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INVERSE SCATTERING DESIGNS OF OPTICAL WAVEGUIDES AND FIBRES 

Alexander Robinson May 

Optical fibres and waveguides have become vital components in communication systems ranging 

from on-chip interconnects in datacentres, to trans-oceanic submarine communication cables. 

Typically, they are designed in a trial-and-error manner and the objective of this thesis was to 

investigate their inverse design using a method known as inverse-scattering. In contrast to methods 

of design optimisation where an initial refractive form of index profile of some kind must be chosen, 

inverse-scattering makes no such assumptions other than that of which modes are carried by the 

structure and what their respective propagation constants are.  

Initially, the control over group-velocity dispersion in a single-mode planar waveguide with fixed 

propagation constant was investigated by considering the form of the transverse reflection response 

by which the modal properties of the waveguide may be specified, as discussed in the literature. It 

was demonstrated that common features of dispersion-engineered waveguides were obtained 

corroborating their use in the existing literature and further understanding of these features was 

developed.  

Extending the study to multimode planar waveguides through the application of an inverse-scattering 

method rooted in the quantum mechanical community, the properties of multiple guided modes, such 

as their group-velocities and modal gain were controlled. The realisation that both gain and loss are 

required in a refractive index profile to have exact equalisation of modal gain across multiple modes 

was novel and differed from existing approaches using genetic algorithms. In addition to this, the 

design of waveguide couplers by which power can be transferred from one waveguide to another was 

considered by an approach differing from that of the increasingly popular supersymmetric (SUSY) 

approach in the literature.      

Attention turned to the design of few-mode optical fibres which are at the forefront of technology. 

Since the planar waveguide designs above were found to contain ‘depressions’ and ‘rings’, similar 

such features were investigated in an optical fibre based upon the knowledge that there were 

similarities in the modal intensity profiles of the first few linearly polarised (LP) modes in a fibre, 

and that of the TE modes in planar waveguides. Core depressions and ‘rod-like’ refractive index 

perturbations were implemented and found to increase the spacing between mode groups.  

Following on from the above successes, inverse-scattering techniques were applied directly to the 

cylindrical symmetry of optical fibres and their associated LP modes. A particular feature of this 

work was the realisation that the propagation constants of such modes can only be specified at the 

start of the design process for a fixed value of the azimuthal symmetry of the fibre mode. A finding 

by other researchers using the SUSY technique had been that the modes in coupled fibres (trunk-

partner pairs) could only be ‘matched’ when the azimuthal symmetry of the trunk and partner modes 

differed. The inverse-scattering method in this thesis, on the other hand, does not have this limitation.  
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  Introduction 

1.1 Optical waveguide and fibre design 

1.1.1 A historical context 

Communication involves the transfer of information from one point to another, and, since the end of 

the nineteenth century, this has often been achieved using a transmitter modulated electromagnetic 

carrier wave, be it a radio wave, microwave or light wave. Once modulated, the carrier wave travels 

through a channel after which it eventually meets a receiver where it is demodulated and the 

imprinted signal obtained. It can be roughly stated that the rate of information that can be sent is 

approximately proportional to the difference between the maximum and minimum frequencies of the 

channel, otherwise known as its bandwidth. As such, the information capacity of a modulated optical 

beam with carrier frequency in the range of 1014 to 1015 Hz is much larger than that typically obtained 

using radio or microwaves.  

The use of optical carrier waves for telecommunications was given a boost when the ruby laser was 

discovered in 1960 by Theodore Maiman [1.1]. Prior to this, no optical source was suitable for such 

use, and its discovery occurred at a time of significant growth in telecommunications traffic. Initial 

investigations examined the possibility of using optical beams in very much the same way as 

conventional communication systems, through the transmission of a laser beam through the 

atmosphere. However, it was soon found that laser beams, with their wavelength being shorter than 

that typically found in the radio spectrum, suffered from considerable attenuation due to scattering 

and absorption in the atmosphere. A solution to this problem would be the use of some form of 

guiding medium with which to protect the light beam.  

Shortly after the development of the ruby laser, in 1965 Charles K. Kao and George A. Hockham 

[1.2] of the then British company, the Standard Telecommunications Laboratory, recognised that a 

fibre of glassy material could be used as a medium for guided transmission at optical frequencies. In 

addition, they reported that the most significant attenuation of such a fibre was caused by impurities 

and not by fundamental physical limits, and could therefore be reduced in time.  

In 1970 the first practical optical fibre suitable for communications, with a new low loss of 17 dB/km, 

was developed at glassmaker Corning by Robert D. Maurer, Donald Keck, Peter Schultz and Frank 

Zimar [1.3]. Up to that time it was the purest glass that had ever been made and was a breakthrough 

for fibre-optic communications. As the 1970s went by, development continued and soon the best 

Silica laboratory fibres were approaching the fundamental scattering limit at 0.85 µm of two decibels 

per kilometre. At around this time on the 22nd April 1977, General Telephone and Electronics sent 
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the first live telephone traffic over a 10 kilometre route between Long Beach and Artesia, California, 

using fibre optics at 6.3 Mbit/s. It was a world first.  

1.1.2 Fibre optic communication systems 

The late 1970s saw the development of the first fibre optic communication systems. This began at a 

wavelength of 0.85 µm using GaAs semiconductor lasers. Combined with the discovery by 

Horiguchi [1.4] of fibre losses of ~1 decibel per kilometre at longer wavelengths between 0.95 and 

1.37 µm, as well as the potential for near-zero material dispersion in the same region, was the 

development of a new family of InGaAsP semiconductor lasers operating at 1.3 µm. The combination 

of low loss and low material dispersion would allow signals to go not only further at the longer 

wavelength, but carry more information because shorter pulses could be spaced closer together. This 

was the opening of the new telecommunication window at 1.3 µm. 

Up until this time single-mode fibres had had a bad reputation because coupling of light into them 

was difficult. In addition, the high material dispersion at 0.85 µm meant that any attraction of single-

mode transmission was offset. However, the opening of the new 1.3 µm window with its relatively 

low loss and low material dispersion promised capacity increases many times that of the existing 

technology. The light coupling problem was also to become less of an issue because of the increased 

core size and improvements in splice and connector technology.  

The 1980s saw the fibre-optics market take off with deregulation of the long-distance telephone 

service in the USA with many companies expanding their networks. In addition, it was decided that 

the next generation of coaxial cables would no longer be developed for submarine cabling purposes 

in favour of optical fibres. By the time the next transatlantic cable, TAT-8, was laid, the two pairs of 

single-mode fibres were each carrying 280 million bits per second of data, the combined equivalent 

of 35,000 phone calls.  

With better technology came communications capacity at a lower cost per channel and there was an 

explosion in demand. As soon as TAT-8 was nearing completion, TAT-9 was under development, 

but this time in a further new telecommunications window. This new window was located at 1.55 

µm where fibre loss was at its lowest. Combined with the then new development of the Erbium-

doped fibre amplifier, it was possible to double transmission speed to 560 million bits per second 

and repeater spacing later reached 140 km.  

1.2 The optical waveguide 

An optical waveguide consists of a core in which light is confined, surrounded by a cladding as 

shown in Figure 1-1 below. The refractive index of the core n1 is chosen to be higher than that of the 
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cladding n0 such that a light beam coupled to the face of the waveguide is confined into the core by 

total internal reflection.  

 

Figure 1-1: The basic structure and refractive index profile of an optical waveguide 

In general, when an electromagnetic wave is incident upon a plane interface between two media of 

refractive indices n1 and n2 it gives rise to a reflected wave and a transmitted wave. The amplitudes 

of the reflection and transmission coefficients will be given later, but the relationship between the 

incident θ1 and refracted θ2 waves with respect to the normal at the boundary, is described through 

the use of Snell’s Law, 

 
1 1 2 2sin sinn n   (1.1) 

The critical angle θc above which total internal reflection occurs is given by, 

 2

1

arcsinc

n

n


 
  

 
 (1.2) 

 The condition for total internal reflection at the core-cladding interface in Figure 1-1 is therefore 

given by, 

 1 0sin
2

n n



 

  
 

 (1.3) 

and since the angle φ is related to the incident angle θ by, 

 2 2

1 1 0sin sinn n n     (1.4) 

we obtain the condition for the total internal reflection as, 

 2 2

1 0 maxarcsin n n     (1.5) 

from which we arrive at the approximation for the maximum acceptance angle of the waveguide θmax, 

otherwise known as the numerical aperture (NA), 
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 2 2

max 1 0n n    (1.6) 

If the relative refractive index difference is defined as, 

 
2 2

1 0 1 0

2

1 12

n n n n

n n

 
    (1.7) 

Then the numerical aperture (NA) is related to the relative refractive index difference ∆ by, 

 
max 1 2NA n    (1.8) 

In the above we have described how waveguide modes may be confined provided the angle φ remains 

below a critical angle. However, it is important to note that not all modes with arbitrary angles lower 

than this critical value do not propagate in a waveguide. The angles that do propagate are discrete in 

nature and in order to elucidate what they are it is necessary to consider an example. Here we look 

at the ray picture of a planar slab waveguide as illustrated in Figure 1-2.  

If we consider a plane wave propagating in the z-direction with an inclination angle φ, we see that 

the phase fronts are perpendicular to the direction of the light rays. Given an operating wavelength 

in vacuum λ we see that the wavelength and wavenumber in the core are given by the expressions 

λ/n1 and kn1 where k=2π/λ is the vacuum wavenumber. The propagation constants in the  

 

Figure 1-2: The light rays and their phase fronts in a waveguide 

longitudinal (z-direction) and lateral (x-direction) are given by, 

 
1 coskn   (1.9) 

 
1 sinkn   (1.10) 

Light ray PQ is assumed not to have suffered any phase change Φ on reflection, while the ray RS is 

reflected two times (once each at the upper and lower core-cladding interfaces). Since points P and 

R or points Q and S are on the same phase front, the optical path length between P and Q or R and S 

should be equal or a multiple of 2π. The path length l1 between P and Q is given by, 
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a
l a  



 
  
 

 (1.11) 

while path length between R and S is given by, 

 2

2

sin

a
l


  (1.12) 

The phase-matching condition is given by, 

  1 2 1 12 2kn l kn l m     (1.13) 

for integer m. The mode that satisfies m=0 is called the fundamental and those having larger values 

m≥1 are the higher-order modes. We simply state at this stage that the phase change on reflection at 

the interfaces, otherwise known as the Goos-Hanchen shift, is given by Okamoto [1.5], 

 
2 2 2

1 0

2

1

cos 2
2arctan 2arctan 1

sin sin

n n

n



 

 
       (1.14) 

It is interesting to observe the formation of the modes and their standing waves through the 

interference of phase fronts. This is illustrated in Figure 1-3 for the fundamental mode and Figure 

1-4 for the m=1 higher-order mode.  

 

Figure 1-3: The formation of the fundamental mode standing-wave pattern 

In each case the positive phase fronts are represented by solid lines, and the negative phase fronts by 

the dashed lines. Constructive interference between the solid lines leads to maxima and destructive 

interference between solid and dashed lines leads to minima. From Figure 1-3 and Figure 1-4, the 

value of the integer m is seen to correspond to the number of nodes of the lateral electric field profile.  

A similar analysis can be applied to optical fibres, although it is necessary to introduce the concept 

of skew rays whereby rays travel in a helical path through the fibre and given the limitation of the 

above analysis to that of the high frequency limit and the fact that it is discussed in detail elsewhere 

such as by Snyder and Love [1.6], we do not discuss this approach further. 
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Figure 1-4: The formation of the m=1 higher-order mode standing wave pattern 

1.3 Optical waveguide and fibre manufacture 

As discussed above, optical waveguiding requires a variation in refractive index between the core 

and the cladding for the transmission of light. It is therefore necessary to identify at least two different 

materials which are transparent to light which exhibit relatively low optical attenuation. In order to 

avoid scattering losses greater than the fundamental limit, bubbles, strains and grain boundaries 

which act as scattering centres must be removed. The materials which satisfy these requires tend to 

be glasses and certain monocrystalline structure plastics [1.7]. In order to achieve graded refractive 

index profiles it is also necessary for the materials to be suitable for doping which in turn requires 

mutual solubility over a relatively wide range of doping concentrations. As a result of this, glass-like 

materials are chosen and plastics are thereby limited to the case of step-index fibres.  

Vapour-phase deposition techniques are used in the production of silica-rich glasses which have 

optimal optical properties [1.7]. To begin with, volatile compounds such as SiCl4, GeCl4 and SiF4, 

BCl3, O2, BBr3 and POCl3 are distilled to obtain raw materials with low concentrations of transition 

metal elements in order to reduce losses due to absorption. Modification of the refractive index is 

then possible by mixing gaseous mixtures of silica-containing compounds with a doping material 

such as TiO2, GeO2, P2O5, Al2O3, B2O3 and/or F, and oxygen in a vapour-phase oxidation reaction 

where the deposition of oxides results. This deposition is typically onto a substrate or within a hollow 

tube and is built up in successive layers. The variation possible in refractive index for a sample of 

dopant concentration is illustrated in Figure 1-5 where it can be seen that doping with Fluorine 

decreases the refractive index, while Germanium increases it.  
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Figure 1-5: The variation in refractive index for a sample of dopant concentrations using data from 

[1.8] 

1.4 Practical issues with optical waveguides and fibres 

While optical waveguides and fibres bring with them huge potential benefits through their use in 

optical communications, it is necessary to consider their optical transmission characteristics in more 

detail. Here we briefly review two of their most important characteristics – their attenuation (loss) 

and bandwidth.  

1.4.1 Attenuation in optical waveguides and fibres 

The attenuation in optical waveguides and fibres is due to a combination of material absorption and 

scattering. Material attenuation can further be decomposed into intrinsic (caused by interaction of 

light with major components of the glass) or extrinsic (caused by impurities within the glass).  

Pure silica glass has little intrinsic absorption in the near-infrared region due to its basic material 

structure. However, there are two major mechanisms at work, as shown in Figure 1-6, where 

fundamental absorption edges occur in the ultraviolet due to the stimulation of electronic transitions 

within the glass by high energy excitations, and in the infrared region where photons interact with 

molecular vibrations within the glass. In addition to the above, extrinsic absorption is due to transition 

element impurities within the glass. These impurities can lead to in excess of 1 dB/km attenuation in 

the near-infrared region. Another major loss mechanism is absorption due to water dissolved in the 

glass. The OH ions are bonded into the glass structure and have molecular stretching vibrations which 

give rise to overtones in the region of 1.38 µm as evidenced in the experimental curve.  
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Figure 1-6: The attenuation spectrum for an ultra-low-loss fibre with calculated attenuation spectra 

for some of the loss mechanisms using data from [1.7] 

Rayleigh scattering is a form of linear scattering whereby some or all of the optical power contained 

within a propagating mode is transferred proportionally into a different mode. Since it is possible for 

such power to transfer into leaky or radiation modes which do not continue to propagate within the 

core, it leads to attenuation. In particular, this form of scattering is the dominant loss mechanism in 

the low-absorption window between the ultraviolet and infrared absorption tails, and is due to random 

inhomogeneities in the refractive index due to density of compositional variations which have been 

frozen into the glass lattice on cooling. The scattering is found to occur in almost all directions and 

is proportional to 1/λ4.  

Another form of scattering is known as Mie scattering and occurs at inhomogeneities comparable 

with the size of the guided wavelength. This typically occurs due to imperfections and irregularities 

in the fibre such as diameter fluctuations, strains and bubbles and is mainly directed in the forward 

direction. 

Finally it is important to note that optical waveguides do not behave completely as linear channels 

where any increase in output optical power is proportional to the input power. This form of nonlinear 

scattering results in the transfer of optical power from one mode to another at a different frequency 

in either the forward or backward direction. The most important types are known as Brillouin and 

Raman scattering and are typically only observed at high optical power densities. Stimulated 

Brillouin scattering (SBS) is the modulation of light through the interaction of an incident photon 

with molecular vibrations within the fibre to produce a phonon of acoustic frequency and a scattered 

photon. As a result, the scattered light appears as upper and lower sidebands, of which the lower 
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appears mainly in the backward direction and the upper is lossy. Stimulated Raman scattering (SRS) 

is similar to SBS but involves the production of a high-frequency optical rather than acoustic phonon. 

It is observed in both the forward or backward directions with a threshold of up to three orders of 

magnitude higher than the Brillouin threshold in the same fibre. In each case the relevant non-

linearities are members of the broader group of phenomena known as the Kerr effect.  

1.4.2 Dispersion in optical waveguides and fibres 

Dispersion is an effect that causes distortion of signal transmission along an optical waveguide 

thereby limiting the maximum transmission distance. As light pulses travel along the waveguide they 

are broadened by a variety of mechanisms, which can in general be split into two categories, one 

being intra-modal dispersion and the other being inter-modal dispersion. As the two names suggest, 

intra-modal dispersion, otherwise known as group-velocity dispersion, is the variation in the group 

velocity of a given signal mode with wavelength due to the wavelength dependence of both the 

confinement of the light in the waveguide and the material with which it is made. Inter-modal 

dispersion on the other hand is due to the differing group velocity of the various modes in a 

waveguide which carries multiple modes. 

Input pulses are broadened as they travel along the optical waveguide, with the greatest broadening 

occurring for the case of the multimode step index fibre. An improvement in performance is seen in 

the graded-index multimode fibre, while the least broadening occurs for the final single-mode fibre.  

As a simplification, for there to exist no overlapping of light pulses down an optical fibre link with 

bit rate BT, it is necessary for this rate to be less than the reciprocal of the broadened pulse duration 

2τ,  

 
1

2
TB


  (1.15) 

The connection between bit rate and bandwidth depends upon the digital coding format used but a 

conservative measure results from nonreturn-to-zero (RZ) coding whereby the bandwidth Bopt is 

equal to the bitrate BT. A measure of the performance of a fibre is therefore given by the product of 

the length L at which detection can still take place and the bandwidth of the optical link B (i.e Bopt x 

L). Typical bandwidth-length products of  20 MHz km, 1 GHz km and 100 GHz km are given for 

the multimode step index, multimode graded index and singlemode fibres respectively.  

We now briefly discuss intramodal dispersion and intermodal dispersion in a little more detail.  

1.4.3 Intramodal dispersion 

As discussed above, intramodal dispersion is due to the dependence of the group velocity of a given 

mode on its wavelength. This dependence may be due to either material properties or the confinement 
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of the light in the waveguide. We first describe the effect of dispersion on a plane wave travelling 

through a material of refractive index n, and then adapt this to a guided wave.  

The group delay τg of a plane wave is defined through its propagation constant β and angular 

frequency ω by [1.9], 

 g

g

L d d d
L L

v d d d

  


  
     (1.16) 

If we now write the propagation constant of the plane wave in terms of the refractive index n of the 

material and vacuum wavenumber k, we have, 

 
2

nk n





   (1.17) 

We now derive, 
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From which we obtain by inserting (1.18) into (1.16) and using the relationship ω=2πc/λ,  
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 (1.19) 

The light pulse will have a spectral width ∆λ and so different components in the pulse will travel 

with different delay times with the spread ∆τg given by, 
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 
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    (1.20) 

With this in mind we derive, 
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finally giving the material dispersion, 

 
2

2g

L d n

c d
  


     (1.22) 

In order to investigate the effect of dispersion on a guided mode of propagation constant β, we 

consider relation (1.22) with the refractive index n replaced by the effective index neff of a guided 

mode defined through, 
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We then arrive at an expression for the total chromatic (intramodal) dispersion taking into account 

both material and waveguiding dependency, 
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An expression for a normalised propagation constant b is typically defined in terms of the effective 

index of the mode and the core n1 and cladding materials n2 by, 
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 (1.25) 

 With this in mind we may rewrite the above expression as, 

  2 1 2effn n n n b    (1.26) 

From which we obtain a new expression for the total chromatic dispersion Dc in terms of two separate 

quantities, the material dispersion Dm and the waveguide dispersion Dw, 
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 We will discuss this further later in this chapter.  

1.4.4 Intermodal dispersion 

The broadening of pulses due to intermodal dispersion results from the differing group velocities 

between modes in a multimode waveguide. This form of dispersion can be considerable and 

dominates in multimode waveguides.  

If we consider a ray theory model of a step-index fibre, we see that the minimum ray propagation 

time Tmin is represented by an axial ray, while the maximum propagation time Tmax would occur for 

an extreme meridional ray which is incident on the core-cladding interface at the critical angle.  

As such we have, 

 1
min

1/

LnL
T

c n c
   (1.28) 

and, 
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Using Snell’s law we also have, 
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From which we obtain a new expression for Tmax, 
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And from these expressions an approximation for the time difference between the two rays in terms 

of the refractive indices, their relative contrast ∆ and the length of the waveguide L, 
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Where the relative contrast ∆ is approximately written as, 

 1 2

1

n n

n


   (1.33) 

After some manipulation we obtain the time difference in terms of the numerical aperture (NA) of 

the fibre [1.7], 
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n c
   (1.34) 

1.4.5 Maximising system performance 

Here we briefly discuss how system performance can be maximised through the choice of optical 

fibre design. We then describe how the inverse scattering approach has evolved. The primary 

property of an optical fibre that can be modified is the dispersion curve which describes how an 

optical pulse of a given wavelength and spectral width will broaden in time as it propagates along 

the fibre. However, altering the dispersion curve alters the effective area of the fibre and also the cut-

off wavelength.  
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Figure 1-7: The trade-offs associated with optical fibre design 

As can be seen in Figure 1-7 it is necessary to understand that design trade-offs occur and the 

properties of an optical fibre cannot be varied independently.  System design dictates that the ideal 

fibre might be one with low dispersion as well as dispersion slope at 1.55 µm while maintaining a 

reasonable effective area Aeff of the fibre to control both non-linearity and bend losses, such as in the 

case of a wavelength-division-multiplexing (WDM) system. Here it is important that the dispersion 

is low, but non-zero, to control pulse broadening while limiting non-linear effects such as four-wave 

mixing (FWM) and cross-phase modulation (XPM) between channels. This is also helped by keeping 

a reasonably large mode effective area so that the power density is not confined to too small an area 

which would in turn make such a fibre more vulnerable to such non-linearities, while not so large as 

to make it sensitive to bend losses. It is also important that the dispersion is low across a band of 

channels and therefore the dispersion slope should also be low. If any two characteristics in Figure 

1-7 are selected, Maxwell’s equations control the third. It can be simply stated at this point to develop 

intuition that for paraxial waves, the propagation constant of a mode β may be expressed in terms of 

the mode field E(r,λ) as well as the refractive index n(r,λ) as [1.10], 
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  (1.35) 

where the integration is performed over the fibre cross-section. This relationship demonstrates that 

the propagation constant and its derivatives, hence also dispersion, are inextricably linked to the 

mode field and refractive index profile. The rate at which the mode field expands and/or contracts 

with wavelength in turn determines the dispersive properties of the fibre. Since the equations which 

govern modal properties in optics are analogous to those which govern the wavefunction of a particle 

in a box in quantum mechanics it suggests that a certain amount of intuition in the design process is 

possible [1.10].  

As might be expected in a field of work that crosses national boundaries, we now discuss briefly the 

international standardisation of optical fibres by the agency known as the ITU of the United Nations 

in order to obtain some consensus. 

A fundamental way to group fibre designs is through the properties of the dispersion curve. The 

original standard single-mode fibre was known as the ITU G.652 and had a zero-dispersion-
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wavelength (ZDW) at ~1.3 µm. With the development in the 1980s of the low-loss 1.55 µm window, 

the dispersion-shifted-fibre (DSF) was introduced and standardised under the name G.653. While it 

may appear that having zero dispersion in this new window is an advantage, the development of 

wavelength-division-multiplexing systems has meant that this fibre has limited application due to 

unwanted nonlinearities when optical channels are close to the ZDW. The G.654 was developed as 

a cutoff-shifted fibre with a larger mode field diameter in order to provide lower loss and allow higher 

optical power for transmission over longer distances. The family of G.655 fibres known as non-zero-

dispersion-shifted fibres were developed to provide a balance of properties for high data transmission 

rates over long distances. The key property is low, but non-zero, dispersion at 1.55 µm. Finally, the 

G.656 was developed with the purpose of having low dispersion from 1.46-1.63 µm to decrease inter-

symbol-interference (ISI) in wavelength-division-multiplexed systems. However, as can be seen, this 

fibre has properties similar to the medium dispersion category of G.655. The key feature of G.656 is 

its good performance with low nonlinearity for signal channels as well as Raman pumps at short 

wavelengths.  

In addition to the control of dispersion in the single-mode case above, with the development of 

schemes designed to counter the upcoming ‘capacity crunch’, such as spatial-division-multiplexing 

(SDM) as discussed by Richardson et al. [1.11], it has become important to control the differential 

group delay between various modes in few-mode fibres to reduce complexity in the de-multiplexing 

process [1.12], [1.13], as well as control over the mode spacing [1.14], [1.15] in order to reduce 

coupling between modes. A good review of such approaches to the design of few-mode fibres is 

given by Sillard [1.16]. 

1.4.6 The advantages of optical waveguides and fibres 

The merits and special features offered by optical communications can be summarised as has been 

done in the work of Senior and Jamro [1.7]. 

  

(a) Enormous potential bandwidth (~105 GHz in the near infrared) when compared with metallic 

systems such as coaxial cables (~20 MHz). By the year 2015, the length-bandwidth product 

of an optical fibre link was in the region of >100 GHz km whereas coaxial cable was 0.1 

GHz km. 

 

(b) Small size, weight and flexibility which is advantageous in crowded city network 

infrastructure. Light weight also allows for use in mobile situations including aircraft and 

satellites.  

 

(c) Electrical isolation due to glass/plastic being an insulator. Problems involving earth loop and 

interface problems are removed and application in electrically hazardous environments is 

possible. 

 



  Chapter 1 

15 

(d) Immunity to electrically noisy environments. Communications using optical fibres do not 

require shielding from electromagnetic interference (EMI) and crosstalk is negligible when 

compared with electrical conductors.  

 

(e) Security of communications. Optical fibres do not radiate significantly and therefore provide 

for high signal security. Any interception would require invasive methods which could in 

theory be detected.  

 

(f) High reliability and ease of maintenance due to a lower requirement for repeaters or 

amplifiers when compared with copper because of low optical fibre losses. 

 

(g) Low cost. Optical fibres are made from derivatives of glass which are in abundance when 

compared with copper.  

  

1.5 Applications of inverse scattering theory 

Inverse scattering theory (IST) has been used in a variety of settings over the years. A seminal 

contribution to the field was made in the 1950s and 1960s when a closed-form solution to the 

fundamental Gel’fand-Levitan-Marchenko (GLM) integral equation of inverse scattering was found 

for rational reflection coefficients by Kay [1.17]. This particular technique was then later used to 

investigate the inversion of semiconductor charge carrier density profiles by Jordan and Kritikos 

[1.18] and then ionospheric and plasma profiles from scattering data by their group [1.19],[1.20] 

through the use of reflection coefficients approximated using Butterworth and three-pole rational 

functions respectively.  

An important step forward was the consideration in Jordan’s work [1.21] of a potential well for which 

one of the poles represented a bound state. At around the same time a general, efficient and exact 

method was being developed for the inversion of rational reflection coefficients of arbitrary order by 

Pechenick [1.22], [1.23]. Other numerical techniques were also being developed such as by Kritikos 

and Ge [1.24], [1.25]. Within a few years this general three-pole approach with a single bound state 

had been utilised in the design of both wide-core and general single-mode planar waveguides [1.26]-

[1.28] and shortly afterwards a paper was published by Jordan and Xia [1.29] investigating the 

physical interpretation and meaning of various poles in the context of the modes in waveguides.  

After a brief intermission, further design of single-mode and multi-mode waveguides and their modal 

fields were considered through numerical methods by authors such as Papachristos and Frangos 

[1.30] and Hirsch et al. [1.31]. However, no work had been done investigating control over either 

dispersive properties of waveguides, or mode spacing. In addition, although there had been some 

early work by on the design of circular waveguides under the weakly guiding approximation for 

which either the propagation constant was prescribed for modes of fixed azimuthal value, such as by 

Yukon and Bendow [1.32], or the propagation constant was fixed at a constant value for modes of 
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varying azimuthal value by Hooshyar [1.33], no work has been done investigating whether it is 

possible to control dispersion or mode spacing. 

As alluded to in the previous section, there is an inherent link between the design of waveguides and 

potential wells in quantum mechanics. In addition to the inverse scattering techniques discussed 

above which rely upon solutions to the Gel’fand-Levitan-Marchenko (GLM) integral equations, the 

general construction of potential wells has also been considered using the Darboux/Crum-Krein 

transformations by Sakasi [1.34] as well as Rudyakm [1.35] and methods from supersymmetry 

(SUSY) which can importantly be shown to be a particular case of the Darboux transformation 

approach as was done by Suzko and Velicheva [1.36].  In particular, applied combinations of the 

transformations of the SUSY approach can be shown to be equivalent to the GLM approach [1.37]. 

1.6 Aims and objective of the thesis 

The aim of the work undertaken in this thesis was to investigate the potential for the inverse design 

of optical fibres with a priori specified properties such as dispersion and mode spacing through the 

application of inverse scattering (IS) [1.38], [1.39] methods. The motivation behind this particular 

approach was the previous successful work done using IS methods in the design of Bragg gratings, 

some of which is described by Feced et al. and others [1.40]–[1.43]. There was also a precedent set 

for the IS design of planar waveguides in the works of Jordan and Lakshanasamy in the late 1980s 

[1.44],[1.45] where properties such as the waveguide width was maximised and optical interconnects 

were designed. However, little work had been done on the use of IS methods in the design of optical 

fibres. Some early work was done investigating the specification of propagation constants such as by 

Yukon in 1980 [1.46] and Hooshyar in 1992 [1.47] using circular dielectric waveguides but further 

approaches based on this method appeared to have stalled. More recently work had been done on the 

inverse design of optical fibres with tailored dispersion characteristics by Poletti [1.48] using 

optimisation methods such as Genetic Algorithms. 

As a result of the above works it was decided that work on planar waveguides would be extended 

with a view to further understanding the IS approach and potential applications, and then following 

this, the IS approach or intuition derived from it would be applied to application to optical fibres. As 

little direct work had been performed in this area, it was very important at this stage to keep an open 

mind as to whether a direct solution actually existed to this problem, and to use intuition obtained 

from designs in the more mature field of planar slab waveguides to achieve the final goal.  

1.7 Structure of the thesis 

Chapter 2 introduces Maxwell’s equations and the electromagnetic theory behind both waveguide 

and fibre modes. Following this there is further discussion of the spectral properties of fibre modes 
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in terms of normalised parameters and features such as the group delay and dispersion. The theory 

behind the methods of inverse scattering are then developed in the context of both waveguides and 

fibres and the connections between the various methods are discussed.  

In Chapter 3 the methods of waveguide and fibre simulation are introduced, with particular emphasis 

on the transfer matrix method for the waveguide designs. The finite difference method implemented 

in the commercial mode solver MODE Solutions is then briefly developed for completeness as it is 

used to verify the results throughout this work. Finally coupled mode theory is developed for 

application in the later waveguide and fibre coupler designs.  

Chapter 4 describes the initial work done on the dispersion-engineering of single-mode planar 

waveguides developed using the Gel’fand-Levitan-Marchenko equations as applied to rational 

reflection coefficients, and extended to those with larger numbers of poles. In particular, a general 

method of identifying the permissible domain of pole parameters is then developed using a 

computationally implemented Sturm’s theorem in the symbolic algebra package MAPLE.  

In Chapter 5 the initial work on the use of Darboux transformations as applied to multimode 

waveguides is developed and applied in the design of multimode waveguides with group velocity 

equalisation. Linked to this work, in Chapter 6 this same Darboux transformation approach was used 

in the design of multimode waveguides with tailored modal gain, and finally in Chapter 7 application 

was made to the design of multimode waveguide couplers where equalisation of coupling lengths 

was made using the addition of mode gain/loss. 

Chapter 8 describes the use of physical intuition gained from the inverse scattering design of 

waveguides thus far to the design of optical fibres with improved LP mode group spacing through 

the addition of a core depression and non-azimuthally-symmetric ‘rods’ which preferentially ‘lift’ 

modes with similar such mode profiles.  

In Chapter 9 the inverse scattering design of optical fibres is discussed through the solution of the 

Gel’fand-Levitan-Marchenko integral equations in cylindrical coordinates whereby mode effective 

indices can be specified for fixed azimuthal LP mode value. Using this technique, in contrast with 

state-of-the-art SUSY techniques, partner fibres can be designed to couple LP modes selectively, as 

well as with the same, or differing azimuthal l value. In the same way that Chapter 6 investigated the 

inverse scattering design of planar waveguides with tailored modal gain, and Chapter 7 used this in 

the development of mode-selective couplers with equalised coupling lengths, this same idea was now 

applied to fibre modes leading to the development of multimode mode-selective fibre couplers with 

equalized coupling lengths.   
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1.8 Summary of results and achievements 

In the following two publications the work performed on the dispersion-engineering of planar 

waveguides through the solution of the Gel’fand-Levitan-Marchenko integral equations was 

described: 

(1)  A. R. May, F. Poletti, and M. N. Zervas, “Inverse scattering designs of dispersion-

engineered single-mode planar waveguides,” in SPIE Photonics West 2014-OPTO: 

Optoelectronic Devices and Materials, 2014, vol. 8988, p. 89881S. 

(2)  A. R. May, F. Poletti, and M. N. Zervas, “Inverse scattering designs of dispersion-

engineered single-mode planar waveguides,” Opt. Express, vol. 23, no. 3, p. 3142, 2015. 

The novelty of engineering the dispersion of waveguides by this approach is in the ability to vary the 

dispersion of the waveguide while keeping the effective index and thus phase velocity of the guided 

mode constant. This is typically not possible in the waveguide design process where, as in the case 

of a step index design, the variation of parameters such as the refractive index contrast and core width 

varies the characteristic V-number of the guide and thus both its dispersion and propagation constant. 

While it may be possible to design more complex refractive index profiles for which there is more 

independent control of the above features, there is no way to know in advance what geometric 

assumptions must be made of such a profile to achieve these ends. An inverse scattering approach, 

on the other hand, provides the required profile directly. 

In the following publications the initial work on the design of multimode waveguides through 

application of the Darboux transformation approach with equalised group velocity was described, 

followed by the initial work presented on the design of mode-selective waveguide couplers as an 

alternative to the more limited SUSY approach. Finally the tailoring of modal gain was investigated 

in multimode waveguides through the use of complex propagation constants in the design process:  

(3)  A. R. May and M. N. Zervas, “Group velocity equalisation in multimode waveguides using 

inverse scattering designs,” in Sixth International Conference on Optical, Optoelectronic and 

Photonic Materials and Applications (ICOOPMA ’14), 2014. 

(4)  A. R. May and M. N. Zervas, “IS designs for mode selective waveguide couplers,” in 23rd 

Int. Workshop OWTNM, 2015. 

(5)  A. R. May and M. N. Zervas, “Inverse scattering designs of active multimode waveguides 

with tailored modal gain,” J. Sel. Top. Quantum Electron., 2015.  
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(6)  A. R. May and M. N. Zervas, “Inverse scattering designs of mode selective waveguide 

couplers,” Pending submission 

In the above works the novelty lies first in the demonstration that the group velocity of modes may 

be controlled through their relative mode spacing, which until now has been described through 

Brown’s identity, but not demonstrated explicitly in the design process, and secondly in the 

experimental determination through an inverse scattering approach that the optimal waveguide 

design for equalised group velocity is that with equally spaced mode effective indices and thus in 

fact belongs to the infinitely extended parabolic refractive index discussed in the literature by authors 

such as Adams [1.49]. 

The use of the Darboux transform in the design of mode-selective waveguide couplers is novel in its 

approach as it is not limited in its ability to ‘select’ modes through phase-matching in the same way 

as the current state-of-the-art SUSY technique. The Darboux approach neither requires the same 

development of a cascade of waveguides whereby modes are removed singly one at a time, nor the 

use of complex refractive index profiles to achieve only this. In addition, I demonstrate that it is 

possible to tailor and equalise the coupling lengths of multiple selected mode ‘pairs’ at once through 

the use of an imaginary (gain/loss) mismatch in effective index associated with each pair.   

In the following publications the design of optical fibres was considered firstly by using physical 

intuition derived from the inverse scattering design of optical waveguides above through the use of 

perturbations to existing few-mode fibre designs, and then followed more completely by the solution 

of the Gel’fand-Levitan-Marchenko integral equations in cylindrical coordinates. As in the case of 

the Darboux transform approach discussed above for the design of multimode waveguides with 

tailored modal gain and its use in the design of mode-selective waveguide couplers with equalised 

coupling lengths, this was investigated in the context of fibres and has allowed for the design of 

mode-selective fibre couplers with an alternative and improved method to that of SUSY:  

 (7) A. R. May and M. N. Zervas, “Few-Mode Fibers with Improved Mode Spacing,” in 

European Conference on Optical Communication (ECOC), 2015. 

 (8) A. R. May and M. N. Zervas, “Inverse scattering designs of mode-selective fibre 

couplers”, Pending submission 

In the above works the novelty lies in the fact that intuition originally derived from observing 

patterns in refractive index profile behaviour with varying TE mode spacing in multimode 

inverse-scattered planar waveguide designs was carried across to LP modes in a few-mode 

optical fibre design. These patterns were further understood by considering the perturbation 

relation suggested by Snyder and Love [1.6] which definitively showed that mode spacing could 

be controlled by considering weighed integrals of the mode field and refractive index profile.  
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The result of this was a few-mode optical fibre which utilised high-index ‘rods’ in place of ‘rings’ 

in the planar waveguide cases and resulted in improved mode-spacing.Further to this, as 

described above, the solution of the Gel’fand-Levitan-Marchenko integral equations in 

cylindrical coordinates was then used to demonstrate a more complete method by which novel 

mode-selective fibre couplers could be developed as an extension to the aforementioned mode-

selective waveguide couplers above.   
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 Theory 

2.1 Introduction 

In this chapter we review the theory behind the guidance of electromagnetic modes in optical 

waveguides and fibres. In contrast to the ray theory approach described briefly earlier in this thesis 

to develop an intuition which is only valid in the high frequency limit, we now use the more accurate 

and general method of solving Maxwell’s equations given the specific geometry of the guiding 

structure and assumptions regarding characteristics of the modes.  

We first discuss the time-dependent and source-free Maxwell’s equations and then investigate 

solutions for guided waves in planar optical waveguides. Following a review of the fundamental 

parameters and nomenclature associated with such structures, we then go on similarly to develop 

solutions as applied to optical fibres. Here we very much follow the description given by Kawana 

and Kitoh [2.1] 

With an understanding of the modal features of both planar and fibre geometries in hand, we then 

develop the theory of inverse scattering as applied to such structures. We review the fundamental 

Gel’fand-Levitan-Marchenko integral equations and proceed to investigate solutions. Of particular 

interest are those associated with potentials, known in this context to be refractive index (RI) profiles, 

with rational reflection coefficients and those which are reflectionless. In each of these cases closed-

form solutions exist which simplifies solution and develops intuition. Of particular interest is the 

development of an inverse spectral theory (IST) which allows for the perturbation of individual mode 

propagation constants at will.    

2.2 Maxwell’s Equations 

We now describe Maxwell’s equations which govern electromagnetic waves in a linear material. 

Inside such regions the electric field E (volts per metre), the magnetic field H (amperes per metre), 

the electric flux density D (coulombs per square metre) and magnetic flux density B (amperes per 

square metre) and current density J are related through,  

 
t


  



B
E  (2.1) 

 
t


  



D
H J  (2.2) 

 0 B  (2.3) 

  D  (2.4) 
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t


  


J  (2.5) 

With constitutive relations, 

 D = E  (2.6) 

 B = H  (2.7) 

The permittivity  and permeability  are defined in terms of the permittivity 0 and permeability 0 

of free space as well as the relative permittivity r and permeability r of the material,  

 
0 r    (2.8) 

 
0 r    (2.9) 

Wave equations can be obtained by considering an electromagnetic field oscillating at an angular 

frequency . We may represent the field in complex notation as, 

  ( , ) Re ( )expt j t   E r E r  (2.10) 

  ( , ) Re ( )expt j t   H r H r  (2.11) 

  ( , ) Re ( )expt j t   D r D r  (2.12) 

  ( , ) Re ( )expt j t   B r B r  (2.13) 

From which we obtain, where for simplicity we represent the time-independent terms E, H, D, B in 

the phasor representation above again as E, H, D and B,   

 
0j j     E B H  (2.14) 

 j H E  (2.15) 

 0 H  (2.16) 

   0r E  (2.17) 

In the above we have assumed that µr is 1 for all materials other than magnetic ones and =0. A wave 

equation for the electric field E can then be obtained, 

   0j    E H  (2.18) 

Using,  
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     2    A A A  (2.19) 

we rewrite the LHS of (2.18) in the form, 

   2  E E  (2.20) 

and since, 

   0r r r      E E E  (2.21) 

we obtain, 

 r

r






  E E  (2.22) 

The LHS of (2.18) can therefore be written as, 

 
2r

r





 
  

 
E E  (2.23) 

Using (2.15) and combining with (2.23) we obtain, 

 
2 2

0
r

r

r

k





 
   

 
E E E = 0  (2.24) 

With the following definitions and introduction of the refractive index n, 

 
0 0 0rk k n k k n    (2.25) 

And the relative permittivity taken as constant in the medium, the vectorial Helmholtz equation for 

the electric field is obtained, 

 2 2k E E = 0  (2.26) 

In a similar manner a vectorial wave equation can be obtained for the magnetic field, 

  

 2 2k H H = 0  (2.27) 

If we assume that the waveguiding structure is uniform in the z-direction, the derivative of the 

electromagnetic field with respect to z may be written as, 

 j
z



 


 (2.28) 
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Where β is the propagation constant and signifies the z-directed component of the wavenumber k. 

The ratio of the propagation constant to the free-space wavenumber k0 =2π/λ , where λ is the 

wavelength, is defined as the effective index of the mode, 

 
0

effn
k


  (2.29) 

Inserting this convention into the Helmholtz equation for the electric field E and magnetic field H 

gives, 

  2 2 2 0k    E E  (2.30) 

  2 2 2 0k    H H  (2.31) 

where we have defined,  

 
2 2

2

2 2x y


 
  

 
 (2.32) 

2.2.1 The Poynting vector 

In the following description we denote the time-dependent electric and magnetic fields by E(r,t) and 

H(r,t), and the time-independent electric and magnetic fields by E(r)  and H(r) .  

Due to the fact that the voltage is given by the integral of the electric field and because the magnetic 

field is created by a current, the product of the electric fields and the magnetic fields is related to the 

energy of the electromagnetic field. If we apply the divergence operator to the cross product we 

obtain, 

       E H H E E H  (2.33) 

and if it then substitute this into Maxwell’s equations (2.1-2.5) we get, 

 

  2

2 2 21 1

2 2

t t

t

  

  

 
     

 

  
    

  

H E
E H H E E

E H E

 (2.34) 

Where we have used the relationship, J=E, relating the current density J to the electric field E 

through the electrical conductivity . 

If we now integrate over an arbitrary volume V we get, using Gauss’s theorem across a surface S, 
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   

2 2 21 1

2 2

V S

V V

dV dS

dV dV
t

  

   

  
    

  

 

 

E H E H n 

E H E

 (2.35) 

The first two terms can be identified as the rate of reduction of the energy stored in the electric and 

magnetic fields, while the third term is the rate of reduction of energy due to Joule heating in the 

volume V per unit time. As such we may identify the expression, 

  
S

dS E H n  (2.36) 

as being the rate of energy loss through the surface S. Therefore, the definition,  

   S E H  (2.37) 

can be identified as the energy that passes through a unit area per unit time. This expression for S is 

known as the Poynting vector.  

Considering an electromagnetic wave that oscillates at a single angular frequency, we may define the 

time-averaged Poynting vector <S> as, 

 

     

       

       

 

* *

* * * *

*

Re ( )exp Re ( )exp

( )exp ( ) exp ( )exp ( ) exp

2 2

1
exp 2 exp 2

4

1
Re

2

j t j t

j t j t j t j t

j t j t

 

   

 

 

 

   
 

        

 

S E H

E r H r

E r E r H r H r

E H E H E H E H

E H

 (2.38) 

We may therefore write the energy propagating as the real part of the Poynting vector S. 

2.2.2 Boundary conditions 

In order to solve Maxwell’s equations for electromagnetic fields we need the boundary conditions 

which may be summarised as 

(a) Tangential components of the electric fields are continuous, that is 

 
1 2t tE E  (2.39) 

(b) If no current flows on the surface, tangential components of the magnetic fields are 

continuous, that is 

 
1 2t tH H  (2.40) 
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If a current does flow on the surface, the magnetic fields are discontinuous and related to the 

current density JS , that is 

 
1 2t t SH H J   (2.41) 

(c) If there is no charge on a surface, the normal components of the electric flux densities are 

continuous, that is 

 
1 2n nD D  (2.42) 

If there are charges on the surface, the electric flux densities are discontinuous and related 

to the charge density S, that is 

 
1 2n n SD D    (2.43) 

(d) Normal components of the magnetic flux densities are continuous, such that 

 
1 2n nB B  (2.44) 

2.3 Theory of Optical Waveguides 

Here we present the theory behind optical waveguides. We begin with a three layer slab waveguide 

with a one-dimensional structure. It has refractive indices n1, n2 and n3 which are uniform in the y 

and z-directions, with regions 1 and 3 being cladding and region 2 the core. We know that tangential 

field components are connected at the interfaces and so we begin our analysis with the Helmholtz 

equations for each region of uniform material. Since we also assume that the structure is uniform in 

the y-direction we may assume that / 0y    

 

Figure 2-1: Geometry of a planar optical waveguide 

The Helmholtz equation for the electric field may be written as, 

  
2

2 2 2

02
0eff

d
k n n

dx
  

E
E  (2.45) 

and for the magnetic field, 

  
2

2 2 2

02
0eff

d
k n n

dx
  

H
H  (2.46) 
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It can be shown that two different forms of modes propagate in such a three-layer slab optical 

waveguide. These are known as the transverse electric modes (TE mode) and transverse magnetic 

modes (TM mode) and can be derived by considering Maxwell’s equations, 

 
0j  E H  (2.47) 

 
0 rj  H E  (2.48) 

2.3.1 TE modes 

If we assume the form of a mode where the electric field is not in the longitudinal direction (Ez=0) 

and is uniform in the y-direction, substitution into Equation (2.48) indicates that / 0yH x   and 

therefore Hy is constant and so may assume that Hy=0. Substituting Ez=Hy=0 into Equation (2.47) 

results in / 0xE z    from which we may assume constant Ex=0 and thus we have, 

 0x z yE E H    (2.49) 

Using the above relationships we have, 

 
0

x yH E



   (2.50) 

and, 

 
0

y

z

Ej
H

x





 (2.51) 

Substituting these we obtain a wave equation for the principle electric field component Ey, 

  
2

2 2 2

02
0

y

eff y

d E
k n n E

dx
    (2.52) 

where we have written 
0 0 0k     

We now know the form of the wave equation in each uniform layer and therefore assume solutions 

in each layer of the form, 

 

 

 

  

1 1

2 2

3 3

exp                     (region 1) 

( ) cos              (region 2)

exp       (region 3)  

y

C x

E x C x

C x W



 



 
  

  
 

   

 (2.53) 

Here the constants C1,C2 and C3 are unknown constants, and we have defined, 
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2 2

1 0 1effk n n    (2.54) 

 
2 2

2 0 2 effk n n    (2.55) 

 
2 2

3 0 3effk n n    (2.56) 

Using, 

 
0

1 y

z

E
H

j x


 


 (2.57) 

we may write the magnetic field in each region as, 

 

 

 

  

1
1 1

0

2
2 2

0

3
3 3

0

exp                     (region 1) 

( ) sin                 (region 2)

exp         (region 3)  

z

C x
j

H x C x
j

C x W
j







 








 
 
 
  

  
 
 

  
  

 (2.58) 

We see that there are five unknowns (neff, C1, C2 and C3 and ) and by enforcing the boundary 

conditions of the tangential electric field component Ey and tangential magnetic field component Hz 

at x=0 and x=W,   

 1 2(0) (0)y yE E  (2.59) 

 
1 2(0) (0)z zH H  (2.60) 

 2 3( ) ( )y yE W E W  (2.61) 

 
2 3( ) ( )z zH W H W  (2.62) 

we obtain the four equations, 

 
1 2 cosC C   (2.63) 

 
1 1 2 2 sinC C     (2.64) 

  2 2 3cosC W C    (2.65) 

  2 2 2 3 3sinC W C        (2.66) 
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For a full solution the overall mode normalisation is required, but by letting C1 be a free parameter, 

and thereby not specifying the amplitude of the mode, dividing (2.64) by (2.63) we obtain, 

 
1 1

1 1

2

tan        ( 0,1,2,...)q q


 


  
    

 
 (2.67) 

And dividing (2.66) by (2.65), 

 
1 3

2 2 2

2

tan        ( 0,1,2,...)W q q


  


  
    

 
 (2.68) 

Substituting (2.67) into (2.68) we obtain, 

 
1 1 31

2

2 2

tan tan        ( 0,1,2,...)W q q


 
 

    
      

   
 (2.69) 

Since all γ can be written in terms of the effective index neff this is a dispersion relation which can be 

solved numerically.  

2.3.2 TM Modes 

In TM modes the magnetic field component is now in the transverse direction. Since the structure is 

uniform in the y-direction we get / 0yE x    and therefore that Ey is a constant which we may take 

to be zero. Substituting Hz=Ey=0 we obtain / 0xH z   and so Hx=0. In summary, 

 0x z yH H E    (2.70) 

Substituting the expressions,  

 
0

x y

r

E H


 

 
  
 

 (2.71) 

 
0

y

z

r

Hj
E

x 

 
  

 
 (2.72) 

into (2.47) we obtain the wave equation for the principle magnetic field component Hy 

  
2

2 2 2

02
0

y

eff y

d H
k n n H

dx
    (2.73) 

Again, the principle magnetic field components are assumed to be of the form, 
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 

 

  

1 1

2 2

3 3

exp                     (region 1) 

( ) cos              (region 2)

exp       (region 3)  

y

C x

H x C x

C x W



 



 
  

  
 

   

 (2.74) 

with, 

 
2 2

1 0 1effk n n    (2.75) 

 
2 2

2 0 2 effk n n    (2.76) 

 
2 2

3 0 3effk n n    (2.77) 

The tangential electric field component Ez is given by, 

 
0

1 y

z

r

H
E

j x 





 (2.78) 

And so we may write the electric field in each region as, 

 

 

 

  

1
1 1

0

2
2 2

0

3
3 3

0

exp                     (region 1) 

( ) sin                 (region 2)

exp         (region 3)  

r

z

r

r

C x
j

E x C x
j

C x W
j




 


 

 




 

 
 
 
  

   
 
 

  
  

 (2.79) 

Imposing the boundary conditions on the tangential fields at x=0 and x=W we obtain, 

 
1 2 cosC C   (2.80) 

 1 2
1 2

1 2

sin
r r

C C
 


 

   (2.81) 

  2 2 3cosC W C    (2.82) 

  2 2
2 2 3

2 2

sin
r r

C W C
 

 
 

     (2.83) 

Dividing (2.81) by (2.80) we obtain, 

 
1 1 1

1 1

2 2

tan               ( 0,1,2,...)r

r

q q
 

 
 

  
    

 
 (2.84) 
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Dividing (2.83) by (2.82) we also obtain, 

 
1 32

2 2 2

3 2

tan               ( 0,1,2,...)r

r

W q q


  
 

  
    

 
 (2.85) 

Substituting (2.84) into (2.85) we obtain, 

 
1 1 32 1 2

2

1 2 3 2

tan tan              ( 0,1,2,...)r r

r r

W q q
  

 
   

    
     

   
 (2.86) 

Since all γ can be written in terms of the effective index neff this is the dispersion relation which can 

be solved numerically. 

2.4 Theory of Optical Fibres 

In this section we discuss the analysis of a step-index optical fibre. An optical fibre consists of a core 

and a cladding and is axially symmetric as shown in Figure 2-2. The refractive index of the core is 

slightly larger than that of the cladding and so the optical field is largely confined in the core.  

 

Figure 2-2: Geometry of an optical fibre illustrating the core n1 and cladding n2 refractive indices of 

a step-index optical fibre 

Using the vectorial wave equations we may write for the transverse electric and magnetic fields, 

  2 2 2

0 0r
r eff

r

k n







 
     

 
E E E  (2.87) 

    2 2 2

0 0r
r eff

r

k n








     H + H H  (2.88) 
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Although the above equations can be solved using hybrid-mode analysis, in this work we only 

consider fibres for which the difference between the core and cladding indices is of the order of 1%. 

As such, the relative permittivity r is small and ignoring the derivatives in the vectorial wave 

equations gives a good approximation. From this we obtain the scalar Helmholtz equations for the 

(weakly-guiding) transverse electric and magnetic fields, 

   22 2 2

0 0effk n r n     E E  (2.89) 

   22 2 2

0 0effk n r n     H H  (2.90) 

The Laplacian in the above is written, 

 

2
2 2

2

2 2

2 2 2

2 2 2

2 2 2 2

1 1

1 1

z

r
r r r r z

r r r r z








  



    
   

    

   
   
   

 (2.91) 

We may solve (2.89) for the electric field by assuming that the field 
E is oriented purely along either 

the x-axis or y-axis with zero axial z-component, henceforth known as a linearly-polarised mode, 

and of the form, 

 ( , ) ( ) ( )iE r R r    (2.92) 

Substituting this form into (2.89) and dividing by R(r)() gives, 

   
2 2

22 2 2

02 2

1 ( ) 1 ( ) 1

( ) ( )
eff

R r R r
r k n r n

R r r r r  

    
     

    
 (2.93) 

Since the LHS is a function of only r and the RHS is a function of only  we find that both sides must 

be constants. We therefore get, 

   
2 2

22 2 2 2

02

( ) 1 ( )

( )
eff

r d R r dR r
r k n r n l

R r dr r dr

 
    

 
 (2.94) 

and, 

 

2
2

2

1 ( )

( )

d
l

d



 


 


 (2.95) 

With some rewriting these can be put in the more usual form, 
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2 2
2 2

02 2

( ) 1 ( )
( ) 0r eff

d R r dR r l
k n R r

dr r dr r

 

     
 

 (2.96) 

and, 

 
2

2

2

( )
( ) 0

d
l

d







    (2.97) 

The solution to (2.97) is an oscillation with a single frequency and may be expressed in the form, 

    sin l      (2.98) 

and the solution to (2.96) are well known [2.1] and provided by the l’th-order Bessel functions. The 

solutions are,  

 

         for 

( )

        for 

l l

l l

ur ur
AJ BN r a

a a
R r

wr wr
CK DI r a

a a

    
     

     
  

             

 (2.99) 

where we have defined, 

  2 2 2 2

0 1r effu k a n   (2.100) 

  2 2 2 2

0 2eff rw k a n    (2.101) 

The Jl(ur/a) and Nl(ur/a) are the l-th order Bessel functions of the first and second kinds, and the 

Kl(wr/a) and Il(wr/a) are the lth-order modified Bessel functions of the first and second kinds.  

And notice the important relationships between the two expressions, 

 2 2 2u w v   (2.102) 

Where we have defined the normalised frequency, 

 
2 2

0 1 2v k a n n   (2.103) 

In the above, the u and w are considered to be normalised lateral propagation constants in the core 

and cladding respectively.  

Since the solution to (2.96) must be physically well-defined (finite) at r=0 and at r=∞, we must restrict 

the Bessel function solutions to, 
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          for 

( )

         for 

l

l

ur
AJ r a

a
R r

wr
CK r a

a

  
  

   
  

      

 (2.104) 

2.4.1 The characteristic equation 

In order to determine the values of the propagation constants of these linearly-polarised modes, we 

require a characteristic equation to solve. Firstly, we know that the tangential electric and magnetic 

fields should be continuous across the boundary between the core and cladding, and that the ratio of 

the normal components should be equal to that of the inverse ratio of refractive indices making up 

the boundary. Given the assumption that the electric and magnetic fields are linearly polarised, the 

conditions to be satisfied by the radial wave function R(r) are given under the weakly-guiding 

approximation by,  

 ( 0) ( 0)R a R a    (2.105) 

and, 

 
0 0

( ) ( )

a a

dR r dR r

dr dr 

  (2.106) 

We therefore require, using the solutions (2.104), 

     0l lAJ u CK w   (2.107) 

     0l lAuJ u CwK w    (2.108) 

Or, in matrix notation, 

 
   

   
0

l lJ u K w A

uU u wK w C

   
      

 (2.109) 

If this is to hold of non-trivial A and C, we require the determinant of the matrix on the left to be 

zero, that is, 

 
   

   
0

l lJ u K w

uU u wK w

  
 

  

 (2.110) 

Or, 

         0l l l lwJ u K w uJ u K w     (2.111) 
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In all of the above the prime indicates differentiation. Rewriting, we may get the well-known 

characteristic equation, 

 
 

 

 

 
l

l l

uJ u wK w

J u K w

 
  (2.112) 

2.4.2 Particular solutions 

It is interesting to note that for LPlm modes, (2.112) has solutions only within limited ranges of the 

parameters u and w. If we investigate the limits of w->0 which also corresponds to u->v, we may 

obtain the values of the normalised frequency where a mode becomes cut-off. 

We may investigate modes for which l=0 using the notation LP0m and substituting into (2.112), 

 
 

 

 

 
0 0

0 0

uJ u wK w

J u K w

 
  (2.113) 

If we make use of the Bessel function relations, 

    0 1J z J z    (2.114) 

    0 1K z K z    (2.115) 

We may rewrite (2.113) as, 

 
 

 

 

 
1 1

0 0

uJ u wK w

J u K w
  (2.116) 

Or, 

 
 

 

 

 
0 0

1 1

J u K w

uJ u wK w
  (2.117) 

For the limit w->0 the zeroth-order and lth-order modified Bessel functions can be written 

asymptotically as, 

    0 lnK z z  (2.118) 

    
1

1 1
        for 0

2 2
lK z l z l



 
  

 
 (2.119) 

As such, we may rewrite (2.117) in this limit,  
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 

       

0

1

1

ln
ln     for 0

1/ 2 1 1/ 2

K w w
w w

wK w w w


    
   

 (2.120) 

Since the left-hand-side must also go to +∞ we have, 

 v
 

 
0

1

J v

vJ v
  (2.121) 

We see that since J0(v)->1 and J1(v)->0 as v->0 it is implied that the LP01 mode has no cut-off and 

that the LP0m modes for m>1 are the (m-1)’th zeros of the Bessel function of the first kind. That is 

  1 1, 1 0mJ j    (2.122) 

and, 

 
1, 1c mv j   (2.123) 

For modes with l>0 we use the Bessel function relations, 

      1

1v v vJ z J z vz J z


    (2.124) 

      1v v vzK z zK z vK z
     (2.125) 

and rewrite (2.112) as, 

 
    

 

   

 

1

1 1l l l l

l l

u J u lu J u wK w lK w

J u K w



 
  

  (2.126) 

So that we finally obtain, 

 
 

 

 

 1 1

l l

l l

J u K w

uJ u wK w 

   (2.127) 

If we again investigate the limit w->0 of the (l-1)th-order modified Bessel function of the first kind 

we have,  

    
1

1

1 1
1         for 0

2 2

l

lK z l z z

 



 
   

 
 (2.128) 

Using this approximation we may rewrite the right-hand-side of (2.127) as, 
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 

 

     
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

 





 

   
  

    

   
 

   

  


    

 (2.129) 

The left-hand-side of (2.127) must also go -∞ and so, 

 
 

 1

l

l

J v

vJ v

  (2.130) 

We see that the possible solutions for this are that v->0 and Jl-1(v)->0. Since (2.130) would diverge 

to +∞ for v->0 we therefore have that Jl-1(v)->0. The signs of Jl(v) and  Jl-1(v) differ for v->jl-1,m and 

so the cut-off conditions for the LPlm modes for l>0 are, 

  1 0lJ v   (2.131) 

 
1,c l mv j   (2.132) 

  

2.4.3 Interpreting the dispersion relations 

In both the case of the planar waveguides as well as the optical fibre, it is possible to write 

propagation constants in normalised form. If we now define a normalised longitudinal propagation 

constant b we may calculate dispersion curves which provide a description of how the propagation 

constant varies with normalised frequency.   

 
 

2 2

0 2

2 2

1 2

/ k n
b

n n

 



 (2.133) 
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Figure 2-3: Dispersion curve for LP modes in a step-index fibre 

In the case of a step-index optical fibre the locations of mode cut-off can be seen in Figure 2-3 as 

well as the dependence of the normalised propagation constant with normalised frequency. It makes 

sense that since such modes have a frequency dependence they are subject to dispersion. The 

propagation constant β can be written in terms of the normalised constant b as, 

    2 2 2

0 0 1 0 0 0 1 0k n n n b k n n n b         
 (2.134) 

If we substitute this into the expression for group delay we obtain, 

    0 1 0 0 1 0

0

d
N N N b k n n b

dk


      (2.135) 

where Ni are the material group indices. We may approximate this further and obtain, 

  
 

0 1 0

0

d vbd
N N N

dk dv


    (2.136) 

If we take (2.112), invert it and differentiate both sides with respect to v we obtain, 

 1 1l l

l

uJ wKd du d dw

du l dv dw K dv

 
  

    
   

 (2.137) 

Evaluating the left-hand and right-hand sides, 

 
   

 
1 11

2
1

l ll

l l

J u J uuJd
u

du J J u

 
  

   
    

 (2.138) 
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   

 
1 11

2
1

l ll

l l

K w K wwKd
w

dw K K w

 
  

   
    

 (2.139) 

Using recurrence relations and equating (2.138) and (2.139) we obtain, 

 
 

 

 

 
1 1l l

l l

uJ u K w
w

J u K w

 
  (2.140) 

If we now combine (2.140) and (2.112) , 

 
   

 

   

 

2
1 1 1 1

2 2 2

l l l l

l l

J u J u K w K ww

J u u K w

   
   (2.141) 

and use the relation u2+v2=w2 

  1 l

du u
w

dv v
      (2.142) 

where we have defined, 

  
 

   

2

1 1

l

l

l l

K w
w

K w K w


 

  (2.143) 

 Now using, 

 1u v b   (2.144) 

 we finally obtain the expression for use in the group delay expression (2.136),  

 
 

   2 1 l

d vb
b b w

dv
    (2.145) 

From this expression we can observe the behaviour of the group delay with normalised frequency v 

as shown in Figure 2-4 below  
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Figure 2-4: Group delay of the LP modes of a step-index fibre 

We see that for low normalised frequency the group delay of a given mode is quickly increasing and 

as the normalised frequency increases the mode becomes more confined in the fibre and the group 

delay approaches unity. Multimode dispersion can be understood as the dispersion of the group delay 

time of a mode at a certain frequency. The multimode dispersion can therefore be calculated by 

considering the variance in the value of the normalised group delay at a fixed normalised frequency. 

In particular, the chromatic dispersion, which is defined as the sum of the material and waveguide 

dispersion is given by, 

 

0

2

2

d
t L

d
 


 




 
  
 

 (2.146) 

This may be rewritten using ω=k0c and k0=2π/λ as, 

 

2

0 2

0

L d
t k

c dk

 



   (2.147) 

Differentiating (2.136) for use in (2.147) we obtain, 

 
   

 
 22

1 00
0 0 0 1 02 2

0 0 0

d N N d vb d vbdNd
k k k N N v

dk dk dk dv dv

 
     (2.148) 

We obtain the last term in (2.148) which is identified as waveguide dispersion, by differentiating 

(2.145) obtaining, 
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 

       
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2 1 1 2 1 2l l l l

d vb b
v b w

dv b
   

  
       

  
 (2.149) 

where we have defined, 

  
 

 

 

 

 

 

 

 
1 1
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l l l l

l

l l l l

K w K w K w K w
w w

K w K w K w K w
  

 

 
    

  

 (2.150) 

We calculate the waveguide dispersion in Figure 2-5 where it is observed that waveguide dispersion 

is largest for the LP01 mode at an intermediate v and that for the higher-order modes, dispersion is 

largest near the modal cut-off before passing through zero and becoming negative with increasing 

normalised frequency.   

 

Figure 2-5: Waveguide dispersion of the LP modes of a step-index fibre 

 

Looking at (2.148) we see that by combining the first two terms which we refer to as material 

dispersion and the third waveguide dispersion term which represents waveguide dispersion we may 

obtain optical fibres for which a range of dispersive properties are possible. The material dispersion, 

which is written in terms of the group index of the material, may be modelled through the use of an 

empirical fit for the refractive index against wavelength, which for Silica is well approximated by 

the Sellmeier polynomial, 

  
 

23

2
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1 i

i

a
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b





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
  (2.151) 
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Where the a’s and b’s are known as the Sellmeier coefficients and are given in references such as 

[2.2]. 

2.5  Inverse Scattering approaches 

In this section we discuss the theory behind the approach of inverse scattering (IS) to the design of 

optical waveguides and fibres. As described earlier, the fundamental reason for this approach is the 

ability to design optical waveguides and fibres without making any initial assumptions as to the form 

of the refractive index profile as is the case with typically used optimisation methods. This could 

provide novel designs with modal characteristics such as dispersion and mode spacing unseen in 

existing designs. In particular, the success in the use of such a novel approach in the inverse design 

of Bragg gratings in the early 2000s [2.3]–[2.7] offered a great incentive to investigate this further. 

A review of the literature showed that one particular approach using a solution of the so-called 

Gel’fand-Levitan-Marchenko (GLM) integral equations had been successful in the IS design of 

waveguides with improved features such as waveguide width for single-mode operation [2.8]–[2.10]. 

Further work had shown that the inverse design of optical interconnects had been performed using a 

somewhat different technique known as Darboux transformations [2.11] derived from the theory of 

quantum mechanics. A feature of both of the above approaches was that the waveguide was designed 

‘from the side’ by considering the transverse reflection response. It can be shown that the modal 

properties of a waveguide can be described in terms of such a reflection response, a particular 

practical example being in the case by which a recursive reflectance method is used to calculate the 

modes of thin-film waveguides [2.12]. A particular characteristic of this reflection response is that 

its denominator is identified as being the waveguide’s dispersion relation, and thus satisfying it leads 

to poles in the reflection coefficient.       

In the context of optical fibre design, the literature showed that early work was performed into their 

design by specification of modal propagation constants for a fixed azimuthal symmetry LP mode 

number, or fixed propagation constants for differing azimuthal symmetry LP mode number [2.13], 

[2.14]. In the context of quantum mechanics this is known as the solution to the problem for either 

fixed energy, or fixed angular momentum. This contrasted with the more recent work using pure 

optimisation of an assumed form of refractive index profile where optical fibres were designed with 

tailored dispersion characteristics [2.15] through the use of tools such as genetic algorithms. As a 

result, it made sense to investigate this area further but from the IS point of view with the hope that 

there could be potential control of modal characteristics such as mode spacing unseen in existing 

designs. 

In addition, with the currentdeveloping interest in mode-division-multiplexing (MDM) methods, new 

approaches to the design of both waveguide and fibre optical couplers for the purpose of inserting 

and extracting modes using the approaches of supersymmetry (SUSY) [2.16] have been considered 
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recently. Here, the approach relies upon the development of cascades of phase-matched waveguides 

which are obtained as a direct result of the SUSY transformation. The limit of this approach is that 

each partner waveguide obtained from the SUSY transformation contained all of the modes except 

the fundamental, thereby removing one mode at a time. However, if a mode other than the 

fundamental needs to be removed it is necessary to use complex refractive index profiles. In addition, 

there is no way by which particular selected modes may be phase matched. We approached this 

problem from a different point of view using the aforementioned Darboux transformations for 

waveguide couplers and the Gel’fand-Levitan-Machenko equations once again but in cylindrical 

symmetry, respectively, and found different and more powerful solutions.  

We now discuss the above inverse scattering techniques in more detail and observe the connections 

between them.    

2.5.1 The Gel’fand-Levitan-Marchenko integral equations 

In this subsection we develop the approach to the inverse design of optical waveguides and fibres 

using the solution to the Gel’fand-Levitan-Marchenko integral equations. It is shown that this 

equation relates the reflection response of a waveguide to a kernel K(x,t) by which which the 

refractive index profile may be obtained.   

2.5.1.1 Optical Waveguides 

The solution to the inverse scattering problem of based upon the solution of the Gel’fand-Levitan-

Marchenko integral equations was discussed by Kay [2.17] and we follow a description from Jordan 

and Lakshmanasamy [2.8]. In the context of planar waveguide design the problem is stated as 

follows. We begin by considering a physical model in which electromagnetic radiation is scattered 

by an inhomogeneous planar optical waveguide as is depicted in Figure 2-6 

 

Figure 2-6: A physical model of a planar optical waveguide scattering electromagnetic radiation 

incident from the left 
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The modes of such a waveguide are the solutions to the wave equation discussed earlier in this 

chapter. That is, 

  2 2 2 2

0 ( ) 0k n x    E E  (2.152) 

The relationship between the reflection coefficient r(k) in Figure 2-6 and the refractive index profile 

in (2.152) is given by the Gel’fand-Levitan-Marchenko integral equation. It is possible to write 

(2.152) in the form of a Schrodinger equation containing a potential q(x) and energy k defined by, 

    
22 2

0 2q x k n n x  
 

 (2.153) 

 2 2 2 2

0 2k k n    (2.154) 

which puts the problem in a simpler form. If we assume we are dealing with a transverse electric 

(TE) mode, the field is of the form, E=0, Ey(x),0], and (2.152) becomes, 

   2 2 0y yE k q x E     (2.155) 

If we now consider the time-dependent formulation of the scattering problem, it can be shown that 

the Fourier transform  ,E x t of  ,E x k satisfies the time-dependent wave equation where the 

speed of light has been normalised, c=1, 

 
   

   
2 2

2 2

, ,
, 0

E x t E x t
q x E x t

x t

 
  

 
 (2.156) 

If an incident plane wave to the waveguide is represented by a unit impulse, 

    ,            for 0,  0E x t x t x t     (2.157) 

it in turn produces a reflected transient which may be written,  

        
1

1
exp exp

2

N

n n

n

R x t r k ik x t dk i r ik x t






             (2.158) 

with two terms, the first being the contribution from the continuous spectrum representing the 

radiation modes, and secondly the discrete spectrum representing propagating modes which may be 

written as a sum over the poles kn on the positive imaginary axis with residues rn. Causality requires 

that a reflected transient is not produced before the pulse has interacted with the inhomogeneous core 

of the waveguide and so we know that, 

   0           for 0R x t x t     (2.159) 
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We may now relate the wave amplitude  ,E x t in the core region to the wave amplitude  0 ,E x t in 

the exterior region by a linear transformation and kernel K(x,t) independent of the spectral parameter 

k, 

  
     

 

0 0

0

, , ,         0
,

,                                              0

x

x

E x t K x z E z t dz x
E x t

E x t x



 
    

  
 

 


 (2.160) 

where we have written,   

      0 ,E x t x t R x t     (2.161) 

Since we know that  ,E x t is a right-moving transient we also know that, 

  , 0            for E x t t x   (2.162) 

And so a condition on the kernel is that K(x,t)=0 for t>x, and K(x,t)=0 for t≤-x. Substituting (2.161) 

into (2.160) and using (2.159) and (2.162) we obtain the integral equation which the kernel must 

satisfy, 

        , , 0   for  

x

t

K x t R x t K x z R z t dz t x


         (2.163) 

which is identified as Kay’s version of the Gel’fand-Levitan-Marchenko integral equation. If we now 

substitute (2.160) into (2.156) we observe that the kernel K(x,t) also satisfies a differential equation 

of the same form as (2.156) if we impose the conditions 

  , 0K x x   (2.164) 

and, 

 
 

 
,

2
dK x x

q x
dx

  (2.165) 

It is now seen that solutions to (2.163) along with the conditions (2.164) and (2.165) provide a way 

in which to synthesise an optical waveguide from its reflected transient R(x,t) and in turn its reflection 

response r(k). Particular solutions to this integral equation are obtained in Chapter 4 for the case of 

3,5 and 7-pole rational reflection coefficients where a numerical and general implementation of the 

solution to the GLM integral equation by Pechenick [2.18]  is used. 
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2.5.1.2 Optical Fibres 

In a similar vein to above, the Gel’fand-Levitan-Marchenko equations for a cylindrically symmetric 

fiber may be written for the l’th partial wave [2.12], 

        
0

, , , , 0

r

l l l lK r r B r r K r r B r r dr         (2.166) 

where the reflected transient function B(r,t) for a fibre is now written in the form , 
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 (2.167) 

In (2.167) the first term, once again, represents the contribution from radiation modes, and the second 

term that of the guided modes, and the functions fl(k) and  gl(nr) represents the form of the modal 

solutions in a cylindrical geometry with gl(nr) being a  solution of the homogeneous Bessel’s 

equation, 
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giving,  

    l n n j ng r c I r r   (2.169) 

that is in terms of the transverse propagation constant in the cladding, 

 
2 2 2

0 2n n k n    (2.170) 

If we assume phaseless scattering in 2D [2.13], we set the absolute value of the solution fl(k) equal 

to 1 and we obtain a separable equation for the kernel Kl(r,r’) which we may solve by setting, 

      
1

,
N

l

n n l n

n

K r r r g r  


    (2.171) 

where the n(nr) are the eigenfunctions of the bound modes which are normalized according to, 

    
0

j j j n mnr r    


  (2.172) 

 The solution is given by, 

  
 ,

2

l

l
dK r r

q r
dr

  (2.173) 

where, 
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    ( ), ln detl ld
K r r

dr
      (2.174) 

with, 

    ( )

0

r

l

mn m n l m l nmn
c c I r I r r dr            (2.175) 

It is important to note that exact closed-form solutions exist for the particular integral in (2.175) and 

may be found tables such as that compiled by Gradshteyn and Ryzhik [2.19].    

The refractive index profile is then given by, 

 
2 2

2 0( )       ( )ln r n k q r   (2.176) 

2.5.2 The Darboux transformation 

While the GLM technique above provides a way by which the refractive index profile can be obtained 

from the transverse reflection response of a waveguide, when multimode designs are to be considered 

in the form of rational reflection coefficients, there is considerable complexity involved in the 

solution to the problem. However, an alternative and simpler approach exists that allows an N-mode 

structure to be obtained in terms of an existing and initial refractive index profile.  

 

Fundamentally the electromagnetic problem being investigated can be represented by a one-

dimensional quantum mechanical problem which satisfies the time-independent Schrodinger 

equation. In operator notation this may be written as, 

 
n n nH E   (2.177) 

Where the operator H, known as the Hamiltonian, is defined by,  

  
2

2

d
H U x

dx
    (2.178) 

 The eigenvalue problem is to find all the discrete eigenvalues En and the corresponding 

eigenfunctions. The eigenvalues may be numbered in increasing order, 

 
0 1 2 ...E E E    (2.179) 

and the eigenfunctions are mutually orthogonal,  

      , ,    0 ,  , 0,1,...n m n m n nm nx x dx h h n m    




      (2.180) 
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Given a solution { ( )x , E} in addition to   , ,  1,...,j jx E j M  of 

        ,    ,   1,...,j j jH x E x H x E x j M       (2.181) 

we may take the solution 1(x) and define, 
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1 2

1 2
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  (2.182) 
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It can then be shown that they are solutions to a new Schrodinger equation with the deformed 

Hamiltonian H(1)
, 
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d xd
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
      (2.185) 

and energies E and Ek, 

 
                   1 1 1 1 1 1

,  ,  1,...,j j jH x E x H x E x j M       (2.186) 

If this is repeated M-times we arrive at, 
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These then satisfy the M-th deformed Schrodinger equation with the same energy, 

 
                 
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M M M M M M
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As such, given an initial refractive index profile or potential U(x), M additional guided modes may 

be added to it. A particularly simple design approach is found when U(x) is chosen to be identically 

zero everywhere, that is, it is reflectionless.    

At this point it is interesting to note that reflectionless potentials of the Schrodinger equation have 

been found to be of use in the design of planar waveguides by authors such as Papachristos et al. 

[2.20] following a particular solution to the above described GLM integral equations. In general, a 

reflectionless potential which has N discrete eigenstates, 
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 (2.191) 

has an inverse scattering solution given by Moses and Kay [2.21], 
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 (2.192) 

with arbitrary positive constants {cm}. However, the form of UN above suggests that the refectionless 

potential can be obtained from the trivial potential U(x)=0 by multiple Darboux transformations. To 

investigate this further we assume seed solutions to the Schrodinger equation when the potential is 

identically zero, 
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1 2,  0 ,..., ,  1 0j j
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The Wronskian of these seed solutions is given by, 
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As such, the solution for the reflectionless potential using both the GLM and Darboux approaches is 

identical. 
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2.5.3 The SUSY transformations 

There has been a recent surge of interest in a different approach to waveguide design using the so-

called supersymmetric (SUSY) transformations. In particular, this has been applied to the problem 

of mode extraction in proposed mode-division multiplexing systems [2.16]. However, to the author’s 

knowledge there has been little discussion in the optics community of the comparisons between the 

SUSY, Darboux and the Gel’fand-Levitan-Marchenko approach that was used in the early parts of 

this thesis. In the following we follow the excellent description given by [2.22] 

It can be shown that the Hamiltonian operator H discussed above can be factorised in the form, 

 
[0] †H H A A   (2.197) 

with, 
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A A w x R x e
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        (2.198) 

    
   

2 22

2 2
,  

dw x d w xd
H U x U x

dx dx dx

 
     

 

 (2.199) 

The function 0(x) is the ground state eigenfunction and w(x) is known as the prepotential. It is also 

possible to write a partner Hamiltonian in the form, 

 
[1] †H AA  (2.200) 

The Darboux-Crum transformations state that the Hamiltonians H[0] and H[1] are related through the 

so-called intertwining relations, 

 
† † †[0] † [1] † [1] [0],           AH AA A H A A H A AA H A     (2.201) 

and the pair are essentially iso-spectral and their eigenfunctions are related by, 

    [0] [0] [0] ,     0,1,...n n nH x E x n    (2.202) 

    [1] [1] [1] ,     1,2,...n n nH x E x n    (2.203) 

 

†
[1] [0] [0] [1],    ,    1,2,...n n n n

n

A
A n

E
       (2.204) 

As such, the Hamiltonian H[1] has the eigenvalue E0 missing. In the quantum mechanical community, 

a system with the Hamiltonian factorised as 
†H A A  and an associated one 

[1] †H AA  is called 
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supersymmetric. This shows that SUSY is purely a particular application of the Darboux 

transformations where 1j j   .  

2.6 Conclusions 

In this chapter we have introduced three main methods of inverse scattering whereby the refractive 

index profile of a waveguide or fibre may be obtained from its transverse reflection response. An 

important feature of the transverse reflection response was its ability to characterise the modal 

properties of a waveguide through its poles, in a similar way in which the poles of the reflection 

response of a multilayer waveguide may be used to obtain the same. In addition, the case for the 

cylindrical geometry of an weakly-guiding optical fibre is then developed.  

The GLM technique was introduced and the procedure for its use demonstrated. From the reflection 

response R(x,t) an integral equation was obtained involving a kernel K(x,t). Upon solving for this 

kernel it was then possible to obtain the refractive index profile. The Darboux transformation was 

then developed utilising the operator notation of quantum mechanics. It was shown that through the 

use of an initial solution to the Schrodinger equation as well as further ‘seed solutions’, it was 

possible to add further modes or bound states to the waveguide. A particular application of the 

Darboux approach to the case of an initial and trivial reflectionless potential led to the demonstration 

that in this case the GLM and Darboux approaches yield exactly the same solution.  

Further to this, the recently popular SUSY technique was then developed and it was made clear that 

it is purely a particular case of the Darboux transformation where the ordering of the seed solutions 

is rearranged to remove the fundamental mode.  

Compared with genetic algorithms and other such optimisation methods, the above inverse scattering 

approaches make no assumptions as to the geometric structure of the waveguide or fibre. The only 

assumptions made are those of the characteristics of the guided modes supported. If a genetic 

algorithm were chosen, the refractive index profile would have to be split into differing ‘genes’ which 

could be switched ‘on’ or ‘off’ as the process progressed. However, in order to do this either the 

refractive index profile must be split into very many such genes to cover a significant proportion of 

the possibilities, each with many different potential values and with associated high computational 

cost, or a specific set must be chosen at the start. While some of the work later in this thesis does 

require some level of ‘trial and error’ in the design progress, it is expected that the dimensionality 

and cost of this optimisation problem will be much lower and potentially show physical insights that 

would otherwise be lost by ‘brute-force’ methods.   
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 Methods of analysis and simulation 

3.1 Introduction 

In this chapter we briefly discuss the methods by which the modal properties of waveguides and 

fibres can be obtained. Throughout this thesis the commercial mode solver MODE Solutions by 

Lumerical has been used to verify our results. This particular mode solver is based upon the work of 

Zhu and Brown [3.1]. In addition to this approach, we have utilised the well-known transfer matrix 

method (TMM) in order to evaluate the reflection response of the planar waveguides in Chapter 4 of 

this thesis. We also derive the basic formulae of coupled-mode theory which is used in Chapters 7 

and 9 which discuss mode-selective coupler design.     

3.2 Transfer matrix method analysis of optical structures 

Following the description given by Anemogiannis et al. [3.2], the transfer matrix method can be 

approached by considering the geometry in Figure 3-1 below.  

 

Figure 3-1: Geometry of a multilayer waveguide 

For a transverse electric (TE) mode propagating in the z-direction the electric field in the i’th layer 

for which 1i ix x x    may be given as 

  ,
ˆ ( )expi y iE yE x j t z      (3.1) 
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where ŷ is the unit vector in the +y direction, β is the propagation constant in the z-direction and ω 

is the angular frequency. In each layer the field Ey,i(x) may be written as the sum of a forward and 

backward propagating wave in the form 

    , 1 1( ) exp expy i i i i i i iE x A i x x B i x x               (3.2) 

where Ai and Bi are the complex coefficients in the +x and –x directions respectively. Here κi is the 

transverse propagation constant given by 2 2 2

0i ik n    with k0=2π/λ the free-space 

wavenumber. By matching the tangential field components at each layer interface the field expansion 

coefficients at the cover and substrate layer may be given in terms of the matrix product 
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 (3.3) 

The matrix Qi is given by 
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 (3.4) 

where fi=1 for TE modes and fi=n2
i+1 /n2

i  for TM modes and di is the thickness of the i’th layer. 

Assuming cover incidence, the relation for the global reflection coefficient RC is, 

   21

22

expC C C

q
R R j

q



   (3.5) 

In addition, the value of β for which RC is infinite (q22=0) corresponds to a guided mode of the 

multilayer structure. 

3.3 Finite difference analysis of optical structures 

In order to determine the modal properties of the waveguides investigated in this thesis a finite 

difference approach was used which is implemented in the commercial mode solver MODE 

Solutions. It is based upon the work of Zhu and Brown [3.1] and we now briefly discuss the theory 

behind it. For completeness we supply the expressions but provide no proof.    
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This solver is a full-vector finite difference mode solver based upon the discretization scheme 

proposed by Yee [3.3]. The structure of the mesh is shown in Figure 3-2. The mesh is discretised 

such that the coordinates (j,l)=(jx,ly) where x and y are the spacings along the x and y-axes 

respectively. It is important to note that the electric and magnetic fields are staggered so that the 

magnetic field components are located midway between their associated electric field components, 

and vice versa, thereby providing a discretisation amenable to 2nd-order central differencing and one 

that is naturally divergence free and thereby satisfying Gauss’s laws.  

    

 

Figure 3-2: The Yee grid adapted from [3.1] 

Maxwell’s curl equations give, 
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and assuming that the fields have the usual  exp i z t     dependence, following scaling E by the 

free space impedance 
0 0 0/Z    we have, 
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0

z
r x y

H
ik E i H

y
 


  


 (3.11) 

 
0

z
r y x

H
ik E i H

x
 


  


 (3.12) 

 
0

y x
r z

H H
ik E

x y


 
  

 
 (3.13) 

Discretising the above we have, 

  0 ( , ) ( , 1) ( , ) / ( , )x z z yik H j l E j l E j l y i E j l      (3.14) 

  0 ( , ) ( , ) ( 1, ) ( , ) /y x z zik H j l i E j l E j l E j l x      (3.15) 

  0 ( , ) ( 1, ) ( , ) / ( , 1) ( , ) /z y y x xik H j l E j l E j l x E j l E j l y             (3.16) 

  0 ( , ) ( , ) ( , ) ( , 1) / ( , )rx x z z yik j l E j l H j l H j l y i H j l        (3.17) 

  0 ( , ) ( , ) ( , ) ( , ) ( 1, ) /ry y x z zik j l E j l i H j l H j l H j l x        (3.18) 

  0 ( , ) ( , ) ( , ) ( 1, ) / ( , ) ( , 1) /rz z y y x xik j l E j l H j l H j l x H j l H j l y             (3.19) 

where we have defined, 

  ( , ) ( , ) ( , 1) / 2rx r rj l j l j l      (3.20) 

  ( , ) ( , ) ( 1, ) / 2ry r rj l j l j l      (3.21) 

  ( , ) ( , ) ( 1, 1) ( , 1) ( 1,) / 4rz r r r rj l j l j l j l j             (3.22) 

The above definitions have approximated the refractive indices by averaging the indices of adjacent 

cells. The discretised equations (3.14) -(3.19) can be written in matrix form as, 

 

x x

0 y y

z z

0

ik 0

0

     
    

      
        

y

x

y x

H Ei I U

H i I U E

U UH E

 (3.23) 
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x xrx y

0 ry y x y

rz y xz z

0 0 0 i

-ik 0 0 i 0

0 0 0

      
     

       
            

E Hε I V

ε E I V H

ε V VE H

 (3.24) 

In the above, I is the square identity matrix, 
rxε , 

ryε  and 
rzε are diagonal matrices determined by 

(3.21) – (3.23). Hx, Hy, Hz are the discretised forms of the Hx, Hy and Hz components of the magnetic 

field, and Ex, Ey, Ez are the discretised forms of the Ex, Ey and Ez components of the electric field.  

In addition, Ux, Uy, Vx and Vy are square matrices and depend upon the boundary conditions at the 

computational window edges. When the zero-boundary condition is applied we have, 

 x

1 1

1 1

1

x

1 1

1

 
 

 
 

  
  

 
   

U  (3.25) 

 y

1 1

1 1

1

y

1 1

1

 
 

 
 

  
  

 
   

U  (3.26) 

 x

1 1

1 1

1

x

1 1

1

 
 

 
 

  
  

 
   

V  (3.27) 

 y

1 1

1 1

1

y

1 1

1

 
 

 
 

  
  

 
   

V  (3.28) 

As such we may obtain an eigenvalue equation in terms of the transverse electric fields of the form, 

 2x xxx xy

yx yy y y


      

      
      

x

y

E EE P P
P

P PE E E
 (3.29) 
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with, 

   2 1 2 1 2

0 0 0xx x rz y x y x rz x rx y yk k k       P U ε V V U I U ε V ε V U  (3.30) 

   2 1 2 1 2

0 0 0yy y rz x y x y rz y rx x xk k k       P U ε V V U I U ε V ε V U  (3.31) 

    1 2 2 2 1

0 0 0xy x rz y ry x x x rz x y xk k k       P U V ε V U I U ε V V U  (3.32) 

    1 2 2 2 1

0 0 0yx y rz x rx y y y rz y x yk k k      P U ε V ε V U I U ε V V U  (3.33) 

We may also alternatively write an eigenvalue equation in terms of the transverse magnetic fields, 

 2x xxx xy

yx yy y y


      

      
      

x

y

H HH Q Q
P

Q QH H H
 (3.34) 

with, 

   2 1 2 2 1

0 0 0xx x y x rz y rz x x y rz yk k k        P V U U ε V V U I U V  (3.35) 

   2 1 2 2 1

0 0 0yy y x y rz x rx y y x rz xk k k        P V U U ε V V U I U V  (3.36) 

    2 1 2 2 1

0 0 0xy ry x x y rz x x y x rz xk k k       P ε V U U ε V V U I U ε V  (3.37) 

    2 1 2 2 1

0 0 0yx rx y y x rz y y x y rz yk k k       P ε V U U ε V V U I U ε V  (3.38) 

  

3.4 Coupled-mode theory 

In order to evaluate the behaviour of our later coupler designs, it was necessary to make use of 

coupled mode theory. Here we follow Okamoto [3.4] in deriving the coupled mode equations.  
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Figure 3-3: An illustration of two coupled waveguides 

 

If we consider two waveguides each of which have modes that satisfy Maxwell’s equations as is 

depicted in Figure 3-3, 

 0p pj  E H  (3.39) 

 2

0p p pj N H E  (3.40) 

where Np (x,y) represents the refractive index of each waveguide, then we make the assumption that 

the fields of the coupled structure can be expressed as the sum of the eigenmodes of each waveguide, 

 
1 2( ) ( )A z B z E E E  (3.41) 

 
1 2( ) ( )A z B z H H H  (3.42) 

This solution is also required to satisfy Maxwell’s equations and so, 

 
0j  E H  (3.43) 

 
2

0j N H E  (3.44) 

Using the vector identity, 

   z

dA
A A A A

dz
       E E + E = E u E  (3.45) 

we may derive the relations, 

    1 2 0z z

dA dB

dz dz
   u E u E  (3.46) 
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        2 2 2 2

1 0 1 1 2 0 2 2 0z z

dA dB
j N N A j N N B

dz dz
        u H E u H E  (3.47) 

with N2(x,y) the refractive index in the entire coupled waveguide. If we now perform the following 

integrations, 

    1 13.48 3.47  0dxdy

 

 

        E H  (3.48) 

    2 23.48 3.47  0dxdy

 

 

        E H  (3.49) 

We obtain the equations, 
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dxdy
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 

 
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 

 
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 

 

 

 

   



   

 



   

 

 

   

 

 

 

 

 

 

u E H E H

u E H E H

E E

u E H E H

E E

u E H E H

 (3.50) 

and, 

 

 

 

 

 

 

 

* *
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2 2 2 2

2 2 * *

0 1 2 1
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2 2 2 2

2 2 * *

0 2 2 2
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dxdy
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dxdy

N N dxdy
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



 

 

 

 

 

 

 

 

 

 

 

 

   



   

 



   

 

 

   

 

 

 

 

 

 

u E H E H

u E H E H

E E

u E H E H

E E

u E H E H

 (3.51) 

If we assume that the individual electromagnetic fields are of the form, 
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  expp p pj z E E  (3.52) 

  expp p pj z H H  (3.53) 

Then substituting this form into (3.50) and (3.51) we obtain, 

    12 2 1 1 12 2 1exp exp 0
dA dB

c j z j A j B j z
dz dz

                   (3.54) 

and, 

    12 2 1 2 21 2 1exp exp 0
dB dA

c j z j B j A j z
dz dz

                   (3.55) 

where we have defined the coupling coefficients, 

 

 

 

2 2 *

0

* *

 q p q

pq

z p p p p

N N dxdy

dxdy





 

 

 

 

 



   

 

 

E E

u E H E H

 (3.56) 
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 
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* *

z p q q p

pq

z p p p p

dxdy
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dxdy

 

 

 

 

   



   

 

 

u E H E H

u E H E H

 (3.57) 

 

 

 

2 2 *

0

* *

 p p p

p

z p p p p

N N dxdy

dxdy





 

 

 

 

 



   

 

 

E E

u E H E H

 (3.58)

  

Here κpq is known as the mode coupling coefficient, cpq represents the butt-coupling coefficients. The 

term p involves the integration of the field of a waveguide p over the refractive index region 

occupied by the other waveguide q. As such, since the field in this region is likely to be very small, 

it can typically be neglected unless the waveguides are very close together. It can be noted 

immediately that the terms in the denominator of the above expressions can be rewritten in terms of 

the power in each individual mode which is given by, 

  *1

2
p p p zP E H dxdy

 

 

    u  (3.59) 

Therefore we have, 
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  * * 4z p p p p pdxdy P

 

 

      u E H E H  (3.60) 

Assuming unit power in each mode we can then easily obtain from the above coupling expressions, 

 
*

21 12c c  (3.61) 

 *

p p   (3.62) 

The power in the entire coupled waveguide structure can then be obtained as, 

 

 

   

*

2 2 * * *

12 12

1

2

1
exp 2 exp 2

2

zP dxdy

A B A Bc j z AB c j z 

 

 

  

     
 

  E H u

 (3.63) 

As useful expression can be obtained under the condition of loss-less waveguides by considering that 

optical power must remain constant, 

 
   

   

* *

21 12 12

* * *

21 12 12

2 exp 2

         2 exp 2 0

dP
jA B c j z

dz

jAB c j z

   

   

   

   

 (3.64) 

For this to be true for any z we therefore require that, 

 
* *

21 12 122 c     (3.65) 

This tells us that under the condition of phase-matched waveguides or when the waveguides are 

sufficiently separated κ21=κ*
12. 

3.5 Conclusions 

In this chapter, the transfer matrix method was introduced for the purpose of evaluating and verifying 

the reflection responses of planar waveguides against their a priori prescribed values. In addition, the 

finite difference analysis of waveguides was described following the work of Zhu and Brown [3.1], 

as implemented in the Lumerical MODE Solutions solver. This is used extensively in this thesis to 

verify the modal properties of both the waveguide and fibres designs. Finally, coupled-mode theory 

was discussed so that it could be used in the modelling of the coupler designs later in this thesis.  
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 Inverse scattering designs of dispersion-

engineered single-mode planar waveguides 

The work in this chapter was published in Optics Express, Vol 23(3), 2015 as “Inverse scattering 

designs of dispersion-engineered planar waveguides” 

4.1 Introduction  

Optical waveguides, in addition to controlling the propagation losses through total internal reflections 

and efficient power confinement in the core, offer the unique ability to control the group velocity of 

the propagating light.  These two main attributes have rendered optical waveguides indispensable 

parts in any advanced optical system.  So far, the largest control and highest performance has been 

achieved with optical fibres.  Tailoring the core shape has been used to control both modality and 

group velocity dispersion in optical fibres [4.1].  

While the control of dispersion in optical fibres is usually associated with dispersion compensation 

in optical communications networks [4.2] there has also been increasing interest in its control for the 

purposes of harnessing and optimising nonlinear optical effects. Parametric processes [4.3] and 

supercontinuum generation [4.4] rely upon tailoring the dispersion profile of the fibre to enhance 

energy transfer in certain spectral regions.  Therefore, significant effort has been put over the last 

decade to develop technologies to fine control waveguide dispersion [4.5].  

Silica-based highly nonlinear fibres (HNLF) feature very low attenuation characteristics and so by 

using long lengths of these fibres a large nonlinear effect can be realised. Small mode effective areas 

and thereby large nonlinearity are produced by increasing the refractive index (RI) difference 

between the core and the cladding which enhances the confinement of the light. This may be achieved 

by utilizing a highly germanium-doped core and a fluorine-doped cladding. In addition to creating a 

small mode effective area, nonlinear processes such as four-wave mixing (FWM) require the pump 

wavelength to coincide with the zero-dispersion wavelength of the fibre. Further control of the 

dispersion slope is advantageous in controlling dispersion and increasing operating bandwidth. An 

example of a HNLF with a zero-dispersion wavelength near 1550nm, a mode field diameter (MFD) 

of 4.3m and a low dispersion slope of 0.0032ps/nm2/km was realised through the use of a W-shape 

RI profile [4.6] . The index and thickness of these RI features determines the rate as a function of 

wavelength at which the mode transitions from the core to the ring.  It is this, as well as, the average 

RI over which the mode extends that controls the propagation constant and its derivatives and thereby 

the dispersion properties of the fibre.   

Control of dispersion has been achieved by modifying the inner-core shape and adding features, such 

as rings and trenches into the overall core design [4.1], [4.7]. While the dispersion-engineering of 
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fibres is typically approached through a trial and error method and parametric study, a powerful 

method for designing dispersion-engineered devices is inverse scattering (IS).  Such methods have 

been used extensively to design fibre Bragg gratings with prescribed dispersion characteristics [4.8]–

[4.10]. These methods have provided non-intuitive designs with advanced performance [4.11].   

Also, authors have in the past studied the design of planar waveguides, as well as fibres from the IS 

point of view [4.12]–[4.17].  In these works, the modal properties of the waveguide such as a 

prescribed mode-profile [4.15], or the number of propagating modes [4.14] have been considered 

and specified at the start and through the inverse design process the waveguide with these properties 

is obtained. In particular, in the latter work the starting point of a truncated reflectionless potential is 

used. However, in each case, waveguide dispersion has not been considered from the point of view 

of the selection of (a variable number of) leaky poles and their approximation to the associated 

radiation modes.  In our work, a transverse reflection coefficient of the structure is defined and the 

guiding properties of the waveguides are defined by the positions of reflection coefficient poles on 

the complex plane, representing guided and leaky modes of the waveguide under consideration. 

Similar IS techniques have also been used for the determination of the ionosphere characteristics 

from reflection data [4.18], [4.19].  

In this work, we extend IS techniques, used in the ionosphere characterization, for the design of 

optical planar waveguides and study their dispersion characteristics. To our knowledge this is the 

first time that the connection between a transverse reflection coefficient and waveguide dispersion 

has been investigated. New designs are obtained with RI features which are generalizations to the 

ones considered previously. As a starting point to a more general analysis with fibres, we describe 

the dispersion characteristics of IS designed planar waveguides. We begin by considering design 

cases for which exact solutions exist which have previously been discussed in the literature, before 

extending this to a set of new cases. In each case the waveguide design is first obtained from the IS 

theory before the effective indices of the modes are solved (the forward problem) using the Lumerical 

MODE solver. This data is then used to map the dispersion characteristics of the waveguides. We 

then show that typical dispersion-engineered waveguide features such as rings and trenches come 

naturally from this theory. Finally, we discuss what benefits the new extended cases bring to the 

literature.  

4.2 Designs using rational reflection coefficients 

A general reflection coefficient can be approximated by rational functions of different degree [4.19].  

The three-pole case is amenable to analytic solutions and has been studied extensively in the past in 

the context of ionospheric simulations [4.17] and waveguide modality [4.12], [4.13].  So far, 

waveguide examples are based upon either the GLM procedure or the application of the Crum-Krein 

or Darboux transformations [4.22] to reflectionless potentials. Here we focus on the GLM technique 
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where we note that to date the majority of waveguide examples are based upon a rational three-pole 

formulation. While numerical GLM techniques exist for non-rational reflection coefficients, these 

methods bring with it the possibility of roundoff errors and instabilities [4.23] and there is therefore 

an advantage in solving the GLM equation exactly using a generalization of the seminal work of Kay 

[4.20]. In addition, the complexity of the solutions, however, increases quickly with the number of 

poles and in view of Galois’ proof that 5th and higher-order polynomial equations are insoluble by 

radicals, the previous analytic solutions cannot be implemented.  In this case, the semi-analytical 

numerical technique, described by Pechenick in the context of ionospheric reflection data inversion 

[4.23], provides a powerful alternative. We have used this general technique throughout our study. 

It is worth noting that this is, to our knowledge, the first time this technique has been applied to 

waveguiding structures and the lack of significant development of the inversion of potentials with 

bound states is acknowledged in the work of Ge et al. [4.24]. 

We begin our study by considering first the simplest case of three-pole reflection coefficients and 

then proceed by progressively increasing the number of poles to five and seven.  

4.2.1 Three-pole reflection coefficients 

First we consider waveguide designs associated with the three-pole reflection coefficients: 

  (4.1) 

with poles k1, k2 and k3 given by, 

   (4.2) 

for which .  The choice of poles k1, k2 and k3 controls the shape and dispersion of 

reflection coefficient of the scattering layered medium and is expected to define the dispersion of the 

resulting waveguide.  Pole k3 corresponds to the propagation constant of the fundamental guided 

mode through . Poles k1 and k2 on the other hand, result in leaky modes, which are 

necessary for the full description of the waveguide.  Poles k1 and k2 are hereafter referred to as “leaky 

poles”.   

In order for a solution to exist, the reflection coefficient must obey a set of conditions [4.25], which 

are indeed satisfied by the general forms given in (4-11).  However, it is necessary to restrict the 

position of the poles in the complex plane in order to satisfy energy conservation, r(k)≤1, for all real 

k.  Previous authors [4.12], [4.13] have satisfied this requirement by considering the discriminant of 

a conservation-of-energy condition to be positive, thus giving the allowed regions A and B shown in 

Figure 4-1.  Region A is bounded above by the line c2 = 0.5 and below by the lemniscate of Bernoulli 

[4.25]. Region B is bounded below by c2 = 0.5, but it is unbounded above.  
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Figure 4-1: The allowed regions designed by A and B for the three pole case with 

a guided mode located at |k3|=1µm-1 derived by previous authors [4.12], [4.13] 

 

In order to generalize this procedure to higher numbers of poles, we adopt a different approach by 

using Sturm’s Theorem [4.26] from which we are able to determine whether the conservation-of-

energy condition is satisfied or not (see Sec. 4.4 for details). The conjugate symmetric leaky poles 

k1, k2 maybe placed anywhere in Region A or Region B but must not be placed at the origin as this 

would result in the trivial reflection coefficient r(k)=0. The study of the dispersive properties of the 

designed waveguides was restricted in a region defined by c1=0.1, c2=0.1 as the inner limit and c1=4, 

c2=4 as the outer limit. In all subsequent calculations we assume cladding RI n2=1.444, operating 

wavelength λ = 1.55µm and guided mode pole |k3|=1µm-1.   

Figure 4-2(a) shows two representative waveguide RI distributions, obtained by inverse scattering 

the three-pole reflection coefficient with (c1=0.1, c2=0.1 – design#1) and (c1=0.85, c2=0.4999 – 

design#2), using the semi-analytical technique of Pechenick [4.23].  Design#2 is also compared with 

the one derived by Lakshmanasamy and Jordan previously using an analytical technique [4.12], 

showing an excellent agreement.  Figure 4-2(b) shows the variation of the effective index (neff=β/k0) 

as function of k0=2π/λ for guided modes TE0 and TE1, for the two designs.  It must be noted that for 

each design the TE0 mode effective index at the design wavelength λ = 1.55m (k0=4.05m-1) is 

neff=1.4649, as predicted by the expression above for β with a guided mode pole |k3|=1m -1.  It can 

be seen that designs with small leaky poles (design#1) resemble more closely a simple quasi-

parabolic design.  On the other hand, designs with larger conjugate symmetric poles (leaky poles), 

like design#2, result in features loosely resembling a fibre W-type RI profile and is associated with 

larger dispersion, as evidenced by the larger slopes of the associated neff-vs-k0 curve in Figure 4-2(b).  

In addition, design#2 shows single-mode operation over a much wider range of wavelengths. 
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Figure 4-2: (a) RI profiles with three-pole rational reflection coefficient designs in 

region A with c1=0.1, c2=0.1 (design#1) and c1=0.85, c2=0.499 (design#2). The 

exact design#2 obtained by Lakshmanasamy and Jordan [4.12] (dotted green 

curve) is also shown for comparison. (b) effective index variation with 

k0 for design#1 and #2 (the design point is demarcated by the dashed lines). 

So far, in the literature inverse-scattering waveguide designs have been limited to region A [4.13].  

In this work, in order to evaluate the effect of the leaky poles thoroughly, we have studied direct 

scattered designs, located in both Region A and B, to determine the waveguide dispersion and 

dispersion slope. The results are summarized in Figure 4-3.  

 

 

Figure 4-3: Waveguide dispersion D2 (in ps/nm/km), dispersion slope D3 (in 

ps/nm2/km), and dispersion curvature D4 (in ps/nm3/km) as a function of leaky 

pole positions. (designs #1 to #5 are designated by yellow dots) 
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The second order dispersion coefficient D2 is defined in terms of the mode effective index neff=β/k0 

as, 

  (4.3) 

The higher order dispersion coefficients Dn is given by, 

  (4.4) 

D3 and D4 are also known as dispersion slope and dispersion curvature expressed in ps/nm2/km and 

ps/nm3/km, respectively. The dispersion map in Figure 4-3 can be used to provide the appropriate c1 

and c2 values for a target D2, D3 and D4 combination.    

It can be seen that as previously surmised leakier poles (i.e. larger c1 and c2) lead to waveguides with 

higher waveguide dispersion.  In particular, moving out of region A (bottom-left corner of allowed 

region in Figure 4-4) into region B (c2>0.5) the waveguide dispersion increases from <50ps/nm/km 

to >400ps nm/km with more positive dispersion slopes and more negative dispersion curvature. In 

particular there appears a region close to the edge of the considered region B, on the lower-right hand 

side, where the largest dispersions are observed.  

We also note that designs exist for which the dispersion is constant, and the dispersion slope and 

dispersion curvature differ. As an example, Figure 4-4(a) shows waveguide designs for which D2= -

215ps/nm/km is constant and D3 is 0.1ps/nm2/km (design#3), 0.2ps/nm2/km (design#4), and 

0.3ps/nm2/km (design#5). The corresponding parameters (c1,c2) are (2.0588,0.6541-design#3), 

(2.5014,1.0885-design#4), and (3.5810,2.1803-design#5). Designs #1 to #5 are designated by yellow 

dots in Figure 4-4.  

 

Figure 4-4: (a) Waveguide designs and (b) corresponding TE0 normalized electric 

field profiles with D2 = -215ps/nm/km and D3= 0.1ps/nm2/km (design#3), 

0.2ps/nm2/km (design#4) and 0.3ps/nm2/km (design#5). 
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We observe from Figure 4-4(a) that, for a constant dispersion, increasing the magnitude of the 

dispersion slope causes the RI profile to narrow and steepen. It is particularly interesting to note that 

the design with the smallest dispersion slope contains significant trench and ring features, as well as 

oscillations, which result in substantial dispersion flattening. It should be mentioned that the 

inversed-scattered profiles can be considered as generalizations of commonly used triple-cladding 

dispersion compensating fibres.   It is well known that for a fixed phase velocity changes in the 

electric-field/RI overlap are associated with changes in group velocity through the integrals of the 

scalar approximation method [4.27].  This is demonstrated in Figure 4-4 (b) where the electric field 

of design#3 varies noticeably, when compared with design #5, in accordance with the RI distribution 

which results in substantial dispersion slope reduction.  

In order to further explore the significance of the leaky pole positions on the IS waveguide designs, 

we have considered separately the effect of their modulus R=|k1|=|k2| and their real part magnitude 

c1. Figure 4-5(a) and 6(b) plot the RI modulation profiles for R=3 and 4, respectively. This 

demonstrates that while an increase in leaky pole modulus does increase the dispersion, through a 

narrowing and steepening of the design, it is the increase of parameter c1 that causes the development 

of strong RI modulation and larger dispersion. 

 

 

Figure 4-5: Effect of leaky pole modulus R=|k1|=|k2| on IS waveguide RI 

modulation. (a) R=3 and (b) R=4. 

The dispersion curves of the TE0 and TE1 modes for the designs shown in Figure 4-5 are plotted in 

Figure 4-6. In addition to higher dispersion, manifested by the increased slope of the dispersion 

curves at the design wavelength (indicated by dotted lines), the designs with the largest c1 parameter 

show wider single mode operation bandwidth (marked by the TE1 cut-off point). Compared with the 

low dispersion design#1 in Figure 4-3, these high dispersion designs show about three time wider 

single-mode operation bandwidths.  This is because of the presence of the RI depression adjacent to 

the main RI lobe.   
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Figure 4-6: The dispersion curves (TE0, TE1) for (a) R=3 and (b) R=4 designs (the 

design point is demarcated by the dashed lines). 

Figure 4-7(a) shows the effect of c1 on the waveguide RI profile, for constant c2. It demonstrates that 

increasing the c1 parameter introduces strong RI oscillations with varying period. This also increases 

the waveguide dispersion as evidenced from the increased slope of the dispersion curves shown in 

Figure 4-8 (b).     

 

Figure 4-7: (a) RI modulation profiles for different c1 and fixed c2=0.51.  (b) neff 

variation for TE0 and TE1 with k0 (the design point is demarcated by the dashed 

lines) 

In addition to dispersion, RI modulation affects the guided mode field distribution (see Figure 

4-4(b)), and therefore, the effective mode area.  Effective mode area is another important parameter 

since it defines the strength on waveguide nonlinear effects and the losses between different 

waveguide structures.   The fundamental TE0 mode effective mode area is calculated by Aeff 

=( ∫│Ey│
2dA)2 / ∫│Ey│

4 dA and is plotted over the entire (c1,c2) parameter space in Figure 4-8.  It is 

clearly shown that high dispersion is associated with smaller effective mode areas.  The low 

dispersion designs, located close to the origin within region A, show the largest effective mode areas 
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(of order of 2.8m2), while the most dispersive designs, located close to region B lower boundary, 

show effective mode areas of the order of 1.8m2. Such inter-dependence has also been observed in 

highly dispersive fibres [4.2], [4.7]. 

 

Figure 4-8: TE0 effective mode area over the entire (c1,c2) parameter space. 

4.2.2 Five- & Seven-pole reflection coefficients 

We have extended the waveguide IS designs to rational reflection coefficients with five poles of the 

form, 

  (4.5) 

with poles  for which 1 2 1 2,  ,  ,  ,   c c d d a , and 

  (4.6) 

It is once again possible to use the semi-analytical IS numerical technique [4.21] to solve for 

waveguide designs.  This is now a multi-dimensional problem and we only consider specific cases 

to demonstrate the effect of extra leaky poles.   

We first fix two of the leaky poles to k1,2 = ±0.85-i0.4999 and the guided mode pole to |k5|=1m-1; as 

per the leakiest case for three poles in region A considered previously (design#2 in Figure 4-2(a) 

with D2= -72ps/nm/km, D3= 0.0042ps/nm2/km & D4= 0.000049 ps/nm3/km).  Using Sturm’s 

Theorem, we obtain in Figure 4-9 the allowable domain and dispersion contours of d1 and d2, defining 

the positions of the other two leaky poles k3 and k4. In this case, the allowable domain is totally 

different to the three-pole case shown in Figure 4-3.  We notice that in this case the introduction of 

two extra leaky poles does not change dramatically the waveguide dispersion.  Actually, the 

dispersion for these designs has been limited in magnitude by the size of the initial leaky poles c1 and 

c2 to a value of the order of D2= -72ps/nm/km.   
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Figure 4-9: Waveguide dispersion map as a function of additional leaky pole 

positions for a five-pole case. (a) (c1,c2)=(0.85,0.4999) and (b) (c1,c2)=(1.7,1), 

|k5|=1µm-1, n2=1.444 and =1.55 µm 

 

Figure 4-9 (b) shows the allowable region and dispersion map with varying d1, d2, when the fixed 

leaky pole position is moved into region B to (c1,c2)=(1.7,1).  In the three-pole case (see Figure 4-3 

red cross) this corresponds to D2= -145ps/nm/km, D3= 0.08/nm2/km & D4= 0.00010/nm3/km.  The 

allowable (d1,d2) region in this case resembles the three-pole one.  Once again, though, the obtained 

waveguide dispersion shows a limited variation around the three-pole values.  From the two examples 

shown in Figure 4-9, we deduce that the addition of two extra leaky poles provides very similar 

results for dispersion tuning as that around the values achieved by the corresponding three-pole case. 

To demonstrate this, consider a design in Figure 4-9 (b) with identical waveguide dispersion and 

dispersion curvature to that of the three-pole case above, which we also denote by a red cross. We 

then find that the waveguide dispersion, slope and curvature here are all very similar to those in the 

existing three-pole case.       

 

To explore this even further, we may choose a three-pole case and a five-pole case indicated by the 

white crosses in Figure 4-3 and Figure 4-9 (b) respectively, both with waveguide dispersion D2= -

261ps/nm/km and dispersion slope D3= 0.13ps/nm2/km but ever so slightly differing dispersion 

curvature D4 of 4.41x10-4 ps/nm3/km &  4.29x10-4 ps/nm3/km, respectively. The designs are obtained 

with (c1,c2)=(2.2775,0.5269) and (c1,c2,d1,d2)=(1.7,1,3.18,0.22), respectively, and the resulting RI 

distribution is shown in Figure 4-10. The two designs show the same qualitative features, and the 

small difference in D4 is achieved by slightly changing the size and periodicity of the RI undulations.  

These subtle differences are difficult to be captured by traditional iterative solutions, but result 

naturally by the IS technique.  

We have also extended even further the waveguide IS designs to rational reflection coefficients with 

seven poles, by adding two extra leaky poles k5,6 = ±e1+ie2. In Figure 4-11 we plot the allowable 

(e1,e2) space and resulting dispersion map, using the existing five-pole design point 
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(c1,c2,d1,d2)=(1.7,1,3.18,0.22), denoted once again by the white cross in Figure 4-9 (b) and guided 

pole k7=+i1µm-1.  

We see once again that the design with identical waveguide dispersion and slope to the five-pole 

design denoted by the red cross has a very similar curvature. It appears that in each case the addition 

of larger number of poles brings a small but measureable difference in the control of higher order 

dispersions about a three-pole design corresponding to the leaky pole pair with smallest modulus. 

This small change is represented by the higher complexity of the refractive index profiles. 

  

  

 

Figure 4-10: Three pole (c1,c2)=(2.2775,0.52692) and five-pole (c1,c2,d1,d2)=(1.7,1,3.18,0.22) 

designs with identical D2=-261 ps/nm/km,D3=0.130 ps/nm2/km but differing D4 ( 4.41x10-4 

ps/nm3/km & 4.29x10-4 ps/nm3/km) (designs correspond to the ‘white crosses’ in Figure 5-4 & 

Figure 5-10 (b)) 

 

Figure 4-11: Seven-pole (e1,e2) allowable region and dispersion map, with fixed

. 

 

1 2 1 2( , , , ) (1.7,1,3.18,0.22)c c d d 
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4.3 Conclusions  

In summary we have introduced a semi-analytical IS technique suitable for multipole, rational 

function reflection coefficients, and used it for the design of dispersion-engineered planar 

waveguides. The method is exact and stable and compared to other numerical methods it is shown 

not to introduce roundoff errors and instabilities [4.23]. Previous works [4.12], [4.13] have 

considered a three-pole reflection coefficient with a variable location of two conjugate symmetric 

leaky poles in the lower half of the k plane in order to obtain a waveguide design with a twofold 

larger core width than typically obtained by direct scattering techniques. However, the effect and 

relationship between the leaky pole positions and waveguide dispersion has not been considered to 

date. In addition, previous authors have not considered the inverse scattering of waveguides for 

rational reflection coefficients with more than three poles. We have shown that the addition of a 

larger number of poles, results in different ‘pole allowable regions’ and through the use of causality 

arguments in Appendix A we have developed a method to define these allowable regions. The 

technique is therefore used to derive extensive dispersion maps, including higher dispersion 

coefficients, corresponding to three-, five- and seven-pole reflection coefficients.  The dispersion 

maps are obtained by varying systematically the pole positions within derived allowable regions.  It 

is shown that common features of dispersion-controlled waveguides such as RI trenches, rings and 

oscillations come naturally from the IS theory when the magnitude of leaky poles in increased. In 

particular, while the leaky pole radius does lead to increased core size, trench size and dispersive 

properties, it is the magnitude of the c1 parameter near the forbidden region that introduces and 

controls the period of oscillation in the RI profile. It is also shown that for the three-pole cases, the 

allowed Region B which has previously not been considered for waveguide designs provides the 

opportunity for increasingly dispersive designs.  

The addition of further poles to the inverse scattering procedure, by which more general and not 

necessarily rational reflection coefficients can be approximated [4.21], has not been investigated 

previously and has been shown to offer a small but measureable change in higher order dispersion. 

It is important to note that the inverse scattering method employed in this work can be applied to an 

arbitrary number of poles and is therefore not limited. We have also shown that addition of larger 

number of poles, results in different “pole allowable regions”.  Using causality arguments, we have 

developed a method to define these allowable regions.   

Although, a very large number of poles is needed to accurately describe general reflections 

coefficients, our work has shown the dispersion response is dominated primarily by the three pole 

design corresponding to the leaky pole pair with smallest modulus.    

We believe that this initial study shows promise for the use of inverse scattering in the design of 

dispersion-engineered waveguides or fibres and we plan to consider these designs in future work. 

While we have yet to discover an analytic relationship between pole locations and waveguide 
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dispersion we shall in future work present ‘engineering curves’ relating the phase response of the 

rational reflection coefficient to the waveguide dispersion.   

4.4 Appendix 

Given a 5-pole reflection coefficient ( )r k of the form written in Eq. (14) and using the requirement 

of conservation of energy for all real k , it is straightforward to derive from 2
( ) 1r k  the requirement 

that, 

 1
A

B
  (4.7) 

where    
2 2

2 2 2 2 2

1 2 1 2A c c d d a    (4.8) 
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We observe that (4.16) is true whenever, 

 0 B A   (4.10) 

If we denote the polynomial in (4.18) by p(k) we observe that energy conservation is equivalent to 

requiring that for all real k, 

 0 ( )p k  (4.11) 

Sturm’s theorem [4.26] states that given a polynomial of degree n , ( )p k and its derivative 1( )p k , 

there is an associated Sturm chain 1( ) ( ), ( ), ( )nS k p k p k p k , where 2 ( )p k is the remainder of ( )p k

divided by 1( )p k with reverse sign, and 3 ( )p k is the remainder of 1( )p k divided by 2 ( )p k with reverse 

sign, and so on until a constant is arrived at. Then the number of real roots in the open interval ( , )a b  

is given by: 

 a b     (4.12) 

where a and b are the number of sign variations in the Sturm chain ( )S a and ( )S b  respectively.   

For our case, we require that there are no real roots of ( )p k in the interval (0, ) and make the 

necessary substitutions in the above. If we automate the process of determining whether ( )p k  has 

real roots in the above interval for any combination of 1 2 1 2, , ,c c d d or as is required through the use 
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of a computer algebra package such as the MAPLE [4.28] function ‘sturm’, we obtain the domains 

illustrated in the contour plots of this paper.  
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 Inverse scattering designs of multimode 

planar waveguides with differential group delay 

equalisation 

Part of the work in this chapter was presented at the Sixth International Conference on Optical, 

Optoelectronic and Photonic Materials (ICOOPMA 2014) as “Group velocity equalisation in 

multimode waveguides using inverse scattering designs” and published in Volume 619 of the Journal 

of Physics: Conference Series.  

5.1 Introduction 

There is currently great interest in spatial division multiplexing [5.1] in order to overcome the 

impending “capacity crunch” [5.2] of single-core, single-mode optical fibre transmission systems. In 

particular, mode-division multiplexing is of particular interest because of the large number of modes 

that can be used in a single fibre. However, in order to use such methods it is important to control 

the deleterious effect of differential group delay (DGD) as well as mode-coupling. Mode-coupling 

leads to crosstalk between multiplexed data streams which can in theory be addressed through MIMO 

signal processing. However, when both DGD and mode-coupling are present crosstalk between 

modes can spread across multiple bit periods making such MIMO hardware more complex [5.3]. As 

a result, work has been done to investigate the tailoring of optical fibre refractive index (RI) profiles 

to meet the needs of both low DGD and low mode-coupling through the use of graded-index cores 

and outer trenches [5.4]–[5.6]. While giving good performance in terms of minimisation of DGD and 

low mode coupling between the LP01 and LP11 modes, such designs rely upon a parametric design 

process. We were interested to know whether direct control of mode effective indices could be used 

to control both of these characteristics.        

 

Here we extend our work on the inverse scattering (IS) design of single-mode planar waveguides in 

Chapter 4 to the case of multimode planar waveguides through the use of Darboux transformations 

as have been used previously by Mills and Tamil [5.7] in the design of optical interconnects. We 

show that through manipulation of the effective indices and thus phase velocities of the waveguide 

modes it is possible to manipulate the group velocities in such a way as to control the range of 

wavelengths over which they are equalised. It is clear that we have performed this investigation in 

planar waveguides rather than optical fibres, but we believe that the qualitative features of the designs 

will carry over, especially given the similarity between the mode fields of both low order TE and LP 

modes in planar waveguides and fibres respectively. More generally, fibres must be designed by 

calling upon the solution to the Gel’fand-Levitan-Marchenko integral equation in a cylindrical 

geometry such as is done in Chapter 9 of this thesis.  
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5.2 Theory 

 

In the case of multiple guided modes, as discussed in Chapter 2, the RI profile n(x) of the optical 

waveguide can be reconstructed by appropriate Darboux transformations. In addition, given that 

there exists Brown’s identity [5.8] which connects the phase velocity vp, group velocity vg, refractive 

index n(x) and z-directed component of modal power density Pz in the waveguide regions,   
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we proposed that control of dispersive properties would be possible through the manipulation of 

modal effective indices using the above method. With the propagation constants supplied a priori the 

potential is derived and its dispersive properties obtained through direct scattering. We applied this 

method to the design of planar waveguides with two, three and four modes. In all cases the design 

wavelength was chosen to be λd=1.55µm and a cladding index of n2=1.444. The differential group 

delay (DGD) between two modes TEm and TEn is typically defined in terms of their effective indices 

as, 
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In addition, it was assumed in calculating the DGD that material dispersion is the same for all modes 

and profile dispersion is negligible. 

5.3 Dual-mode designs 

We first select the effective index of the TE0 mode and vary the spacing of the TE1 mode with respect 

to this and the cladding. In all cases the effective index values were chosen by trial and error and 

observing the DGD performance of the designs. This is performed in designs #1-#5 where the TE0 

mode effective index is fixed at 1.450000 and the increasing effective indices of the TE1 modes are 

given in Table 5-1 and the refractive index profiles as well as differential delay curves are given in 

Figure 5-1 (a) and (b) respectively. We see in (a) that through an increase in the TE1 mode effective 

index relative to that of the fixed TE0 mode, there is an associated increase in the extent of the core 

depression with this seen clearest between design #1 (blue curve) and design #5 (pink curve). This 

behaviour is in fact to be expected from coupled-mode theory where two identical single-mode 

waveguides, here represented by the two halves of the designs mirrored about the origin, have 

supermodes whose effective index near-degeneracy gets closer with increased waveguide spacing. 

As such, bringing the TE1 mode’s effective index up to that of the TE0 mode leads to the splitting of 

the initially single core (see design #1) into that of increasingly separate dual cores (see designs #4 
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and #5). In addition, in (b) we observe that the wavelength at which the group velocities of the TE0 

and TE1 modes are equalised increases from ~1.2 to ~1.8 m (design #1-design #5) with a decrease 

in TE0-TE1 mode effective index spacing and the associated splitting of the cores. 

 

Table 5-1:Dual-mode waveguide designs with fixed TE0=1.450000 and varying TE1 at λ=1.55m 

and ncladding=1.444 

Design TE1 neff 

#1 1.446300 

#2 1.446475 

#3 1.446650 

#4 1.446825 

#5 1.447000 

 

 

  

Figure 5-1: Dual mode waveguide designs with (a) varying TE1 mode effective index for fixed 

TE0=1.450000, and (b) associated differential group delay curves 

 

This particular behaviour was initially observed by Stolen [5.9] in the context of ring-core optical 

fibres with improved group velocity equalisation for four-wave mixing interactions. Of particular 

interest is also the fact that, at a given wavelength, designs exist with opposite DGDs as can be seen, 

for example, at 1.55 m where design #1 and design #4 have approximately 2 ps/m DGD 

respectively. This could be used for equalisation in a similar way to dispersion compensation 
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approaches in the literature. In particular, design #3 has the DGD of the TE1-TE0 modes closest to 

zero.   

5.4 Three and four-mode designs 

We now investigate three-mode and four-mode waveguide designs where there is possible control 

over DGD. Once again, this is achieved by varying the relative effective indices of the propagating 

modes. In particular, we first consider the three-mode case where the TE0 mode effective index is 

fixed at TE0=1.450000, TE1=1.447825 and the relative spacing of the TE2 mode is varied. The value 

of TE1 was guided by trial and error so that the TE2 variation below led to the desired DGD 

performance. The effective indices of design #1-design #3 are shown in Table 5-2.  In Figure 5-3 (a) 

we show how decreasing the spacing between the TE1 and TE2 modes in designs #1-#3 leads to a 

change in core behaviour from a small depression (blue line) to a mild peaked core (red line) to a 

more significant peak in core refractive index followed by outer ring depressions. It is interesting to 

see in Figure 5-2 (b) that at 1.55 m design #1 leads to TE1-TE0 DGD of ~2.5 ps/m (solid blue) and 

TE2-TE0 DGD of  ~-3ps/m (dashed blue) while design #3 leads to TE1-TE0 DGD of ~-2 ps/m (solid 

green) and TE2-TE0 DGD of ~2 ps/m (dashed green). As such, combining designs #1 and #3 could 

be concatenated to lead to minimisation of all DGDs in a three-mode design. In addition, design #2 

depicted by the solid and dashed red curves has a low DGD (0.4 ps/m) of both the TE1-TE0 and 

TE2-TE0 modes simultaneously at ~1.55 m. This level of performance is typically achieved by 

graded-index designs such as those by OFS.    

 

Table 5-2: Three-mode waveguide designs with fixed TE0=1.450000, TE1=1.447825 and varying 

TE2 at λ=1.55m and ncladding=1.444 

Design TE2neff 

#1 1.445000 

#2 1.445500 

#3 1.446000 
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Figure 5-2: Three-mode waveguide designs with (a) varying TE2 mode effective index for fixed 

TE0=1.450000 and TE1=1.447825, and (b) associated differential group delay curves 

 

Decreasing the effective-index difference between the TE1 and TE2 modes with associated increase 

in pronounced central peak and outer ring also leads to DGD equalisation at ever larger wavelengths.  

We now investigate the case of four-mode designs with DGD minimisation between all four modes. 

Here the effective indices of the TE0, TE1 and TE2 modes are fixed at TE0=1.450000, TE1=1.448500, 

TE2=1.446700 and the TE3 mode effective index is moved relative to these. As before trial and error 

suggested these values. The effective indices of the TE modes for designs #1-designs #3 are given in 

Table 5-3, the refractive index profiles are shown in Figure 5-3 (a) and finally the DGD curves are 

shown in Figure 5-3 (b). It can be seen from design #1 (blue curve) – design #3 (green curve) that as 

in the previously considered cases, the increase of the TE3 effective index towards that of the TE2 

mode and the associated decrease in spacing leads to the development of an increasingly large core 

depression and outer rings. For all designs the TE1-TE0 DGD is relatively flat across the range of 

wavelengths, while there is an increase in the gradient of the DGD curves from the TE2-TE0 to TE3-

TE0 DGD values.  In fact, as the TE3 mode is increased from design #1 (blue) to design #3 (green) 

the DGD between TE2-TE0 becomes increasingly negative while the DGD between TE3-TE0 tends 

towards a small positive value ~1ps/m. In particular, design #2 is such that all three pairs of DGDs 

are within ~1 ps/m at a wavelength of 1.55 m and the refractive index profile is qualitatively similar 

to that of a parabolic index profile.   
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Table 5-3: Four-mode waveguide designs with fixed TE0=1.450000, TE1=1.448500, TE2=1.446700 

and varying TE3 at λ=1.55m and ncladding=1.444 

Design TE3neff 

#1 1.445000 

#2 1.445250 

#3 1.445500 

 

 

  

Figure 5-3: Four-mode waveguide designs with (a) varying TE3 mode effective index for fixed 

TE0=1.450000 and TE1=1.448500, TE2=1.446700, and (b) associated differential 

group delay curves 

5.5 Interpretation of results 

It should be noted that the infinitely extended parabolic refractive index profile considered by authors 

such as Adams [5.10] has modes for which the group velocity is approximately independent of the 

mode number and with the qualitative similarity seen above with increasing modality (2, 3 and 4-

modes) it is interesting to consider how such designs compare with ours. 

We now show in Figure 5-4 (a), (b) and (c) the inverse scattered designs of the 2, 3 and 4-moded 

cases which are approximately optimum for DGD equalisation and the closeness of fit with infinitely 

extended parabolic refractive index designs which have the same number of modes in each case. 
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Figure 5-4: (a) two, (b) three and (c) four-moded inverse scattered designs leading to group 

velocity equalisation and their associated infinitely extended parabolic designs (dashed curves) 

 

What we may learn from this is that the shape of the inverse scattering designs in these cases more 

closely resembles that of the idealised profile with increasing mode number as seen from Figure 5-4 

(a) – (c).  
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Dual-mode design spectra 

 

(a) 

Three-mode design spectra 

 

(b) 

Four-mode design spectra 

 

(c) 

Figure 5-5: Comparison of inverse scattered and parabolic mode spectra for the (a) dual-mode, (b) 

three-mode and (c) four-mode designs with optimal DGD 
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In particular, in a sense the mode spacing in the 2, 3, and 4-moded IS cases with the best DGD 

equalisation follows that of the idealised parabolic cases as can be seen in Figure 5-5 where the 

effective indices of the inverse scattered and parabolic designs are compared.  

We see in Figure 5-5 (a), as expected, that an extended parabolic design exists which has identical 

effective indices to that of the dual-mode inverse scattered case. Here given the low number of modes 

involved, the approximation of the inverse scattered design to that of the parabolic one is not very 

good as seen in Figure 5-4 (a). However, moving to Figures 5-4/5-5 (b) and then (c) we see that the 

approximation to the parabolic design improves and there is a similar pattern in effective index 

distribution. The original choice to place the effective indices by trial-and-error to optimise DGD 

now appears to be premature given that optimal designs suggest mode spectra should be chosen 

according to the extended parabolic design in the first place, which in fact is of the form of equally 

spaced effective indices [5.17]. This becomes more obvious when the number of modes is increased 

to six and then eight as seen in Figure 5-6 (a) and (b) below.   

 

(a) 

 

(b) 

Figure 5-6: Comparison between IS and parabolic designs for (a) six modes, and (b) eight modes 
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As the number of modes is increased, the approximation to the parabolic profile improves 

considerably, and the effect can be likened to that of a Gibbs effect from Fourier analysis. As such, 

we see that equally spaced TE modes which lead to optimal DGD in our inverse scattering designs 

have refractive index designs which increasingly approximate the parabolic approach.   

5.6 Conclusions 

In this work we have shown that control of effective indices of modes through the use of the Darboux 

transformation can be used parametrically to minimise differential group delay over a range of 

wavelengths. This is possible by either designing the mode spectra to provide equalised group 

velocities directly, or by concatenating those designs with alternating positive and/or negative DGD. 

In addition, designs which result in peaked cores and outer rings when modes become nearly 

degenerate have also been explained away in terms of coupled-mode theory whereby two identical 

waveguides have super-modes whose effective index spacing is associated with an increase in 

waveguide core spacing. The result of this is the ‘splitting’ of the core observed.  

We have also found that the parametrically obtained inverse scattered designs for minimisation of 

DGD have similar mode spectra to those of the extended parabolic design which is known in the 

literature to have modal group velocity independent of mode number. As the number of modes is 

increased, the inverse scattering designs increasingly approximate the extended parabolic designs in 

a way similar to that of the Gibbs effect of Fourier analysis.        

While our investigation has been limited to planar waveguides there are similarities in intensity 

profiles between TE modes and LP modes and it is expected from Brown’s identity that 

characteristics of these planar designs can be adapted for use in future optical fibres.  
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 Inverse scattering designs of active 

multimode planar waveguides with differential 

modal loss and gain 

The work in this chapter has been published in a Special Issue of the IEEE Journal of Selected Topics 

in Quantum Electronics as “Inverse Scattering Designs of Active Multimode Waveguides with 

Tailored Modal Gain” 

6.1 Introduction 

Spatial-division multiplexing (SDM) [6.1] is regarded as a potential solution to the forthcoming, 

previously mentioned optical communication “capacity crunch”. SDM constitutes a drastic design 

departure from the currently used standard single-mode fibres (SMF) and relies on multicore and/or 

multimode fibres in order to increase the transmission degrees of freedom. Mode-division 

multiplexing (MDM), in particular, relies on specially designed multimode (MM) fibres and uses 

propagation optical modes as separate communication channels. 

Recently this paradigm shift has been introduced into the field of integrated photonics technology in 

order to increase the bandwidth density of on-chip interconnects [6.2], [6.3] for computercom and 

data-center applications. The majority of the effort so far has been concentrated on the development 

of efficient multiplexers/de-multiplexers for high performance network-on-chip applications [6.2], 

[6.4]–[6.6]. However, in future highly integrated networking scenarios, on-chip amplification will 

be required in order to increase the reach of optical signals and support propagation over multiple 

modal add/drops and routing stages [6.7]. Thus far the design of effective waveguide amplifiers with 

individually prescribed modal gain has not been addressed. As has been discussed recently in the 

literature, uncorrected mode-dependent loss (MDL) has a deleterious effect on channel capacity 

[6.8], [6.9] and effective ways to mitigate this loss would be very useful.  

Since the Darboux transformations are generally defined in the complex domain [6.10], [6.11] and 

can, in general, result in complex valued potentials [6.12]. here we extend  the Darboux 

transformation algorithm to include complex propagation constants and apply it for the design of 

active multimode optical waveguides, with arbitrarily prescribed modal gains. In section 2, we first 

give examples of passive MM waveguides with prescribed real modal effective indices.  In section 

3 we give examples of active MM waveguides with arbitrary distribution of modal gains.  It is shown 

that arbitrary modal gain distribution is achieved by complex potentials, which result in waveguide 

designs with distributed gain and loss core regions.  To the best of our knowledge, such active 
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waveguide designs are presented for the first time.  In section 6.4, finally, we discuss the connection 

of the current work with recently published MM fibre amplifier results in the context of MDM optical 

communication systems.    

6.2 Design of passive multimode waveguides  

In the case of passive MM waveguides, we consider real m associated with each mode with 

propagation constant m where 𝑛𝑒𝑓𝑓,𝑚 =  𝛽𝑚/𝑘0, m=1,2,…,N.  We begin the design process by 

applying the DT IS algorithm outlined above to design a passive four-mode waveguide with mode 

effective indices which match those of equivalent step-index (SI) waveguides. Throughout this 

chapter we assume cladding RI n2=1.444 and a wavelength 0 = 1.55µm. The SI waveguide width is 

15µm and the core RI is 1.458.  The effective indices of the first four TE modes of the SI waveguide 

are 1.457773, 1.455789, 1.452551 and 1.448244, respectively.  We progressively add the TE0, TE1, 

TE2 and TE3 modes one-by-one and the reconstructed waveguide RI distributions are shown in Figure 

6-1.  It is shown that when all four modes have been taken into account the DT IS designs closely 

follows that of the original SI RI distribution. Progressively smaller residual ripples, resembling those 

observed in the “Gibbs phenomenon” when a Fourier series overshoots at a jump discontinuity, are 

seen with increasing number of added modes.    

 

Figure 6-1: Refractive index distribution of a four mode SI waveguide and synthesized IS designs 

with increasing numbers of modes with effective indices equal to those of the original SI design, 

showing an increasing frequency “Gibbs like” ripple effect. 

To confirm that the DT IS waveguide supports four modes with the prescribed effective indices, we 

use a commercial mode-solver software Lumerical MODE Solutions with the RI profile shown in 

Figure 6-1.  The reconstructed effective indices are in excellent agreement with the original ones. 

Figure 6-2 (a)-(d) compare also the field profiles for the equi-spectral modes TE0 to TE3 supported 
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by the original SI and the DT IS waveguides.  It is observed that despite the RI ripples, the mode 

profiles follow each other very closely. 

 

Figure 6-2: Mode field profiles for the four-mode SI (blue) and IS (red) (a) TE0 mode; (b) TE1 

mode; (c) TE2 mode and (d) TE3 mode   

6.3 Design of waveguides with tailored modal gain 

Active waveguides with tailored modal gain or loss can be designed using the DT IS procedure 

outlined above by adding an imaginary component to the mode effective indices of the passive design 

shown in Figure 6-2 as, in general,  This way, we can design active waveguides with pre-defined 

modal propagation gains in addition to pre-defined propagation constants. To demonstrate the 

technique we choose to arbitrarily add γm≈3.5 dB/cm gain selectively to each of the four TE modes 

of the original waveguide. This corresponds to the imaginary component of the effective index being 

𝑛𝑒𝑓𝑓𝐼,𝑚 =  10−5.   

6.3.1 Four-moded waveguide with gain in one mode only  

Figure 6-3 plots the real and imaginary parts of the reconstructed RI for the case where only the 

TE0 mode experiences γ1 =3.5 dB/cm gain while the other mode remains gain-less. As can be seen 

in Figure. 6-3(a), the introduction of a complex effective index for the TE0 mode results in a 

complex waveguide RI distribution. It is also shown that the real part (black line) is identical to the 

one of the original passive waveguide (c.f. Figure 6-1) while the imaginary part (green line) on the 

other hand shows both negative (blue shade-corresponding to gain) and positive (red shade 

corresponding to loss) variation over the waveguide width.  
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Figure 6-3:  (a) Real and imaginary part of waveguide RI profile (red shade: loss, 

blue shade: gain) required to obtain selective gain of γ1 =3.5 dB/cm for only the 

TE0 mode, and (b) the associated modal fields. 

It is observed that the TE0 mode strongly overlaps with the waveguide gain region (blue shade), 

which results in the desired TE0 mode propagation gain. The rest of the gain-less modes overlap with 

the waveguide gain region (blue) in such a way that this overlap is exactly balanced by their overlap 

with the loss region (red) and results in zero overall gain/loss.   

 

Figure 6-4: (a) Real and imaginary part of waveguide RI profile (red shade: loss, 

blue shade: gain) required to obtain selective gain of γ2 =3.5 dB/cm for only the 

TE1 mode, and (b) the associated modal fields 

 

Figure 6-3, Figure 6-4 and Figure 6-5(a) show the real and imaginary parts of the reconstructed RI 

for the case where only the TE1, TE2, and TE3 modes, respectively, experience 3.5 dB/cm gain while 

the rest of the modes remain gain-less. Again, it is observed that in all cases the real part of the RI 

(black line) and the modal profiles are identical to that of the original passive waveguide (c.f.Figure 
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6-1) However, the imaginary part of the RI changes shape dramatically depending upon which mode 

is to be amplified.  

 

Figure 6-5:  (a) Real and imaginary part of waveguide RI profile (red shade: loss, 

blue shade: gain) required to obtain selective gain of γ3 =3.5 dB/cm for only the 

TE2 mode, and (b) the associated modal fields 

 

Figure 6-6:  (a) Real and imaginary part of waveguide RI profile (red shade: loss, 

blue shade: gain) required to obtain selective gain of γ4 =3.5 dB/cm for only the 

TE3 mode, and (b) the associated modal fields 

As before, in all cases the desired mode overlaps strongly with the gain region (blue shade), while 

the loss (red shade) is placed around the areas of zero field, and as a result the pre-defined mode 

experiences gain. The rest of the gain-less modes again overlap optimally with the gain and loss 

areas, which results in a final net-zero overall gain/loss. 
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6.3.2 Four-moded waveguide with equal modal gains  

If the same imaginary part is added to the effective index of all guided modes, we obtain a waveguide 

for which all the guided modes experience identical gains. This is shown in Figure 6-7 (a) where all 

modes experience identical γm≈3.5 dB/cm gain (m=1,2,3,4). In this case the gain region (blue) is 

modulated periodically mirroring the real part of the RI variation. The loss region now extends only 

at the waveguide edges and cladding area and affects predominantly the evanescent fields of all the 

modes. Here, all modes overlap optimally with the gain and loss regions and result in equal 

propagation gains.    

 

Figure 6-7: (a) Real and imaginary part of waveguide RI profile (red shade: loss, 

blue shade: gain) required to obtain selective gain of γ1 = γ2 = γ3 = γ4 =3.5 dB/cm 

for all the guided modes, and (b) the associated modal fields. 

6.3.3 Four-moded waveguide with biased modal gains  

From the point of view of the mitigation of mode-dependent losses (e.g. bend-induced losses), it is 

useful to also consider the case where there is an increase in modal gain with mode number. If an 

increasingly larger imaginary component is added to the effective index of the guided modes, it 

becomes possible to potentially increase the modal gain and compensate for MDL. An example of 

such a design is shown in Figure 6-8 (a), where selective modal gains of γ1 =2.5 dB/cm for TE0, γ2 

=3.5 dB/cm for TE1, γ3 =4.5 dB/cm for TE2 and γ4 =5.5 dB/cm for TE3 have been assumed.  In 

contrast with the case of gain-equalized modes (see Figure 6-6(a)), it is observed that the gain regions 

(blue shade) increase away from the waveguide center.  In addition, loss regions (red shade) are re-

introduced between the gain regions.  
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Figure 6-8: (a) Real and imaginary part of waveguide RI profile (red shade: loss, 

blue shade: gain) required to obtain selective gain of γ1 =2.5 dB/cm for TE0, γ2 

=3.5 dB/cm for TE1, γ3 =4.5 dB/cm for TE2 and γ4 =5.5 dB/cm for TE3, and (b) the 

associated modal fields. 

6.3.4 Three- & two-moded waveguide with equal modal gains  

For completeness, in Figure 6-9 and Figure 6-10 (a) we present the cases of three- and two-moded 

waveguides, respectively, with equal modal gains of γm =3.5 dB/cm.  Figures 6-9(b) and 6-10(b) 

show the corresponding modal field distributions. 

 

Figure 6-9:  (a) Real and imaginary part of waveguide RI profile (red shade: loss, 

blue shade: gain) required to obtain selective gain of γ1 = γ2 = γ3 =3.5 dB/cm for 

TE0 TE1 and TE2 modes, and (b) the associated modal fields. 
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Figure 6-10: (a) Real and imaginary part of waveguide RI profile (red shade: loss, 

blue shade: gain) required to obtain selective gain of γ1 = γ2 =3.5 dB/cm for TE0 

and TE1 modes, and (b the associated modal fields 

From Figure 6-7 (a), Figure 6-9 (a) and Figure 6-10 (a) it is observed that MM waveguides with 

equalized modal gain share similar gain/loss distribution features.  The gain region is periodically 

modulated and aligned with the field maxima of the highest-order mode, while the lossy areas lie on 

the edges of the waveguide and extend mostly in the cladding.   

In all the examples presented in section 6.4, we used the commercial mode-solver software Lumerical 

MODE Solutions to calculate the direct problem with the complex RI profile shown in Figure 6-3 

(a) - Figure 6-10 (a).  In all cases, the reconstructed complex-mode effective indices are in excellent 

agreement with the starting ones. We notice that the associated electric field distributions plotted in 

Figure 6-3 (b) - Figure 6-10 (b) dependent on the choice of the real part of the effective RIs only and 

do not change with the variation of the imaginary parts.  They are also in excellent agreement with 

the distributions of the corresponding passive waveguides (with just the real part of the RI).     

6.3.5 Four-moded waveguide without equalizing lossy areas  

The DT IS scattering technique, adopted in this work, demonstrates that exact equalization of modal 

gain in MM waveguides requires the existence of both gain and loss in the RI distribution. To 

illustrate this more clearly, we show in Table I the DMG with respect to the TE0 mode when the 

outer lossy layer (shaded red) is removed from the designs in Figure 6-7(a), Figure 6-9 (a) and Figure 

6-10 (a). 
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Table 6-1: 2, 3 and 4-mode designs without the lossy (red shade) layer 

Design Mode 

 

Effective Index (neff) 

 

DMG (w.r.t TE0) 

 

2-mode TE0 1.456396 – i 1.006815x10-5  - 

 TE1 1.450625 – i 1.031072x10-5  0.085 dB/cm 

3-mode TE0 1.457358  – i 1.003593x10-5  - 

 TE1 1.454175  – i 1.015464x10-5  0.045 dB/cm 

 TE2 1.449136  – i 1.040546x10-5  0.13 dB/cm 

4-mode TE0 1.457773  – i 1.002184x10-5  - 

 TE1 1.455789  – i 1.009137x10-5  0.024 dB/cm 

 TE2 1.452552  – i 1.022446x10-5  0.071 dB/cm 

 TE3 1.448247  – i 1.047083x10-5  0.16 dB/cm 

As expected, the higher-order modes have larger DMGs due to their larger mode field overlaps with 

the gain-doping (shaded blue) and the lack of compensation through the addition of the loss specified 

by the IS design technique. We see that without the addition of the lossy layer in the waveguide 

cladding, exact modal gain equalization is not possible. To the best of our knowledge, the proposal 

of the addition of judiciously distributed gain (blue shade) and loss (red shade) to the waveguide RI 

for exact modal gain equalization is presented for the first time.   

6.4 Conclusions 

We have proposed a powerful inverse-scattering technique, based upon complex Darboux 

transformations, for the design of multimode optical waveguides with arbitrarily prescribed modal 

gains. We have shown examples of optical waveguides for which only one (arbitrarily chosen) mode 

is amplified, as well as designs for which all modes exhibit equal gain. In addition we have shown 

designs where there is an increase in modal gain associated with increasing mode number and 

proposed it as an approach to mitigate for mode-dependent losses in optical waveguides and 

waveguide circuits. To achieve such unique modal gain combinations both gain and loss regions are 

optimally introduced into the waveguide. Such modal gain characteristics cannot be achieved by gain 

regions alone, no matter how it is distributed and optimised.  

Recent works studying the equalization of modal gain in multimode fibre amplifiers based upon few-

mode fibres have considered various forms Erbium doped ring-core designs [6.13]–[6.16]. Initially 

in the literature a 20 dB gain with differential modal gain (DMG) of less than 3dB was demonstrated 

between the LP01 and LP11 modes [6.17] and this was further expanded upon to include LP11 and LP21 

modes [6.13] through such a ring-doping design approach. Superior control over DMG was then 

realised by incorporating further rings resulting in multiple-doped ring designs [6.14] with a DMG 

of less than 1 dB. However, in contrast with the designs presented here, these demonstrations rely on 

modulated gain regions only.   
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Finally we have demonstrated that the commonly used approach of ring-doping Erbium to equalize 

modal gain in fibres is a subset of the approach that comes out of inverse scattering theory for the 

exact equalization of modal gain whereby both gain and loss are required. As such this IS design 

approach can be modified to address differential modal gain in cylindrical waveguides, such as 

multimode optical fibre amplifiers. However, the current approach and designs are directly 

applicable to the design of special ribbon cores [6.18], [6.19] and high-aspect ratio rectangular core 

fibres [6.20]. 
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 Inverse scattering designs of mode-

selective waveguide couplers 

7.1 Introduction 

In recent times, spatial-division multiplexing [7.SDM] has been concentrated on the development of 

efficient multiplexers/de-multiplexers (MUX/DEMUX) for high-performance network-on-chip 

applications [7.1]–[7.4] and recently approaches to waveguide design based upon supersymmetry 

(SUSY) such as that by the Christodoulides group [7.5] have been developed whereby multimode 

trunk waveguides are coupled to single or few-mode partner waveguides, hereafter referred to as 

trunk-partner pairs, and designed to be perfectly phase-matched. However, this approach is limited 

in that it can only add/drop one mode at a time and therefore requires a cascade or ladder of partners. 

We, by contrast, propose the development of mode-selective couplers designed through the Darboux 

transformation (DT) of inverse scattering theory (IS) as has been described earlier in Chapter 2 of 

this thesis and by Mills and Tamil [7.6], but with the additional judicious but straightforward addition 

of material loss/gain to the refractive index (RI) profile as suggested by Chen et al. [7.7] so that 

arbitrary combinations of modes can be add/dropped simultaneously. 

7.2 Phase-matched trunk-partner pairs 

As discussed in our previous works [7.8], it is possible using the Darboux transformation to create 

trunk-partner pairs where any combination of modes can be phase-matched at will. To demonstrate 

this, a step-index waveguide is created in Figure 7-1 (a) which supports eight TE modes and this is 

then paired with (b) where the four lowest-order TE0, TE1, TE2 and TE3 modes of the partner are 

phase matched to those of the trunk, (c) where the alternate order TE0, TE2, TE4 and TE6 trunk modes 

are phase-matched to the TE0, TE1, TE2 and TE3 modes of the partner and finally (c) where the four 

highest-order trunk modes TE4, TE5, TE6 and TE7 are phase-matched to the TE0, TE1, TE2 and TE3 

modes of the partner. In each case the refractive index contrast n relative to the cladding of the 

waveguide is drawn in blue and the associated effective index and mode field profiles are also shown 

to demonstrate not only the phase-matching but also mode conversion, which has been discussed in 

the literature [7.9] in the context of the SUSY ladders/cascades. However, to date the associated 

coupling lengths of each phase-matched mode have not been discussed in detail and it is important 

to note that even if the trunk-partner pairs are phase-matched, their coupling lengths differ due to the 

differing mode pair coupling coefficients. This presents a difficulty as in order to ‘drop’ modes 

simultaneously from a trunk, the coupling lengths must be equalized. Fortunately, earlier work by 

Chen et al. [7.7] suggests a solution to this problem through the equalization of coupling lengths 
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using the addition of gain/loss to the refractive index profile. This is now discussed further first by 

introducing waveguide coupler theory, and then the determination of the required gain/loss.  

 

Figure 7-1: RI profile contrast n relative to the cladding of (a) multimode step-index trunk 

waveguide, and partner waveguides for (b) four lowest- order, (c) four alternate-order 

and (d) four highest-order modes @ λ=1.55µm, ncladding =1.444 

7.3 Waveguide coupler theory 

Waveguide couplers are well described by coupled-mode theory [7.10], [7.11] and as has been 

discussed by Chen et al. [7.7] total transfer of power is possible between a trunk waveguide and a 

parallel partner waveguide if gain and/or loss is considered in the design process. In this section we 

describe how the appropriate amount of gain or loss can be added to the partner to achieve complete 

transfer of power from the trunk of any selected set of modes at a single coupling length. 

The transfer of power between the system of coupled waveguides is found as a solution to the system 

of coupled differential equations [7.11], 

 

1
1 1 12 2

2
2 2 21 1

     
da

i a iC a
dz

da
i a iC a

dz





 
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 (7.1) 

where, as discussed previously, βm= βmR + i βmI , is the complex propagation constant, with mI>0 

corresponding to loss and mI<0 corresponds to gain and C12 and C21 are the coupling coefficients. 

The solution to this system, assuming that all the power is initially in the trunk (a1(0)=1 and a2(0)=0)  

may be written, 
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It may be seen following some manipulation that (7.2) can be rewritten in the form, 
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with, 
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and,  
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If we introduce a mismatch in the imaginary components of the propagation constants of the m’th 

pair of coupled modes, following [7.7] while assuming the real components are phase-matched,  
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m m
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  (7.8) 

and then assume that any gain or loss is entirely in the partner waveguide, we rewrite in terms of the 

complex mismatch, giving, 

  2

0, 12, 21, 1m m m mC C M    (7.9) 

 
1, 2, 2 , 12, 21,2m m I m m m mi iM C C        (7.10) 

and finally (7.7) becomes, 

  1sinm mD M  (7.11) 

Now, the n’th coupling length of the m’th pair of modes (Lm,n) when involving a mismatch Mm may 

be written, 
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As such, all power associated with the m’th given mode will have left the trunk at the n’th coupling 

length and Lm,n may be obtained as, 
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It should be stressed at this point that as (7.13) implies, introduction of differential loss/gain in a 

coupled waveguide system (i.e finite Mm,n) can be used to alter the coupling length between different 

mode pairs. This unique property of couplers with differential modal gain/loss will be used to fine 

tune and equalise the coupling lengths of different mode groups in modal add/drop 

multiplexers/demultiplexers.  

Now, if in general we wish that the n’th order coupling length of the m’th phase-mismatched mode 

pair has identical coupling length to that of the q’th order coupling length of the p’th phase-matched 

mode pair involving no gain/loss, we may then obtain the generalised mismatch Mm,n by solving,  
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The choice of integers (n, q) for modes (m,p) is motivated by the requirement that the imaginary 

correction to the partner waveguide mode effective index should be as small as possible. In the next 

section we have investigated the mode losses at the chosen coupling lengths in the (n,q) space. It is 

interesting to note that this use of loss in a partner fibre/waveguide coupled to a lossless one, is also 

discussed in the context of quantum mechanical PT-symmetry breaking where the overall 

transmission behaviour of the coupled system counter-intuitively increases with increasing partner 

waveguide loss past a transition point. This is discussed further in [7.12] and is very much at the 

forefront of research.  

7.4 Designs with identical coupling lengths 

In the above we have derived a method by which modes can be ‘dropped’ from a trunk waveguide 

at identical coupling lengths. This motivates a method by which arbitrary selected modes can be 

removed from the trunk waveguide simultaneously. From the start we note from (7.10) that the 

correction is proportional to the coupling coefficient of the trunk-partner mode pair to be corrected 

and so it makes sense that the lower order partner mode should always be corrected since the 
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associated coupling coefficient will be smaller. It is also necessary to take into account the overall 

loss of the coupled mode in the partner at the (to be determined) associated coupling length as we 

may wish to then manipulate this mode further. The expression for the total loss at the n’th coupling 

length of the m’th corrected mode pair in terms of the calculated mismatch Mm,n at the determined 

q’th order coupling length of the p’th higher-order mode pair is, 

 , , , , 0 ,4.34m n p q m n p qk L    (7.15) 
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We calculate the mismatches Mm,n and thereby effective index corrections m,n and substitute these 

into (7.15) to obtain the optimum choice of (n,q). Now we begin the process as follows: (1) we start 

with a trunk waveguide that supports a set of guided modes. (2) We choose the particular modes 

from that set we wish to remove and IS design a partner waveguide that is phase-matched to these 

modes. (3) We calculate the coupling coefficients C12,m and C21,m for each phase-matched set of 

modes. (4) We now solve (7.14) and use (7.15) to determine the optimum combination of (n,q). From 

this we then determine the optimum mode effective index correction m,n.  

Following step (1) we calculate the coupling coefficients in terms of the RI profile, angular frequency 

(=2c/), permeability of free space µ0, permittivity of free space 0 and the normalized electric 

fields Eyi(x) and Eyj (x) where Wi indicates that the integral should be performed over waveguide i,   
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We note that the normalization of the electric fields here follows that of [7.13] such that, for i=1,2 
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7.4.1 Two-mode-drop couplers 

As an example, we now calculate the coupling coefficients in Table 7-1 & 7-3 respectively for the 

cases of the eight-mode SI trunk waveguide and dual-mode IS waveguide partners (Cases #1 & #2) 

where we have arbitrarily chosen first the phase-matching of the two lowest-order trunk-partner 

modes TE0 –TE0 and TE1-TE1 (Case #1) followed next by the TE2-TE0 and TE4-TE1 trunk-partner 
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modes (Case #2). The optical power transfer between the trunk and partner waveguides are shown 

for coupling between the TE0-TE0 and TE1-TE1 mode pairs in Figures 7-2 & 7-3 respectively. We 

observe that all the power is removed from the TE1 mode in the trunk waveguide in Figure 7-3 after 

odd numbers of TE1 –TE1 coupling lengths, and in Figure 7-2 the TE0-TE0 power transfer occurs 

with a differing periodicity.  

 

Table 7-1: Coupling coefficients for Case #1 with two phase- 

matched modes with trunk-partner spacing 16.25 m apart 

Modes (Trunk-Partner) C12 / C21 (m-1) 

TE0-TE0 46.7 / 46.7 

TE1-TE1 106 / 106 

 

 

Figure 7-2: Variation in optical power between the case #1 trunk SI and partner IS waveguide 

(TE0-TE0) mode pairs as a function of TE1 –TE1 coupling lengths, before correction 
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Figure 7-3:Variation in optical power between the case #1 trunk SI and partner IS waveguide (TE1 

–TE1) modes as a function of TE1 –TE1 coupling lengths 

 

(a) 

 

(b) 

Figure 7-4: Loss curves for determining the case #1 design - (a) the (n,q) loss curve showing the 

loss (dB) at the q’th order coupling length of the TE1-TE1 pair for various corrected n’th order TE0 

TE0 coupling lengths, (b) the same but with length of device in metres 

 

In order to use our coupling length equalization method, using the coupling coefficients for Case #1 

in Table 7-1 and by solving (7.13) we now determine the optimum (n,q) pair and thus correction to 

the partner TE0 mode effective index. In Figure 7-4 we plot the loss (dB) at the q’th order coupling 

length of the TE1-TE1 pair for the n’th order corrected TE0-TE0 pair. From this we determine that the 

correction resulting in a loss of ~6.4 dB power in the transferred TE0 mode of partner waveguide is 

when we have (n,q)=(0,1). This corresponds to a value of M1,0= 0.3891 or a correction to the effective 

index of the TE0 partner mode effective index of  1,0=i8.9610-6 and a device length of ~44mm. 
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Table 7-2: Corrected (IS) partner effective indices for Case #1 with equalised coupling lengths 

Modes neff 

TE0 1.476464+i8.96x10-6 

TE1 1.475157 

 

The result of this correction on the effective indices of the partner waveguide is given in Table 7-2 

and the resulting coupler design in shown in Figure 7-5.  

 

Figure 7-5: RI profile of IS designed trunk-partner coupler with partner mode effective indices as 

indicated in Table 7-2 

 

With the correction made to the partner waveguide the power transfer in the coupler between the 

TE0-TE0 pair is shown in Figure 7-6 where it can be seen that the coupling length of the 0th-order 

TE0-TE0 coupling length has been successfully equalised to [7.(2x1)+1=3] TE1-TE1 coupling lengths 

or ~44mm with <-80 dB of the TE0 mode power left in the trunk and ~-6.4 dB of the original power 

of the trunk TE0 mode now in the partner TE0 mode. This contrasts considerably with the pre-

corrected case where there was still ~-6.4 dB of the TE0 power in the trunk at this length.    
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Figure 7-6: Variation in optical power for the case #1 dual-mode coupler between the trunk SI and 

partner IS waveguide TE1 modes as a function of TE2 –TE2 coupling lengths after 

correction 

 

We now proceed to Case #2 where we investigate the phase-matching and mode conversion between 

the trunk and partner TE2-TE0 and TE4-TE1 pairs. Referring to Table 7-3 for the coupling coefficients 

it is again possible to calculate the power transfer between the waveguides and this is shown in Figure 

7-7 for the TE2-TE0 pair in terms of the TE4-TE1 coupling length where again the 0th-order coupling 

length is just under 3 TE4-TE1 coupling lengths.   

 

Table 7-3: Coupling coefficients for Case #2 with two phase- 

matched modes with trunk-partner spacing 15 m apart 

Modes (Trunk-Partner) C12 / C21 (m-1) 

TE2-TE0 336.2 / 336.2 

TE4-TE1 968.1 / 968.1 
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Figure 7-7: Variation in optical power between the case #2 trunk SI and partner IS waveguide 

(TE2-TE0) modes as a function of TE4 –TE1 coupling lengths 

Again we calculate the optimum (n,q) pair and thus correction to the partner TE0 mode effective 

index using Figure 7-8 and find it to be (1,4). This pair is chosen so that the loss of power transferred 

to the TE0 partner mode at the coupling length is not too high and the device is not too short. It can 

be seen that an appropriate loss/device length in the TE2-TE0 coupling occurs for the equalisation of 

the 1st-order TE2-TE0 pair coupling length to the 4th-order TE4-TE1 pair [7.2x4+1=9] coupling length 

with ~-6.2 dB TE0 power in the partner.  

 

(a) 

 

(b) 

Figure 7-8: Loss curves for determining the case #2 design - (a) the (n,q) loss curve showing the 

loss (dB) at the q’th order coupling length of the TE4-TE1 pair for various corrected n’th order TE2 

TE0 coupling lengths, (b) the same but with length of device in metres 
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This above choice corresponds to a value of M1,1 =0.1448 or a correction to the effective index of the 

TE0 partner mode effective index of  1,1=i2.4010-5 and the effective indices of the partner 

waveguide are given in Table 7-4 and the refractive index profile of the coupler design is shown in 

Figure 7-9.  

Table 7-4: Corrected (IS) partner effective indices for Case #2 with 

equalised coupling lengths 

Modes neff 

TE0 1.472982+i2.40x10-5 

TE1 1.466061 

 

In Figure 7-10 the power transfer between the trunk TE2 and partner TE0 modes is shown where it 

can be seen that the correction has, as required, led to the 1th-order TE2-TE0 pair coupling length 

being moved to the 4th–order TE4-TE1 pair [7.2x4+1=9] coupling length with <-90 dB of the TE2 

mode power left in the trunk and therefore the lengths of the pairs and now effectively equalised. 

This again contrasts considerably with the initial uncorrected TE2 power left in the trunk at the 4th-

order TE4-TE1 coupling length of ~-10 dB. We also note, as predicted, that the power in the partner 

TE0 mode is now ~-6.2 dB.  

 

 

Figure 7-9: RI profile of IS designed case #2 trunk-partner coupler with partner mode effective 

indices as indicated in Table 7-4 
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Figure 7-10: Variation in optical power for the three-mode design, between the trunk SI and partner 

IS waveguide TE2 and TE0 modes as a function of TE2 –TE2 coupling lengths after 

correction 

7.4.2 Three-mode-drop couplers 

We now investigate a step further in the equalized ‘drop’ of three modes at once from a trunk 

waveguide (Case #3). In this case the (TE1, TE3, TE5) modes of the trunk are phase-matched to the 

(TE0, TE1, TE2) partner modes. The coupling coefficients are given in Table 7-5 and are used in the 

calculation of the power transfer of the TE1-TE0 and TE3-TE1 pairs in Figures 7-11 & 7-12. In Figure 

7-11 it can be seen that the 0th-order coupling length of the TE1-TE0 pair occurs at ~9 TE5-TE2 

coupling lengths while that of the TE3-TE1 pair occurs at ~2 TE5-TE2 coupling lengths. As before, 

we may calculate the ‘correction curves’ for this case where correction will be applied to both the 

TE0 and TE1 partner waveguide modes and these are shown in Figure 7-13.    

 

Table 7-5: Coupling coefficients for Case #3 with three phase- 

matched modes with trunk-partner spacing 16.25 m apart 

Modes (Trunk-Partner) C12 / C21 

TE1-TE0 131.6 / 131.6 

TE3-TE1 540.3 / 540.3 

TE5-TE2 1194 / 1194 
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Figure 7-11: Variation in optical power for case #3 between the trunk SI and partner IS waveguide 

(TE1-TE0) modes as a function of TE5 –TE2 coupling lengths before correction 

 

Figure 7-12: Variation in optical power between the case #3 trunk SI and partner IS waveguide    

(TE3-TE1) modes as a function of TE5 –TE2 coupling lengths 
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(a) 

 

(b) 

Figure 7-13: Loss curves for determining the case #3 design - (a) the (n,q) loss curve showing the 

loss (dB) at the q’th order coupling length of the TE5-TE2 pair for various corrected n’th order TE1 

TE0 pair (solid lines) and n’th order TE3-TE1 pair coupling lengths (dashed lines), (b) the same but 

with length of device in metres 

 

The correction leading to the an optimum combination of mode losses and gains in coupling power 

between both pairs of modes is identified as being (0, 5) and (3,5) corresponding to the 0th-order 

TE1-TE0
  and 3rd-order TE3-TE1 coupling lengths being equalized with the [7.2x5+1]=11th-order TE5-

TE2 coupling length with a loss of ~4.3 dB and a gain of ~3.6dB respectively. This corresponds to a 

value of M1,0 =0.2620 or a correction to the effective index of the TE0 partner mode effective index 

of  1,0=i1.7010-5 and  M2,3 =-0.0525 or a correction to the effective index of the TE1 partner mode 

effective index of  2,3=-i1.4010-5 and the effective indices of the corrected partner waveguide are 

given in Table 7-6 and the refractive index profile of the coupler design is shown in Figure 7-14.  

Table 7-6:Corrected (IS) partner effective indices for Case #3 with 

equalised coupling lengths 

Modes neff 

TE0 1.475157+i1.70x10-5 

TE1 1.469945-i1.40x10-5 

TE2 1.461353 
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Figure 7-14: RI profile of IS designed trunk-partner coupler with partner mode effective indices as 

indicated in Table 8-6 

In Figure 7-15 the power transfer between the trunk TE1 and partner TE0 modes is shown where it 

can be seen that the correction has led the 0th-order TE1-TE0
  pair coupling lengths being equalized 

with the 5th –order TE5-TE2 pair coupling length. Here the power remaining in the trunk TE1 mode 

is <-90 dB which compares very favourably with that of ~-10 dB before correction. Figure 7-16 also 

shows that the 2nd- order TE3-TE1 pair coupling length has been equalized once again to the 5th-order 

TE5-TE2 coupling length with <-60 dB power remaining in the trunk TE3 mode at this length. This 

compares very favourably, again, with that of ~-15 dB before correction. Once again we also note 

that the power in the TE0 partner mode is now ~-4.3 dB and that of the TE1 mode is ~3.6 dB, as 

expected.  

 

Figure 7-15: Variation in optical power for case #3 between the trunk SI and partner IS waveguide 

(TE1-TE0) modes as a function of TE5 –TE2 coupling lengths after correction 
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Figure 7-16: Variation in optical power for case #3, between the trunk SI and partner IS waveguide 

(TE3- TE1) modes as a function of TE5 –TE2 coupling lengths after correction 

7.5 Discussion 

In this chapter we have demonstrated that it is possible to remove or ‘drop’ modes simultaneously 

from a trunk waveguide using a coupled partner waveguide which has a calculated imaginary phase-

mismatch which was first proposed by Chen et al [7.7]. In the dual-mode-drop cases #2 & #3, loss 

has been used in partner waveguides, the value of which is calculated using coupled-mode theory, 

and then implemented using inverse-scattering theory. In addition, in case #3 both loss in the partner 

TE0 mode and gain in the TE1 mode are used to equalise all three coupling lengths. We also note that 

in cases #2 & #3 there is also mode conversion being performed at will. In each design the 

combination of waveguide spacing and partner mode gain or loss is determined by considering a 

balance between the power transfer difference between the trunk and the partner due to the coupling 

as well as the length of the point of coupling length equalization, and this is performed using trial-

and-error optimisation of the results of (7.14)-(7.17) and the use of ‘correction curves’. It should be 

noted at this point that the aforementioned method always results in either gain or loss in the coupling 

process, and is therefore not ideal. However, we have performed this work with the aim of showing 

that at least in theory the previously undiscussed equalisation of coupling lengths in the context of 

SUSY transformations can be avoided through the use of the Darboux transformation whereby the 

required corrections to phase-matched modes can be realised.     

We believe that this technique shows great potential in arbitrary mode multiplexing/de-multiplexing 

and is a more flexible alternative to the SUSY approach where for the first time the equalisation of 

coupling lengths has also been explicitly considered. 
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 Few-mode fibres with intuitively improved 

mode spacings 

The work in this brief chapter is based upon that presented as “Few-Mode Fibers with Improved 

Mode Spacing” at ECOC 2015, Valencia, Spain, and was the first time we had considered the design 

of optical fibres using the intuition gained from the inverse scattering design of waveguides. In 

particular, previous chapters showed that selective control over modes came about through the 

regions of overlap between the modal fields and the refractive index profile. It is from this basis that 

we used intuition to improve LP mode spacing through step-index design perturbations for both four 

and six mode groups.  

8.1 Introduction 

Multimode-division multiplexing (MDM) [8.1] relies on specially designed multimode fibres 

(MMFs) and uses propagating optical modes as separate communication “channels”. High capacity 

MDM has been implemented by using MMFs supporting highly-coupled, low differential mode 

delay (DMD) and extensive, energy-hungry digital signal processing (DSP) such as by Bigot-Astruc 

et al. [8.2] Alternatively, high performance MDM systems have also been demonstrated using MMFs 

with virtually uncoupled, high differential mode delay (DMD) modes, with minimum DSP 

requirements such as by Boivin et al. [8.3] and Sillard et al. [8.4]. 

The major consideration in designing un-coupled MDM (UC-DMD) systems is the degree of modal 

cross-coupling. It is known that cross-coupling is inversely-proportional to the effective index 

difference as discussed by Olshansky [8.5]  and it is, therefore, more severe between adjacent modes. 

So far, UC-DMD is based primarily on optimised step-index fibres. Step-index designs offer 

simplicity in terms of their design and fabrication and previous authors such as Bigot-Astruc et al. 

[8.2], Boivin et al. [8.3] and Sillard et al. [8.6] have investigated their use in up to six-LP-mode fibres. 

Also, it is important for improved designs to have large mode effective areas and differential group 

delays (DGD) (>0.5ps/m) to limit inter-mode non-linearity as well as meeting the optimum trade-off 

between micro- and macro-bend losses.  

It has been shown that step-index fibres, despite the parameter optimisation, still support modes with 

non-equally spaced effective indices. Due to cylindrical symmetry, this is particularly severe between 

LP21 and LP02 modes. As a result, strong mode cross-coupling has been measured in relatively short 

MMF lengths using the S2 method such as by Jespersen & Li [8.7]. 

In this chapter we investigate an alternative MMF refractive index (RI) design showing substantially 

equalized mode effective indices, compared with state-of-the-art step-index fibres. Since large DGDs 
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follow naturally from step-index designs and those without a graded-index core, the particular design 

focus is on mode index equalisation improvements which are achieved by introducing optimum 1) 

rotationally-symmetric RI perturbations inside the core, affecting primarily one sub-group of modes, 

and 2) rotationally-non-symmetric RI perturbations in the cladding, affecting primarily the rest of 

the supported modes. The design optimisation strategy is based on simple, physically-intuitive 

arguments.  

8.2 Design strategy for fibres with optimally distributed mode spacing 

Given that what we try to achieve is the effective index manipulation, where targeted RI perturbations 

(∆n) could be introduced in a known starting profile 𝑛̅ (e.g. standard step-index) in order to 

selectively affect the propagation constant of individual modes (β), an excellent, intuitive guiding 

principle is the following well known perturbation formula derived by Snyder & Love [8.8], 
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where k is the free-space wavenumber, 𝛽̅ the mode propagation constant and 𝑒̅ the electric field of 

the known profile 𝑛̅. As already mentioned, the main issue with the mode effective index distribution 

in step-index fibres stems from the small separation between LP21 and LP02 modes.  

 

Figure 8-1: Effective index distribution for the Sillard [8.4] four mode-group step index design 

In Figure 8-1 this main limitation of the Sillard [8.4] four mode-group design at 1.55 m is shown 

more clearly where it can be seen that the LP21-LP02 mode spacing (black vs green curves) is 

significantly limited (<1x10-3) which could lead to a larger degree of modal cross-coupling than 

between the other mode-groups. We address this issue by first considering refractive index 

perturbations as illustrated in Figure 8-2 where firstly an inner core depression was added which has 
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the effect of increasing the LP21 - LP02 index difference, mainly achieved by lowering the LP02 index 

closer to the cladding refractive index since the inner core depression overlaps mostly with the 

cylindrically-symmetric LP01 and LP02 modes and as expected from Equation (8.1) their effective 

index is reduced. LP11 and LP21 on the other hand have intensity minima in the core centre and 

therefore the index depression leaves them almost unaffected. The optimum value of the core 

depression was achieved by considering the minimisation of the objective function, 
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  
 (8.2) 

In the objective function, the effective index of each LP mode is referred to as well as the optimum 

spacing, ∆, between modes defined in terms of the difference between the effective index of the LP01 

mode and the cladding n2. However, the lowering of the LP02 mode effective index increases the 

macro- and micro-bending sensitivity of the design. Fibres with depressed inner core have been 

discussed in the context of MM fibres with maximum four-wave mixing by Stolen [8.9].  

 

Figure 8-2: Refractive index distribution schematics of (a) standard SI fibre and (b) an optimally 

perturbed proposed design 

In order to improve the LP02 micro- and macro-bending performance and maintain the improved LP21 

– LP02 effective index separation we consider the addition of localized RI perturbations in the 

cladding overlapping optimally with the four intensity lobes of the LP21 mode. We have added 1 µm 

radius high-index rods at the edge of the outer core. Such cylindrically non-symmetric perturbation 

increases the effective indices of LP21 and LP02 by amounts given by (8.1). As expected, modes LP01 

and LP11 are affected by small amounts due to negligible overlaps with the additional perturbations. 

Representative LP-mode field distributions of the fully optimised (ring+rods) profiles are shown in 

Figure 8-3. It is shown that the cylindrically non-symmetric modes LP11 and LP21 are aligned with 

the added cladding rods. At this point, we should mention that the addition of RI perturbing rods in 

the fibre cladding breaks the rotational degeneracy of the LP11 and LP21 modes. The mode profiles 
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with maxima falling between the RI modifying rods have effective indices close to the unperturbed 

case. In addition to shifting the mode effective index, the RI modifying rods “lock” the optimum 

separation modes spatially inside the fibre.  

  

  

Figure 8-3: Orientation of equalized effective-index modes with respect to index 

modifying rods (a) LP01 , (b) LP11, (c) LP21 and (d) LP02 

This ‘locking’ avoids unwanted modal rotation which complicates enormously the efficient mode 

demultiplexing and detection at the end of the optical link. The benefits of such spatial mode 

“locking” in the case of dual-moded fibre have been achieved by using elliptical core fibres. In the 

case of single-mode fibre, this is equivalent to “fixing” mode polarization by using high-bi fibres. 

The performance of the new four mode-group fibre designs, with optimally spaced mode effective 

indices, and the comparison with state-of-the-art SI fibres are summarized in and Table 8-1.  

We also show the result of the perturbation calculation using (8.1) which verifies that the approach 

is valid. In addition to the discussed mode spacings, we compare the differential group delays (DGD) 

and mode effective areas. The last two parameters define the nonlinear performance of the fibres. It 

is shown that in addition to improved mode effective-index distribution the new designs provide 

substantially larger mode effective areas. The DGDs are in excess of 4ns/km for all the supported 

(a) LP01 (b) LP11 

(c) LP21 
(d) LP02 
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modes. It is therefore expected to have superior non-linear performance in comparison with standard 

SI fibres.  

Table 8-1: Performance comparison of new designs with state-of-the-art four mode-group step 

index fibres (@ λ=1550nm) 

Mode  LP01 LP11 LP21 LP02 

neff-ncl  (ring - step 1) 7.7x10-3 5.7x10-3 3.0x10-3 1.9x10-3 

neff-ncl  (rods – step1+step 2) 7.7x10-3 6.0x10-3 3.9x10-3 2.7x10-3 

neff-ncl  (rods – step1+step 2) using (8.1) 7.8x10-3 5.9x10-3 4.3x10-3 2.8x10-3 

neff-ncl – ref Sillard et al. [8.4] 8.3x10-3 6.0x10-3 3.2x10-3 2.4x10-3 

DGD w.r.t LP01 (ns/km) – (step1+step2) - 4.4 6.2 3.9 

DGD w.r.t LP01 (ns/km) [8.4] - 4.4 8.5 7.2 

Aeff (µm2) – (step1+step2) 151 203 172 171 

Aeff (µm2) – ref [8.4] 124 118 133 127 

 

Table 8-2: Mode spacing comparison of new designs with state-of-the-art four mode-group step-

index fibres (@ λ=1550nm) 

Mode Spacing LP01-LP11 LP11-LP21 LP21-LP02 

Ring (step1) 2.0x10-3 2.7x10-3 1.1x10-3 

Rods (step1+step 2) 1.7x10-3 2.1x10-3 1.2x10-3 

Ref [8.4] 2.3x10-3 2.8x10-3 0.8x10-3 
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Figure 8-4: Comparison between mode spacing of Sillard four LP mode step-index design and 

optimised ring+rod design @ 1550nm 

For ease of interpretation, we also show the data of Table 8-2 in Figure 8-4. We see that the addition 

of the ring and rods has achieved closer equalisation of mode spacings for the four mode-group case 

and quite significantly increased the LP21-LP02 spacing when compared with the original Sillard et 

al. [8.4] design (0.8x103 vs 1.2x10-3) while the other spacings are either comparable or large enough 

to lead to significant reductions in cross-mode coupling anyway. It is our belief that this addition of 

core perturbations is novel.  

Further to this we investigated for completeness a six LP mode-group design proposed by Sillard et 

al. [8.6] which has the limitations as in the effective index curves of Figure 8-5.  

 

Figure 8-5: Effective index distribution for the Sillard [8.6] four mode-group step index design 

We see that both the LP21-LP02 and LP31-LP12 mode spacings are limited but intuition suggests that 

six optimised high-index rods could be used to selectively ‘lift’ the LP31 and LP21 modes due to the 

their preferential overlap with the fields as suggested again by (8.1) and illustrated in Figure 8-6.  
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Figure 8-6: Refractive index distribution schematics of a step index fibre with (a) six high-index 

rod perturbations and (b) a high-index ring perturbation 

 

Figure 8-7: Orientation of modes with respect to index 

modifying rods (a) LP01 , (b) LP11, (c) LP21, (d) LP02, (e) LP31 and (f) LP12 

We perform this perturbation and show graphically in Figure 8-7 the overlaps between the fields and 

rod perturbations. It can be seen clearly that the fields of the LP21 and LP31 modes have preferential 

overlap with the six high-index rods and the high periodicity is such that it suggests that a simple 

ring might also achieve a very similar effect and the field profile and their overlap with an optimised 

ring are shown in Figure 8-8 and demonstrate this same behaviour. 

The effective index spacings are given in graphical form in Figure 8-9 where it can be seen that the 

addition of the six high-index rods lifts all modes to some extent but most preferentially the LP21 and 

LP31modes leading to an increase in LP21-LP02 and LP31-LP12 spacing. It is interesting to note that 

the data for the high-index ring perturbation provides even better equalisation of mode spacings 

across the board (>2x10-3), with even more significant increases in LP21-LP02 spacing than the rod 

design (2x10-3 vs 1.3x10-3) 
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Figure 8-8: Orientation of modes with respect to index 

modifying ring (a) LP01 , (b) LP11, (c) LP21, (d) LP02, (e) LP31 and (f) LP12 

 

 

Figure 8-9: Mode spacings for the original Sillard [8.6] six mode-group step index design and the 

perturbed rod and ring designs with varying positions 
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8.3 Conclusions 

We have proposed new MMF designs for both four and six mode-groups with improved mode 

spacing, suitable for UC-MDM optical communications. The first four mode-group design involves 

two steps and is based on fundamental and intuitive waveguide principles. The new design 

incorporates first an optimised core depression, which affects primarily LP01 and LP02 mode effective 

indices. This optimised perturbation increases the LP21-LP02 mode spacing but can potentially 

compromise the fibre micro- and macro-bending behaviour. This effect has been counter-balanced 

by incorporating four optimally placed thin high-index rods in close proximity with the fibre core. 

This increases primarily the effective indices of the LP21 and LP02 modes without affecting 

significantly their spacing. The small LP21-LP02 mode spacing limitation, encountered in standard SI 

profiles, has been substantially improved by 40-100%. In addition, the new four mode-group fibre 

design shows increased effective areas, in excess of 150 µm2 for all supported modes, which is 

expected to give superior nonlinear performance.  

An additional element of this work was the investigation of a six mode-group design by perturbing 

the step-index design of Sillard [8.6]. Following the introduction of a core depression, the minimum 

mode spacing, which occurs between the LP21 and LP02 modes, has increased by 100% through the 

use of a ring perturbation. This is even an improvement over the six high-index rod design which 

increased the spacing by 30%. In addition an advantage of this ring design is ease of manufacture by 

methods such as MCVD.  All fibre designs shows increased or comparable effective areas, in for all 

supported modes, which is expected to give good nonlinear performance. 
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 Inverse scattering designs of mode-selective 

fibre couplers 

9.1 Introduction 

Recent works have described how supersymmetry (SUSY), which originated in the context of 

quantum field theory, can be applied to the design of optical structures for integrated optics 

applications with prescribed eigenmode spectra such as by Miri et al. [9.1] as well as methods for 

selective mode filtering Heinrich et al. [9.2] and of particular interest to us, applications to the design 

of optical fibres [9.1]. In each case, SUSY operates on a trunk waveguide and provides a partner 

which is in some way perfectly phase-matched to the trunk. This perfect phase-matching between 

waveguides resolves a significant challenge in waveguide design in general. However, as we 

indicated recently [9.3], a flaw in the SUSY approach is that the partner waveguide cannot 

incorporate the fundamental mode unless complex refractive index (RI) profiles are utilised as 

discussed by Miri et al. [9.4], and must in addition contain all other modes supported by the trunk. 

As such, selective filtering must incorporate all other higher-order modes, and as such any selective 

filtering must be done through the use of a ladder or cascade of partner waveguides. In addition, there 

has been no discussion as to quite how the filtering process might be carried out as different phase-

matched modes of coupled structures have differing coupling lengths for power transfer.  

In this chapter we expand upon our previous works and describe how an alternative approach based 

upon inverse scattering theory [9.5] can be used to design optical fibres supporting linearly-polarized 

(LP) modes for which the propagation constants of the modes (the eigenmode spectra) are specified 

for a fixed azimuthal number l. This differs from the previous SUSY fibre works because we can 

selectively populate the modes of the partner fibre and are not limited to the removal of the 

fundamental LP01 mode at each stage as is the case with real RI profiles using the SUSY approach. 

We are also not restricted to a partner fibre design for which all higher-order fixed azimuthal value 

modes are automatically phase-matched and we are able to achieve this for the same fixed value of l 

(or any other) in the partner, not just l+1 as in the case of SUSY.  It should be noted that there does 

not exist a method by which independent selection of mode azimuthal number l and energy E 

(propagation constant) can be achieved and typically either l or E is fixed. The most general method 

that does exist only allows specification along straight lines in the (l2,E) plane [9.6]. 

In addition to discussion of the above design of selectively phase-matched partner fibres, we will 

discuss the potential for equalization of mode coupling lengths such that power transfer occurs at the 

same length. This follows along the same lines as that described in our previous work in Chapter 7 

and is based upon the insight that gain or loss may be carefully used in a coupler to perform total 

power transfer of a specific mode as suggested by Chen et al. [9.7]. 
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9.2 Selective phase-matching of modes 

As discussed in the introduction, the advantage of the IS approach is the ability to selectively populate 

the LP modes of fixed azimuthal value l of a partner fibre and are not limited to the removal of the 

fundamental LP01 mode and the automatic phase-matching of all higher-order modes. We can also 

phase match the trunk modes to the same azimuthal value l in the partner, which is not the case with 

SUSY. We illustrate this process by considering a 12-mode step-index (SI) trunk fibre which has the 

following distribution of modes in Figure 9-2.  

 

 

Figure 9-1: Eigenvalue spectra in terms of azimuthal mode number for a 12 

mode step-index fibre with ∆n=1.44x10-2, r0=10.56 m, n2=1.444 and λ=1.55µm 

 

We now demonstrate the process by creating a partner fibre (design #1) for which we have selectively 

phase-matched to the l=0 modes LP01 and LP03 in the trunk fibre (red) to the l=0 modes LP01 and LP02 

in the partner (green) in Figure 9-3. Table 9-1 gives the effective indices of the modes in the trunk 

and the partner respectively and Figure 9-4 gives its refractive index profile.  
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Figure 9-2: Eigenvalue spectra for design #1 - trunk fibre LP01 & LP03 modes (red) 

phase matched to the LP01 & LP02 modes of the partner fibre (green)  

      

Table 9-1: Realised phase-matching modes for design #1 

Mode (Trunk) Mode (Partner) 

LP01 (1.457528) LP01 (1.457522) 

LP03 (1.447562) LP02 (1.447580) 

 

 

Figure 9-1: Refractive index profile of design #1 partner fibre with ncladding=1.444 @ λ=1.55µm 

 

We could also selectively phase match the l=2 modes LP21 and LP22 ‘backwards’ to the l=0 LP01 and 

LP02 modes of the partner (design #2) as shown in Figure 9-5. Once again, the effective indices 



Chapter 9 

142 

achieved are shown in Table 9-2 and the refractive index profile is given in Figure 9-6. Once again, 

this could not be achieved with SUSY. It would also be possible to continue this process for any 

desired l. It is worth noting that all other modes between the trunk and partner, as in the case of 

SUSY, are disjoint. In each of the cases described, the choice of the arbitrary parameters c1 and c2 

were chosen (design #1 c1=c2=0.2; design #2 c1=0.1, c2=0.2) simply by trial and error to produce 

a ‘smooth’ refractive index profile and their effect is discussed further in the next section.    

We note that the effective indices are in good agreement and any discrepancy is due to the 

implementation of the finite mesh size, the position of the boundary conditions used in the 

simulations and the fact that we utilise a fully vectorial solver (MODE Solutions) in this work. We 

have confirmed that accuracy to within less than 110-6 in the effective index can be achieved using 

a trial version of the LP mode solver (OptiFiber).   

 

 

 

 

Figure 9-2: Eigenvalue spectra for design #2 - trunk fibre LP01 & LP03 modes 

(red) phase matched to the LP01 & LP02 modes of the partner fibre (green) 
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Table 9-2: Realised phase-matching modes for design #2 

Modes (Trunk) Modes (Partner) 

LP21 (1.454448) LP01 (1.454445) 

LP22 (1.448064) LP02 (1.448071) 

 

 

Figure 9-3: Refractive index profile of design #2 partner fibre with ncladding=1.444 @ λ=1.55µm 

We now proceed to discuss the coupling of modes between the trunk and partner fibres. 

9.3 Designs with identical coupling lengths 

We begin the process as follows: (1) we start with a trunk fibre that supports a set of guided modes. 

(2) We choose the azimuthal value l and particular modes from that set we wish to remove and IS 

design a partner fibre that is phase-matched to these modes. (3) We calculate the coupling coefficients 

C12,m and C21,m for each phase-matched set of modes. (4) We now solve (7.14) and use (7.15) to 

determine the optimum combination of (n,q). From this we then determine the optimum mode 

effective index correction m,n..  

 

Following step (1) we calculate the coupling coefficients in terms of the RI profile, angular frequency 

(=2c/), permeability of free space µ0, permittivity of free space 0 and the normalized transverse 

LP mode electric fields Eyi, and Eyj where Fi indicates that the integral should be performed over the 

cross section of fibre i.   

  2 2 *

0 ( , ) ( , ) 

i

ij j yi yj

F

C n n E x y E x y dxdy   (9.1) 
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We note that the normalization of the electric fields here follows that of [9.2] such that, for i=1,2 
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 
  
  

  (9.2) 

As examples we now consider the design of the coupler designs #1 and #2 described at the start of 

this chapter where in design #1 the LP01 and LP03 modes are dropped from the trunk and coupled into 

the LP01 and LP02 modes of the partner, and in design #2 the LP21 and LP22 modes are dropped and 

coupled into the LP01 and LP02 modes of the partner. It is interesting to note that in recent work 

Riesen & Love [9.15] discussed mode-selective fibre couplers and the necessity for specific 

azimuthal orientations of the trunk and partner modes in addition to phase-matching, for optimal 

power transfer. The coupling coefficient between the trunk LPln and partner LP0m modes is found to 

have a cos(l) dependence [9.15] on the line defined by angle  which is perpendicular to the zero 

line of the anti-symmetric trunk mode field. Here we assume for simplicity that =0.    

9.3.1 Design #1 – LP01 & LP03 dropped 

As an example, the coupling coefficients are given in Table 9-3 for the case of design #1 involving 

the phase-matching of the 12-mode SI trunk fibre modes (LP01 & LP03) and the IS partner fibre modes 

(LP01 and LP02) with a spacing between profile centres of 22 m. This was chosen experimentally 

leading to a relatively low-loss and short length device. The optical power transfer between the trunk 

and partner fibres are shown in Figures 9-7 & 9-8 respectively. It is observed that, as expected, all 

the power of the LP01 trunk mode is removed in Figure 9-7 after ~66 LP03 –LP02 coupling lengths due 

to the disparity in coupling coefficients between the pairs, whereas in Figure 9-8 the removal of LP03 

power from the trunk occurs at one LP03-LP02 coupling length. 

 

Table 9-3: Coupling coefficients for design #1 with two phase- 

matched modes with trunk-partner spacing 22 m apart 

Modes (Trunk-Partner) C12 / C21 (m-1) 

LP01 -LP01 3.33 / 3.33 

LP03-LP02 220 / 222 
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Figure 9-4: Variation in optical power between the design #1 trunk SI LP01 and partner IS LP01 

modes as a function of the LP03 –LP02 coupling lengths 

 

 

Figure 9-5: Variation in optical power between the trunk SI LP03 and partner IS LP02 modes as a 

function of LP03-LP02 coupling lengths 

From Figure 9-7 we see that the 0th-order coupling length of the LP01-LP01 pair is equal to ~66 LP03-

LP02 coupling lengths and since total transfer of power occurs between the LP03-LP02 pair at odd 

numbers of coupling lengths, the current configuration would not result in total power transfer from 

the trunk for both the LP01 and LP03 modes at the same device length. In particular, at ~67 LP03-LP02 

coupling lengths the remaining LP01 power in the trunk is ~-37 dB, which although small in this 

particular case, does not compare with the <-100 dB level of the LP03 mode.  
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(a) 

 

(b) 

Figure 9-6: Loss curves for determining the design #1 correction - (a) the (n,q) loss curve showing 

the loss (dB) at the q’th order coupling length of the LP03-LP02 pair for various 

corrected n’th order LP01-LP01 coupling lengths, (b) the same but with length of device 

in metres 

As such we wish to perturb the effective index of the LP01 partner mode with gain/loss to correct for 

this. Using Figure 9-9 we see that the 33rd-order coupling length of the LP03-LP02 pair can be 

equalised to the 0th-order LP01-LP01 pair with a loss in power transfer of the LP01-LP01 pair of ~0.2 

dB. Thus the (n,q) pair is (0,33) and associated using (9.31) with a value of M1,1= 0.015 and therefore 

an effective index correction of 1,1=i2.46x10-8 . The corrected effective indices of the partner fibre 

are given in Table 9-4. The resulting coupler design is shown in Figure 9-10 where it can be seen 

that the refractive index profile of the partner fibre now contains an imaginary component given by 

the dotted line resulting in the above effective index perturbation.  The real part of the refractive 

index profile remains the same as before the imaginary corrected. The corrected power transfer 

curves are  shown in Figure 9-11 where it can now be seen that the power left in the trunk at 

[9.33x2+1=67] (478mm device length) coupling lengths is now <-71 dB which is an improvement. 

In addition, we see that the LP01 power in the partner is, as expected, approximately -0.2 dB.   

 

Table 9-4: Corrected partner fibre modes for design #1 

Mode (Trunk) Mode (Partner) 

LP01 (1.457528) LP01 (1.457528+ i2.46x10-8) 

LP03 (1.447562) LP02 (1.447562) 
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Figure 9-7: Refractive index profile of the design #1 fibre coupler 

 

 

Figure 9-8: Variation in optical power between the corrected design #1 trunk SI LP01 and partner IS 

LP01 modes as a function of the LP03 –LP02 coupling lengths 

 

It is possible to repeat this process for any of the higher-order modes or even a combination of them. 

We now show this by considering the ‘drop’ at the LP22-LP03 coupling length in design #2 of both 

the LP21-LP01 and LP22-LP02 pairs.  

9.3.2 Design #2 – LP21 & LP22 dropped 

Here, the coupling coefficients are given in Table 9-5 for the case of design #2 involving the phase-

matching of the 12-mode SI trunk fibre modes (LP21 & LP22) and the IS partner fibre modes (LP01 

and LP02)  with a spacing of 23 m. The optical power transfer between the trunk LP21 and partner 

LP01 modes are shown in Figure 9-7 where it is observed that, as expected, all the power of the LP21 
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trunk mode is removed after ~2/6/11 LP22 –LP02 coupling lengths for the 0th, 1st and 2nd order lengths 

once again due to the disparity in coupling coefficients between the pairs.  

Table 9-5: Coupling coefficients for design #2 with two phase- 

matched modes with trunk-partner spacing 23 m apart 

Modes (Trunk-Partner) C12 / C21 (m-1) 

LP21 -LP01 12.2 / 12.2 

LP22-LP02 26.4 / 26.5 

 

 

Figure 9-9: Variation in optical power between the design #2 trunk SI LP01 and partner IS LP01 

modes as a function of the LP22 –LP02 coupling lengths 

From Figure 9-12 we see that for odd numbers of the LP22-LP02 coupling lengths, the power of the 

LP21 mode remaining in the trunk is at least -5 dB when there is full power transfer of the LP22 mode. 

As such we wish to perturb the effective index of the LP01 partner mode with gain/loss to correct for 

this and we once again use ‘correction curves’ in Figure 9-13 to identify the optimum correction.  



Chapter 9 

149 

 

(a) 

 

(b) 

Figure 9-10: Loss curves for determining the design #2 correction - (a) the (n,q) loss curve showing 

the loss (dB) at the q’th order coupling length of the LP22-LP02 pair for various 

corrected n’th order LP21-LP01 coupling lengths, (b) the same but with length of device 

in metres 

 

As such we wish to perturb the effective index of the LP01 partner mode with gain/loss to correct for 

this. Using Figure 9-13 we see that the 5th-order coupling length of the LP22-LP02 pair can be 

equalised to the 2nd-order LP21-LP01 pair with a loss in power transfer of the LP21-LP01 pair of ~5.8 

dB. Thus the (n,q) pair is (2,5) and is associated using (9.31) with a value of M1,3= 0.0833 and 

therefore an effective index correction of 1,3=i5.00x10-7 . The corrected effective indices of the 

partner fibre are given in Table 9-6. The resulting coupler design is shown in Figure 9-14 where it 

can be seen that the refractive index profile of the partner fibre now contains an imaginary component 

given by the dotted line resulting in the above effective index perturbation.  The real part of the 

refractive index profile remains the same as before the imaginary corrected. The corrected power 

transfer curves are  shown in Figure 9-15 where it can now be seen that the power of the LP01 mode 

left in the trunk after [9.5x2+1=11] (655mm device length) coupling lengths is now <-63 dB which 

is again a large improvement. Once again, the power of the LP01 mode in the partner is now ~-5.8 

dB as predicted.  

Table 9-6: Corrected partner fibre modes for design #1 

Mode (Trunk) Mode (Partner) 

LP21 (1.454448) LP01 (1.454448+i5x10-7) 

LP22 (1.448064) LP02 (1.448064) 
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Figure 9-11: Refractive index profile of the design #2 fibre coupler 

 

 

Figure 9-12: Variation in optical power between the corrected design #2 trunk SI LP21 and partner 

IS LP01 modes as a function of the LP22 –LP02 coupling lengths 

9.4 Discussion 

In this chapter we have demonstrated that it is possible to remove or ‘drop’ selected modes 

simultaneously from a trunk fibre using a coupled partner fibre which has a calculated imaginary 

phase-mismatch first suggested by Chen et al. [9.7]. In our case we have limited our discussion to 

the use of loss in a partner fibre, while it would also be possible to investigate the use of gain, the 

value of both being calculated using coupled-mode theory, and then implemented using inverse-

scattering theory. In each case it was necessary to select the spacing between the trunk and partner 



Chapter 9 

151 

fibres in order to calculate coupling coefficients and in turn the optimum correction. Here we have 

simply used some intuition and trial and error in order to find devices of reasonable length, but the 

general pattern to be noted is that smaller trunk-partner fibre spacings tend to lead to shorter equalised 

devices, though there is always a balance to be had also with respect to the loss in the process. This 

use of a lossless trunk fibre and a lossy partner has also been considered fairly recently in the context 

of quantum mechanical PT-symmetry breaking [9.16]. However, it is our belief that this is the first 

time this has been considered from a more practical point of view with respect to mode-selective 

couplers, especially in terms of their inverse design. It must be noted that the issues relating to the 

azimuthal orientation of modes and associated coupling strengths must also be taken into account, 

but we believe that this work will contribute to the design of mode-selective couplers with a more 

general and useful approach than that considered in by the use of SUSY.  
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 Conclusions and Future Work 

10.1 Inverse scattering designs of optical waveguides 

In this thesis the design of optical waveguides by inverse scattering has been considered and there 

has been a successful investigation over how dispersion can be controlled through the manipulation 

of the transverse reflection response of a waveguide.  In general, the reflection response can be 

approximated by a rational reflection coefficient with varying numbers of poles, and here for the first 

time a larger numbers of poles have been investigated and found to “fine-tune” the waveguide 

dispersion. To my knowledge this is also the first time that the more general inverse scattering 

algorithm for rational reflection coefficients devised by Pechnick [10.1] has been applied to 

waveguides.  

Following on from the work of Mills and Tamil [10.2] the design of multimode planar waveguides 

was considered using Darboux transformations from the point of view of group velocity equalisation 

[10.3] and the design of mode-selective waveguide couplers [10.4] as an alternative to the  recently 

proposed SUSY approach. The addition of mode-selective gain or loss was then investigated through 

the use of complex propagation constants [10.5] which for the first time showed theoretically that 

both gain and loss are required in the refractive index profile for exact equalisation of modal gain. 

Finally, the combination of arbitrary phase-matching of modes and the addition of tailored loss/gain 

in trunk-partner designs was used to drop arbitrarily chosen modes and equalise their coupling 

lengths. By the end of the aforementioned works, it was discovered that the SUSY approach is in 

fact a particular case of the Darboux transformation approach as discussed in Chapter 2. It is 

interesting to note that for the reflectionless potentials considered in the design of multimode 

waveguides above, both the solution to the Gel’fand-Levitan-Marcheko equations and Darboux 

transformation approach lead to the very same family of potentials [10.6].   

This work has shown that inverse scattering techniques open up new previously unexplored 

possibilities in the design of planar waveguides and we discuss this in the following future work 

section.  

10.2 Inverse scattering designs of optical fibres 

This thesis began with the aim of applying inverse scattering techniques to the design of optical fibres 

and although a lot of the achievements to date have been with respect to planar waveguides, much 

has been learnt in the process. The similarity in mode intensity field profiles between low-order fibre 

LP modes and that of the TE modes of planar waveguides meant that intuition could be gained from 

studying the waveguide designs. Initially this led to the design of a few-mode fibre with improved 
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LP mode spacing [10.7] whereby the core depressions observed in the waveguide designs were 

carried over to a fibre design. This particular design was further improved through the addition of 

‘rod-like’ features which preferentially ‘lift’ modes with similar symmetries. This approach is also 

justified by considering the formula derived by Snyder and Love [10.8] which gives the effective 

index of a perturbed fibre design in terms of a weighed integral of the perturbation itself and the 

mode field intensity. 

Towards the end of the thesis it was found that previous work performed by Yukon and Bendow 

[10.9] had investigated the solution of the Gel’fand-Levitan-Marchenko approach in cylindrical 

coordinates under the weakly-guiding approximation. In particular, phaseless scattering potentials 

were considered, in an analogous way to the reflectionless potentials of planar waveguides, and 

explicit solutions were found for specifying the effective index of LPlm modes for m modes of fixed 

azimuthal value l. While another paper was found by Hooshyar and Tamil [10.10] that discussed 

another class of the problem, the specification of fixed effective index for varying azimuthal value l, 

it became clearer that it is not possible to specify freely in advance the effective index of LP modes 

of varying azimuthal l value, when the paper by Rudyak [10.11] was discovered. Here the 

aforementioned two different classes of inverse scattering problem were described as being particular 

cases of their formalism which allowed for the closed-form solution of the problem along arbitrary 

lines in the (l2, E) plane. What this showed was that at its most general the problem only had a solution 

along lines in the (l2, E) plane and therefore the more general approach that was sought at the start of 

the work was not achievable. 

However, it was found that the approach adopted for fixed l still allowed for the design of fibre 

couplers based upon the very same trunk-partner formalism adopted in the waveguide designs above. 

In fact, recent work using SUSY [10.12] had obtained cascades of fibres where the partners always 

produced phase-matched LPlm modes but with increased order l+1 at each stage. The Gel’fand-

Levitan-Marchenko approach, on the other hand, had no such limitation and as discussed in Chapter 

9 phase-matching of selected trunk modes is possible for any fixed l. In addition, an attempt to add 

modal gain/loss to fibre designs was met through trial and error with designs which had very good 

equalisation of modal gain across the board, simply by specifying the fixed gain and varying the 

effective indices of the modes. It is interesting to note that iterative variation of the free parameters 

in the Gel’fand-Levitan-Marchenko design process for fixed effective indices also allows for a 

certain tailoring of the mode spectra of modes that ‘fill the gaps’ between the effective indices 

specified for the fixed l modes. This, due to time constraints, was not included in this thesis, but will 

be discussed in a future paper. As in the case of waveguide couplers above, the very same approach 

to coupling length equalisation using the tailoring of gain/loss in the design process is possible.  

It is felt that the work performed on fibres here has shown both the benefits and limitations of the 

inverse scattering approach to fibre design. On one hand the approach described is an alternative and 

more general one to that of SUSY as described in Chapter 2, while it has been shown that there is no 
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freedom to obtain fibre designs with arbitrarily prescribed LP modes. However, as above, it has also 

been shown that variation of free parameters in the design process gives an element of control over 

the modes that ‘fill the gaps’. There is certainly further work possible on the iterative fine-tuning of 

mode spectra through this approach.  

10.3 Future work 

In the above, some conclusions have been drawn regarding the success of this research work in both 

the design of planar waveguides and optical fibres. As discussed, the work has shown that there are 

both more possibilities as well as limitations, particularly in the design of fibres, than previously 

thought.  

While completing this thesis it has  come to our attention that considerable work has been carried out 

on mode selective excitation and gain control in special large-mode area (LMA) fibres known as 

‘ribbon fibres’ [10.13].  These fibres are expected to be used as alternatives to standard circular LMA 

fibres as they can potentially offer superior bending performance, better heat dissipation and 

improved power scalability.  The work performed in this thesis on the mode-selective tailoring of 

gain could be applied to this design problem as ribbon fibres are known to utilise high-aspect ratio 

rectangular cores which are “semi-guiding” in the sense that only one axis is guiding and the other 

effectively un-guiding which can be approximated by a simple planar waveguide design.   

Our novel inverse scattering approaches can also be used to design semiconductor amplifiers and 

lasers with improved modal properties and output power stability.  In this case, gain and loss can be 

introduced in the waveguiding section by locally pumping the semiconductor.  This can be achieved 

by appropriately patterned electrodes or interference patterns [10.14]-[10.16].  

Recent work has shown that ring-core fibre designs [10.17] may be used for a very good standard of 

gain equalisation and qualitatively similar designs can be obtained without any assumptions as to the 

form of the rings, from inverse scattering theory and as mentioned above will be published shortly 

in a paper. It is expected that significant equalisation of gain across a large number of LP mode 

groups is possible using this approach, even if in an iterative manner.  

The design of mode-selective waveguide and fibre couplers could be investigated further but from 

the point of view of loss-less designs that allow for the incorporation of both loss and gain in both 

the trunk and partner. This would be timely considering the work using PT-symmetry [10.18] where 

de-multiplexing using such a design approach has been considered.   

Finally, it should added that in the case of optical fibres, the localised gain and loss can be potentially 

distributed accurately inside the core and/or cladding regions using “pixilation” techniques.  In this 

case, sub-wavelength rods, doped with active ions that can absorb or amplify the signal [10.19] can 

be optimally assembled and drawn into fibres by a standard “stack-and-draw” technique [10.20]. 
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These fibre drawing techniques have been extensively used in modern advanced active fibre designs 

[10.21].  
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