 5 typically characterize the steppes
and semi-desert regions of the continent.

The probability map in Fig. 6 displays the maximum probabilities (see Eq. (17)) used in clustering
the grid cells. The map depicts the uncertainty in the predictive clustering of the grid cells based
on the clustering of the HDSS sites. A high probability is indicative of lower uncertainty while a low
probability suggests greater uncertainty. The light coloured areas arewell represented by the network
and are classified with high probabilities. Poorly represented areas are dark coloured and these are
classified with low probabilities. For example, the region bordering Central and Southern Africa is
poorly represented by the current network. The lowest probability of classification was obtained as
0.23. It should be noted that grid cells with classification probabilities of ≈0.2 are equally likely to
belong to any of the five clusters. Hence, these areas are the most poorly represented by the network.

Finally, with a threshold probability value of p0 = 0.4, the spatial sampling design described
in Section 4.2 was applied to choose the location of n0 = 10 new sites. This choice of p0 implies
that grid cells whose classification probabilities were less than 0.4 were not considered as candidate
sites. Following test runs, we set r1 = −100 and r2 = 1. The implementation of the algorithm
produced the coverage design shown in Fig. 6. The green filled circles in the figure are locations where
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Fig. 5. Coveragemap of the clusters. The clusters are numbered as given in Table 5. The uninhabited areas are coloured in grey.

the establishment of new sites will help maximize the socioeconomic and environmental coverage
of the network, given the socioeconomic and environmental layers considered here. Hence, the
methodology proposedhere offers an integrated approach that produces outputs both for determining
the representativeness of the current network and a template for improving its coverage.

6. Summary and discussion

We have proposed and applied a Bayesian methodology for assessing the coverage of a network of
health and demographic surveillance sites using gridded socioeconomic and environmental data. Our
analysis of the coverage of the INDEPTH HDSS network in sub-Saharan Africa built upon the work of
Tatem et al. (2006) and Jia et al. (2015) to map the sociodemographic and environmental coverage of
the INDEPTHHDSS network in sub-Saharan Africa at 1×1 km spatial resolution. The central clustering
of the HDSS sites, the cluster and probability maps resulting from predictive clustering of the 1 × 1
km grids and the illustrative location of new sites comprise the key outputs from the application of
the methodology. These outputs have demonstrated clearly the representativeness of the network
through the identification of poorly and well covered areas, among other important findings.

In Tatem et al. (2006) and Jia et al. (2015), separate analyses were carried out using deterministic
approaches to cluster the sites, to perform environmental and socioeconomic classification of the
grid cells and finally, to determine the representativeness of the sites. However, the Bayesian
methodology developed in this paper offers a more coherent approach in that it allows us to cluster
the sites, to characterize site representativeness and to undertake a socioeconomic and environmental
classification of the entire continent of Africa all in a single model-based analysis. Furthermore,
considering the large number of 1× 1 km grid cells in Africa, it will be computationally prohibitive (if
at all possible) to cluster these using deterministic approaches such as the K -means and hierarchical
clustering when using statistical software packages such as R. However, with our methodology, the
grid cells can be easily clustered by post-MCMC parallel computing on a high-performance computer.
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Fig. 6. Predictive probability map obtained from the N = 18, 496, 629 1×1 km grid cells. Plotted is themaximum probability
of being included in any cluster. Masked out, low population density areas, are coloured in grey. The existing 39 sites are shown
as filled grey coloured circles. The 10 proposed new sites are shown in filled green coloured circles. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Lack of ready to use packaged software routines is a potential weakness of the proposed method.
The intricacy of our methodologymeant that currently, the clustering of the sites using mixture mod-
elling, model choice using BIC, determination of the central clustering, predictive clustering of the
1× 1 km grid cells and site selection are each executed using separate computer code. Moreover, the
choice of ϵ for determining the central clustering is iterative and is currently performed by trial and er-
ror. Thus, the methodology as a whole is intensive requiring decisionmaking at several stages. Hence,
to facilitate routine implementation of themethodology further investment is required in flexible soft-
ware development to integrate the component sub-procedures, which we plan to take up elsewhere.

Further work on the methodological aspects will focus on exploring a variable dimensional MCMC
method (Richardson and Green, 1997) for clustering the sites. Also, extensions to a nonparametric
mixture model using a Dirichlet process prior may be worth investigating. Nevertheless, considering
the nature of the data analysed, we note that such extensions should be handledwith caution to avoid
over-fitting problems. Over-parameterizing the model can result in noisy parameter estimates and
cause problems during predictive clustering of the grid cells. Therefore, any extension incorporating
the uncertainty about the number of components via the aforementioned approaches should also
involve parsimonious parameterizations of the covariance matrices of the mixture components.

The distance-based sampling design discussed in Section 4.2 for the selection of new sites is
an exploratory approach. Extensions, in line with the rationale behind the establishment of HDSS
networks, will consider model-based approaches for sites selection (see, for example, Chipeta et al.,
2016). These model-based approaches could be used to optimize the prediction of some health
outcomes of interest such as under-five mortality and malaria prevalence over the poorly covered
areas as obtained using the maximum classification probabilities.

As shown in Table 1, the catchment areas of the HDSS sites vary greatly in size. The implication of
this is that within a given site, the values of a particular variable may exhibit a marked variability. For
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example, within Rakai, there exist clusters of grid cells with very different population densities. This
information is lost when the sites are clustered based on the averages of the variables within their
catchment areas. An extension of this work will therefore seek to incorporate within-site variability
when clustering the sites. This could be in the form of an extension of model (1) to allow clustering of
the sites using all the grid cells within their catchment areas.

Moreover, environmental conditions vary month by month, meaning that cluster structures will
likely also vary monthly, and future work will explore the effects of this seasonality through monthly
variables (see, for example, Dash et al., 2010). Further, additional variables will be explored, such as
those relating to population nutrition and sanitation, which can have important effects on population
health. Such variablesmay only be available as administrative unit-level aggregates, and thereforewill
require the development of methods for their integration into the grid-based approaches outlined in
this paper.
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Appendix. Posterior details and the Gibbs sampler

Given the set of the measurements of the HDSS sites and their cluster indicators {(yi, zi); i =

1, . . . , n}, the ‘complete-data’ likelihood of the model is

p(2K ; y, z) =

K
j=1


i:zi=j

πjNd(yi; θj), (A.1)

from which the observed-data likelihood can be easily obtained as p(2K ; y) =

p(2K ; y, z)dz if

desired. In a Bayesian setting, appropriate prior distributions are placed on the parameters. Assuming
prior independence, we choose conjugate priors for the parameters as follows (j = 1, . . . , K ; r =

1, . . . , d):

π1, . . . , πK ∼ Dir(δ1, . . . , δK );

µj|6j ∼ Nd(µa, 1/b6j);

6j, 6 ∼ Inverse Wishart(s, S);

σ 2, σ 2
j , σ 2

rj , σ
2
r ∼ Inverse Gamma(s/2, S/2). (A.2)

That is, the mixing weights, the mean vectors, the covariance matrices and other covariance
parameters are assumed to follow the Dirichlet distribution, the multivariate normal distribution, the
inverse Wishart distribution and the inverse gamma distribution respectively.

For each model, the posterior distribution is given by p(2K ; y, z) × p(2K ), which is simply the
product of the likelihood in (A.1) and the joint prior distribution on the parameters, p(2K ). It is
straightforward to derive the conditional posterior distribution of the parameters for Gibbs sampling.
These are provided as follows.

By Bayes’ theorem, the conditional posterior distribution of the indicator variables, zi (i =

1, . . . , n), in all the models can be obtained as

p(zi = j|y, 2K , z−i) =
πjNd(yi; θj)

K
l=1

πlNd(yi; θl)

; j = 1, . . . , K . (A.3)
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Let nj = #{i : zi = j} and ȳj =


i:zi=j yi/nj. The conditional posterior distribution of the mixing
weights π = (π1, . . . , πK ) is given by

π|z ∼ Dir(n1 + δ1, . . . , nK + δK ). (A.4)

For the component means, µj, we have

µj|y, z, 6j ∼ Nd(µ̃a, 1/b̃6j); (A.5)

where µ̃a = (njȳj + bµa)/(b + nj) and b̃ = b + nj. Note that throughout, 6j is as defined in models
(3)–(8).

Let S1j =


i:zi=j(yi − ȳj)T (yi − ȳj) +
bnj
b+nj

(ȳj − µa)
T (ȳj − µa) and S2

j =


i:zi=j(yi − ȳj)(yi − ȳj)T +

bnj
b+nj

(ȳj − µa)(ȳj − µa)
T . Also, let [.]r denote the rth diagonal element of the corresponding matrix.

The full conditional distributions of the covariance parameters are given as follows.

M1 : σ 2
|y, z ∼ Inverse Gamma


s̃/2, S̃/2


; s̃ = nd + s; S̃ = S +

K
j=1

S1j .

M2 : 6|y, z ∼ Inverse Wishart(s̃, S̃); s̃ = s + n; S̃ = S +

K
j=1

S2
j .

M3 : σ 2
r |y, z ∼ Inverse Gamma


s̃/2, S̃/2


; s̃ = s + n; S̃ =


SI +

K
j=1

S2
j


r

.

M4 : σ 2
j |y, z ∼ Inverse Gamma


s̃/2, S̃/2


; s̃ = njd + s; S̃ = S + S1j .

M5 : σ 2
rj |y, z ∼ Inverse Gamma


s̃/2, S̃/2


; s̃ = s + nj; S̃ =


SI + S2

j


r
.

M6 : 6j|y, z ∼ Inverse Wishart(s̃, S̃); s̃ = s + nj; S̃ = S + S2
j . (A.6)

With these conditional posterior distributions, the Gibbs algorithm implemented is outlined as
follows.
Gibbs sampler

1. Initialize the parameters (π, µj and 6j) and the hyperparameters (see (A.1)).
2. Update the allocation variables, z: For i = 1, . . . , n, sample zi from its conditional distribution

given in (A.3).
3. Update π: Sample π from its conditional distribution in (A.4).
4. Update µj: For each j ∈ {1, . . . , K}, draw µj from the conditional distribution in (A.5).
5. Update 6j: The full covariance matrices or the covariance parameters are drawn from their

conditional distributions as given above.
6. Permute the component labels {1, . . . , K} and align the parameters.
7. Repeat steps 2–6 for a desired number of iterations.

In the algorithm, the parameters were initialized using samples drawn from their prior
distributions. In step 6, a random permutation of the K component labels as proposed in Frühwirth-
Schnatter (2001) is used to improve themixing of the algorithm.We note that extensions of the Gibbs
algorithm such as tempering MCMC (see, for example, Neal, 1996; Celeux et al., 2000) which have
been proposed to handle trapping in local modes exist. However, we found that the Gibbs algorithm
described above performed well in our application, producing a plausible clustering of the data and
results comparablewith other clustering approaches. All the algorithms for the proposedmodels have
been coded in R (R Core Team, 2013).

A problem that occurs with Bayesian estimation of mixture models is the non-identifiability of the
parameters which results from the invariance of the posterior distribution under a permutation of the
parameters. Many solutions have been proposed for tackling this problem which include imposing
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identifiability constraints on the parameters and the use of relabelling algorithms (see Richardson
and Green, 1997; Stepehens, 2000). In this work, the relabelling algorithm of Stepehens (2000) was
applied retrospectively to the MCMC samples before these were used for further analysis.

To perform a Bayesian clustering of the HDSS sites using the finite Gaussian mixture model, we
set b = 1 and δj = 1 (j = 1, . . . , K) in the prior distributions for µj and π, respectively, as these
are natural choices. Also, the empirical mean of the data was used as the prior mean of µj. In models
(4) and (8), the prior distribution for 6 and 6j was Inverse Wishart(s, S = diag(1, . . . , 1)) while in
models (3), (5), (6) and (7), we used Inverse Gamma(s/2, 1/2) as prior for the covariance parameters
σ 2,σ 2

j ,σ
2
rj andσ 2

r , respectively.We chose the values of susingpilot runs in all themodels,whilst noting
that this hyperparameter must be greater than d − 1 in (4) and (8). Based on a previous analysis by
Tatem et al. (2006), we considered K = 2, . . . , 10. In all cases, the Gibbs algorithmwas run for 20,000
iterations after a burn-in period of 20,000 iterations.

References

Baiden, F., Hodgson, A., Binka, F.N., 2006. Demographic surveillance sites and emerging challenges in international health. Bull.
World Health Organ. 84, 163.

Banfield, J.D., Raftery, A.E., 1993. Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803–821.
Bouveyron, C., Brunet-Saumard, C., 2014. Model-based clustering of high-dimensional data: A review. Comput. Statist. Data

Anal. 71, 52–78.
Celeux, G., Forbes, F., Robert, C.P., Titterington, D.M., 2006. Deviance information criteria for missing data models. Bayesian

Anal. 1 (4), 651–673.
Celeux, G., Govaert, G., 1995. Gaussian parsimonious clustering models. Pattern Recognit. 28, 781–793.
Celeux, G., Hurn, M., Robert, C.P., 2000. Computational and inferential difficulties with mixture posterior distributions. J. Amer.

Statist. Assoc. 95 (451), 957–970.
Chipeta, M.G., Terlouw, D.J., Phiri, K.S., Diggle, P.J., 2016. Adaptive geostatistical design and analysis for prevalence surveys. Spat.

Statist. http://dx.doi.org/10.1016/j.spasta.2015.12.004.
Dash, J., Jeganathan, C., Atkinson, P.M., 2010. The use of MERIS terrestrial chlorophyll index to study spatio-temporal variation

in vegetation phenology over India. Remote Sens. Environ. 114 (7), 1388–1402.
Dempster, A., Laird, N., Rubin, D., 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B

Stat. Methodol. 39 (1), 1–38.
Dey, D.K., Kuo, L., Sahu, S.K., 1995. A Bayesian predictive approach to determining the number of components in a mixture

distribution. Stat. Comput. 5, 297–305.
Diebolt, J., Robert, C.P., 1994. Estimation of finite mixture distributions through Bayesian sampling. J. R. Stat. Soc. Ser. B Stat.

Methodol. 56, 363–375.
Escobar, M.D., West, M., 1995. Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90 (430),

577–588.
Fraley, C., Raftery, A.E., 2002. Model-based clustering, discriminant analysis and density estimation. J. Amer. Statist. Assoc. 97,

611–631.
Fraley, C., Raftery, A.E., 2007. Bayesian regularization forNormalmixture estimaton andmodel-based clustering. J. Classification

24, 155–181.
Frühwirth-Schnatter, S., 2001. Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models.

J. Amer. Statist. Assoc. 96 (453), 194–209.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global

land areas. Int. J. Climatol. 25, 1965–1978.
Jia, P., Sankoh, O., Tatem, A.J., 2015. Mapping the environmental and socioeconomic coverage of the INDEPTH international

health and demographic surveillance system network. Health & Place 36, 88–96.
Kass, R.E., Raftery, A.E., 1995. Bayes factors. J. Amer. Statist. Assoc. 90 (430), 773–795.
Linard, C., Gilbert, M., Snow, R.W., Noor, A.M., Tatem, A.J., 2012. Population distribution, settlement patterns and accessibility

across Africa in 2010. PLoS One 7 (2).
MacQueen, J., 1967. Somemethods for classification and analysis of multivariate observations. In: Cam, L.M., Neyman, J. (Eds.),

Proceedngs of the 5th Berkeley Symposium onMathematical Sciences and Probability, Vol. 1. University of California Press,
pp. 281–297.

McLachlan, G.J., Peel, D., 2000. Finite Mixture Models. Wiley Interscience, New York.
Mukhopadhyay, S., Bhattacharya, S., Dihidar, K., 2011. On Bayesian ‘‘central clustering’’: Application to landscape classification

of Western Ghats. Ann. Appl. Stat. 5 (3), 1948–1977.
Neal, R.M., 1996. Sampling from multimodal distributions using tempered transitions. Stat. Comput. 6, 353–366.
Ngom, P., Binka, F.N., Phillips, J.F., Pence, B., Macloed, B., 2001. Demographic surveillance and health equity in sub-Saharan

Africa. Health Policy Plan. 16, 337–344.
Nordhaus,W.D., 2006. Geography andmacroeconomics: New data and new findings. Proc. Natl. Acad. Sci. 103 (10), 3510–3517.
R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,

Austria.
Richardson, S., Green, P.J., 1997. On Bayesian analysis of mixtures with an unknown number of components. J. R. Stat. Soc. Ser.

B Stat. Methodol. 59 (4), 731–792.
Royle, J.A., Nychka, D., 1998. An algorithm for the construction of spatial coverage designs with implementation in SPLUS.

Comput. Geosci. 24 (5), 479–488.

http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref1
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref2
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref3
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref4
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref5
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref6
http://dx.doi.org/10.1016/j.spasta.2015.12.004
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref8
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref9
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref10
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref11
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref12
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref13
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref14
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref15
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref16
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref17
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref18
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref19
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref20
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref21
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref22
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref23
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref24
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref25
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref27
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref28


178 C.E. Utazi et al. / Spatial Statistics 17 (2016) 161–178

Sahu, S.K., Cheng, R.C.H., 2003. A fast distance based approach for determining the number of components in mixtures. Canad.
J. Statist. 31, 3–22.

Sankoh, O., Byass, P., 2012. The INDEPTH network: Filling vital gaps in global epidemiology. Int. J. Epidemiol. 41, 579–588.
Schwarz, G., 1978. Estimating the dimension of a model. Ann. Statist. 6, 461–464.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A., 2002. Bayesian measures of model complexity and fit. J. R. Stat. Soc.

Ser. B Stat. Methodol. 64, 583–616.
Steele, R.J., Raftery, A.E., 2009. Performance of Bayesian model selection criteria for Gaussian mixture models. Tech. Rep. 559.

Dept. Stat., Univ. Washington, Wasington, DC.
Stepehens, M., 2000. Dealing with label switching in mixture models. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 (4), 795–809.
Tatem, A.J., Snow, R.W., Hay, S.I., 2006. Mapping the environmental coverage of the INDEPTH demographic surveillance system

network in rural Africa. Trop. Med. Int. Health. 11 (8), 1318–1326.
Ward, J.H., 1963. Hierarchical groupings to optimize an objective function. J. Amer. Statist. Assoc. 105, 234–244.
WHO, 2013. Strengthening Civil Registration and Vital Statistics for Births, Deaths and Causes of Death: Resource Kit. World

Health Organisation, Luxembourg.
Ye, Y., Wamukoya, M., Ezeh, A., Emina, J.B.O., Sankoh, O., 2012. Health and demographic surveillance systems: A step towards

full civil registration and vital statistics system in sub-Saharan Africa? BMC Public Health 12 (741).

http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref29
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref30
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref31
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref32
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref33
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref34
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref35
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref36
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref37
http://refhub.elsevier.com/S2211-6753(16)30024-0/sbref38

	A probabilistic predictive Bayesian approach for determining the representativeness of health and demographic surveillance networks
	Introduction
	Data description and exploratory analysis
	Bayesian model-based clustering methods
	The Bayesian finite Gaussian mixture model
	Choosing the best model
	Central clustering

	Probabilistic predictive clustering and site selection
	Cluster representativeness via predictive clustering
	Sampling design for site selection

	Data analysis
	Summary and discussion
	Acknowledgements
	Posterior details and the Gibbs sampler
	References


