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ABSTRACT
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Thesis for the degree of Doctor of Philosophy
INVERSE SCATTERING DESIGNS OF OPTICAL WAVEGUIDES AND FIBRES
Alexander Robinson May

Optical fibres and waveguides have become vital components in communication systems ranging
from on-chip interconnects in datacentres, to trans-oceanic submarine communication cables.
Typically, they are designed in a trial-and-error manner and the objective of this thesis was to
investigate their inverse design using a method known as inverse-scattering. In contrast to methods
of design optimisation where an initial refractive form of index profile of some kind must be chosen,
inverse-scattering makes no such assumptions other than that of which modes are carried by the
structure and what their respective propagation constants are.

Initially, the control over group-velocity dispersion in a single-mode planar waveguide with fixed
propagation constant was investigated by considering the form of the transverse reflection response
by which the modal properties of the waveguide may be specified, as discussed in the literature. It
was demonstrated that common features of dispersion-engineered waveguides were obtained
corroborating their use in the existing literature and further understanding of these features was
developed.

Extending the study to multimode planar waveguides through the application of an inverse-scattering
method rooted in the quantum mechanical community, the properties of multiple guided modes, such
as their group-velocities and modal gain were controlled. The realisation that both gain and loss are
required in a refractive index profile to have exact equalisation of modal gain across multiple modes
was novel and differed from existing approaches using genetic algorithms. In addition to this, the
design of waveguide couplers by which power can be transferred from one waveguide to another was
considered by an approach differing from that of the increasingly popular supersymmetric (SUSY)
approach in the literature.

Attention turned to the design of few-mode optical fibres which are at the forefront of technology.
Since the planar waveguide designs above were found to contain ‘depressions’ and ‘rings’, similar
such features were investigated in an optical fibre based upon the knowledge that there were
similarities in the modal intensity profiles of the first few linearly polarised (LP) modes in a fibre,
and that of the TE modes in planar waveguides. Core depressions and ‘rod-like’ refractive index
perturbations were implemented and found to increase the spacing between mode groups.

Following on from the above successes, inverse-scattering techniques were applied directly to the
cylindrical symmetry of optical fibres and their associated LP modes. A particular feature of this
work was the realisation that the propagation constants of such modes can only be specified at the
start of the design process for a fixed value of the azimuthal symmetry of the fibre mode. A finding
by other researchers using the SUSY technique had been that the modes in coupled fibres (trunk-
partner pairs) could only be ‘matched’ when the azimuthal symmetry of the trunk and partner modes
differed. The inverse-scattering method in this thesis, on the other hand, does not have this limitation.
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Chapter 1

Chapter 1: Introduction

1.1 Optical waveguide and fibre design

1.1.1 A historical context

Communication involves the transfer of information from one point to another, and, since the end of
the nineteenth century, this has often been achieved using a transmitter modulated electromagnetic
carrier wave, be it a radio wave, microwave or light wave. Once modulated, the carrier wave travels
through a channel after which it eventually meets a receiver where it is demodulated and the
imprinted signal obtained. It can be roughly stated that the rate of information that can be sent is
approximately proportional to the difference between the maximum and minimum frequencies of the
channel, otherwise known as its bandwidth. As such, the information capacity of a modulated optical
beam with carrier frequency in the range of 10 to 10'° Hz is much larger than that typically obtained

using radio or microwaves.

The use of optical carrier waves for telecommunications was given a boost when the ruby laser was
discovered in 1960 by Theodore Maiman [1.1]. Prior to this, no optical source was suitable for such
use, and its discovery occurred at a time of significant growth in telecommunications traffic. Initial
investigations examined the possibility of using optical beams in very much the same way as
conventional communication systems, through the transmission of a laser beam through the
atmosphere. However, it was soon found that laser beams, with their wavelength being shorter than
that typically found in the radio spectrum, suffered from considerable attenuation due to scattering
and absorption in the atmosphere. A solution to this problem would be the use of some form of

guiding medium with which to protect the light beam.

Shortly after the development of the ruby laser, in 1965 Charles K. Kao and George A. Hockham
[1.2] of the then British company, the Standard Telecommunications Laboratory, recognised that a
fibre of glassy material could be used as a medium for guided transmission at optical frequencies. In
addition, they reported that the most significant attenuation of such a fibre was caused by impurities

and not by fundamental physical limits, and could therefore be reduced in time.

In 1970 the first practical optical fibre suitable for communications, with a new low loss of 17 dB/km,
was developed at glassmaker Corning by Robert D. Maurer, Donald Keck, Peter Schultz and Frank
Zimar [1.3]. Up to that time it was the purest glass that had ever been made and was a breakthrough
for fibre-optic communications. As the 1970s went by, development continued and soon the best
Silica laboratory fibres were approaching the fundamental scattering limit at 0.85 pm of two decibels

per kilometre. At around this time on the 22" April 1977, General Telephone and Electronics sent
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the first live telephone traffic over a 10 kilometre route between Long Beach and Artesia, California,

using fibre optics at 6.3 Mbit/s. It was a world first.

1.1.2 Fibre optic communication systems

The late 1970s saw the development of the first fibre optic communication systems. This began at a
wavelength of 0.85 um using GaAs semiconductor lasers. Combined with the discovery by
Horiguchi [1.4] of fibre losses of ~1 decibel per kilometre at longer wavelengths between 0.95 and
1.37 pm, as well as the potential for near-zero material dispersion in the same region, was the
development of a new family of InGaAsP semiconductor lasers operating at 1.3 um. The combination
of low loss and low material dispersion would allow signals to go not only further at the longer
wavelength, but carry more information because shorter pulses could be spaced closer together. This

was the opening of the new telecommunication window at 1.3 pm.

Up until this time single-mode fibres had had a bad reputation because coupling of light into them
was difficult. In addition, the high material dispersion at 0.85 pm meant that any attraction of single-
mode transmission was offset. However, the opening of the new 1.3 pm window with its relatively
low loss and low material dispersion promised capacity increases many times that of the existing
technology. The light coupling problem was also to become less of an issue because of the increased

core size and improvements in splice and connector technology.

The 1980s saw the fibre-optics market take off with deregulation of the long-distance telephone
service in the USA with many companies expanding their networks. In addition, it was decided that
the next generation of coaxial cables would no longer be developed for submarine cabling purposes
in favour of optical fibres. By the time the next transatlantic cable, TAT-8, was laid, the two pairs of
single-mode fibres were each carrying 280 million bits per second of data, the combined equivalent
of 35,000 phone calls.

With better technology came communications capacity at a lower cost per channel and there was an
explosion in demand. As soon as TAT-8 was nearing completion, TAT-9 was under development,
but this time in a further new telecommunications window. This new window was located at 1.55
pum where fibre loss was at its lowest. Combined with the then new development of the Erbium-
doped fibre amplifier, it was possible to double transmission speed to 560 million bits per second

and repeater spacing later reached 140 km.

1.2 The optical waveguide

An optical waveguide consists of a core in which light is confined, surrounded by a cladding as

shown in Figure 1-1 below. The refractive index of the core n; is chosen to be higher than that of the
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cladding no such that a light beam coupled to the face of the waveguide is confined into the core by

total internal reflection.

No

X=a — ——

v

x=0

x=-a [~
Cladding n, ‘ n,

Figure 1-1: The basic structure and refractive index profile of an optical waveguide

In general, when an electromagnetic wave is incident upon a plane interface between two media of
refractive indices n; and n. it gives rise to a reflected wave and a transmitted wave. The amplitudes
of the reflection and transmission coefficients will be given later, but the relationship between the
incident 0 and refracted 8, waves with respect to the normal at the boundary, is described through

the use of Snell’s Law,
n,sing, =n,sing, (1.1)

The critical angle 0. above which total internal reflection occurs is given by,

6, =arcsin (&] 1.2)

n

The condition for total internal reflection at the core-cladding interface in Figure 1-1 is therefore
given by,

nlsin(%—gb)zno (1.3)

and since the angle ¢ is related to the incident angle 0 by,

sineznlsingbsafnlz —n,’ (1.4)

we obtain the condition for the total internal reflection as,

g <arcsinyn’ —n? =0, (1.5)

from which we arrive at the approximation for the maximum acceptance angle of the waveguide Omax,

otherwise known as the numerical aperture (NA),
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O = AN =17 (1.6)

A= = .7

Then the numerical aperture (NA) is related to the relative refractive index difference A by,
NA=6,. =n~2A (1.8)

In the above we have described how waveguide modes may be confined provided the angle ¢ remains
below a critical angle. However, it is important to note that not all modes with arbitrary angles lower
than this critical value do not propagate in a waveguide. The angles that do propagate are discrete in
nature and in order to elucidate what they are it is necessary to consider an example. Here we look

at the ray picture of a planar slab waveguide as illustrated in Figure 1-2.

If we consider a plane wave propagating in the z-direction with an inclination angle @, we see that
the phase fronts are perpendicular to the direction of the light rays. Given an operating wavelength
in vacuum A we see that the wavelength and wavenumber in the core are given by the expressions

Mny and kni where k=2m/A is the vacuum wavenumber. The propagation constants in the

X
L Phase front Light ray

Figure 1-2: The light rays and their phase fronts in a waveguide

longitudinal (z-direction) and lateral (x-direction) are given by,
L =kn, cos¢g (1.9)
x=kn sing (1.10)

Light ray PQ is assumed not to have suffered any phase change ® on reflection, while the ray RS is
reflected two times (once each at the upper and lower core-cladding interfaces). Since points P and
R or points Q and S are on the same phase front, the optical path length between P and Q or R and S
should be equal or a multiple of 2x. The path length 1, between P and Q is given by,
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2a
I, _(W—Zatamﬁ}ow (1.12)

while path length between R and S is given by,

2a
| =— 1.12
2 sing (1.12)
The phase-matching condition is given by,
(knl, +2®)—kn], =2mz (1.13)

for integer m. The mode that satisfies m=0 is called the fundamental and those having larger values
m>1 are the higher-order modes. We simply state at this stage that the phase change on reflection at

the interfaces, otherwise known as the Goos-Hanchen shift, is given by Okamoto [1.5],

2 2 4 o2
® =—2arctan wz—Zarctan _2—?—1 (1.14)
n sing sin® ¢

It is interesting to observe the formation of the modes and their standing waves through the
interference of phase fronts. This is illustrated in Figure 1-3 for the fundamental mode and Figure
1-4 for the m=1 higher-order mode.

Phase front
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Figure 1-3: The formation of the fundamental mode standing-wave pattern

In each case the positive phase fronts are represented by solid lines, and the negative phase fronts by
the dashed lines. Constructive interference between the solid lines leads to maxima and destructive
interference between solid and dashed lines leads to minima. From Figure 1-3 and Figure 1-4, the

value of the integer m is seen to correspond to the number of nodes of the lateral electric field profile.

A similar analysis can be applied to optical fibres, although it is necessary to introduce the concept
of skew rays whereby rays travel in a helical path through the fibre and given the limitation of the
above analysis to that of the high frequency limit and the fact that it is discussed in detail elsewhere

such as by Snyder and Love [1.6], we do not discuss this approach further.

5
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X

Figure 1-4: The formation of the m=1 higher-order mode standing wave pattern

1.3  Optical waveguide and fibre manufacture

As discussed above, optical waveguiding requires a variation in refractive index between the core
and the cladding for the transmission of light. It is therefore necessary to identify at least two different
materials which are transparent to light which exhibit relatively low optical attenuation. In order to
avoid scattering losses greater than the fundamental limit, bubbles, strains and grain boundaries
which act as scattering centres must be removed. The materials which satisfy these requires tend to
be glasses and certain monocrystalline structure plastics [1.7]. In order to achieve graded refractive
index profiles it is also necessary for the materials to be suitable for doping which in turn requires
mutual solubility over a relatively wide range of doping concentrations. As a result of this, glass-like

materials are chosen and plastics are thereby limited to the case of step-index fibres.

Vapour-phase deposition techniques are used in the production of silica-rich glasses which have
optimal optical properties [1.7]. To begin with, volatile compounds such as SiCls, GeCls and SiF,
BCls, O,, BBr3 and POCI; are distilled to obtain raw materials with low concentrations of transition
metal elements in order to reduce losses due to absorption. Modification of the refractive index is
then possible by mixing gaseous mixtures of silica-containing compounds with a doping material
such as TiO,, GeO,, P,0s, Al;O3, B2O3 and/or F, and oxygen in a vapour-phase oxidation reaction
where the deposition of oxides results. This deposition is typically onto a substrate or within a hollow
tube and is built up in successive layers. The variation possible in refractive index for a sample of
dopant concentration is illustrated in Figure 1-5 where it can be seen that doping with Fluorine

decreases the refractive index, while Germanium increases it.
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Figure 1-5: The variation in refractive index for a sample of dopant concentrations using data from
[1.8]

1.4 Practical issues with optical waveguides and fibres

While optical waveguides and fibres bring with them huge potential benefits through their use in
optical communications, it is necessary to consider their optical transmission characteristics in more
detail. Here we briefly review two of their most important characteristics — their attenuation (1oss)
and bandwidth.

1.4.1 Attenuation in optical waveguides and fibres

The attenuation in optical waveguides and fibres is due to a combination of material absorption and
scattering. Material attenuation can further be decomposed into intrinsic (caused by interaction of

light with major components of the glass) or extrinsic (caused by impurities within the glass).

Pure silica glass has little intrinsic absorption in the near-infrared region due to its basic material
structure. However, there are two major mechanisms at work, as shown in Figure 1-6, where
fundamental absorption edges occur in the ultraviolet due to the stimulation of electronic transitions
within the glass by high energy excitations, and in the infrared region where photons interact with
molecular vibrations within the glass. In addition to the above, extrinsic absorption is due to transition
element impurities within the glass. These impurities can lead to in excess of 1 dB/km attenuation in
the near-infrared region. Another major loss mechanism is absorption due to water dissolved in the
glass. The OH ions are bonded into the glass structure and have molecular stretching vibrations which

give rise to overtones in the region of 1.38 pm as evidenced in the experimental curve.
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Figure 1-6: The attenuation spectrum for an ultra-low-loss fibre with calculated attenuation spectra
for some of the loss mechanisms using data from [1.7]

Rayleigh scattering is a form of linear scattering whereby some or all of the optical power contained
within a propagating mode is transferred proportionally into a different mode. Since it is possible for
such power to transfer into leaky or radiation modes which do not continue to propagate within the
core, it leads to attenuation. In particular, this form of scattering is the dominant loss mechanism in
the low-absorption window between the ultraviolet and infrared absorption tails, and is due to random
inhomogeneities in the refractive index due to density of compositional variations which have been
frozen into the glass lattice on cooling. The scattering is found to occur in almost all directions and

is proportional to 1/A*%.

Another form of scattering is known as Mie scattering and occurs at inhomogeneities comparable
with the size of the guided wavelength. This typically occurs due to imperfections and irregularities
in the fibre such as diameter fluctuations, strains and bubbles and is mainly directed in the forward

direction.

Finally it is important to note that optical waveguides do not behave completely as linear channels
where any increase in output optical power is proportional to the input power. This form of nonlinear
scattering results in the transfer of optical power from one mode to another at a different frequency
in either the forward or backward direction. The most important types are known as Brillouin and
Raman scattering and are typically only observed at high optical power densities. Stimulated
Brillouin scattering (SBS) is the modulation of light through the interaction of an incident photon
with molecular vibrations within the fibre to produce a phonon of acoustic frequency and a scattered

photon. As a result, the scattered light appears as upper and lower sidebands, of which the lower
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appears mainly in the backward direction and the upper is lossy. Stimulated Raman scattering (SRS)
is similar to SBS but involves the production of a high-frequency optical rather than acoustic phonon.
It is observed in both the forward or backward directions with a threshold of up to three orders of
magnitude higher than the Brillouin threshold in the same fibre. In each case the relevant non-
linearities are members of the broader group of phenomena known as the Kerr effect.

1.4.2 Dispersion in optical waveguides and fibres

Dispersion is an effect that causes distortion of signal transmission along an optical waveguide
thereby limiting the maximum transmission distance. As light pulses travel along the waveguide they
are broadened by a variety of mechanisms, which can in general be split into two categories, one
being intra-modal dispersion and the other being inter-modal dispersion. As the two names suggest,
intra-modal dispersion, otherwise known as group-velocity dispersion, is the variation in the group
velocity of a given signal mode with wavelength due to the wavelength dependence of both the
confinement of the light in the waveguide and the material with which it is made. Inter-modal
dispersion on the other hand is due to the differing group velocity of the various modes in a

waveguide which carries multiple modes.

Input pulses are broadened as they travel along the optical waveguide, with the greatest broadening
occurring for the case of the multimode step index fibre. An improvement in performance is seen in

the graded-index multimode fibre, while the least broadening occurs for the final single-mode fibre.

As a simplification, for there to exist no overlapping of light pulses down an optical fibre link with
bit rate Br, it is necessary for this rate to be less than the reciprocal of the broadened pulse duration
21,

B <— (1.15)

The connection between bit rate and bandwidth depends upon the digital coding format used but a
conservative measure results from nonreturn-to-zero (RZ) coding whereby the bandwidth Bop is
equal to the bitrate Br. A measure of the performance of a fibre is therefore given by the product of
the length L at which detection can still take place and the bandwidth of the optical link B (i.e Bopt X
L). Typical bandwidth-length products of 20 MHz km, 1 GHz km and 100 GHz km are given for

the multimode step index, multimode graded index and singlemode fibres respectively.

We now briefly discuss intramodal dispersion and intermodal dispersion in a little more detail.

143 Intramodal dispersion

As discussed above, intramodal dispersion is due to the dependence of the group velocity of a given

mode on its wavelength. This dependence may be due to either material properties or the confinement

9
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of the light in the waveguide. We first describe the effect of dispersion on a plane wave travelling

through a material of refractive index n, and then adapt this to a guided wave.

The group delay 1y Of a plane wave is defined through its propagation constant § and angular

frequency o by [1.9],

Vv dw dA dw

g

_L_, d48_ 95 d2 (1.16)

Tg
If we now write the propagation constant of the plane wave in terms of the refractive index n of the

material and vacuum wavenumber k, we have,

ﬂ:nk:n% (1.17)

We now derive,

I - = n-A—
di 1di 2 A2

dg 2z dn 27rn _2_77( dnj (1.18)
di

From which we obtain by inserting (1.18) into (1.16) and using the relationship w=2nc/A,

. 92
Ty = Lizﬂ-(n_/l@j A :E(n_lﬁj (119)
A di)\2zc) ¢ di

The light pulse will have a spectral width AX and so different components in the pulse will travel

with different delay times with the spread Atg given by,

dr
Aty =—2-A (1.20)

With this in mind we derive,

d 2 2
L _Lidn_dn_,dn) L,dn (1.21)
di c|di di dA di
finally giving the material dispersion,
L, d*n
Ar,=——2 AL 1.22
YL (1.22)

In order to investigate the effect of dispersion on a guided mode of propagation constant B, we
consider relation (1.22) with the refractive index n replaced by the effective index nes of a guided

mode defined through,

10
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27

ﬂ:neff ﬂ,

=N,k (1.23)
We then arrive at an expression for the total chromatic (intramodal) dispersion taking into account
both material and waveguiding dependency,

1 At y) d2neff

= = 1.24
CLAr ¢ dA (1.24)

An expression for a normalised propagation constant b is typically defined in terms of the effective
index of the mode and the core n; and cladding materials n; by,

2 2
neﬂ - - neff -,

b=—"_2 » (1.25)
n-—n n—n,
With this in mind we may rewrite the above expression as,
Ng =N, +(n,—n,)b (1.26)

From which we obtain a new expression for the total chromatic dispersion D¢ in terms of two separate

guantities, the material dispersion D, and the waveguide dispersion Dy,

2 2
=240, Adond g g (1.27)
cdi® ¢ di

We will discuss this further later in this chapter.

1.4.4 Intermodal dispersion

The broadening of pulses due to intermodal dispersion results from the differing group velocities
between modes in a multimode waveguide. This form of dispersion can be considerable and

dominates in multimode waveguides.

If we consider a ray theory model of a step-index fibre, we see that the minimum ray propagation
time Twmin is represented by an axial ray, while the maximum propagation time Tmax would occur for

an extreme meridional ray which is incident on the core-cladding interface at the critical angle.

As such we have,

T =— =—1 (1.28)

and,

11
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L/cos@ Ln
= = 1 (1.29)
c/n ccosd
Using Snell’s law we also have,
. n,
sing, =—==cosé (2.30)
n
From which we obtain a new expression for Tmax,
2
L (1.31)
cn,

And from these expressions an approximation for the time difference between the two rays in terms

of the refractive indices, their relative contrast A and the length of the waveguide L,

Ln?(n—n, | Ln’A
or=T -T. =—1 |21 2|=—1 1.32
max min an ( nl J an ( )
Where the relative contrast A is approximately written as,
n—n
A~r-L1 2 (1.33)
nl

After some manipulation we obtain the time difference in terms of the numerical aperture (NA) of
the fibre [1.7],

2
T~ LINA)

1.34
2n,c (1.34)

1.4.5 Maximising system performance

Here we briefly discuss how system performance can be maximised through the choice of optical
fibre design. We then describe how the inverse scattering approach has evolved. The primary
property of an optical fibre that can be modified is the dispersion curve which describes how an
optical pulse of a given wavelength and spectral width will broaden in time as it propagates along
the fibre. However, altering the dispersion curve alters the effective area of the fibre and also the cut-

off wavelength.

12



Chapter 1

Effective Area

Dispersion slope Bending losses

Figure 1-7: The trade-offs associated with optical fibre design

As can be seen in Figure 1-7 it is necessary to understand that design trade-offs occur and the
properties of an optical fibre cannot be varied independently. System design dictates that the ideal
fibre might be one with low dispersion as well as dispersion slope at 1.55 um while maintaining a
reasonable effective area Aer Of the fibre to control both non-linearity and bend losses, such as in the
case of a wavelength-division-multiplexing (WDM) system. Here it is important that the dispersion
is low, but non-zero, to control pulse broadening while limiting non-linear effects such as four-wave
mixing (FWM) and cross-phase modulation (XPM) between channels. This is also helped by keeping
a reasonably large mode effective area so that the power density is not confined to too small an area
which would in turn make such a fibre more vulnerable to such non-linearities, while not so large as
to make it sensitive to bend losses. It is also important that the dispersion is low across a band of
channels and therefore the dispersion slope should also be low. If any two characteristics in Figure
1-7 are selected, Maxwell’s equations control the third. It can be simply stated at this point to develop
intuition that for paraxial waves, the propagation constant of a mode p may be expressed in terms of

the mode field E(r,\) as well as the refractive index n(r,A) as [1.10],

p<[ 2] o2 o (135)

where the integration is performed over the fibre cross-section. This relationship demonstrates that
the propagation constant and its derivatives, hence also dispersion, are inextricably linked to the
mode field and refractive index profile. The rate at which the mode field expands and/or contracts
with wavelength in turn determines the dispersive properties of the fibre. Since the equations which
govern modal properties in optics are analogous to those which govern the wavefunction of a particle
in a box in quantum mechanics it suggests that a certain amount of intuition in the design process is
possible [1.10].

As might be expected in a field of work that crosses national boundaries, we now discuss briefly the
international standardisation of optical fibres by the agency known as the ITU of the United Nations

in order to obtain some consensus.

A fundamental way to group fibre designs is through the properties of the dispersion curve. The

original standard single-mode fibre was known as the ITU G.652 and had a zero-dispersion-
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wavelength (ZDW) at ~1.3 um. With the development in the 1980s of the low-loss 1.55 pum window,
the dispersion-shifted-fibre (DSF) was introduced and standardised under the name G.653. While it
may appear that having zero dispersion in this new window is an advantage, the development of
wavelength-division-multiplexing systems has meant that this fibre has limited application due to
unwanted nonlinearities when optical channels are close to the ZDW. The G.654 was developed as
a cutoff-shifted fibre with a larger mode field diameter in order to provide lower loss and allow higher
optical power for transmission over longer distances. The family of G.655 fibres known as non-zero-
dispersion-shifted fibres were developed to provide a balance of properties for high data transmission
rates over long distances. The key property is low, but non-zero, dispersion at 1.55 um. Finally, the
G.656 was developed with the purpose of having low dispersion from 1.46-1.63 pm to decrease inter-
symbol-interference (ISI) in wavelength-division-multiplexed systems. However, as can be seen, this
fibre has properties similar to the medium dispersion category of G.655. The key feature of G.656 is
its good performance with low nonlinearity for signal channels as well as Raman pumps at short

wavelengths.

In addition to the control of dispersion in the single-mode case above, with the development of
schemes designed to counter the upcoming ‘capacity crunch’, such as spatial-division-multiplexing
(SDM) as discussed by Richardson et al. [1.11], it has become important to control the differential
group delay between various modes in few-mode fibres to reduce complexity in the de-multiplexing
process [1.12], [1.13], as well as control over the mode spacing [1.14], [1.15] in order to reduce
coupling between modes. A good review of such approaches to the design of few-mode fibres is
given by Sillard [1.16].

1.4.6 The advantages of optical waveguides and fibres

The merits and special features offered by optical communications can be summarised as has been

done in the work of Senior and Jamro [1.7].

(a) Enormous potential bandwidth (~10° GHz in the near infrared) when compared with metallic
systems such as coaxial cables (~20 MHz). By the year 2015, the length-bandwidth product
of an optical fibre link was in the region of >100 GHz km whereas coaxial cable was 0.1
GHz km.

(b) Small size, weight and flexibility which is advantageous in crowded city network
infrastructure. Light weight also allows for use in mobile situations including aircraft and
satellites.

(c) Electrical isolation due to glass/plastic being an insulator. Problems involving earth loop and
interface problems are removed and application in electrically hazardous environments is
possible.

14
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(d) Immunity to electrically noisy environments. Communications using optical fibres do not
require shielding from electromagnetic interference (EMI) and crosstalk is negligible when
compared with electrical conductors.

(e) Security of communications. Optical fibres do not radiate significantly and therefore provide
for high signal security. Any interception would require invasive methods which could in
theory be detected.

(f) High reliability and ease of maintenance due to a lower requirement for repeaters or
amplifiers when compared with copper because of low optical fibre losses.

(g) Low cost. Optical fibres are made from derivatives of glass which are in abundance when
compared with copper.

1.5  Applications of inverse scattering theory

Inverse scattering theory (IST) has been used in a variety of settings over the years. A seminal
contribution to the field was made in the 1950s and 1960s when a closed-form solution to the
fundamental Gel’fand-Levitan-Marchenko (GLM) integral equation of inverse scattering was found
for rational reflection coefficients by Kay [1.17]. This particular technique was then later used to
investigate the inversion of semiconductor charge carrier density profiles by Jordan and Kritikos
[1.18] and then ionospheric and plasma profiles from scattering data by their group [1.19],[1.20]
through the use of reflection coefficients approximated using Butterworth and three-pole rational

functions respectively.

An important step forward was the consideration in Jordan’s work [1.21] of a potential well for which
one of the poles represented a bound state. At around the same time a general, efficient and exact
method was being developed for the inversion of rational reflection coefficients of arbitrary order by
Pechenick [1.22], [1.23]. Other numerical techniques were also being developed such as by Kritikos
and Ge [1.24], [1.25]. Within a few years this general three-pole approach with a single bound state
had been utilised in the design of both wide-core and general single-mode planar waveguides [1.26]-
[1.28] and shortly afterwards a paper was published by Jordan and Xia [1.29] investigating the

physical interpretation and meaning of various poles in the context of the modes in waveguides.

After a brief intermission, further design of single-mode and multi-mode waveguides and their modal
fields were considered through numerical methods by authors such as Papachristos and Frangos
[1.30] and Hirsch et al. [1.31]. However, no work had been done investigating control over either
dispersive properties of waveguides, or mode spacing. In addition, although there had been some
early work by on the design of circular waveguides under the weakly guiding approximation for
which either the propagation constant was prescribed for modes of fixed azimuthal value, such as by

Yukon and Bendow [1.32], or the propagation constant was fixed at a constant value for modes of
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varying azimuthal value by Hooshyar [1.33], no work has been done investigating whether it is

possible to control dispersion or mode spacing.

As alluded to in the previous section, there is an inherent link between the design of waveguides and
potential wells in quantum mechanics. In addition to the inverse scattering techniques discussed
above which rely upon solutions to the Gel’fand-Levitan-Marchenko (GLM) integral equations, the
general construction of potential wells has also been considered using the Darboux/Crum-Krein
transformations by Sakasi [1.34] as well as Rudyakm [1.35] and methods from supersymmetry
(SUSY) which can importantly be shown to be a particular case of the Darboux transformation
approach as was done by Suzko and Velicheva [1.36]. In particular, applied combinations of the
transformations of the SUSY approach can be shown to be equivalent to the GLM approach [1.37].

1.6 Aims and objective of the thesis

The aim of the work undertaken in this thesis was to investigate the potential for the inverse design
of optical fibres with a priori specified properties such as dispersion and mode spacing through the
application of inverse scattering (IS) [1.38], [1.39] methods. The motivation behind this particular
approach was the previous successful work done using IS methods in the design of Bragg gratings,
some of which is described by Feced et al. and others [1.40]-[1.43]. There was also a precedent set
for the IS design of planar waveguides in the works of Jordan and Lakshanasamy in the late 1980s
[1.44],[1.45] where properties such as the waveguide width was maximised and optical interconnects
were designed. However, little work had been done on the use of IS methods in the design of optical
fibres. Some early work was done investigating the specification of propagation constants such as by
Yukon in 1980 [1.46] and Hooshyar in 1992 [1.47] using circular dielectric waveguides but further
approaches based on this method appeared to have stalled. More recently work had been done on the
inverse design of optical fibres with tailored dispersion characteristics by Poletti [1.48] using

optimisation methods such as Genetic Algorithms.

As a result of the above works it was decided that work on planar waveguides would be extended
with a view to further understanding the IS approach and potential applications, and then following
this, the IS approach or intuition derived from it would be applied to application to optical fibres. As
little direct work had been performed in this area, it was very important at this stage to keep an open
mind as to whether a direct solution actually existed to this problem, and to use intuition obtained

from designs in the more mature field of planar slab waveguides to achieve the final goal.

1.7 Structure of the thesis

Chapter 2 introduces Maxwell’s equations and the electromagnetic theory behind both waveguide

and fibre modes. Following this there is further discussion of the spectral properties of fibre modes
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in terms of normalised parameters and features such as the group delay and dispersion. The theory
behind the methods of inverse scattering are then developed in the context of both waveguides and

fibres and the connections between the various methods are discussed.

In Chapter 3 the methods of waveguide and fibre simulation are introduced, with particular emphasis
on the transfer matrix method for the waveguide designs. The finite difference method implemented
in the commercial mode solver MODE Solutions is then briefly developed for completeness as it is
used to verify the results throughout this work. Finally coupled mode theory is developed for

application in the later waveguide and fibre coupler designs.

Chapter 4 describes the initial work done on the dispersion-engineering of single-mode planar
waveguides developed using the Gel’fand-Levitan-Marchenko equations as applied to rational
reflection coefficients, and extended to those with larger numbers of poles. In particular, a general
method of identifying the permissible domain of pole parameters is then developed using a

computationally implemented Sturm’s theorem in the symbolic algebra package MAPLE.

In Chapter 5 the initial work on the use of Darboux transformations as applied to multimode
waveguides is developed and applied in the design of multimode waveguides with group velocity
equalisation. Linked to this work, in Chapter 6 this same Darboux transformation approach was used
in the design of multimode waveguides with tailored modal gain, and finally in Chapter 7 application
was made to the design of multimode waveguide couplers where equalisation of coupling lengths

was made using the addition of mode gain/loss.

Chapter 8 describes the use of physical intuition gained from the inverse scattering design of
waveguides thus far to the design of optical fibres with improved LP mode group spacing through
the addition of a core depression and non-azimuthally-symmetric ‘rods’ which preferentially ‘lift’

modes with similar such mode profiles.

In Chapter 9 the inverse scattering design of optical fibres is discussed through the solution of the
Gel’fand-Levitan-Marchenko integral equations in cylindrical coordinates whereby mode effective
indices can be specified for fixed azimuthal LP mode value. Using this technique, in contrast with
state-of-the-art SUSY techniques, partner fibres can be designed to couple LP modes selectively, as
well as with the same, or differing azimuthal | value. In the same way that Chapter 6 investigated the
inverse scattering design of planar waveguides with tailored modal gain, and Chapter 7 used this in
the development of mode-selective couplers with equalised coupling lengths, this same idea was now
applied to fibre modes leading to the development of multimode mode-selective fibre couplers with

equalized coupling lengths.
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1.8 Summary of results and achievements

In the following two publications the work performed on the dispersion-engineering of planar
waveguides through the solution of the Gel’fand-Levitan-Marchenko integral equations was

described:

(1) A. R. May, F. Poletti, and M. N. Zervas, “Inverse scattering designs of dispersion-
engineered single-mode planar waveguides,” in SPIE Photonics West 2014-OPTO:
Optoelectronic Devices and Materials, 2014, vol. 8988, p. 89881S.

(2) A. R. May, F. Poletti, and M. N. Zervas, “Inverse scattering designs of dispersion-
engineered single-mode planar waveguides,” Opt. Express, vol. 23, no. 3, p. 3142, 2015.

The novelty of engineering the dispersion of waveguides by this approach is in the ability to vary the
dispersion of the waveguide while keeping the effective index and thus phase velocity of the guided
mode constant. This is typically not possible in the waveguide design process where, as in the case
of a step index design, the variation of parameters such as the refractive index contrast and core width
varies the characteristic V-number of the guide and thus both its dispersion and propagation constant.
While it may be possible to design more complex refractive index profiles for which there is more
independent control of the above features, there is no way to know in advance what geometric
assumptions must be made of such a profile to achieve these ends. An inverse scattering approach,

on the other hand, provides the required profile directly.

In the following publications the initial work on the design of multimode waveguides through
application of the Darboux transformation approach with equalised group velocity was described,
followed by the initial work presented on the design of mode-selective waveguide couplers as an
alternative to the more limited SUSY approach. Finally the tailoring of modal gain was investigated

in multimode waveguides through the use of complex propagation constants in the design process:

(3) A. R. May and M. N. Zervas, “Group velocity equalisation in multimode waveguides using
inverse scattering designs,” in Sixth International Conference on Optical, Optoelectronic and
Photonic Materials and Applications (ICOOPMA ’14), 2014.

(4) A.R. May and M. N. Zervas, “IS designs for mode selective waveguide couplers,” in 23rd
Int. Workshop OWTNM, 2015.

(5) A. R. May and M. N. Zervas, “Inverse scattering designs of active multimode waveguides

with tailored modal gain,” J. Sel. Top. Quantum Electron., 2015.
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(6) A. R. May and M. N. Zervas, “Inverse scattering designs of mode selective waveguide

couplers,” Pending submission

In the above works the novelty lies first in the demonstration that the group velocity of modes may
be controlled through their relative mode spacing, which until now has been described through
Brown’s identity, but not demonstrated explicitly in the design process, and secondly in the
experimental determination through an inverse scattering approach that the optimal waveguide
design for equalised group velocity is that with equally spaced mode effective indices and thus in
fact belongs to the infinitely extended parabolic refractive index discussed in the literature by authors
such as Adams [1.49].

The use of the Darboux transform in the design of mode-selective waveguide couplers is novel in its
approach as it is not limited in its ability to ‘select’ modes through phase-matching in the same way
as the current state-of-the-art SUSY technique. The Darboux approach neither requires the same
development of a cascade of waveguides whereby modes are removed singly one at a time, nor the
use of complex refractive index profiles to achieve only this. In addition, | demonstrate that it is
possible to tailor and equalise the coupling lengths of multiple selected mode ‘pairs’ at once through
the use of an imaginary (gain/loss) mismatch in effective index associated with each pair.

In the following publications the design of optical fibres was considered firstly by using physical
intuition derived from the inverse scattering design of optical waveguides above through the use of
perturbations to existing few-mode fibre designs, and then followed more completely by the solution
of the Gel’fand-Levitan-Marchenko integral equations in cylindrical coordinates. As in the case of
the Darboux transform approach discussed above for the design of multimode waveguides with
tailored modal gain and its use in the design of mode-selective waveguide couplers with equalised
coupling lengths, this was investigated in the context of fibres and has allowed for the design of

mode-selective fibre couplers with an alternative and improved method to that of SUSY:

(7)A. R. May and M. N. Zervas, “Few-Mode Fibers with Improved Mode Spacing,” in
European Conference on Optical Communication (ECOC), 2015.

(8) A. R. May and M. N. Zervas, “Inverse scattering designs of mode-selective fibre

couplers”, Pending submission

In the above works the novelty lies in the fact that intuition originally derived from observing
patterns in refractive index profile behaviour with varying TE mode spacing in multimode
inverse-scattered planar waveguide designs was carried across to LP modes in a few-mode
optical fibre design. These patterns were further understood by considering the perturbation
relation suggested by Snyder and Love [1.6] which definitively showed that mode spacing could

be controlled by considering weighed integrals of the mode field and refractive index profile.

19



Chapter 1

The result of this was a few-mode optical fibre which utilised high-index ‘rods’ in place of ‘rings’
in the planar waveguide cases and resulted in improved mode-spacing.Further to this, as
described above, the solution of the Gel’fand-Levitan-Marchenko integral equations in
cylindrical coordinates was then used to demonstrate a more complete method by which novel
mode-selective fibre couplers could be developed as an extension to the aforementioned mode-

selective waveguide couplers above.
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Chapter 2: Theory

2.1 Introduction

In this chapter we review the theory behind the guidance of electromagnetic modes in optical
waveguides and fibres. In contrast to the ray theory approach described briefly earlier in this thesis
to develop an intuition which is only valid in the high frequency limit, we now use the more accurate
and general method of solving Maxwell’s equations given the specific geometry of the guiding

structure and assumptions regarding characteristics of the modes.

We first discuss the time-dependent and source-free Maxwell’s equations and then investigate
solutions for guided waves in planar optical waveguides. Following a review of the fundamental
parameters and nomenclature associated with such structures, we then go on similarly to develop
solutions as applied to optical fibres. Here we very much follow the description given by Kawana
and Kitoh [2.1]

With an understanding of the modal features of both planar and fibre geometries in hand, we then
develop the theory of inverse scattering as applied to such structures. We review the fundamental
Gel’fand-Levitan-Marchenko integral equations and proceed to investigate solutions. Of particular
interest are those associated with potentials, known in this context to be refractive index (R1) profiles,
with rational reflection coefficients and those which are reflectionless. In each of these cases closed-
form solutions exist which simplifies solution and develops intuition. Of particular interest is the
development of an inverse spectral theory (IST) which allows for the perturbation of individual mode

propagation constants at will.

2.2 Maxwell’s Equations

We now describe Maxwell’s equations which govern electromagnetic waves in a linear material.
Inside such regions the electric field E (volts per metre), the magnetic field H (amperes per metre),
the electric flux density D (coulombs per square metre) and magnetic flux density B (amperes per

square metre) and current density J are related through,

vxE=-2B 2.1)
vxH=L (2.2)
ot
VeB=0 (2.3)
V-D=p (2.4)
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Vel = —%O (2.5)

With constitutive relations,
D=¢E (2.6)
B = uH (2.7)

The permittivity € and permeability p are defined in terms of the permittivity g0 and permeability po

of free space as well as the relative permittivity & and permeability p, of the material,
E=5,8, (2.8)
M= oy (2.9)

Wave equations can be obtained by considering an electromagnetic field oscillating at an angular

frequency . We may represent the field in complex notation as,

E(r,t) =Re[ E(r)exp(jot)] (2.10)
H(r,t) = Re[ H(r)exp( jrt)| (2.11)
D(r,t) =Re[ D(r)exp( jet)] (2.12)
B(r,t) =Re[ B(r)exp(jat) (2.13)

From which we obtain, where for simplicity we represent the time-independent terms E, H, D, B in

the phasor representation above again as E, H, D and B,

VxE=-jwB=-jou,H (2.14)
VxH= joeE (2.15)
VeH=0 (2.16)
Ve(&,E)=0 (2.17)

In the above we have assumed that p; is 1 for all materials other than magnetic ones and p=0. A wave

equation for the electric field E can then be obtained,
Vx(VxE)=—jau,VxH (2.18)
Using,
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Vx(VxA)=V(V-A)-V?A (2.19)

we rewrite the LHS of (2.18) in the form,

V(V-E)-V’E (2.20)

and since,
Ve(g,E)=Ve, E+¢,V-E=0 (2.21)

we obtain,
VeE=— Vggf E (2.22)

The LHS of (2.18) can therefore be written as,

—v(vgf -EJ—VZE (2.23)

Using (2.15) and combining with (2.23) we obtain,

Ve,

&

VE+ v[ -Ej +k,’6,E=0 (2.24)

With the following definitions and introduction of the refractive index n,
k =Ko = ko[£, =kon (2.25)

And the relative permittivity taken as constant in the medium, the vectorial Helmholtz equation for

the electric field is obtained,
V’E+k’E=0 (2.26)

In a similar manner a vectorial wave equation can be obtained for the magnetic field,

VPH+k*H=0 (2.27)

If we assume that the waveguiding structure is uniform in the z-direction, the derivative of the

electromagnetic field with respect to z may be written as,

0

> ==ip (2.28)
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Where f is the propagation constant and signifies the z-directed component of the wavenumber k.
The ratio of the propagation constant to the free-space wavenumber ko =2x/A , where A is the
wavelength, is defined as the effective index of the mode,

n, =2 (2.29)

k0

Inserting this convention into the Helmholtz equation for the electric field E and magnetic field H

gives,
V2 E+(k* - B*)E=0 (2.30)
V2 H+(k* = *)H=0 (2.31)
where we have defined,
o° 0
VZL :Wﬁ‘y (232)

221 The Poynting vector

In the following description we denote the time-dependent electric and magnetic fields by E(r,t) and

H(r.t), and the time-independent electric and magnetic fields by E(r) and H(r).

Due to the fact that the voltage is given by the integral of the electric field and because the magnetic
field is created by a current, the product of the electric fields and the magnetic fields is related to the
energy of the electromagnetic field. If we apply the divergence operator to the cross product we

obtain,
Vo(ExH)=H-VxE+E-VxH (2.33)
and if it then substitute this into Maxwell’s equations (2.1-2.5) we get,

oH oE
Veo(ExH)=—uHe— —¢cE.
(ExH)=—pu - £ P

—oE?
(2.34)

__° l,‘,~E2+1/4H2 ~oE?
ot\ 2 2

Where we have used the relationship, J=cE, relating the current density J to the electric field E

through the electrical conductivity c.

If we now integrate over an arbitrary volume V we get, using Gauss’s theorem across a surface S,
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[V4ExH)dV = [(ExH)nds

. (2.35)

Z—QI(EEEZ +—IL[H2\JdV —IUEZdV
6’[\/ 2 2 v

The first two terms can be identified as the rate of reduction of the energy stored in the electric and
magnetic fields, while the third term is the rate of reduction of energy due to Joule heating in the
volume V per unit time. As such we may identify the expression,

[(ExH)-nds (2.36)

S
as being the rate of energy loss through the surface S. Therefore, the definition,
S=(ExH) (2.37)

can be identified as the energy that passes through a unit area per unit time. This expression for S is

known as the Poynting vector.

Considering an electromagnetic wave that oscillates at a single angular frequency, we may define the
time-averaged Poynting vector <S> as,

—~
wm
~—
Il
—~
m
X
I
~

Il
T

Re{E(r)exp( jot)}x Re{H(r)exp( ja’t)}>

(r)exp( joot)+E(r) exp(-jot) y H(r)exp(jat)+H(r) exp(-jot)
2 2

mi

> (2.38)

*

A

|
—
mi

X

S~—

—

+(E"x H)+ExHexp(j2at)+E"x Fl*exp(—jZa)t)>

NP MNP —

)
@D
—~—
—

mi
X
I
*
—
==

We may therefore write the energy propagating as the real part of the Poynting vector S.

2.2.2 Boundary conditions

In order to solve Maxwell’s equations for electromagnetic fields we need the boundary conditions

which may be summarised as

(a) Tangential components of the electric fields are continuous, that is
E.=Ey (2.39)

(b) If no current flows on the surface, tangential components of the magnetic fields are

continuous, that is
Hy =Hy (2.40)
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If a current does flow on the surface, the magnetic fields are discontinuous and related to the
current density Js , that is
H, —H, =J (2.41)

(c) If there is no charge on a surface, the normal components of the electric flux densities are
continuous, that is

D,, =D,, (2.42)

n=

If there are charges on the surface, the electric flux densities are discontinuous and related

to the charge density ps, that is
Dln - D2n =Ps (243)

(d) Normal components of the magnetic flux densities are continuous, such that
B, =B,, (2.44)

2.3  Theory of Optical Waveguides

Here we present the theory behind optical waveguides. We begin with a three layer slab waveguide
with a one-dimensional structure. It has refractive indices n1, n, and ns which are uniform in the y
and z-directions, with regions 1 and 3 being cladding and region 2 the core. We know that tangential
field components are connected at the interfaces and so we begin our analysis with the Helmholtz
equations for each region of uniform material. Since we also assume that the structure is uniform in

the y-direction we may assume that /oy =0

N3
X W
n, ] W
Z 0
Ny

Figure 2-1: Geometry of a planar optical waveguide

The Helmholtz equation for the electric field may be written as,

d’E

i~ +ky? (N =ny*)E=0 (2.45)
X
and for the magnetic field,
2
Z:'+koz(n2—neﬁ2)H:0 (2.46)
X
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It can be shown that two different forms of modes propagate in such a three-layer slab optical
waveguide. These are known as the transverse electric modes (TE mode) and transverse magnetic

modes (TM mode) and can be derived by considering Maxwell’s equations,
VxE=-jou,H (2.47)

VxH = jos,e.E (2.48)

2.3.1 TE modes

If we assume the form of a mode where the electric field is not in the longitudinal direction (E,=0)

and is uniform in the y-direction, substitution into Equation (2.48) indicates that oH, /ox=0and

therefore Hy is constant and so may assume that Hy=0. Substituting E,=Hy=0 into Equation (2.47)

results in o€, / 6z =0 from which we may assume constant E,=0 and thus we have,

E,=E,=H, =0 (2.49)
Using the above relationships we have,
H =L E (2.50)
W,
and,
j OE
H = (2.51)
WL, OX

Substituting these we obtain a wave equation for the principle electric field component Ey,

L+ (kn® —ny? )E, =0 (2.52)

where we have written k, = o, /80/10

We now know the form of the wave equation in each uniform layer and therefore assume solutions

in each layer of the form,
C,exp(7.X) (region 1)
E, (X)=4C,cos(y,x+a) (region 2) (2.53)

C,exp(—y;[x-W])  (region 3)

Here the constants C1,C, and Cs are unknown constants, and we have defined,
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,/ (2.54)
,/ (2.55)
=k ,f (2.56)
Using,
oE
H,=— 1 % (2.57)
Jou, X
we may write the magnetic field in each region as,
C,exp(7,X) (region 1)
Ao
H,(x) =4=2=C,sin(y,x+a) (region 2) (2.58)
Joi,
Vs ;
Coexp(—y,[x-W (region 3)
Jou, ( 3[ ])

We see that there are five unknowns (nesr, C1, C2 and Cs and o) and by enforcing the boundary
conditions of the tangential electric field component E, and tangential magnetic field component H,
at x=0 and x=W,

E,.(0)=E,,(0) (2.59)
H,,(0)=H,,(0) (2.60)
E,W)=E,W) (2.61)
H,,(W)=H,W) (2.62)
we obtain the four equations,
C,=C,cosx (2.63)
—7C, =7,C,sina (2.64)
C,cos(y,W +a)=C, (2.65)
-7,C,sin (7/2W + a) =—7,C, (2.66)
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For a full solution the overall mode normalisation is required, but by letting C: be a free parameter,

and thereby not specifying the amplitude of the mode, dividing (2.64) by (2.63) we obtain,

a=—tan™ (ﬁ}tqyr (,=012,..) (2.67)

e

And dividing (2.66) by (2.65),

7,W =tan™ (&j—a +0,7 (0,=0,12,..) (2.68)

e

Substituting (2.67) into (2.68) we obtain,

y W = tanl(%J+ tan{%] g7 (9=012,.) (2.69)
2 2

Since all y can be written in terms of the effective index nef this is a dispersion relation which can be

solved numerically.

2.3.2 TM Modes

In TM modes the magnetic field component is now in the transverse direction. Since the structure is

uniform in the y-direction we get o€, / ox=0 and therefore that Ey is a constant which we may take

to be zero. Substituting H,=E,=0 we obtain oH, / 6z =0and so Hx=0. In summary,

H,=H,=E, =0 (2.70)
Substituting the expressions,
E, =£ p JHy (2.71)
WE,E,
i |oH,
E,=- — (2.72)
WE,E, ) OX

into (2.47) we obtain the wave equation for the principle magnetic field component Hy

d?H
dx?

y

L kg (0 =ny*)H, =0 (2.73)

Again, the principle magnetic field components are assumed to be of the form,
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C,exp(7.x) (region 1)
H, (x)=1C,cos(y,x+a) (region 2) (2.74)
C,exp(—y;[x-W])  (region 3)

with,
,j (2.75)
=K ,/ —Ny (2.76)
=K ,f (2.77)
The tangential electric field component E; is given by,
oH
E-—1 (2.78)
Joeys, OX
And so we may write the electric field in each region as,
—=2—C,exp(7.X) (region 1)
Jwgo
E,(X)=4—- V2 C,sin(y,x+a) (region 2) (2.79)
Jog,g,
C,ex X—-W region 3
Jwgo p(-7s[x-W])  (region 3)
Imposing the boundary conditions on the tangential fields at x=0 and x=W we obtain,
C,=C,cosa (2.80)
~hc =22 sing (2.81)
grl 5r2
C,cos(y,W +a)=C, (2.82)
—ﬁczsin(yzw Jr(;e):—ﬁc3 (2.83)
ng 8r2
Dividing (2.81) by (2.80) we obtain,
——tan (ﬁﬁj + O (4, =0,12,...) (2.84)
&2 7>
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Dividing (2.83) by (2.82) we also obtain,

yW =tan™! (?%}—quz (0,=012,..) (2.85)
r3 /2

Substituting (2.84) into (2.85) we obtain,

yW =tant| Z2 0 | ant| Sz 2a |y gp (@=012,..) (2.86)
& 7> &3 V>

Since all y can be written in terms of the effective index nesr this is the dispersion relation which can

be solved numerically.

2.4  Theory of Optical Fibres

In this section we discuss the analysis of a step-index optical fibre. An optical fibre consists of a core
and a cladding and is axially symmetric as shown in Figure 2-2. The refractive index of the core is
slightly larger than that of the cladding and so the optical field is largely confined in the core.

* @ o3 -
Y

Radial distance

Figure 2-2: Geometry of an optical fibre illustrating the core ni1 and cladding n; refractive indices of
a step-index optical fibre

Using the vectorial wave equations we may write for the transverse electric and magnetic fields,

viav[vgr -E]+ ko' (£, Ny’ )E=0 (2.87)
gl’
2 Ve 2 2
V2 H+—Tx(VxH)+ k) (&, —ny* JH=0 (2.88)
&

r
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Although the above equations can be solved using hybrid-mode analysis, in this work we only
consider fibres for which the difference between the core and cladding indices is of the order of 1%.
As such, the relative permittivity e, is small and ignoring the derivatives in the vectorial wave
equations gives a good approximation. From this we obtain the scalar Helmholtz equations for the
(weakly-guiding) transverse electric and magnetic fields,

V2 E, +k02(n(r)2 —neﬁz)EL -0 (2.89)
VZLHL+k02(n(r)2—neﬁ2)HL=0 (2.90)

The Laplacian in the above is written,

82
V2=V2l+a?
10 0 1 o o?
Sl PO P A 291
rar( ar) r’ 06> o1’ (299

o 10 1 ¢ &2
St Tt et
or: ror r°o0° oz

We may solve (2.89) for the electric field by assuming that the field E is oriented purely along either

the x-axis or y-axis with zero axial z-component, henceforth known as a linearly-polarised mode,

and of the form,
E, (r.0) = R(r)©(0) (2.92)

Substituting this form into (2.89) and dividing by R(r)®(6) gives,

1 (O°R(r) [ 1aR(r)) o 2 . 1 Fe
R(r)( P }rr k* (n(r)” =ny?) = 00) o7 (2.93)

Since the LHS is a function of only r and the RHS is a function of only 6 we find that both sides must

be constants. We therefore get,

r’ (d’R(r) 1dR(r)), . - e o\ g
R(r)£ .t odr J”kO (n(r) —ng?)=1 (2.94)
and,
SR (2.95)
0(6) do’ :

With some rewriting these can be put in the more usual form,
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d?R(r) 1 dR(r) E
T ar +ky’ é}-neffz—r—z R(r)=0 (2.96)
and,
2
d G;(;9)“2@(9):0 (2.97)

The solution to (2.97) is an oscillation with a single frequency and may be expressed in the form,
0(6)=sin(16+9) (2.98)

and the solution to (2.96) are well known [2.1] and provided by the 1’th-order Bessel functions. The

AJ,(£j+ BN,(E) forr<a
a a

R(r) = (2.99)

CK, (ﬂj+ DI,(MJ forr>a
a a

solutions are,

where we have defined,

u? =ky’a’ (&, —Ny”) (2.100)
W =k;'a* (n’ —&,,) (2.101)

The Ji(ur/a) and Ni(ur/a) are the I-th order Bessel functions of the first and second kinds, and the

Ki(wr/a) and li(wr/a) are the Ith-order modified Bessel functions of the first and second kinds.
And notice the important relationships between the two expressions,
u® +w =v* (2.102)

Where we have defined the normalised frequency,

v=k,a\n? —n/? (2.103)

In the above, the u and w are considered to be normalised lateral propagation constants in the core

and cladding respectively.

Since the solution to (2.96) must be physically well-defined (finite) at r=0 and at r=o0, we must restrict

the Bessel function solutions to,
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A, (ﬂj forr<a
CK, (—j forr>a
a

2.4.1 The characteristic equation

In order to determine the values of the propagation constants of these linearly-polarised modes, we
require a characteristic equation to solve. Firstly, we know that the tangential electric and magnetic
fields should be continuous across the boundary between the core and cladding, and that the ratio of
the normal components should be equal to that of the inverse ratio of refractive indices making up
the boundary. Given the assumption that the electric and magnetic fields are linearly polarised, the
conditions to be satisfied by the radial wave function R(r) are given under the weakly-guiding

approximation by,
R(a-0)=R(a+0) (2.105)

and,

dR(r)| _ dR(7)|

ar |a70 ar |a+0 (2.106)

We therefore require, using the solutions (2.104),
AJ, (u)-CK, (w)=0 (2.107)
AuJ; (u)-CwK{(w)=0 (2.108)

Or, in matrix notation,

[ Ji(u)  -Ki(w) J[Ajzo (2.109)

uu’(u) —wK'(w))(C

If this is to hold of non-trivial A and C, we require the determinant of the matrix on the left to be

zero, that is,

( Ji(u)  —Ki(w) j‘zo (2.110)

uu’(u) —wK’(w)
Or,

—wJ, (U)K, (w)+ud/(u)K, (w)=0 (2.111)
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In all of the above the prime indicates differentiation. Rewriting, we may get the well-known

characteristic equation,

ud;(u) ZWK'(W)
J(u)  K(w)

(2.112)

2.4.2 Particular solutions

It is interesting to note that for LPim modes, (2.112) has solutions only within limited ranges of the
parameters u and w. If we investigate the limits of w->0 which also corresponds to u->v, we may

obtain the values of the normalised frequency where a mode becomes cut-off.

We may investigate modes for which 1=0 using the notation LPon and substituting into (2.112),

uJg(u) _ WK, (w)

Jo(u) KO(W) (2.113)
If we make use of the Bessel function relations,
Jo(2)=-3,(z) (2.114)
Ky (2)=-K,(z) (2.115)
We may rewrite (2.113) as,
ud; (u) _ WK, (W) (2.116)
Lo (u)  Ko(w)
Or,
Jo(u) _ Ko(w) (2.117)

ud, (u) - WK, (w)

For the limit w->0 the zeroth-order and Ith-order modified Bessel functions can be written

asymptotically as,

Ko(z)~-In(z) (2.118)
1 1)
K (z)~-=I(l) =z forl1>0 (2.119)
As such, we may rewrite (2.117) in this limit,
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Ko(w) _ Inw —=—Inw—+wo forw—0 (2.120)
WK, (W) w(1/2)r(1)[(1/2)w]
Since the left-hand-side must also go to +o we have,
Jo(V
v o (V) — +o0 (2.121)
vd, (v)

We see that since Jo(v)->1 and Ji(v)->0 as v->0 it is implied that the LPo; mode has no cut-off and

that the LPom modes for m>1 are the (m-1)’th zeros of the Bessel function of the first kind. That is
3, (Jyma)=0 (2.122)
and,
Ve = Jima (2.123)

For modes with >0 we use the Bessel function relations,
J(2)=3,4(2)-vz ™3, (2) (2.124)
K (z)=-2K,4(2)-VK,(2) (2.125)
and rewrite (2.112) as,

U3 (u) =13, (u))  —wK, ()= IK, (w) (2.126)

Ji(u) Ky (w)

So that we finally obtain,

Ji (u) _ Ki(w)
uJ,fl(u)_ WK (w) (21217)

If we again investigate the limit w->0 of the (I-1)th-order modified Bessel function of the first kind

we have,
1 1 —1+1
K,_l(z)~51“(l—l)(§zj forz—0 (2.128)

Using this approximation we may rewrite the right-hand-side of (2.127) as,
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Kiw) 1 (L2)r()[(ar2)w]"

WKL (W) w(2)r(i—[(2)w]

L1 (- 2w]

w(i-2)[(xr2)w]"" (2.129)
1 2
W
=_2(|:1)—>—oo forw —0
w

The left-hand-side of (2.127) must also go -oo and so,

—>—® (2.130)

We see that the possible solutions for this are that v->0 and J;.1(v)->0. Since (2.130) would diverge
to +oo for v->0 we therefore have that Ji.1(v)->0. The signs of Ji(v) and Ji.1(v) differ for v->j.1m and

so the cut-off conditions for the LP,, modes for 1>0 are,

Jia(v)—>0 (2.131)
Ve = Jiim (2132)
2.4.3 Interpreting the dispersion relations

In both the case of the planar waveguides as well as the optical fibre, it is possible to write
propagation constants in normalised form. If we now define a normalised longitudinal propagation
constant b we may calculate dispersion curves which provide a description of how the propagation
constant varies with normalised frequency.
Iky)’ —n,?
b= M (2.133)

2 2
n-—-n,
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Figure 2-3: Dispersion curve for LP modes in a step-index fibre
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In the case of a step-index optical fibre the locations of mode cut-off can be seen in Figure 2-3 as

well as the dependence of the normalised propagation constant with normalised frequency. It makes

sense that since such modes have a frequency dependence they are subject to dispersion. The

propagation constant 3 can be written in terms of the normalised constant b as,

L= ko\/no2 +(n? =ny’ )b ~ k[ ny +(n, —ny )b ]

If we substitute this into the expression for group delay we obtain,

jTﬂ=NO+(N1—NO)b+kO(n1—nO)b
0

where N; are the material group indices. We may approximate this further and obtain,

dg d(vb)
96 Ny +(N, -Ny) 22
i, ~No+(Ne=No) =0

If we take (2.112), invert it and differentiate both sides with respect to v we obtain,

i{&}d_u__i%d_w
dul | Jdv dw| K, |dv

Evaluating the left-hand and right-hand sides,

N T
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Using recurrence relations and equating (2.138) and (2.139) we obtain,

If we now combine (2.140) and (2.112) ,

I (W) (u) - w K (W)Ky, (W)
32 (u) u? K?(w)
and use the relation u?+v2=w?
du u
E=V[1—§|(W)]
where we have defined,
Ki* (w)
& (w)=—r!
)= WKL)
Now using,
u =V\/1—b

we finally obtain the expression for use in the group delay expression (2.136),

9MD) _y 2(1-b)é (w)

Chapter 2

(2.139)

(2.140)

(2.141)

(2.142)

(2.143)

(2.144)

(2.145)

From this expression we can observe the behaviour of the group delay with normalised frequency v

as shown in Figure 2-4 below
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Figure 2-4: Group delay of the LP modes of a step-index fibre

We see that for low normalised frequency the group delay of a given mode is quickly increasing and
as the normalised frequency increases the mode becomes more confined in the fibre and the group
delay approaches unity. Multimode dispersion can be understood as the dispersion of the group delay
time of a mode at a certain frequency. The multimode dispersion can therefore be calculated by
considering the variance in the value of the normalised group delay at a fixed normalised frequency.
In particular, the chromatic dispersion, which is defined as the sum of the material and waveguide

dispersion is given by,

2
5t=[d '62,} - Low (2.146)
do o

This may be rewritten using ®=koC and ke=2m/A as,

L, d*p
ot=———k,—~ 2.147
ﬂ, c 0 dk02 ( )
Differentiating (2.136) for use in (2.147) we obtain,
d’p dN d(N -N )d(vb) dz(vb)
k =k, —2+k L0 +(N, =N, )v—-- 2.148
"ok, ik, © dk, dv (N~ No) dv? (2.148)

We obtain the last term in (2.148) which is identified as waveguide dispersion, by differentiating
(2.145) obtaining,
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=2(1—b)§I (W){(1—2§)+[1+%§|j(2_§| )} (2.149)
where we have defined,

TR K K K (w |
4 {K. W) K W) K (W) m(wﬂ (2150

We calculate the waveguide dispersion in Figure 2-5 where it is observed that waveguide dispersion
is largest for the LPo; mode at an intermediate v and that for the higher-order modes, dispersion is
largest near the modal cut-off before passing through zero and becoming negative with increasing

normalised frequency.

2 L] L] L] L]
15} :
o™
z 1} 1
=)
e
(o]
o osf -
=>
0 =
~—=< |
_0‘5 L L L L
0 1 2 3 4 5 6
\%

Figure 2-5: Waveguide dispersion of the LP modes of a step-index fibre

Looking at (2.148) we see that by combining the first two terms which we refer to as material
dispersion and the third waveguide dispersion term which represents waveguide dispersion we may
obtain optical fibres for which a range of dispersive properties are possible. The material dispersion,
which is written in terms of the group index of the material, may be modelled through the use of an
empirical fit for the refractive index against wavelength, which for Silica is well approximated by

the Sellmeier polynomial,

n(A)= 1+Zj:(;/_12b_) (2.151)
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Where the a’s and b’s are known as the Sellmeier coefficients and are given in references such as
[2.2].

2.5 Inverse Scattering approaches

In this section we discuss the theory behind the approach of inverse scattering (IS) to the design of
optical waveguides and fibres. As described earlier, the fundamental reason for this approach is the
ability to design optical waveguides and fibres without making any initial assumptions as to the form
of the refractive index profile as is the case with typically used optimisation methods. This could
provide novel designs with modal characteristics such as dispersion and mode spacing unseen in
existing designs. In particular, the success in the use of such a novel approach in the inverse design
of Bragg gratings in the early 2000s [2.3]-[2.7] offered a great incentive to investigate this further.
A review of the literature showed that one particular approach using a solution of the so-called
Gel’fand-Levitan-Marchenko (GLM) integral equations had been successful in the IS design of
waveguides with improved features such as waveguide width for single-mode operation [2.8]-[2.10].
Further work had shown that the inverse design of optical interconnects had been performed using a
somewhat different technique known as Darboux transformations [2.11] derived from the theory of
guantum mechanics. A feature of both of the above approaches was that the waveguide was designed
‘from the side’ by considering the transverse reflection response. It can be shown that the modal
properties of a waveguide can be described in terms of such a reflection response, a particular
practical example being in the case by which a recursive reflectance method is used to calculate the
modes of thin-film waveguides [2.12]. A particular characteristic of this reflection response is that
its denominator is identified as being the waveguide’s dispersion relation, and thus satisfying it leads

to poles in the reflection coefficient.

In the context of optical fibre design, the literature showed that early work was performed into their
design by specification of modal propagation constants for a fixed azimuthal symmetry LP mode
number, or fixed propagation constants for differing azimuthal symmetry LP mode number [2.13],
[2.14]. In the context of quantum mechanics this is known as the solution to the problem for either
fixed energy, or fixed angular momentum. This contrasted with the more recent work using pure
optimisation of an assumed form of refractive index profile where optical fibres were designed with
tailored dispersion characteristics [2.15] through the use of tools such as genetic algorithms. As a
result, it made sense to investigate this area further but from the IS point of view with the hope that
there could be potential control of modal characteristics such as mode spacing unseen in existing

designs.

In addition, with the currentdeveloping interest in mode-division-multiplexing (MDM) methods, new
approaches to the design of both waveguide and fibre optical couplers for the purpose of inserting

and extracting modes using the approaches of supersymmetry (SUSY) [2.16] have been considered
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recently. Here, the approach relies upon the development of cascades of phase-matched waveguides
which are obtained as a direct result of the SUSY transformation. The limit of this approach is that
each partner waveguide obtained from the SUSY transformation contained all of the modes except
the fundamental, thereby removing one mode at a time. However, if a mode other than the
fundamental needs to be removed it is necessary to use complex refractive index profiles. In addition,
there is no way by which particular selected modes may be phase matched. We approached this
problem from a different point of view using the aforementioned Darboux transformations for
waveguide couplers and the Gel’fand-Levitan-Machenko equations once again but in cylindrical
symmetry, respectively, and found different and more powerful solutions.

We now discuss the above inverse scattering techniques in more detail and observe the connections

between them.

25.1 The Gel’fand-Levitan-Marchenko integral equations

In this subsection we develop the approach to the inverse design of optical waveguides and fibres
using the solution to the Gel’fand-Levitan-Marchenko integral equations. It is shown that this
equation relates the reflection response of a waveguide to a kernel K(x,t) by which which the
refractive index profile may be obtained.

25.1.1 Optical Waveguides

The solution to the inverse scattering problem of based upon the solution of the Gel’fand-Levitan-
Marchenko integral equations was discussed by Kay [2.17] and we follow a description from Jordan
and Lakshmanasamy [2.8]. In the context of planar waveguide design the problem is stated as
follows. We begin by considering a physical model in which electromagnetic radiation is scattered

by an inhomogeneous planar optical waveguide as is depicted in Figure 2-6

exp(ikx)
— X
4/\/—1' t(k)exp(ikx)

r(k)exp(-ikx)

Figure 2-6: A physical model of a planar optical waveguide scattering electromagnetic radiation

incident from the left
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The modes of such a waveguide are the solutions to the wave equation discussed earlier in this

chapter. That is,
V2, E+(k,n(x)’ - *)E=0 (2.152)

The relationship between the reflection coefficient r(k) in Figure 2-6 and the refractive index profile
in (2.152) is given by the Gel’fand-Levitan-Marchenko integral equation. It is possible to write
(2.152) in the form of a Schrodinger equation containing a potential g(x) and energy k defined by,

() =k ~n(x)'] (2159
k2 =k,2n? — f3° (2.154)

which puts the problem in a simpler form. If we assume we are dealing with a transverse electric
(TE) mode, the field is of the form, E=0, Ey(x),0], and (2.152) becomes,

V? E, +(k*-q(x))E, =0 (2.155)

If we now consider the time-dependent formulation of the scattering problem, it can be shown that

the Fourier transform E( X,t) of E(X,k)satisfies the time-dependent wave equation where the

speed of light has been normalised, c=1,

O’E(x,t) ~ O’E(x,t)
ox? ot?

—-q(x)E(x,t)=0 (2.156)
If an incident plane wave to the waveguide is represented by a unit impulse,
E(xt)=5(x-t)  forx<0,t<0 (2.157)

it in turn produces a reflected transient which may be written,

15 . o .

(x+t)= 2— j r(k)exp[ ik (x+t)]dk —iy"r, exp[ ik, (x+1)] (2.158)
V2 n=1

with two terms, the first being the contribution from the continuous spectrum representing the

radiation modes, and secondly the discrete spectrum representing propagating modes which may be

written as a sum over the poles kn on the positive imaginary axis with residues r,. Causality requires

that a reflected transient is not produced before the pulse has interacted with the inhomogeneous core

of the waveguide and so we know that,

R(x+t)=0 forx+t<0 (2.159)
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We may now relate the wave amplitude E(X,t) in the core region to the wave amplitude Eo (X,t) in

the exterior region by a linear transformation and kernel K(x,t) independent of the spectral parameter
K,

E(xt)= (2.160)
B, (x,t) x<0
where we have written,
Ey(xt)=3(x-t)+R(x+t) (2.161)
Since we know that E(X,t) is a right-moving transient we also know that,
E(xt)=0 fort<x (2.162)

And so a condition on the kernel is that K(x,t)=0 for t>x, and K(x,t)=0 for t<-x. Substituting (2.161)
into (2.160) and using (2.159) and (2.162) we obtain the integral equation which the kernel must
satisfy,
K(x,t)+R(x+t)+ j K(x,z')R(z'+t)dz'=0 for t<x (2.163)
~t
which is identified as Kay’s version of the Gel’fand-Levitan-Marchenko integral equation. If we now
substitute (2.160) into (2.156) we observe that the kernel K(x,t) also satisfies a differential equation

of the same form as (2.156) if we impose the conditions

K(x-x)=0 (2.164)
and,

dK (x,x)

2 » =q(x) (2.165)

It is now seen that solutions to (2.163) along with the conditions (2.164) and (2.165) provide a way
in which to synthesise an optical waveguide from its reflected transient R(x,t) and in turn its reflection
response r(K). Particular solutions to this integral equation are obtained in Chapter 4 for the case of
3,5 and 7-pole rational reflection coefficients where a numerical and general implementation of the

solution to the GLM integral equation by Pechenick [2.18] is used.
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2.5.1.2 Optical Fibres

In a similar vein to above, the Gel’fand-Levitan-Marchenko equations for a cylindrically symmetric

fiber may be written for the I’th partial wave [2.12],

r
K'(r,r')+B' (r,r’)+JK' (r,r")B'(r",r')dr"=0 (2.166)
0
where the reflected transient function B(r,t) for a fibre is now written in the form ,

2rr’ 7

B'(r,r')=
T

[| t (k) —1]], (kr)J, (kr') dk

e | (2.167)
+ Zcizg| (Zir) o (Zir,)

In (2.167) the first term, once again, represents the contribution from radiation modes, and the second
term that of the guided modes, and the functions f'(k) and gi(ynr) represents the form of the modal
solutions in a cylindrical geometry with gi(nr) being a solution of the homogeneous Bessel’s

equation,

dzgl (an)

)w—lzg (2,5)=0 (2.168)
dr? r2 n S '

- gl (an
giving,

o () =C,1; (20N (2.169)

that is in terms of the transverse propagation constant in the cladding,

Xn =4 ﬂnz - k02n22 (2.170)

If we assume phaseless scattering in 2D [2.13], we set the absolute value of the solution f'(k) equal

to 1 and we obtain a separable equation for the kernel K'(r,r’) which we may solve by setting,

N
K'(r,r)==>"w.(xr) 9 (xr) (2.171)
n=1
where the wyn(xnr) are the eigenfunctions of the bound modes which are normalized according to,

0

[vi(xr )i (zr)=6, (2.172)
0
The solution is given by,
|
g (r)ZZde(f,f) (2.173)
r

where,
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K' (r,r)z—%ln{det[A(')J} (2.174)

with,

[A(') =8, +C,C jl (I, (1) rdr’ (2.175)

It is important to note that exact closed-form solutions exist for the particular integral in (2.175) and
may be found tables such as that compiled by Gradshteyn and Ryzhik [2.19].

The refractive index profile is then given by,
n(r) :a/nz2 kZ—q'(r) (2.176)

2.5.2 The Darboux transformation

While the GLM technique above provides a way by which the refractive index profile can be obtained
from the transverse reflection response of a waveguide, when multimode designs are to be considered
in the form of rational reflection coefficients, there is considerable complexity involved in the
solution to the problem. However, an alternative and simpler approach exists that allows an N-mode

structure to be obtained in terms of an existing and initial refractive index profile.

Fundamentally the electromagnetic problem being investigated can be represented by a one-
dimensional quantum mechanical problem which satisfies the time-independent Schrodinger

equation. In operator notation this may be written as,
Hy, =Ey, (2.177)

Where the operator H, known as the Hamiltonian, is defined by,

2

d
=2 u(x) (2.178)

The eigenvalue problem is to find all the discrete eigenvalues E, and the corresponding

eigenfunctions. The eigenvalues may be numbered in increasing order,
E, <E <E,<.. (2.179)

and the eigenfunctions are mutually orthogonal,

(VW) = jy/n X, (x)dx=h8,., 0<h <o, nm=01,. (2.180)
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Given a solution {y(x), E} in addition to {goj (x), E}, j=1..,M of

]

Hy (x)=Ey(x), He;(x)=Ep,(x), j=1...M

we may take the solution @1(x) and define,

) 0 .. (%
W[ f,]oo=| O O B0
900 (0900 - 100
(2 Ve ](x)
v (x) (%)
Ozl o0 EW[¢1'¢k](X) K=2 M
D (X) (01, O (X) (pl(x) , s
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(2.181)

(2.182)

(2.183)

(2.184)

It can then be shown that they are solutions to a new Schrodinger equation with the deformed

Hamiltonian H®

d* loglg (¥))
dx’

and energies E and Ex,
H(l)l//(l)(X)= El//(l)(X), H(l)(Dj(l)(X)= Ejgoj(l)(x), j=1..M

If this is repeated M-times we arrive at,

These then satisfy the M-th deformed Schrodinger equation with the same energy,

H(M)W(M)(X) _ El//(M) (X), H(M)(Z)J(M) (X)Z Eq)J(M)
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As such, given an initial refractive index profile or potential U(x), M additional guided modes may
be added to it. A particularly simple design approach is found when U(x) is chosen to be identically

zero everywhere, that is, it is reflectionless.

At this point it is interesting to note that reflectionless potentials of the Schrodinger equation have
been found to be of use in the design of planar waveguides by authors such as Papachristos et al.
[2.20] following a particular solution to the above described GLM integral equations. In general, a

reflectionless potential which has N discrete eigenstates,

dZ
H =—d7+uN (x), Hy, (x)=k%p, (x)

(2.191)
Héy ; (X)=E;dy;(X), E; ==k, j=1,..,N, 0<k, <k,,...,<ky
has an inverse scattering solution given by Moses and Kay [2.21],
u, E—Z—dzlojuzN )
X e (2.192)
C e m n
u, =det X), X =5 +—2——— mn=1L..N
N AN( ) [AN( ):Imn mn km+kn

with arbitrary positive constants {cm}. However, the form of Uy above suggests that the refectionless
potential can be obtained from the trivial potential U(x)=0 by multiple Darboux transformations. To
investigate this further we assume seed solutions to the Schrodinger equation when the potential is

identically zero,

v, (x) =€ +c,e™", 0<k <Ky, ky, (-1)7c; >0 (2.193)
d?y . (x )
—%U=—kal/fj(x). j=1..,N (2.194)

The Wronskian of these seed solutions is given by,

W[Wl,...,l//N](X)Zﬁ(kj -k )exp[iijjuN (x) (2.195)

j>l j=1

d W [w.,..., X d?logu, (x
Uy (x)=-2 ["’ldxz"’N]()=—2 c?sz() (2.196)

As such, the solution for the reflectionless potential using both the GLM and Darboux approaches is

identical.
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2.5.3 The SUSY transformations

There has been a recent surge of interest in a different approach to waveguide design using the so-
called supersymmetric (SUSY) transformations. In particular, this has been applied to the problem
of mode extraction in proposed mode-division multiplexing systems [2.16]. However, to the author’s
knowledge there has been little discussion in the optics community of the comparisons between the
SUSY, Darboux and the Gel’fand-Levitan-Marchenko approach that was used in the early parts of
this thesis. In the following we follow the excellent description given by [2.22]

It can be shown that the Hamiltonian operator H discussed above can be factorised in the form,

HO—H = A'A (2.197)
with,
d dw(x) ., d dw(x)
acd _OwWx) o d_dw(x) R " 2.198
dx  dx dx  dx Wx)<R. po(x)=e (2199
d? dw(x)Y  d?w(x
H=—"> +U (), U(x):[ dE( )j + dx(2 ) (2.199)

The function yo(x) is the ground state eigenfunction and w(x) is known as the prepotential. It is also

possible to write a partner Hamiltonian in the form,
HU = AAT (2.200)

The Darboux-Crum transformations state that the Hamiltonians H® and H™! are related through the

so-called intertwining relations,

AHY = AAA=HIA  AHU=A'AA =HYUA' (2.201)

and the pair are essentially iso-spectral and their eigenfunctions are related by,

H [O]Wn[O] (X) — Ean[O] (X), n=01.. (2.202)
HE% B (x)=Ep P (x), n=12,.. (2.20)

[ _ [0] [or _ AT [1] _
l//n _Al//n ' l//n __l// ) n_1121 (2204)

As such, the Hamiltonian H™! has the eigenvalue Eo missing. In the quantum mechanical community,

a system with the Hamiltonian factorised as H = A"A and an associated one H'"' = AAT is called
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supersymmetric. This shows that SUSY is purely a particular application of the Darboux

transformations where @; =@;;.

2.6 Conclusions

In this chapter we have introduced three main methods of inverse scattering whereby the refractive
index profile of a waveguide or fibre may be obtained from its transverse reflection response. An
important feature of the transverse reflection response was its ability to characterise the modal
properties of a waveguide through its poles, in a similar way in which the poles of the reflection
response of a multilayer waveguide may be used to obtain the same. In addition, the case for the

cylindrical geometry of an weakly-guiding optical fibre is then developed.

The GLM technique was introduced and the procedure for its use demonstrated. From the reflection
response R(x,t) an integral equation was obtained involving a kernel K(x,t). Upon solving for this
kernel it was then possible to obtain the refractive index profile. The Darboux transformation was
then developed utilising the operator notation of quantum mechanics. It was shown that through the
use of an initial solution to the Schrodinger equation as well as further ‘seed solutions’, it was
possible to add further modes or bound states to the waveguide. A particular application of the
Darboux approach to the case of an initial and trivial reflectionless potential led to the demonstration

that in this case the GLM and Darboux approaches yield exactly the same solution.

Further to this, the recently popular SUSY technique was then developed and it was made clear that
it is purely a particular case of the Darboux transformation where the ordering of the seed solutions

is rearranged to remove the fundamental mode.

Compared with genetic algorithms and other such optimisation methods, the above inverse scattering
approaches make no assumptions as to the geometric structure of the waveguide or fibre. The only
assumptions made are those of the characteristics of the guided modes supported. If a genetic
algorithm were chosen, the refractive index profile would have to be split into differing ‘genes’ which
could be switched ‘on’ or ‘off” as the process progressed. However, in order to do this either the
refractive index profile must be split into very many such genes to cover a significant proportion of
the possibilities, each with many different potential values and with associated high computational
cost, or a specific set must be chosen at the start. While some of the work later in this thesis does
require some level of ‘trial and error’ in the design progress, it is expected that the dimensionality
and cost of this optimisation problem will be much lower and potentially show physical insights that

would otherwise be lost by ‘brute-force” methods.
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Chapter 3

Chapter 3: Methods of analysis and simulation

3.1 Introduction

In this chapter we briefly discuss the methods by which the modal properties of waveguides and
fibres can be obtained. Throughout this thesis the commercial mode solver MODE Solutions by
Lumerical has been used to verify our results. This particular mode solver is based upon the work of
Zhu and Brown [3.1]. In addition to this approach, we have utilised the well-known transfer matrix
method (TMM) in order to evaluate the reflection response of the planar waveguides in Chapter 4 of
this thesis. We also derive the basic formulae of coupled-mode theory which is used in Chapters 7
and 9 which discuss mode-selective coupler design.

3.2  Transfer matrix method analysis of optical structures

Following the description given by Anemogiannis et al. [3.2], the transfer matrix method can be

approached by considering the geometry in Figure 3-1 below.

Ng
> z
Xo
n,
X1
n,
Nm-1
Xm-1
N
\
X

Figure 3-1: Geometry of a multilayer waveguide

For a transverse electric (TE) mode propagating in the z-direction the electric field in the i’th layer

for which X,_; < X< X, may be given as

E, = YE,; (X)exp[ j(et—p7) ] (3.1)
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where ¥ is the unit vector in the +y direction, P is the propagation constant in the z-direction and ®

is the angular frequency. In each layer the field Ey,i(x) may be written as the sum of a forward and

backward propagating wave in the form
E,: (X) = A exp[ —ix (x—x_,) ] +B, exp| +ix (x =%, ) | (3.2)

where A; and B; are the complex coefficients in the +x and —x directions respectively. Here «; is the
transverse propagation constant given by x; =, / B —k,sn?  with ke=2m/A the free-space

wavenumber. By matching the tangential field components at each layer interface the field expansion
coefficients at the cover and substrate layer may be given in terms of the matrix product

(AS]: Qu-1Qu2Qu 3---Qy (Ab}

BS BC
(3.3
— (qll q12 j[% J
q21 q22 BC
The matrix Q; is given by
1+ f, K exp(—ixd;) [1-f, i}exp(izqdi)
K K
Q =% - - (34)

Ki +1 Ki +1

1- f, 5 lexp(—ixd,) |1+ f, i}exp(ilqdi)

where fi=1 for TE modes and fi=n?.1 /n% for TM modes and d; is the thickness of the i’th layer.
Assuming cover incidence, the relation for the global reflection coefficient Rc is,

G @5)

22

In addition, the value of B for which Rc is infinite (q22=0) corresponds to a guided mode of the

multilayer structure.

3.3 Finite difference analysis of optical structures

In order to determine the modal properties of the waveguides investigated in this thesis a finite
difference approach was used which is implemented in the commercial mode solver MODE
Solutions. It is based upon the work of Zhu and Brown [3.1] and we now briefly discuss the theory

behind it. For completeness we supply the expressions but provide no proof.
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This solver is a full-vector finite difference mode solver based upon the discretization scheme
proposed by Yee [3.3]. The structure of the mesh is shown in Figure 3-2. The mesh is discretised
such that the coordinates (j,1)=(jAx,IAy) where Ax and Ay are the spacings along the x and y-axes
respectively. It is important to note that the electric and magnetic fields are staggered so that the
magnetic field components are located midway between their associated electric field components,
and vice versa, thereby providing a discretisation amenable to 2"-order central differencing and one

that is naturally divergence free and thereby satisfying Gauss’s laws.

H,(j,1+1)
Eli+1) E,(j+1,1+1)
E.(j,1+1)
500 H.(i,]) E,(j+1,)
H,(j,1) H.(j+1,1)
£,
E,(,)) H, (1) E,(j+1,1)
E.(i)1)

Figure 3-2: The Yee grid adapted from [3.1]

Maxwell’s curl equations give,

oB

VxE=-= 3.6

x - (3.6)

vxH=P (3.7)
ot

and assuming that the fields have the usual exp[i (Bz- a)t)] dependence, following scaling E by the

free space impedance z, — ./, 7=, We have,

OE,

ikoH, = S = iE, (3.8)
_ _ oE
ikoH, =ipE, - (3.9)
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ik,H, :%_% (3.10)
ik, E, 25:; —ipH, (3.11)
“ikye,E, =ifH, —6(;)'(2 (3.12)
ks E, :a;(y _% (3.13)
Discretising the above we have,
ikoH, (J.0) =[E,(j.1 +D) — E,(j.D]/ Ay —i BE, (i.1) (3.14)
ik,H, (J.1) =iBE, (J.) —[E,(j +L1) — E,(j,1]/ Ax (3.15)
ik,H, () =[E,(j+1)—E, (i, ]/ Ax—[E,(j.1 +1)—E,(j.h]/ Ay (3.16)
—ikoe, (3, DE, (3, =[H, (i, —H,(j,1 =]/ Ay —iSH, (j.1) (3.17)
—ikoe, (J,DE, (J,D) =iAH, (i) ~[H,(3,) — H, (i —1.1]/ Ax (3.18)

ik, (DE G =[H, (D) —H, G -1 ]/ &x-[H, G - H, (I -D]/ sy (3.19)

where we have defined,

&, (i) =[&.(J.D)+&(i.1-D)]/2 (3.20)
g, (i.D=[0G.D+&(G-1LD]/2 (3.21)
e, (i) =[N +& (1 -L1-D+&.(j.1-D)+¢,(j-1)]/4 (3.22)

The above definitions have approximated the refractive indices by averaging the indices of adjacent

cells. The discretised equations (3.14) -(3.19) can be written in matrix form as,

H 0o -ipl U, \E

X y X
ik,|H, |=| iB1 0 -U,|[E, (3.23)
Hz _Uy UX 0 Ez
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g, 0 O0)E, 0 -pr Vv, | H,
-ik,| O €, 0 E, = ipI 0 -V, H, (3.24)
0 0 &,)|E, -V, V, 0 ) H,

In the above, I is the square identity matrix, «,, ¢, and ¢ are diagonal matrices determined by

(3.21) — (3.23). Hx, Hy, H; are the discretised forms of the Hy, Hy and H, components of the magnetic
field, and Ex, Ey, E; are the discretised forms of the Ey, Ey and E; components of the electric field.
In addition, Uy, Uy, Vx and Vy are square matrices and depend upon the boundary conditions at the

computational window edges. When the zero-boundary condition is applied we have,

-1 1
-1 1
.
U =— . . 3.25
“AX - (3.25)
-1 1
-1
-1 1
-1 1
.
u,=— . (3.26)
Ay S
-1 1
-1
-1 1
-1 1
.
V, =— . . 3.27
“AX S (3.27)
-1 1
-1
-1 1
-1 1
.
Vv, =— L (3.28)
Ay S
-1 1
-1

As such we may obtain an eigenvalue equation in terms of the transverse electric fields of the form,

Ex Pxx ny Ex 2 Ex
P E, :{Pyx Pyy] E, =0 E, (3.29)
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with,
Py =k, *U &, 'V, VU, +(kT+U,g, "V, )(2, +k, VU, ) (3.30)
P, ==k ‘U g, 'V,V,U, +(k’ T+ U g, 'V, ) (e, +k*V,U,) (3.31)
Py=U.&,"V, (g, +k, VU, ) -k, (k T+ Ug, 'V, )V, U, (3.32)

P, =Ug, 'V, (£, +Kk 2V, U, )=k, (k/T+U g, 'V, )V,U (3.33)

y

We may also alternatively write an eigenvalue equation in terms of the transverse magnetic fields,

H H H
(2 2o 551
H, | (Qu QuJIH, H,
with,
Py =k, VU U g 'V, +(&, +k,°V,U, )(k T+ U g, 'V, ) (3.35)
P, =k, 2V, U,U £,V + (g, +k 2V, U, ) (K T+ U, 2V, ) (3.36)
Py =—(g, +k VU, )U.e, 'V, +k,*V,U, (kT+U.g,V, ) (3.37)
P =—(£, +Kk VU, JUg, 'V, +k 2V, U, (k T+ U g, 'V, ) (3.38)

3.4  Coupled-mode theory

In order to evaluate the behaviour of our later coupler designs, it was necessary to make use of

coupled mode theory. Here we follow Okamoto [3.4] in deriving the coupled mode equations.
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Waveguide 1 Waveguide 2

N, No N,

Figure 3-3: An illustration of two coupled waveguides

If we consider two waveguides each of which have modes that satisfy Maxwell’s equations as is

depicted in Figure 3-3,
VxE =-jouH, (3.39)

VxH, = ja)gOszEp (340)

where N, (X,y) represents the refractive index of each waveguide, then we make the assumption that

the fields of the coupled structure can be expressed as the sum of the eigenmodes of each waveguide,
E=A(2)E, + B(z)E, (3.41)
H = A(z)H, + B(z)H, (3.42)

This solution is also required to satisfy Maxwell’s equations and so,

VxE=-jouH (3.43)
VxH = jog,N°E (3.44)
Using the vector identity,
dA
Vx(AE)zAVxE+VA><E=AVXE+d—uZ><E (3.45)
z
we may derive the relations,
dA dB
u,xE )—+(u,xE,)—=0 3.46
(ZX 1)dz (Z>< Z)dz ( )
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(u,xH )3A_Jw80(N2 N, )AE1+(UZXHz)?j_S_ngo(Nz_NZZ)BEZ:0 (3:47)

with N2(x,y) the refractive index in the entire coupled waveguide. If we now perform the following
integrations,

é'—oS
é'—;S

[E,-(348)—H,-(3.47)] dxdy =0 (3.48)

[ [[E.-(348)—H,-(347)] dxdy=0 (3.49)

We obtain the equations,

dA dB]ET ((E'yxH, +E, xH’, )dxdy
TT (E'yxH, +E, xH", )dxdy
TT N®— N E .- E,dxdy
ﬂAM - (3.50)
II (E xH, +E; xH" )dxdy
TT N* =N’ E .- E7,dxdy
+ij p—— _0
.[.[ (E xH, +E xH" )dxdy
and,
dB dA ]izuz '(E*ZXH1+E1><H*2)dXdy
dz  dz TT (E", xH, +E, xH", )dxdy
ngTT(NZ N, )E -E’,dxdy
e (3.51)

TTUZ-(E xH, +E, xH", )dxdy
a)goT T N®—N,’)E",-E",dxdy
+jB—"= =0
” ((E,xH, +E, xH’, ) dxdy

If we assume that the individual electromagnetic fields are of the form,
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E, =E,exp(-jf,2) (3.52)
H, szeXp(_j'BpZ) (3.53)

Then substituting this form into (3.50) and (3.51) we obtain,

d—A+clz—exp|: —B)z]+ inA+ jx,Bexp[-j(B,-B)z]=0 (3.54)

and,

dB

—+c12—exp[+1 —B)z]+ jz,B+ jr,Aexp[+j(B,—-B)z]=0 (3.55)
where we have defined the coupling coefficients,

ws, j _[ E -E, dxdy
Koq = —— (3.56)

" T ]Ouz (E"y xH, +E, xH" ) dxdy

—00 —00

u,-(E", xH, +E,xH’ )dxdy

I

Coq = 20 (3.57)
[ Ju,-(E",xH, +E,xH",)dxdy
wgoj I E -E, dxdy

Zp = =" (358)

T Tuz (E"yxH, +E, xH", ) dxdy

—00 —00

Here «pq is known as the mode coupling coefficient, cpq represents the butt-coupling coefficients. The
term y, involves the integration of the field of a waveguide p over the refractive index region
occupied by the other waveguide g. As such, since the field in this region is likely to be very small,
it can typically be neglected unless the waveguides are very close together. It can be noted
immediately that the terms in the denominator of the above expressions can be rewritten in terms of

the power in each individual mode which is given by,
1 T *
P :Ej [(E,xH",)-u,dxdy (3.59)

Therefore we have,

67



Chapter 3

TTuz.(E*pXHP+Ep><H*p)dxdy=4F>p (3.60)

—00 —0

Assuming unit power in each mode we can then easily obtain from the above coupling expressions,

C, =0y (3.61)
Xo =X (3.62)

The power in the entire coupled waveguide structure can then be obtained as,

P= T T(Ex H")-u,dxdy

(3.63)

NIFR, N

Al +|B|" + A'Bc,, exp(—j25z) + AB'c’, exp( j 252
12

As useful expression can be obtained under the condition of loss-less waveguides by considering that

optical power must remain constant,

dP - * * -
oA B(x", — Ky, — 25, )exp(—j262) .60
— JAB (1 — K"}, —25€",, Jexp( j262) =0
For this to be true for any z we therefore require that,
Ky =K1, +20C, (3.65)

This tells us that under the condition of phase-matched waveguides or when the waveguides are

sufficiently separated k1=K 12.

3.5 Conclusions

In this chapter, the transfer matrix method was introduced for the purpose of evaluating and verifying
the reflection responses of planar waveguides against their a priori prescribed values. In addition, the
finite difference analysis of waveguides was described following the work of Zhu and Brown [3.1],
as implemented in the Lumerical MODE Solutions solver. This is used extensively in this thesis to
verify the modal properties of both the waveguide and fibres designs. Finally, coupled-mode theory

was discussed so that it could be used in the modelling of the coupler designs later in this thesis.
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Chapter 4: Inverse scattering designs of dispersion-

engineered single-mode planar waveguides

The work in this chapter was published in Optics Express, Vol 23(3), 2015 as “Inverse scattering

designs of dispersion-engineered planar waveguides”

4.1 Introduction

Optical waveguides, in addition to controlling the propagation losses through total internal reflections
and efficient power confinement in the core, offer the unique ability to control the group velocity of
the propagating light. These two main attributes have rendered optical waveguides indispensable
parts in any advanced optical system. So far, the largest control and highest performance has been
achieved with optical fibres. Tailoring the core shape has been used to control both modality and

group velocity dispersion in optical fibres [4.1].

While the control of dispersion in optical fibres is usually associated with dispersion compensation
in optical communications networks [4.2] there has also been increasing interest in its control for the
purposes of harnessing and optimising nonlinear optical effects. Parametric processes [4.3] and
supercontinuum generation [4.4] rely upon tailoring the dispersion profile of the fibre to enhance
energy transfer in certain spectral regions. Therefore, significant effort has been put over the last

decade to develop technologies to fine control waveguide dispersion [4.5].

Silica-based highly nonlinear fibres (HNLF) feature very low attenuation characteristics and so by
using long lengths of these fibres a large nonlinear effect can be realised. Small mode effective areas
and thereby large nonlinearity are produced by increasing the refractive index (RI) difference
between the core and the cladding which enhances the confinement of the light. This may be achieved
by utilizing a highly germanium-doped core and a fluorine-doped cladding. In addition to creating a
small mode effective area, nonlinear processes such as four-wave mixing (FWM) require the pump
wavelength to coincide with the zero-dispersion wavelength of the fibre. Further control of the
dispersion slope is advantageous in controlling dispersion and increasing operating bandwidth. An
example of a HNLF with a zero-dispersion wavelength near 1550nm, a mode field diameter (MFD)
of 4.3um and a low dispersion slope of 0.0032ps/nm?/km was realised through the use of a W-shape
RI profile [4.6] . The index and thickness of these RI features determines the rate as a function of
wavelength at which the mode transitions from the core to the ring. It is this, as well as, the average
RI over which the mode extends that controls the propagation constant and its derivatives and thereby

the dispersion properties of the fibre.

Control of dispersion has been achieved by modifying the inner-core shape and adding features, such

as rings and trenches into the overall core design [4.1], [4.7]. While the dispersion-engineering of
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fibres is typically approached through a trial and error method and parametric study, a powerful
method for designing dispersion-engineered devices is inverse scattering (IS). Such methods have
been used extensively to design fibre Bragg gratings with prescribed dispersion characteristics [4.8]-
[4.10]. These methods have provided non-intuitive designs with advanced performance [4.11].

Also, authors have in the past studied the design of planar waveguides, as well as fibres from the IS
point of view [4.12]-[4.17]. In these works, the modal properties of the waveguide such as a
prescribed mode-profile [4.15], or the number of propagating modes [4.14] have been considered
and specified at the start and through the inverse design process the waveguide with these properties
is obtained. In particular, in the latter work the starting point of a truncated reflectionless potential is
used. However, in each case, waveguide dispersion has not been considered from the point of view
of the selection of (a variable number of) leaky poles and their approximation to the associated
radiation modes. In our work, a transverse reflection coefficient of the structure is defined and the
guiding properties of the waveguides are defined by the positions of reflection coefficient poles on
the complex plane, representing guided and leaky modes of the waveguide under consideration.
Similar IS techniques have also been used for the determination of the ionosphere characteristics
from reflection data [4.18], [4.19].

In this work, we extend IS techniques, used in the ionosphere characterization, for the design of
optical planar waveguides and study their dispersion characteristics. To our knowledge this is the
first time that the connection between a transverse reflection coefficient and waveguide dispersion
has been investigated. New designs are obtained with RI features which are generalizations to the
ones considered previously. As a starting point to a more general analysis with fibres, we describe
the dispersion characteristics of IS designed planar waveguides. We begin by considering design
cases for which exact solutions exist which have previously been discussed in the literature, before
extending this to a set of new cases. In each case the waveguide design is first obtained from the IS
theory before the effective indices of the modes are solved (the forward problem) using the Lumerical
MODE solver. This data is then used to map the dispersion characteristics of the waveguides. We
then show that typical dispersion-engineered waveguide features such as rings and trenches come
naturally from this theory. Finally, we discuss what benefits the new extended cases bring to the

literature.

4.2  Designs using rational reflection coefficients

A general reflection coefficient can be approximated by rational functions of different degree [4.19].
The three-pole case is amenable to analytic solutions and has been studied extensively in the past in
the context of ionospheric simulations [4.17] and waveguide modality [4.12], [4.13]. So far,
waveguide examples are based upon either the GLM procedure or the application of the Crum-Krein

or Darboux transformations [4.22] to reflectionless potentials. Here we focus on the GLM technique
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where we note that to date the majority of waveguide examples are based upon a rational three-pole
formulation. While numerical GLM techniques exist for non-rational reflection coefficients, these
methods bring with it the possibility of roundoff errors and instabilities [4.23] and there is therefore
an advantage in solving the GLM equation exactly using a generalization of the seminal work of Kay
[4.20]. In addition, the complexity of the solutions, however, increases quickly with the number of
poles and in view of Galois’ proof that 5" and higher-order polynomial equations are insoluble by
radicals, the previous analytic solutions cannot be implemented. In this case, the semi-analytical
numerical technique, described by Pechenick in the context of ionospheric reflection data inversion
[4.23], provides a powerful alternative. We have used this general technique throughout our study.
It is worth noting that this is, to our knowledge, the first time this technique has been applied to
waveguiding structures and the lack of significant development of the inversion of potentials with

bound states is acknowledged in the work of Ge et al. [4.24].

We begin our study by considering first the simplest case of three-pole reflection coefficients and
then proceed by progressively increasing the number of poles to five and seven.

421 Three-pole reflection coefficients

First we consider waveguide designs associated with the three-pole reflection coefficients:

k.k,k
r(k): 1273 (41)
(k—k)(k —k;)(k —k;)
with poles ki, kzand ks given by,
k,=—c, —ic,; k,=c —ic,; k;=+ia (4.2)

for which ¢,,c,,aeR". The choice of poles ki, k. and ks controls the shape and dispersion of

reflection coefficient of the scattering layered medium and is expected to define the dispersion of the

resulting waveguide. Pole ks corresponds to the propagation constant of the fundamental guided

mode through 3 =,/kZn? +a’ . Poles ki and k. on the other hand, result in leaky modes, which are

necessary for the full description of the waveguide. Poles kiand k; are hereafter referred to as “leaky

poles”.

In order for a solution to exist, the reflection coefficient must obey a set of conditions [4.25], which
are indeed satisfied by the general forms given in (4-11). However, it is necessary to restrict the
position of the poles in the complex plane in order to satisfy energy conservation, r(k)<I, for all real
k. Previous authors [4.12], [4.13] have satisfied this requirement by considering the discriminant of
a conservation-of-energy condition to be positive, thus giving the allowed regions A and B shown in
Figure 4-1. Region A is bounded above by the line c;= 0.5 and below by the lemniscate of Bernoulli

[4.25]. Region B is bounded below by c,= 0.5, but it is unbounded above.
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Figure 4-1: The allowed regions designed by A and B for the three pole case with
a guided mode located at |ks|=1um* derived by previous authors [4.12], [4.13]

In order to generalize this procedure to higher numbers of poles, we adopt a different approach by
using Sturm’s Theorem [4.26] from which we are able to determine whether the conservation-of-
energy condition is satisfied or not (see Sec. 4.4 for details). The conjugate symmetric leaky poles
ki, ko maybe placed anywhere in Region A or Region B but must not be placed at the origin as this
would result in the trivial reflection coefficient r(k)=0. The study of the dispersive properties of the
designed waveguides was restricted in a region defined by ¢1=0.1, ¢,=0.1 as the inner limit and c;=4,
c2=4 as the outer limit. In all subsequent calculations we assume cladding RI n;=1.444, operating

wavelength A = 1.55um and guided mode pole |ks|=1pum™.

Figure 4-2(a) shows two representative waveguide RI distributions, obtained by inverse scattering
the three-pole reflection coefficient with (c1=0.1, ¢,=0.1 — design#1) and (c:=0.85, ¢,=0.4999 —
design#2), using the semi-analytical technique of Pechenick [4.23]. Design#2 is also compared with
the one derived by Lakshmanasamy and Jordan previously using an analytical technique [4.12],
showing an excellent agreement. Figure 4-2(b) shows the variation of the effective index (nes=p/ko)
as function of ke=2xn/A for guided modes TEo and TE4, for the two designs. It must be noted that for
each design the TE; mode effective index at the design wavelength A = 1.55um (ko=4.05um) is
Ner=1.4649, as predicted by the expression above for B with a guided mode pole |ks|=1um ™. It can
be seen that designs with small leaky poles (design#1) resemble more closely a simple quasi-
parabolic design. On the other hand, designs with larger conjugate symmetric poles (leaky poles),
like design#2, result in features loosely resembling a fibre W-type RI profile and is associated with
larger dispersion, as evidenced by the larger slopes of the associated nes-vs-ko curve in Figure 4-2(b).

In addition, design#2 shows single-mode operation over a much wider range of wavelengths.
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Figure 4-2: (a) RI profiles with three-pole rational reflection coefficient designs in
region A with ¢1=0.1, ¢,=0.1 (design#1) and c1=0.85, ¢,=0.499 (design#2). The
exact design#2 obtained by Lakshmanasamy and Jordan [4.12] (dotted green
curve) is also shown for comparison. (b) effective index variation with
ko for design#1 and #2 (the design point is demarcated by the dashed lines).

So far, in the literature inverse-scattering waveguide designs have been limited to region A [4.13].
In this work, in order to evaluate the effect of the leaky poles thoroughly, we have studied direct
scattered designs, located in both Region A and B, to determine the waveguide dispersion and

dispersion slope. The results are summarized in Figure 4-3.
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Figure 4-3: Waveguide dispersion D; (in ps/nm/km), dispersion slope Ds (in
ps/nm?/km), and dispersion curvature D4 (in ps/nm®km) as a function of leaky

pole positions. (designs #1 to #5 are designated by yellow dots)

75



Chapter 4

The second order dispersion coefficient D, is defined in terms of the mode effective index nes=p/ko

as,

2 d%ng
D,=-2 43
2 ¢ da? (43)

The higher order dispersion coefficients D, is given by,

D,=dD,, /di, n>2 (4.4)

D and Dy are also known as dispersion slope and dispersion curvature expressed in ps/nm?km and
ps/nm3/km, respectively. The dispersion map in Figure 4-3 can be used to provide the appropriate ¢,
and c; values for a target D, Ds and D4 combination.

It can be seen that as previously surmised leakier poles (i.e. larger c¢i and c) lead to waveguides with
higher waveguide dispersion. In particular, moving out of region A (bottom-left corner of allowed
region in Figure 4-4) into region B (c2>0.5) the waveguide dispersion increases from <50ps/nm/km
to >400ps nm/km with more positive dispersion slopes and more negative dispersion curvature. In
particular there appears a region close to the edge of the considered region B, on the lower-right hand
side, where the largest dispersions are observed.

We also note that designs exist for which the dispersion is constant, and the dispersion slope and
dispersion curvature differ. As an example, Figure 4-4(a) shows waveguide designs for which Do= -
215ps/nm/km is constant and Ds is 0.1ps/nm?km (design#3), 0.2ps/nm?/km (design#4), and
0.3ps/nm?/km (design#5). The corresponding parameters (ci,c2) are (2.0588,0.6541-design#3),
(2.5014,1.0885-design#4), and (3.5810,2.1803-design#5). Designs #1 to #5 are designated by yellow
dots in Figure 4-4.
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Figure 4-4: (a) Waveguide designs and (b) corresponding TEo normalized electric
field profiles with D, = -215ps/nm/km and Ds= 0.1ps/nm?/km (design#3),
0.2ps/nm?/km (design#4) and 0.3ps/nm?/km (design#5).
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We observe from Figure 4-4(a) that, for a constant dispersion, increasing the magnitude of the
dispersion slope causes the RI profile to narrow and steepen. It is particularly interesting to note that
the design with the smallest dispersion slope contains significant trench and ring features, as well as
oscillations, which result in substantial dispersion flattening. It should be mentioned that the
inversed-scattered profiles can be considered as generalizations of commonly used triple-cladding
dispersion compensating fibres. It is well known that for a fixed phase velocity changes in the
electric-field/RI overlap are associated with changes in group velocity through the integrals of the
scalar approximation method [4.27]. This is demonstrated in Figure 4-4 (b) where the electric field
of design#3 varies noticeably, when compared with design #5, in accordance with the RI distribution
which results in substantial dispersion slope reduction.

In order to further explore the significance of the leaky pole positions on the IS waveguide designs,
we have considered separately the effect of their modulus R=|ki|=|k-| and their real part magnitude
c1. Figure 4-5(a) and 6(b) plot the RI modulation profiles for R=3 and 4, respectively. This
demonstrates that while an increase in leaky pole modulus does increase the dispersion, through a
narrowing and steepening of the design, it is the increase of parameter c; that causes the development
of strong Rl modulation and larger dispersion.

0.25¢ 0.25
R=3, (0.5209,2.9544) - D2=-110 ps/nm/km R=4, (0.6946,3.9392) - D2=-131 ps/nm/km
0.2} R=3, (1.5000,2.5981) - D2=-123 ps/nm/km| 0.2 R=4, (2.0000,3.4641) - D2=-144 ps/nm/km
— R=3, (2.2981,1.9284) - D2=-157 ps/nm/km = R=4, (3.0642,2.5712) - D2=-178 ps/nm/km
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~
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Figure 4-5: Effect of leaky pole modulus R=|ks|=|k>| on IS waveguide RI
modulation. (a) R=3 and (b) R=4.
The dispersion curves of the TEq and TE1 modes for the designs shown in Figure 4-5 are plotted in
Figure 4-6. In addition to higher dispersion, manifested by the increased slope of the dispersion
curves at the design wavelength (indicated by dotted lines), the designs with the largest c: parameter
show wider single mode operation bandwidth (marked by the TE1 cut-off point). Compared with the
low dispersion design#1 in Figure 4-3, these high dispersion designs show about three time wider
single-mode operation bandwidths. This is because of the presence of the RI depression adjacent to

the main RI lobe.
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Figure 4-6: The dispersion curves (TEo, TE31) for (a) R=3 and (b) R=4 designs (the
design point is demarcated by the dashed lines).
Figure 4-7(a) shows the effect of c; on the waveguide RI profile, for constant c. It demonstrates that
increasing the ci parameter introduces strong RI oscillations with varying period. This also increases
the waveguide dispersion as evidenced from the increased slope of the dispersion curves shown in
Figure 4-8 (b).
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Figure 4-7: (a) Rl modulation profiles for different ¢, and fixed ¢,=0.51. (b) nest
variation for TEo and TE; with ko (the design point is demarcated by the dashed

lines)

In addition to dispersion, Rl modulation affects the guided mode field distribution (see Figure
4-4(b)), and therefore, the effective mode area. Effective mode area is another important parameter
since it defines the strength on waveguide nonlinear effects and the losses between different
waveguide structures.  The fundamental TE, mode effective mode area is calculated by Acs
=([| Ey| dA)? /]| Ey| * dA and is plotted over the entire (c1,c2) parameter space in Figure 4-8. It is
clearly shown that high dispersion is associated with smaller effective mode areas. The low

dispersion designs, located close to the origin within region A, show the largest effective mode areas
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(of order of 2.8um?), while the most dispersive designs, located close to region B lower boundary,
show effective mode areas of the order of 1.8um?. Such inter-dependence has also been observed in
highly dispersive fibres [4.2], [4.7].

Effective Area (}ll’ﬂz)

0.5 1 15 2 2.5 3 35 4
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Figure 4-8: TE, effective mode area over the entire (c1,c;) parameter space.

422 Five- & Seven-pole reflection coefficients

We have extended the waveguide IS designs to rational reflection coefficients with five poles of the

form,

ok, kok K

r(k) = (4.5)
(k_kl)(k_kz)(k_ks)(k_k4)(k_k5)
with poles ki,k;,k;,k,,ks for which ¢, c,, d;, d,, acR, and
k,=—c, —ic,, k, =c, —ic,; k;=-d, —id,,k, =d, —id,; k;=+ia (4.6)

It is once again possible to use the semi-analytical IS numerical technique [4.21] to solve for
waveguide designs. This is now a multi-dimensional problem and we only consider specific cases

to demonstrate the effect of extra leaky poles.

We first fix two of the leaky poles to ki » = +0.85-i0.4999 and the guided mode pole to |ks|=1pum?; as
per the leakiest case for three poles in region A considered previously (design#2 in Figure 4-2(a)
with D,= -72ps/nm/km, Ds= 0.0042ps/nm?*km & Ds= 0.000049 ps/nm?/km). Using Sturm’s
Theorem, we obtain in Figure 4-9 the allowable domain and dispersion contours of d; and d, defining
the positions of the other two leaky poles ks and k. In this case, the allowable domain is totally
different to the three-pole case shown in Figure 4-3. We notice that in this case the introduction of
two extra leaky poles does not change dramatically the waveguide dispersion. Actually, the
dispersion for these designs has been limited in magnitude by the size of the initial leaky poles c1 and

C» to a value of the order of D= -72ps/nm/km.
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Figure 4-9: Waveguide dispersion map as a function of additional leaky pole
positions for a five-pole case. (a) (c1,c2)=(0.85,0.4999) and (b) (c1,c2)=(1.7,1),
|ks|=1pum, n,=1.444 and A=1.55 pm

Figure 4-9 (b) shows the allowable region and dispersion map with varying di, dz, when the fixed
leaky pole position is moved into region B to (c1,c2)=(1.7,1). In the three-pole case (see Figure 4-3
red cross) this corresponds to D,= -145ps/nm/km, Ds= 0.08/nm?km & D,= 0.00010/nm%km. The
allowable (d1,d>) region in this case resembles the three-pole one. Once again, though, the obtained
waveguide dispersion shows a limited variation around the three-pole values. From the two examples
shown in Figure 4-9, we deduce that the addition of two extra leaky poles provides very similar
results for dispersion tuning as that around the values achieved by the corresponding three-pole case.
To demonstrate this, consider a design in Figure 4-9 (b) with identical waveguide dispersion and
dispersion curvature to that of the three-pole case above, which we also denote by a red cross. We
then find that the waveguide dispersion, slope and curvature here are all very similar to those in the

existing three-pole case.

To explore this even further, we may choose a three-pole case and a five-pole case indicated by the
white crosses in Figure 4-3 and Figure 4-9 (b) respectively, both with waveguide dispersion D= -
261ps/nm/km and dispersion slope Ds= 0.13ps/nm?/km but ever so slightly differing dispersion
curvature D, of 4.41x10* ps/nm3/km & 4.29x10* ps/nm3/km, respectively. The designs are obtained
with (c1,¢2)=(2.2775,0.5269) and (c1,c2,d1,d2)=(1.7,1,3.18,0.22), respectively, and the resulting RI
distribution is shown in Figure 4-10. The two designs show the same qualitative features, and the
small difference in D4 is achieved by slightly changing the size and periodicity of the Rl undulations.
These subtle differences are difficult to be captured by traditional iterative solutions, but result

naturally by the IS technique.

We have also extended even further the waveguide IS designs to rational reflection coefficients with
seven poles, by adding two extra leaky poles ksg = +ei+iez. In Figure 4-11 we plot the allowable

(e1,62) space and resulting dispersion map, using the existing five-pole design point
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(c1,C2,01,d2)=(1.7,1,3.18,0.22), denoted once again by the white cross in Figure 4-9 (b) and guided
pole k/=+ilpm™.

We see once again that the design with identical waveguide dispersion and slope to the five-pole
design denoted by the red cross has a very similar curvature. It appears that in each case the addition
of larger number of poles brings a small but measureable difference in the control of higher order
dispersions about a three-pole design corresponding to the leaky pole pair with smallest modulus.

This small change is represented by the higher complexity of the refractive index profiles.

m— 3-pole
= = = 5-pole

X (pm)

Figure 4-10: Three pole (c1,¢2)=(2.2775,0.52692) and five-pole (c1,c2,d1,d2)=(1.7,1,3.18,0.22)
designs with identical D,=-261 ps/nm/km,D3=0.130 ps/nm?/km but differing D4 ( 4.41x10*
ps/nm3/km & 4.29x10* ps/nm3/km) (designs correspond to the ‘white crosses’ in Figure 5-4 &
Figure 5-10 (b))

o
o
=}

Dispersion (ps/nm/km)

-200

&> Dispersion
(Z>> Dispersion slope
Dispersion curvature -250

1 2 3 4 5

Figure 4-11: Seven-pole (e1,e2) allowable region and dispersion map, with fixed
(c,c,,d,,d,)=(1.7,1,3.18,0.22) .

81



Chapter 4

4.3 Conclusions

In summary we have introduced a semi-analytical IS technique suitable for multipole, rational
function reflection coefficients, and used it for the design of dispersion-engineered planar
waveguides. The method is exact and stable and compared to other numerical methods it is shown
not to introduce roundoff errors and instabilities [4.23]. Previous works [4.12], [4.13] have
considered a three-pole reflection coefficient with a variable location of two conjugate symmetric
leaky poles in the lower half of the k plane in order to obtain a waveguide design with a twofold
larger core width than typically obtained by direct scattering techniques. However, the effect and
relationship between the leaky pole positions and waveguide dispersion has not been considered to
date. In addition, previous authors have not considered the inverse scattering of waveguides for
rational reflection coefficients with more than three poles. We have shown that the addition of a
larger number of poles, results in different ‘pole allowable regions’ and through the use of causality
arguments in Appendix A we have developed a method to define these allowable regions. The
technique is therefore used to derive extensive dispersion maps, including higher dispersion
coefficients, corresponding to three-, five- and seven-pole reflection coefficients. The dispersion
maps are obtained by varying systematically the pole positions within derived allowable regions. It
is shown that common features of dispersion-controlled waveguides such as RI trenches, rings and
oscillations come naturally from the IS theory when the magnitude of leaky poles in increased. In
particular, while the leaky pole radius does lead to increased core size, trench size and dispersive
properties, it is the magnitude of the ¢; parameter near the forbidden region that introduces and
controls the period of oscillation in the RI profile. It is also shown that for the three-pole cases, the
allowed Region B which has previously not been considered for waveguide designs provides the

opportunity for increasingly dispersive designs.

The addition of further poles to the inverse scattering procedure, by which more general and not
necessarily rational reflection coefficients can be approximated [4.21], has not been investigated
previously and has been shown to offer a small but measureable change in higher order dispersion.
It is important to note that the inverse scattering method employed in this work can be applied to an
arbitrary number of poles and is therefore not limited. We have also shown that addition of larger
number of poles, results in different “pole allowable regions”. Using causality arguments, we have

developed a method to define these allowable regions.

Although, a very large number of poles is needed to accurately describe general reflections
coefficients, our work has shown the dispersion response is dominated primarily by the three pole

design corresponding to the leaky pole pair with smallest modulus.

We believe that this initial study shows promise for the use of inverse scattering in the design of
dispersion-engineered waveguides or fibres and we plan to consider these designs in future work.

While we have yet to discover an analytic relationship between pole locations and waveguide
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dispersion we shall in future work present ‘engineering curves’ relating the phase response of the

rational reflection coefficient to the waveguide dispersion.

4.4  Appendix

Given a 5-pole reflection coefficient r(k)of the form written in Eq. (14) and using the requirement

of conservation of energy for all real k , it s straightforward to derive from |r(k)|* <1the requirement

that,

A

—<1 4.7

5 (4.7)
where A=(c +c,” )2 (d +d;’ )2 a? (4.8)
and

B=(Kk*+ 2k, +¢7 +¢,° ) (K — 2ke,” + ¢ +¢,° ) (k* + 2kd, +d,* +d,* )

. 4.9
x(k? - 2kd, +d,” +d,?)(k* +a%) “9

We observe that (4.16) is true whenever,
0<B-A (4.10)

If we denote the polynomial in (4.18) by p(k) we observe that energy conservation is equivalent to

requiring that for all real k,

0< p(k) (4.11)

Sturm’s theorem [4.26] states that given a polynomial of degree N, p(k) and its derivative p,(k),
there is an associated Sturm chain S(k) = p(k), p,(k),...p, (k) , where p,(K) is the remainder of p(k)
divided by p,(k) with reverse sign, and p,(K) is the remainder of p,(k) divided by p, (k) with reverse

sign, and so on until a constant is arrived at. Then the number of real roots in the open interval (a,b)
is given by:

p=V,—V, (4.12)

where v, and v, are the number of sign variations in the Sturm chain S(a)and S(b) respectively.
For our case, we require that there are no real roots of p(k)in the interval (0,20)and make the
necessary substitutions in the above. If we automate the process of determining whether p(k) has

real roots in the above interval for any combination of c,,c,,d,,d, or as is required through the use
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of a computer algebra package such as the MAPLE [4.28] function ‘sturm’, we obtain the domains

illustrated in the contour plots of this paper.
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Chapter 5
Chapter 5: Inverse scattering designs of multimode
planar waveguides with differential group delay

equalisation

Part of the work in this chapter was presented at the Sixth International Conference on Optical,
Optoelectronic and Photonic Materials (ICOOPMA 2014) as “Group velocity equalisation in
multimode waveguides using inverse scattering designs” and published in Volume 619 of the Journal

of Physics: Conference Series.

5.1 Introduction

There is currently great interest in spatial division multiplexing [5.1] in order to overcome the
impending “capacity crunch” [5.2] of single-core, single-mode optical fibre transmission systems. In
particular, mode-division multiplexing is of particular interest because of the large number of modes
that can be used in a single fibre. However, in order to use such methods it is important to control
the deleterious effect of differential group delay (DGD) as well as mode-coupling. Mode-coupling
leads to crosstalk between multiplexed data streams which can in theory be addressed through MIMO
signal processing. However, when both DGD and mode-coupling are present crosstalk between
modes can spread across multiple bit periods making such MIMO hardware more complex [5.3]. As
a result, work has been done to investigate the tailoring of optical fibre refractive index (RI) profiles
to meet the needs of both low DGD and low mode-coupling through the use of graded-index cores
and outer trenches [5.4]-[5.6]. While giving good performance in terms of minimisation of DGD and
low mode coupling between the LPo: and LP11 modes, such designs rely upon a parametric design
process. We were interested to know whether direct control of mode effective indices could be used

to control both of these characteristics.

Here we extend our work on the inverse scattering (IS) design of single-mode planar waveguides in
Chapter 4 to the case of multimode planar waveguides through the use of Darboux transformations
as have been used previously by Mills and Tamil [5.7] in the design of optical interconnects. We
show that through manipulation of the effective indices and thus phase velocities of the waveguide
modes it is possible to manipulate the group velocities in such a way as to control the range of
wavelengths over which they are equalised. It is clear that we have performed this investigation in
planar waveguides rather than optical fibres, but we believe that the qualitative features of the designs
will carry over, especially given the similarity between the mode fields of both low order TE and LP
modes in planar waveguides and fibres respectively. More generally, fibres must be designed by
calling upon the solution to the Gel’fand-Levitan-Marchenko integral equation in a cylindrical

geometry such as is done in Chapter 9 of this thesis.
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52  Theory

In the case of multiple guided modes, as discussed in Chapter 2, the RI profile n(x) of the optical
waveguide can be reconstructed by appropriate Darboux transformations. In addition, given that
there exists Brown’s identity [5.8] which connects the phase velocity v, group velocity vg, refractive

index n(x) and z-directed component of modal power density P, in the waveguide regions,

v, v, :%—In(x)z i (5.1)

¢’ [PdA
we proposed that control of dispersive properties would be possible through the manipulation of
modal effective indices using the above method. With the propagation constants supplied a priori the
potential is derived and its dispersive properties obtained through direct scattering. We applied this
method to the design of planar waveguides with two, three and four modes. In all cases the design
wavelength was chosen to be A¢=1.55um and a cladding index of n,=1.444. The differential group
delay (DGD) between two modes TEr, and TE, is typically defined in terms of their effective indices

as,

Nett m — Nett ane m ane n
DGDZ( to = etn) AN My (5.2)
C cl o4 oA

In addition, it was assumed in calculating the DGD that material dispersion is the same for all modes

and profile dispersion is negligible.

5.3 Dual-mode designs

We first select the effective index of the TE, mode and vary the spacing of the TE; mode with respect
to this and the cladding. In all cases the effective index values were chosen by trial and error and
observing the DGD performance of the designs. This is performed in designs #1-#5 where the TEy
mode effective index is fixed at 1.450000 and the increasing effective indices of the TE; modes are
given in Table 5-1 and the refractive index profiles as well as differential delay curves are given in
Figure 5-1 (a) and (b) respectively. We see in (a) that through an increase in the TE; mode effective
index relative to that of the fixed TE; mode, there is an associated increase in the extent of the core
depression with this seen clearest between design #1 (blue curve) and design #5 (pink curve). This
behaviour is in fact to be expected from coupled-mode theory where two identical single-mode
waveguides, here represented by the two halves of the designs mirrored about the origin, have
supermodes whose effective index near-degeneracy gets closer with increased waveguide spacing.
As such, bringing the TE; mode’s effective index up to that of the TEo, mode leads to the splitting of

the initially single core (see design #1) into that of increasingly separate dual cores (see designs #4
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and #5). In addition, in (b) we observe that the wavelength at which the group velocities of the TE,

and TE: modes are equalised increases from ~1.2 to ~1.8 um (design #1-design #5) with a decrease

in TEo-TE: mode effective index spacing and the associated splitting of the cores.

Table 5-1:Dual-mode waveguide designs with fixed TEo=1.450000 and varying TEiat A=1.55um
and Nclagaing=1.444

Design TEx1 Nest
#1 1.446300
#2 1.446475
#3 1.446650
#4 1.446825
#5 1.447000

An

Design #1
Design #2 | 1
Design #3
Design#4 | 1
Design #5

X {um)

Design #1
Design #2

d Design #3
Design #4
\ Design #5

DGD (ps/m)

e 1.2 1.4 16 1.8

Wavelength (um)

Figure 5-1: Dual mode waveguide designs with (a) varying TE; mode effective index for fixed
TE=1.450000, and (b) associated differential group delay curves

This particular behaviour was initially observed by Stolen [5.9] in the context of ring-core optical

fibres with improved group velocity equalisation for four-wave mixing interactions. Of particular

interest is also the fact that, at a given wavelength, designs exist with opposite DGDs as can be seen,

for example, at 1.55 um where design #1 and design #4 have approximately =2 ps/m DGD

respectively. This could be used for equalisation in a similar way to dispersion compensation
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approaches in the literature. In particular, design #3 has the DGD of the TE1-TEo, modes closest to

Z€ero.

5.4  Three and four-mode designs

We now investigate three-mode and four-mode waveguide designs where there is possible control
over DGD. Once again, this is achieved by varying the relative effective indices of the propagating
modes. In particular, we first consider the three-mode case where the TE, mode effective index is
fixed at TEo=1.450000, TE;=1.447825 and the relative spacing of the TE, mode is varied. The value
of TE: was guided by trial and error so that the TE; variation below led to the desired DGD
performance. The effective indices of design #1-design #3 are shown in Table 5-2. In Figure 5-3 (a)
we show how decreasing the spacing between the TE; and TE; modes in designs #1-#3 leads to a
change in core behaviour from a small depression (blue line) to a mild peaked core (red line) to a
more significant peak in core refractive index followed by outer ring depressions. It is interesting to
see in Figure 5-2 (b) that at 1.55 pum design #1 leads to TE:-TEo, DGD of ~2.5 ps/m (solid blue) and
TE,-TEo DGD of ~-3ps/m (dashed blue) while design #3 leads to TE:-TE; DGD of ~-2 ps/m (solid
green) and TE2-TEq DGD of ~2 ps/m (dashed green). As such, combining designs #1 and #3 could
be concatenated to lead to minimisation of all DGDs in a three-mode design. In addition, design #2
depicted by the solid and dashed red curves has a low DGD (+0.4 ps/m) of both the TE;-TE, and
TE>-TEo modes simultaneously at ~1.55 um. This level of performance is typically achieved by

graded-index designs such as those by OFS.

Table 5-2: Three-mode waveguide designs with fixed TEq=1.450000, TE;=1.447825 and varying
TE2 at X=155pm and ncladding:1.444

Design TE2Net
#1 1.445000
#2 1.445500
#3 1.446000
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1073

Design #1: TE2=1.445000
Design #2: TE2=1.445500
Design #3: TE2=1.446000
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Figure 5-2: Three-mode waveguide designs with (a) varying TE, mode effective index for fixed
TE=1.450000 and TE;=1.447825, and (b) associated differential group delay curves

Decreasing the effective-index difference between the TE; and TE, modes with associated increase
in pronounced central peak and outer ring also leads to DGD equalisation at ever larger wavelengths.

We now investigate the case of four-mode designs with DGD minimisation between all four modes.
Here the effective indices of the TEo, TE: and TE, modes are fixed at TEq=1.450000, TE;=1.448500,
TE»=1.446700 and the TEs mode effective index is moved relative to these. As before trial and error
suggested these values. The effective indices of the TE modes for designs #1-designs #3 are given in
Table 5-3, the refractive index profiles are shown in Figure 5-3 (a) and finally the DGD curves are
shown in Figure 5-3 (b). It can be seen from design #1 (blue curve) — design #3 (green curve) that as
in the previously considered cases, the increase of the TE; effective index towards that of the TE;
mode and the associated decrease in spacing leads to the development of an increasingly large core
depression and outer rings. For all designs the TE1-TEo, DGD is relatively flat across the range of
wavelengths, while there is an increase in the gradient of the DGD curves from the TE,-TE, to TEs-
TEo, DGD values. In fact, as the TE; mode is increased from design #1 (blue) to design #3 (green)
the DGD between TE,-TE becomes increasingly negative while the DGD between TEs-TEo tends
towards a small positive value ~1ps/m. In particular, design #2 is such that all three pairs of DGDs
are within ~1 ps/m at a wavelength of 1.55 um and the refractive index profile is qualitatively similar

to that of a parabolic index profile.
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Table 5-3: Four-mode waveguide designs with fixed TE;=1.450000, TE;=1.448500, TE,=1.446700
and varying TEzat A=1.55um and Ncjagding=1.444

Design TEsNest

#1 1.445000

#2 1.445250

#3 1.445500

Design #1: TE3=1.44500C ak
Design #2: TE3=1.44525¢
| Design #3: TE3=1.44550( g pemsiti,,,

)

Y
67 ﬂv

Design #1: TE1-TE0 DGD, TE3=1.445000}.,
Design #2: TE1-TEO DGO, TE3=1.445250| .,
6 Design #3: TE1-TEO DGD, TE3=1.445500
= = Design #1: TE2-TEO DGD, TE3=1.445000
_g| = — Design #2: TE2-TE0 DGD, TE3=1.445250

Design #3: TE2-TE0 DGD, TE3=1.445500
-------- Design #1: TE3-TEO DGD, TE3=1.445000
-------- Design #2: TE3-TEO DGD, TE3=1.445250
Design #3: TE3-TE0 DGD, TE3=1.445500

. L oo O R—| 12 L
0 10 20 30 1 1.2 1.4 16 1.8 2
X (pm) Wavelength (um)

Figure 5-3: Four-mode waveguide designs with (a) varying TEs mode effective index for fixed
TE=1.450000 and TE;1=1.448500, TE,=1.446700, and (b) associated differential
group delay curves

55 Interpretation of results

It should be noted that the infinitely extended parabolic refractive index profile considered by authors
such as Adams [5.10] has modes for which the group velocity is approximately independent of the
mode number and with the qualitative similarity seen above with increasing modality (2, 3 and 4-

modes) it is interesting to consider how such designs compare with ours.

We now show in Figure 5-4 (a), (b) and (c) the inverse scattered designs of the 2, 3 and 4-moded
cases which are approximately optimum for DGD equalisation and the closeness of fit with infinitely

extended parabolic refractive index designs which have the same number of modes in each case.
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Figure 5-4: (a) two, (b) three and (c) four-moded inverse scattered designs leading to group

velocity equalisation and their associated infinitely extended parabolic designs (dashed curves)

What we may learn from this is that the shape of the inverse scattering designs in these cases more

closely resembles that of the idealised profile with increasing mode number as seen from Figure 5-4

(@) - (c).
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Figure 5-5: Comparison of inverse scattered and parabolic mode spectra for the (a) dual-mode, (b)

three-mode and (c) four-mode designs with optimal DGD
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In particular, in a sense the mode spacing in the 2, 3, and 4-moded IS cases with the best DGD
equalisation follows that of the idealised parabolic cases as can be seen in Figure 5-5 where the

effective indices of the inverse scattered and parabolic designs are compared.

We see in Figure 5-5 (), as expected, that an extended parabolic design exists which has identical
effective indices to that of the dual-mode inverse scattered case. Here given the low number of modes
involved, the approximation of the inverse scattered design to that of the parabolic one is not very
good as seen in Figure 5-4 (a). However, moving to Figures 5-4/5-5 (b) and then (c) we see that the
approximation to the parabolic design improves and there is a similar pattern in effective index
distribution. The original choice to place the effective indices by trial-and-error to optimise DGD
now appears to be premature given that optimal designs suggest mode spectra should be chosen
according to the extended parabolic design in the first place, which in fact is of the form of equally
spaced effective indices [5.17]. This becomes more obvious when the number of modes is increased
to six and then eight as seen in Figure 5-6 (a) and (b) below.
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Figure 5-6: Comparison between IS and parabolic designs for (a) six modes, and (b) eight modes
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As the number of modes is increased, the approximation to the parabolic profile improves
considerably, and the effect can be likened to that of a Gibbs effect from Fourier analysis. As such,
we see that equally spaced TE modes which lead to optimal DGD in our inverse scattering designs
have refractive index designs which increasingly approximate the parabolic approach.

5.6 Conclusions

In this work we have shown that control of effective indices of modes through the use of the Darboux
transformation can be used parametrically to minimise differential group delay over a range of
wavelengths. This is possible by either designing the mode spectra to provide equalised group
velocities directly, or by concatenating those designs with alternating positive and/or negative DGD.
In addition, designs which result in peaked cores and outer rings when modes become nearly
degenerate have also been explained away in terms of coupled-mode theory whereby two identical
waveguides have super-modes whose effective index spacing is associated with an increase in

waveguide core spacing. The result of this is the ‘splitting’ of the core observed.

We have also found that the parametrically obtained inverse scattered designs for minimisation of
DGD have similar mode spectra to those of the extended parabolic design which is known in the
literature to have modal group velocity independent of mode number. As the number of modes is
increased, the inverse scattering designs increasingly approximate the extended parabolic designs in
a way similar to that of the Gibbs effect of Fourier analysis.

While our investigation has been limited to planar waveguides there are similarities in intensity
profiles between TE modes and LP modes and it is expected from Brown’s identity that

characteristics of these planar designs can be adapted for use in future optical fibres.
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Chapter 6
Chapter 6: Inverse scattering designs of active
multimode planar waveguides with differential

modal loss and gain

The work in this chapter has been published in a Special Issue of the IEEE Journal of Selected Topics
in Quantum Electronics as “Inverse Scattering Designs of Active Multimode Waveguides with
Tailored Modal Gain”

6.1 Introduction

Spatial-division multiplexing (SDM) [6.1] is regarded as a potential solution to the forthcoming,
previously mentioned optical communication “capacity crunch”. SDM constitutes a drastic design
departure from the currently used standard single-mode fibres (SMF) and relies on multicore and/or
multimode fibres in order to increase the transmission degrees of freedom. Mode-division
multiplexing (MDM), in particular, relies on specially designed multimode (MM) fibres and uses
propagation optical modes as separate communication channels.

Recently this paradigm shift has been introduced into the field of integrated photonics technology in
order to increase the bandwidth density of on-chip interconnects [6.2], [6.3] for computercom and
data-center applications. The majority of the effort so far has been concentrated on the development
of efficient multiplexers/de-multiplexers for high performance network-on-chip applications [6.2],
[6.4]-[6.6]. However, in future highly integrated networking scenarios, on-chip amplification will
be required in order to increase the reach of optical signals and support propagation over multiple
modal add/drops and routing stages [6.7]. Thus far the design of effective waveguide amplifiers with
individually prescribed modal gain has not been addressed. As has been discussed recently in the
literature, uncorrected mode-dependent loss (MDL) has a deleterious effect on channel capacity

[6.8], [6.9] and effective ways to mitigate this loss would be very useful.

Since the Darboux transformations are generally defined in the complex domain [6.10], [6.11] and
can, in general, result in complex valued potentials [6.12]. here we extend the Darboux
transformation algorithm to include complex propagation constants and apply it for the design of
active multimode optical waveguides, with arbitrarily prescribed modal gains. In section 2, we first
give examples of passive MM waveguides with prescribed real modal effective indices. In section
3 we give examples of active MM waveguides with arbitrary distribution of modal gains. It is shown
that arbitrary modal gain distribution is achieved by complex potentials, which result in waveguide

designs with distributed gain and loss core regions. To the best of our knowledge, such active
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waveguide designs are presented for the first time. In section 6.4, finally, we discuss the connection
of the current work with recently published MM fibre amplifier results in the context of MDM optical

communication systems.

6.2 Design of passive multimode waveguides

In the case of passive MM waveguides, we consider real fSm associated with each mode with
propagation constant fm where nesr., = B /ko, m=1,2,...,N. We begin the design process by
applying the DT IS algorithm outlined above to design a passive four-mode waveguide with mode
effective indices which match those of equivalent step-index (SI) waveguides. Throughout this
chapter we assume cladding RI n,=1.444 and a wavelength A, = 1.55um. The SI waveguide width is
15um and the core Rl is 1.458. The effective indices of the first four TE modes of the SI waveguide
are 1.457773, 1.455789, 1.452551 and 1.448244, respectively. We progressively add the TEo, TE;,
TE2 and TE3; modes one-by-one and the reconstructed waveguide RI distributions are shown in Figure
6-1. It is shown that when all four modes have been taken into account the DT IS designs closely
follows that of the original SI RI distribution. Progressively smaller residual ripples, resembling those
observed in the “Gibbs phenomenon” when a Fourier series overshoots at a jump discontinuity, are

seen with increasing number of added modes.

Four-maode S1

I with TED

1% with TED & TE1

I with TEQ, TE1 & TE2
1471 I with TED, TE1, TE2 & TEG

1.475

1465 F

146

RI

1455

145F

14451

144 1 1 1 1 1 1
-20 -15 -10 5 0 a 10 15 20

Figure 6-1: Refractive index distribution of a four mode S1 waveguide and synthesized IS designs
with increasing numbers of modes with effective indices equal to those of the original Sl design,
showing an increasing frequency “Gibbs like” ripple effect.

To confirm that the DT IS waveguide supports four modes with the prescribed effective indices, we
use a commercial mode-solver software Lumerical MODE Solutions with the RI profile shown in
Figure 6-1. The reconstructed effective indices are in excellent agreement with the original ones.

Figure 6-2 (a)-(d) compare also the field profiles for the equi-spectral modes TEO to TE3 supported
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by the original SI and the DT IS waveguides. It is observed that despite the RI ripples, the mode
profiles follow each other very closely.

T T T : T T r
o 05fF / ——TE0 SIH
0 . L L L TEO IS |
20 15 -0 5 0 5 1 13 20
s ()
1 r r r r I
b
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Figure 6-2: Mode field profiles for the four-mode Sl (blue) and IS (red) (a) TEO mode; (b) TE1
mode; (c) TE2 mode and (d) TE3 mode

6.3 Design of waveguides with tailored modal gain

Active waveguides with tailored modal gain or loss can be designed using the DT IS procedure
outlined above by adding an imaginary component to the mode effective indices of the passive design
shown in Figure 6-2 as, in general, This way, we can design active waveguides with pre-defined
modal propagation gains in addition to pre-defined propagation constants. To demonstrate the
technique we choose to arbitrarily add ym=3.5 dB/cm gain selectively to each of the four TE modes
of the original waveguide. This corresponds to the imaginary component of the effective index being

neffl,m = 10_5.

6.3.1 Four-moded waveguide with gain in one mode only

Figure 6-3 plots the real and imaginary parts of the reconstructed RI for the case where only the
TEo mode experiences y1 =3.5 dB/cm gain while the other mode remains gain-less. As can be seen
in Figure. 6-3(a), the introduction of a complex effective index for the TEq mode results in a
complex waveguide RI distribution. It is also shown that the real part (black line) is identical to the
one of the original passive waveguide (c.f. Figure 6-1) while the imaginary part (green line) on the
other hand shows both negative (blue shade-corresponding to gain) and positive (red shade

corresponding to loss) variation over the waveguide width.
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Figure 6-3: (a) Real and imaginary part of waveguide RI profile (red shade: loss,
blue shade: gain) required to obtain selective gain of y1 =3.5 dB/cm for only the
TEo mode, and (b) the associated modal fields.

It is observed that the TEo, mode strongly overlaps with the waveguide gain region (blue shade),

which results in the desired TEq mode propagation gain. The rest of the gain-less modes overlap with

the waveguide gain region (blue) in such a way that this overlap is exactly balanced by their overlap

with the loss region (red) and results in zero overall gain/loss.
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Figure 6-4: (a) Real and imaginary part of waveguide RI profile (red shade: loss,
blue shade: gain) required to obtain selective gain of v, =3.5 dB/cm for only the
TE; mode, and (b) the associated modal fields

Figure 6-3, Figure 6-4 and Figure 6-5(a) show the real and imaginary parts of the reconstructed RI

for the case where only the TE1, TE», and TEs modes, respectively, experience 3.5 dB/cm gain while

the rest of the modes remain gain-less. Again, it is observed that in all cases the real part of the RI

(black line) and the modal profiles are identical to that of the original passive waveguide (c.f.Figure
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6-1) However, the imaginary part of the RI changes shape dramatically depending upon which mode
is to be amplified.
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Figure 6-5: (a) Real and imaginary part of waveguide RI profile (red shade: loss,
blue shade: gain) required to obtain selective gain of y; =3.5 dB/cm for only the
TE2 mode, and (b) the associated modal fields
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Figure 6-6: (a) Real and imaginary part of waveguide RI profile (red shade: loss,
blue shade: gain) required to obtain selective gain of y4 =3.5 dB/cm for only the
TEsmode, and (b) the associated modal fields

As before, in all cases the desired mode overlaps strongly with the gain region (blue shade), while
the loss (red shade) is placed around the areas of zero field, and as a result the pre-defined mode
experiences gain. The rest of the gain-less modes again overlap optimally with the gain and loss

areas, which results in a final net-zero overall gain/loss.

103



Chapter 6

6.3.2 Four-moded waveguide with equal modal gains

If the same imaginary part is added to the effective index of all guided modes, we obtain a waveguide
for which all the guided modes experience identical gains. This is shown in Figure 6-7 (a) where all
modes experience identical yw=3.5 dB/cm gain (m=1,2,3,4). In this case the gain region (blue) is
modulated periodically mirroring the real part of the RI variation. The loss region now extends only
at the waveguide edges and cladding area and affects predominantly the evanescent fields of all the
modes. Here, all modes overlap optimally with the gain and loss regions and result in equal
propagation gains.
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Figure 6-7: (a) Real and imaginary part of waveguide RI profile (red shade: loss,
blue shade: gain) required to obtain selective gain of y1 = y> = y3 = 74 =3.5 dB/cm
for all the guided modes, and (b) the associated modal fields.

6.3.3 Four-moded waveguide with biased modal gains

From the point of view of the mitigation of mode-dependent losses (e.g. bend-induced losses), it is
useful to also consider the case where there is an increase in modal gain with mode number. If an
increasingly larger imaginary component is added to the effective index of the guided modes, it
becomes possible to potentially increase the modal gain and compensate for MDL. An example of
such a design is shown in Figure 6-8 (a), where selective modal gains of y; =2.5 dB/cm for TEq, y.
=3.5 dB/cm for TEi, y3 =4.5 dB/cm for TE; and ys =5.5 dB/cm for TEs have been assumed. In
contrast with the case of gain-equalized modes (see Figure 6-6(a)), it is observed that the gain regions
(blue shade) increase away from the waveguide center. In addition, loss regions (red shade) are re-

introduced between the gain regions.
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Figure 6-8: (a) Real and imaginary part of waveguide RI profile (red shade: loss,
blue shade: gain) required to obtain selective gain of y; =2.5 dB/cm for TEo, 72
=3.5 dB/cm for TE;, y3 =4.5 dB/cm for TE; and y4 =5.5 dB/cm for TEs, and (b) the

6.3.4

associated modal fields.

Three- & two-moded waveguide with equal modal gains

For completeness, in Figure 6-9 and Figure 6-10 (a) we present the cases of three- and two-moded
waveguides, respectively, with equal modal gains of y» =3.5 dB/cm. Figures 6-9(b) and 6-10(b)
show the corresponding modal field distributions.
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Figure 6-9: (a) Real and imaginary part of waveguide RI profile (red shade: loss,
blue shade: gain) required to obtain selective gain of y; =y, = y3 =3.5 dB/cm for
TE, TE:1 and TE; modes, and (b) the associated modal fields.
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Figure 6-10: (a) Real and imaginary part of waveguide RI profile (red shade: loss,
blue shade: gain) required to obtain selective gain of y1 = y, =3.5 dB/cm for TE,

and TE; modes, and (b the associated modal fields

From Figure 6-7 (a), Figure 6-9 (a) and Figure 6-10 (a) it is observed that MM waveguides with
equalized modal gain share similar gain/loss distribution features. The gain region is periodically
modulated and aligned with the field maxima of the highest-order mode, while the lossy areas lie on

the edges of the waveguide and extend mostly in the cladding.

In all the examples presented in section 6.4, we used the commercial mode-solver software Lumerical
MODE Solutions to calculate the direct problem with the complex RI profile shown in Figure 6-3
(a) - Figure 6-10 (a). In all cases, the reconstructed complex-mode effective indices are in excellent
agreement with the starting ones. We notice that the associated electric field distributions plotted in
Figure 6-3 (b) - Figure 6-10 (b) dependent on the choice of the real part of the effective Rls only and
do not change with the variation of the imaginary parts. They are also in excellent agreement with

the distributions of the corresponding passive waveguides (with just the real part of the RI).

6.3.5 Four-moded waveguide without equalizing lossy areas

The DT IS scattering technique, adopted in this work, demonstrates that exact equalization of modal
gain in MM waveguides requires the existence of both gain and loss in the RI distribution. To
illustrate this more clearly, we show in Table | the DMG with respect to the TEo; mode when the
outer lossy layer (shaded red) is removed from the designs in Figure 6-7(a), Figure 6-9 (a) and Figure
6-10 (a).

106



Chapter 6

Table 6-1: 2, 3 and 4-mode designs without the lossy (red shade) layer

Design Mode Effective Index (Nefr) DMG (w.r.t TEo)
2-mode TEo 1.456396 —i 1.006815x10° -
TE; 1.450625 —i 1.031072x10° 0.085 dB/cm
3-mode TEo 1.457358 —i 1.003593x10° -
TE: 1.454175 —i 1.015464x10° 0.045 dB/cm
TE; 1.449136 —i 1.040546x10° 0.13 dB/cm
4-mode TEo 1.457773 —i1.002184x10° -
TE: 1.455789 —i 1.009137x10° 0.024 dB/cm
TE; 1.452552 — i 1.022446x10° 0.071 dB/cm
TEs 1.448247 —i1.047083x10° 0.16 dB/cm

As expected, the higher-order modes have larger DMGs due to their larger mode field overlaps with
the gain-doping (shaded blue) and the lack of compensation through the addition of the loss specified
by the IS design technique. We see that without the addition of the lossy layer in the waveguide
cladding, exact modal gain equalization is not possible. To the best of our knowledge, the proposal
of the addition of judiciously distributed gain (blue shade) and loss (red shade) to the waveguide RI
for exact modal gain equalization is presented for the first time.

6.4 Conclusions

We have proposed a powerful inverse-scattering technique, based upon complex Darboux
transformations, for the design of multimode optical waveguides with arbitrarily prescribed modal
gains. We have shown examples of optical waveguides for which only one (arbitrarily chosen) mode
is amplified, as well as designs for which all modes exhibit equal gain. In addition we have shown
designs where there is an increase in modal gain associated with increasing mode number and
proposed it as an approach to mitigate for mode-dependent losses in optical waveguides and
waveguide circuits. To achieve such unique modal gain combinations both gain and loss regions are
optimally introduced into the waveguide. Such modal gain characteristics cannot be achieved by gain

regions alone, no matter how it is distributed and optimised.

Recent works studying the equalization of modal gain in multimode fibre amplifiers based upon few-
mode fibres have considered various forms Erbium doped ring-core designs [6.13]-[6.16]. Initially
in the literature a 20 dB gain with differential modal gain (DMG) of less than 3dB was demonstrated
between the LPy and LP11 modes [6.17] and this was further expanded upon to include LP11 and LP2;
modes [6.13] through such a ring-doping design approach. Superior control over DMG was then
realised by incorporating further rings resulting in multiple-doped ring designs [6.14] with a DMG
of less than 1 dB. However, in contrast with the designs presented here, these demonstrations rely on

modulated gain regions only.
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Finally we have demonstrated that the commonly used approach of ring-doping Erbium to equalize
modal gain in fibres is a subset of the approach that comes out of inverse scattering theory for the
exact equalization of modal gain whereby both gain and loss are required. As such this IS design
approach can be modified to address differential modal gain in cylindrical waveguides, such as
multimode optical fibre amplifiers. However, the current approach and designs are directly
applicable to the design of special ribbon cores [6.18], [6.19] and high-aspect ratio rectangular core
fibres [6.20].
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Chapter 7: Inverse scattering designs of mode-

selective waveguide couplers

7.1 Introduction

In recent times, spatial-division multiplexing [7.SDM] has been concentrated on the development of
efficient multiplexers/de-multiplexers (MUX/DEMUX) for high-performance network-on-chip
applications [7.1]-[7.4] and recently approaches to waveguide design based upon supersymmetry
(SUSY) such as that by the Christodoulides group [7.5] have been developed whereby multimode
trunk waveguides are coupled to single or few-mode partner waveguides, hereafter referred to as
trunk-partner pairs, and designed to be perfectly phase-matched. However, this approach is limited
in that it can only add/drop one mode at a time and therefore requires a cascade or ladder of partners.
We, by contrast, propose the development of mode-selective couplers designed through the Darboux
transformation (DT) of inverse scattering theory (IS) as has been described earlier in Chapter 2 of
this thesis and by Mills and Tamil [7.6], but with the additional judicious but straightforward addition
of material loss/gain to the refractive index (RI) profile as suggested by Chen et al. [7.7] so that

arbitrary combinations of modes can be add/dropped simultaneously.

7.2 Phase-matched trunk-partner pairs

As discussed in our previous works [7.8], it is possible using the Darboux transformation to create
trunk-partner pairs where any combination of modes can be phase-matched at will. To demonstrate
this, a step-index waveguide is created in Figure 7-1 (a) which supports eight TE modes and this is
then paired with (b) where the four lowest-order TEo, TE1, TE, and TEs modes of the partner are
phase matched to those of the trunk, (c) where the alternate order TEo, TE, TE4 and TEs trunk modes
are phase-matched to the TEo, TE1, TE; and TE; modes of the partner and finally (c) where the four
highest-order trunk modes TE4, TEs, TEs and TE7 are phase-matched to the TEy, TE1, TE; and TE3
modes of the partner. In each case the refractive index contrast An relative to the cladding of the
waveguide is drawn in blue and the associated effective index and mode field profiles are also shown
to demonstrate not only the phase-matching but also mode conversion, which has been discussed in
the literature [7.9] in the context of the SUSY ladders/cascades. However, to date the associated
coupling lengths of each phase-matched mode have not been discussed in detail and it is important
to note that even if the trunk-partner pairs are phase-matched, their coupling lengths differ due to the
differing mode pair coupling coefficients. This presents a difficulty as in order to ‘drop’ modes
simultaneously from a trunk, the coupling lengths must be equalized. Fortunately, earlier work by

Chen et al. [7.7] suggests a solution to this problem through the equalization of coupling lengths
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using the addition of gain/loss to the refractive index profile. This is now discussed further first by

introducing waveguide coupler theory, and then the determination of the required gain/loss.
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Figure 7-1: RI profile contrast An relative to the cladding of (a) multimode step-index trunk
waveguide, and partner waveguides for (b) four lowest- order, (c) four alternate-order
and (d) four highest-order modes @ A=1.55um, nciadding =1.444

7.3  Waveguide coupler theory

Waveguide couplers are well described by coupled-mode theory [7.10], [7.11] and as has been
discussed by Chen et al. [7.7] total transfer of power is possible between a trunk waveguide and a
parallel partner waveguide if gain and/or loss is considered in the design process. In this section we
describe how the appropriate amount of gain or loss can be added to the partner to achieve complete
transfer of power from the trunk of any selected set of modes at a single coupling length.

The transfer of power between the system of coupled waveguides is found as a solution to the system

of coupled differential equations [7.11],

d . .

d_a; = Iﬂlal + |C12a2

da (7.0)
d_22 = iﬂzaz + iC2131

where, as discussed previously, fm= fmr + 1 fmi , is the complex propagation constant, with 3m>0
corresponding to loss and Bmi<0 corresponds to gain and Ci2 and Cx are the coupling coefficients.
The solution to this system, assuming that all the power is initially in the trunk (a1(0)=1 and a»(0)=0)

may be written,

a(z)= cos(ﬁoz)+i%sin(ﬂoz)}xexp{iwz} (7.2)

) 2
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a, (z)— lem(ﬂ0 )exp{ A ;ﬂ2 z} (7.3)

0

with,

B, - \/(ﬂl ﬂzj +C,C,, (7.4)

It may be seen following some manipulation that (7.2) can be rewritten in the form,

a,(2) =Ccos(f,2 - )exp[ Atk } (75)
with,
c- 1—[%]2 (7.6)
and,
D=tan {M} (7.7)
26,

If we introduce a mismatch in the imaginary components of the propagation constants of the m’th

pair of coupled modes, following [7.7] while assuming the real components are phase-matched,

_ ﬁZI,m _:Bu,m

M ===~
" 2\¢C12,mC21,m

and then assume that any gain or loss is entirely in the partner waveguide, we rewrite in terms of the

(7.8)

complex mismatch, giving,

Bom = \/C12,mC21,m (l_ Mmz) (7.9)

ﬂl,m _IBZ,m = _iﬂZI,m = _ZiMm\’ClZ,mCZLm (7-10)

and finally (7.7) becomes,
D, =sin™(M,,) (7.11)

Now, the n’th coupling length of the m’th pair of modes (Lmn) when involving a mismatch M, may

be written,
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(2n+1)7r

> (7.12)

ﬁo,mL - Dm = ﬁo,mLm,n _Sin_l(M m ) =
As such, all power associated with the m’th given mode will have left the trunk at the n’th coupling

length and Lm, may be obtained as,

(2n+1)7r (2n+1)7r

+sin™(M,,)
" ﬂo,m ) \lclz,mCZLm (1_ M m2)

+sin™ (M)

(7.13)

It should be stressed at this point that as (7.13) implies, introduction of differential loss/gain in a
coupled waveguide system (i.e finite Mm,n) can be used to alter the coupling length between different
mode pairs. This unique property of couplers with differential modal gain/loss will be used to fine
tune and equalise the coupling lengths of different mode groups in modal add/drop

multiplexers/demultiplexers.

Now, if in general we wish that the n’th order coupling length of the m’th phase-mismatched mode
pair has identical coupling length to that of the q’th order coupling length of the p’th phase-matched
mode pair involving no gain/loss, we may then obtain the generalised mismatch Mm,, by solving,

DT G () _ (29+Yx

= (7.14)
\/ClZ,mCZLm (1_ M m,n2 ) 2\/C12~ pC21, p

The choice of integers (n, g) for modes (m,p) is motivated by the requirement that the imaginary
correction to the partner waveguide mode effective index should be as small as possible. In the next
section we have investigated the mode losses at the chosen coupling lengths in the (n,q) space. It is
interesting to note that this use of loss in a partner fibre/waveguide coupled to a lossless one, is also
discussed in the context of quantum mechanical PT-symmetry breaking where the overall
transmission behaviour of the coupled system counter-intuitively increases with increasing partner
waveguide loss past a transition point. This is discussed further in [7.12] and is very much at the

forefront of research.

7.4 Designs with identical coupling lengths

In the above we have derived a method by which modes can be ‘dropped’ from a trunk waveguide
at identical coupling lengths. This motivates a method by which arbitrary selected modes can be
removed from the trunk waveguide simultaneously. From the start we note from (7.10) that the
correction is proportional to the coupling coefficient of the trunk-partner mode pair to be corrected

and so it makes sense that the lower order partner mode should always be corrected since the
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associated coupling coefficient will be smaller. It is also necessary to take into account the overall
loss of the coupled mode in the partner at the (to be determined) associated coupling length as we
may wish to then manipulate this mode further. The expression for the total loss at the n’th coupling
length of the m’th corrected mode pair in terms of the calculated mismatch Mm,, at the determined
q’th order coupling length of the p’th higher-order mode pair is,

Unpq = 4380, KoL, (7.15)

m,n,p.q

where,

2M JC C
A _ m,n 12,m™~21,m (716)

m,n
kO

g+

L =TI
a 2\& C12, pC21, p

We calculate the mismatches M, and thereby effective index corrections Amn and substitute these

(7.17)

into (7.15) to obtain the optimum choice of (n,q). Now we begin the process as follows: (1) we start
with a trunk waveguide that supports a set of guided modes. (2) We choose the particular modes
from that set we wish to remove and IS design a partner waveguide that is phase-matched to these
modes. (3) We calculate the coupling coefficients Ci,m and Cz1m for each phase-matched set of
modes. (4) We now solve (7.14) and use (7.15) to determine the optimum combination of (n,q). From

this we then determine the optimum mode effective index correction Ampn,

Following step (1) we calculate the coupling coefficients in terms of the RI profile, angular frequency
(ow=2mnc/)), permeability of free space Mo, permittivity of free space go and the normalized electric

fields Eyi(x) and Ey; (X) where Wi indicates that the integral should be performed over waveguide i,

C, = @z, [ (n* =% B, (O E,; (X)dx (7.18)

Wi

We note that the normalization of the electric fields here follows that of [7.13] such that, for i=1,2

4{25#()V£|Eyi(x)|2 dx:|=1 (7.19)

7.4.1 Two-mode-drop couplers

As an example, we now calculate the coupling coefficients in Table 7-1 & 7-3 respectively for the
cases of the eight-mode SI trunk waveguide and dual-mode IS waveguide partners (Cases #1 & #2)
where we have arbitrarily chosen first the phase-matching of the two lowest-order trunk-partner
modes TEo —TEo and TE;-TE; (Case #1) followed next by the TE>-TEo and TE4-TE: trunk-partner
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modes (Case #2). The optical power transfer between the trunk and partner waveguides are shown
for coupling between the TEo-TEo and TE;-TE: mode pairs in Figures 7-2 & 7-3 respectively. We
observe that all the power is removed from the TE: mode in the trunk waveguide in Figure 7-3 after
odd numbers of TE: —TE: coupling lengths, and in Figure 7-2 the TEo-TEo power transfer occurs
with a differing periodicity.

Table 7-1: Coupling coefficients for Case #1 with two phase-

matched modes with trunk-partner spacing 16.25 um apart

Modes (Trunk-Partner) Ci2/ Ca1 (m?)
TEo-TEo 46.7 /46.7
TE:-TEx 106/ 106

TEn'TEo
20 T T T T
= = Trunk
Partner 4

Power (dB)

80 F

-100 |

-120 . L A L
0 2 4 6 8 10
TE(TE1 coupling lengths
Figure 7-2: Variation in optical power between the case #1 trunk Sl and partner 1S waveguide
(TEo-TEo) mode pairs as a function of TE; —TE; coupling lengths, before correction
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Figure 7-4: Loss curves for determining the case #1 design - (a) the (n,q) loss curve showing the
loss (dB) at the q’th order coupling length of the TE;-TE; pair for various corrected n’th order TEq
TEo, coupling lengths, (b) the same but with length of device in metres

In order to use our coupling length equalization method, using the coupling coefficients for Case #1
in Table 7-1 and by solving (7.13) we now determine the optimum (n,q) pair and thus correction to
the partner TEo mode effective index. In Figure 7-4 we plot the loss (dB) at the q’th order coupling
length of the TE1-TE: pair for the n’th order corrected TEo-TEo pair. From this we determine that the
correction resulting in a loss of ~6.4 dB power in the transferred TEo, mode of partner waveguide is
when we have (n,q)=(0,1). This corresponds to a value of M1,0= 0.3891 or a correction to the effective

index of the TE, partner mode effective index of A10=i8.96x10 and a device length of ~44mm.
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Table 7-2: Corrected (1S) partner effective indices for Case #1 with equalised coupling lengths

Modes Neft
TEo 1.476464+i8.96x10°
TE: 1.475157

The result of this correction on the effective indices of the partner waveguide is given in Table 7-2

and the resulting coupler design in shown in Figure 7-5.
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Figure 7-5: RI profile of IS designed trunk-partner coupler with partner mode effective indices as
indicated in Table 7-2

With the correction made to the partner waveguide the power transfer in the coupler between the
TEo-TE, pair is shown in Figure 7-6 where it can be seen that the coupling length of the 0™-order
TEo-TEo coupling length has been successfully equalised to [7.(2x1)+1=3] TE;-TE; coupling lengths
or ~44mm with <-80 dB of the TEo mode power left in the trunk and ~-6.4 dB of the original power
of the trunk TEo, mode now in the partner TEo mode. This contrasts considerably with the pre-

corrected case where there was still ~-6.4 dB of the TEo power in the trunk at this length.
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Figure 7-6: Variation in optical power for the case #1 dual-mode coupler between the trunk SI and

partner IS waveguide TE; modes as a function of TE; —TE: coupling lengths after
correction

We now proceed to Case #2 where we investigate the phase-matching and mode conversion between
the trunk and partner TE2-TEo and TE4-TE; pairs. Referring to Table 7-3 for the coupling coefficients
it is again possible to calculate the power transfer between the waveguides and this is shown in Figure
7-7 for the TE,-TE pair in terms of the TE,-TE; coupling length where again the 0™-order coupling
length is just under 3 TE4-TE; coupling lengths.

Table 7-3: Coupling coefficients for Case #2 with two phase-

matched modes with trunk-partner spacing 15 um apart

Modes (Trunk-Partner) Ci2/ Cu(m?)
TE2-TEo 336.2/336.2
TEs+TE: 968.1/968.1
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Figure 7-7: Variation in optical power between the case #2 trunk Sl and partner 1S waveguide

(TE2-TEo) modes as a function of TE4 —TE; coupling lengths

Again we calculate the optimum (n,q) pair and thus correction to the partner TEo, mode effective
index using Figure 7-8 and find it to be (1,4). This pair is chosen so that the loss of power transferred
to the TE, partner mode at the coupling length is not too high and the device is not too short. It can
be seen that an appropriate loss/device length in the TE,-TEy coupling occurs for the equalisation of
the 1%-order TE,-TE, pair coupling length to the 4"-order TE4-TE; pair [7.2x4+1=9] coupling length
with ~-6.2 dB TE, power in the partner.
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Figure 7-8: Loss curves for determining the case #2 design - (a) the (n,q) loss curve showing the
loss (dB) at the q’th order coupling length of the TE4-TE; pair for various corrected n’th order TE»

TE, coupling lengths, (b) the same but with length of device in metres
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This above choice corresponds to a value of M1 1 =0.1448 or a correction to the effective index of the
TEo partner mode effective index of A;11=i2.40x10° and the effective indices of the partner
waveguide are given in Table 7-4 and the refractive index profile of the coupler design is shown in

Figure 7-9.

Table 7-4: Corrected (IS) partner effective indices for Case #2 with
equalised coupling lengths

Modes Nef
TEo 1.472982+i2.40x10°
TE: 1.466061

In Figure 7-10 the power transfer between the trunk TE; and partner TEo, modes is shown where it
can be seen that the correction has, as required, led to the 1"-order TE,-TE, pair coupling length
being moved to the 4"—order TE;-TE; pair [7.2x4+1=9] coupling length with <-90 dB of the TE
mode power left in the trunk and therefore the lengths of the pairs and now effectively equalised.
This again contrasts considerably with the initial uncorrected TE, power left in the trunk at the 4-
order TE4-TE;: coupling length of ~-10 dB. We also note, as predicted, that the power in the partner
TEo mode is now ~-6.2 dB.
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Figure 7-9: RI profile of IS designed case #2 trunk-partner coupler with partner mode effective
indices as indicated in Table 7-4
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correction

7.4.2 Three-mode-drop couplers

We now investigate a step further in the equalized ‘drop’ of three modes at once from a trunk
waveguide (Case #3). In this case the (TEi, TEs, TEs) modes of the trunk are phase-matched to the
(TEo, TE1, TE) partner modes. The coupling coefficients are given in Table 7-5 and are used in the
calculation of the power transfer of the TE:-TEo and TEs-TE: pairs in Figures 7-11 & 7-12. In Figure
7-11 it can be seen that the 0"-order coupling length of the TE;-TEo pair occurs at ~9 TEs-TE;
coupling lengths while that of the TEs-TE; pair occurs at ~2 TEs-TE, coupling lengths. As before,
we may calculate the ‘correction curves’ for this case where correction will be applied to both the

TEp and TE; partner waveguide modes and these are shown in Figure 7-13.

Table 7-5: Coupling coefficients for Case #3 with three phase-

matched modes with trunk-partner spacing 16.25 um apart

Modes (Trunk-Partner) C12/ C
TE1-TEo 131.6/131.6
TEs-TE: 540.3/540.3
TEs-TE> 1194 /1194
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Figure 7-11: Variation in optical power for case #3 between the trunk Sl and partner IS waveguide
(TE1-TEo) modes as a function of TEs —TE: coupling lengths before correction
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Figure 7-12: Variation in optical power between the case #3 trunk Sl and partner IS waveguide
(TEs-TE1) modes as a function of TEs —TE: coupling lengths
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TE, pair (solid lines) and n’th order TEs-TE; pair coupling lengths (dashed lines), (b) the same but
with length of device in metres

The correction leading to the an optimum combination of mode losses and gains in coupling power

between both pairs of modes is identified as being (0, 5) and (3,5) corresponding to the Oth-order
TE:-TE, and 3"-order TEz-TE; coupling lengths being equalized with the [7.2x5+1]=11"-order TEs-
TE: coupling length with a loss of ~4.3 dB and a gain of ~3.6dB respectively. This corresponds to a

value of M1 =0.2620 or a correction to the effective index of the TE, partner mode effective index

of A10=i1.70x10° and M3 =-0.0525 or a correction to the effective index of the TE; partner mode

effective index of A,3=-i1.40x10° and the effective indices of the corrected partner waveguide are

given in Table 7-6 and the refractive index profile of the coupler design is shown in Figure 7-14.

Table 7-6:Corrected (IS) partner effective indices for Case #3 with

equalised coupling lengths

Modes Netf
TEo 1.475157+i1.70x10°
TE: 1.469945-i1.40x10°
TE 1.461353
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Figure 7-14: Rl profile of IS designed trunk-partner coupler with partner mode effective indices as
indicated in Table 8-6

In Figure 7-15 the power transfer between the trunk TE; and partner TEo, modes is shown where it
can be seen that the correction has led the Oth-order TE:-TEo pair coupling lengths being equalized
with the 5" —order TEs-TE: pair coupling length. Here the power remaining in the trunk TE; mode
is <-90 dB which compares very favourably with that of ~-10 dB before correction. Figure 7-16 also
shows that the 2"- order TEs-TE; pair coupling length has been equalized once again to the 5"-order
TEs-TE: coupling length with <-60 dB power remaining in the trunk TEz mode at this length. This
compares very favourably, again, with that of ~-15 dB before correction. Once again we also note
that the power in the TEo partner mode is now ~-4.3 dB and that of the TE; mode is ~3.6 dB, as

expected.
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Figure 7-15: Variation in optical power for case #3 between the trunk SI and partner IS waveguide
(TE1-TEo) modes as a function of TEs —TE; coupling lengths after correction
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Figure 7-16: Variation in optical power for case #3, between the trunk Sl and partner IS waveguide
(TEs- TE1) modes as a function of TEs —TE: coupling lengths after correction

75 Discussion

In this chapter we have demonstrated that it is possible to remove or ‘drop’ modes simultaneously
from a trunk waveguide using a coupled partner waveguide which has a calculated imaginary phase-
mismatch which was first proposed by Chen et al [7.7]. In the dual-mode-drop cases #2 & #3, loss
has been used in partner waveguides, the value of which is calculated using coupled-mode theory,
and then implemented using inverse-scattering theory. In addition, in case #3 both loss in the partner
TEo, mode and gain in the TE; mode are used to equalise all three coupling lengths. We also note that
in cases #2 & #3 there is also mode conversion being performed at will. In each design the
combination of waveguide spacing and partner mode gain or loss is determined by considering a
balance between the power transfer difference between the trunk and the partner due to the coupling
as well as the length of the point of coupling length equalization, and this is performed using trial-
and-error optimisation of the results of (7.14)-(7.17) and the use of ‘correction curves’. It should be
noted at this point that the aforementioned method always results in either gain or loss in the coupling
process, and is therefore not ideal. However, we have performed this work with the aim of showing
that at least in theory the previously undiscussed equalisation of coupling lengths in the context of
SUSY transformations can be avoided through the use of the Darboux transformation whereby the

required corrections to phase-matched modes can be realised.

We believe that this technique shows great potential in arbitrary mode multiplexing/de-multiplexing
and is a more flexible alternative to the SUSY approach where for the first time the equalisation of

coupling lengths has also been explicitly considered.
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Chapter 8: Few-mode fibres with intuitively improved

mode spacings

The work in this brief chapter is based upon that presented as “Few-Mode Fibers with Improved
Mode Spacing” at ECOC 2015, Valencia, Spain, and was the first time we had considered the design
of optical fibres using the intuition gained from the inverse scattering design of waveguides. In
particular, previous chapters showed that selective control over modes came about through the
regions of overlap between the modal fields and the refractive index profile. It is from this basis that
we used intuition to improve LP mode spacing through step-index design perturbations for both four

and six mode groups.

8.1 Introduction

Multimode-division multiplexing (MDM) [8.1] relies on specially designed multimode fibres
(MMFs) and uses propagating optical modes as separate communication “channels”. High capacity
MDM has been implemented by using MMFs supporting highly-coupled, low differential mode
delay (DMD) and extensive, energy-hungry digital signal processing (DSP) such as by Bigot-Astruc
et al. [8.2] Alternatively, high performance MDM systems have also been demonstrated using MMFs
with virtually uncoupled, high differential mode delay (DMD) modes, with minimum DSP

requirements such as by Boivin et al. [8.3] and Sillard et al. [8.4].

The major consideration in designing un-coupled MDM (UC-DMD) systems is the degree of modal
cross-coupling. It is known that cross-coupling is inversely-proportional to the effective index
difference as discussed by Olshansky [8.5] and it is, therefore, more severe between adjacent modes.
So far, UC-DMD is based primarily on optimised step-index fibres. Step-index designs offer
simplicity in terms of their design and fabrication and previous authors such as Bigot-Astruc et al.
[8.2], Boivin et al. [8.3] and Sillard et al. [8.6] have investigated their use in up to six-LP-mode fibres.
Also, it is important for improved designs to have large mode effective areas and differential group
delays (DGD) (>0.5ps/m) to limit inter-mode non-linearity as well as meeting the optimum trade-off

between micro- and macro-bend losses.

It has been shown that step-index fibres, despite the parameter optimisation, still support modes with
non-equally spaced effective indices. Due to cylindrical symmetry, this is particularly severe between
LP,; and LPg, modes. As a result, strong mode cross-coupling has been measured in relatively short
MMF lengths using the S2 method such as by Jespersen & Li [8.7].

In this chapter we investigate an alternative MMF refractive index (RI) design showing substantially

equalized mode effective indices, compared with state-of-the-art step-index fibres. Since large DGDs
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follow naturally from step-index designs and those without a graded-index core, the particular design
focus is on mode index equalisation improvements which are achieved by introducing optimum 1)
rotationally-symmetric RI perturbations inside the core, affecting primarily one sub-group of modes,
and 2) rotationally-non-symmetric RI perturbations in the cladding, affecting primarily the rest of
the supported modes. The design optimisation strategy is based on simple, physically-intuitive

arguments.

8.2 Design strategy for fibres with optimally distributed mode spacing

Given that what we try to achieve is the effective index manipulation, where targeted RI perturbations
(An) could be introduced in a known starting profile nn (e.g. standard step-index) in order to
selectively affect the propagation constant of individual modes (B), an excellent, intuitive guiding

principle is the following well known perturbation formula derived by Snyder & Love [8.8],

[Anle[* da

R S — 8.1
B=p+ TeF o (8.1)

where k is the free-space wavenumber,  the mode propagation constant and & the electric field of
the known profile . As already mentioned, the main issue with the mode effective index distribution

in step-index fibres stems from the small separation between LP2: and LPo, modes.
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Figure 8-1: Effective index distribution for the Sillard [8.4] four mode-group step index design

In Figure 8-1 this main limitation of the Sillard [8.4] four mode-group design at 1.55 um is shown
more clearly where it can be seen that the LP»-LPo; mode spacing (black vs green curves) is
significantly limited (<1x10®) which could lead to a larger degree of modal cross-coupling than
between the other mode-groups. We address this issue by first considering refractive index

perturbations as illustrated in Figure 8-2 where firstly an inner core depression was added which has
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the effect of increasing the LP2; - LPo, index difference, mainly achieved by lowering the LPq, index
closer to the cladding refractive index since the inner core depression overlaps mostly with the
cylindrically-symmetric LPo1 and LPo, modes and as expected from Equation (8.1) their effective
index is reduced. LP11 and LP21 on the other hand have intensity minima in the core centre and
therefore the index depression leaves them almost unaffected. The optimum value of the core
depression was achieved by considering the minimisation of the objective function,

f (b,ny) =|LPy (b,n;) — 3|+ |LP, (b, n,) — 24| + |LP, (b, ) — Al;

(8.2)
A(b' ns) = [LP01(b’ ns) - nz] /4

In the objective function, the effective index of each LP mode is referred to as well as the optimum
spacing, A, between modes defined in terms of the difference between the effective index of the LPo;
mode and the cladding n,. However, the lowering of the LPo; mode effective index increases the
macro- and micro-bending sensitivity of the design. Fibres with depressed inner core have been

discussed in the context of MM fibres with maximum four-wave mixing by Stolen [8.9].

i
| |
HI My

Figure 8-2: Refractive index distribution schematics of (2) standard Sl fibre and (b) an optimally
perturbed proposed design

In order to improve the LPy; micro- and macro-bending performance and maintain the improved LP»
— LPq effective index separation we consider the addition of localized RI perturbations in the
cladding overlapping optimally with the four intensity lobes of the LP2; mode. We have added 1 pm
radius high-index rods at the edge of the outer core. Such cylindrically non-symmetric perturbation
increases the effective indices of LP.; and LPo, by amounts given by (8.1). As expected, modes LPo
and LP1; are affected by small amounts due to negligible overlaps with the additional perturbations.
Representative LP-mode field distributions of the fully optimised (ring+rods) profiles are shown in
Figure 8-3. It is shown that the cylindrically non-symmetric modes LP1: and LP»; are aligned with
the added cladding rods. At this point, we should mention that the addition of RI perturbing rods in

the fibre cladding breaks the rotational degeneracy of the LP1; and LP»; modes. The mode profiles
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with maxima falling between the Rl modifying rods have effective indices close to the unperturbed

case. In addition to shifting the mode effective index, the RI modifying rods “lock” the optimum
separation modes spatially inside the fibre.
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Figure 8-3: Orientation of equalized effective-index modes with respect to index
modifying rods (a) LPo1, (b) LP11, (¢) LP21 and (d) LPo,

This ‘locking’ avoids unwanted modal rotation which complicates enormously the efficient mode
demultiplexing and detection at the end of the optical link. The benefits of such spatial mode
“locking” in the case of dual-moded fibre have been achieved by using elliptical core fibres. In the
case of single-mode fibre, this is equivalent to “fixing” mode polarization by using high-bi fibres.
The performance of the new four mode-group fibre designs, with optimally spaced mode effective
indices, and the comparison with state-of-the-art Sl fibres are summarized in and Table 8-1.

We also show the result of the perturbation calculation using (8.1) which verifies that the approach
is valid. In addition to the discussed mode spacings, we compare the differential group delays (DGD)
and mode effective areas. The last two parameters define the nonlinear performance of the fibres. It
is shown that in addition to improved mode effective-index distribution the new designs provide

substantially larger mode effective areas. The DGDs are in excess of 4ns/km for all the supported
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modes. It is therefore expected to have superior non-linear performance in comparison with standard

Sl fibres.

Table 8-1: Performance comparison of new designs with state-of-the-art four mode-group step

index fibres (@ A=1550nm)

Mode LPo1 LP1; LP2: LPo,
Ner-Nei (ring - step 1) 7.7x10°% | 5.7x10® | 3.0x10® | 1.9x10°®
Ne-Nei (rods — stepl+step 2) 7.7x10% | 6.0x10° | 3.9x10% | 2.7x10°®
Nesi-Nei (rods — stepL+step 2) using (8.1) | 7.8x10° | 5.9x10° | 4.3x10% | 2.8x10°
Nesi-Nc — ref Sillard et al. [8.4] 8.3x10° | 6.0x10° | 3.2x10° | 2.4x10°®
DGD w.r.t LPo; (ns/km) — (stepl+step2) | - 4.4 6.2 3.9
DGD w.r.t LPo; (ns/lkm) [8.4] - 4.4 8.5 7.2
Aeff (um?) — (stepl+step2) 151 203 172 171
Aeff (um?) — ref [8.4] 124 118 133 127

Table 8-2:

Mode spacing comparison of new designs with state-of-the-art four mode-group step-

index fibres (@ A=1550nm)

Mode Spacing LPoi-LP11 LP11-LP2 LP2:-LPo,
Ring (stepl) 2.0x10° 2.7x10°3 1.1x10°
Rods (stepl+step 2) 1.7x10° 2.1x10°3 1.2x10°
Ref [8.4] 2.3x10°3 2.8x10°3 0.8x107
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m Sillard four LP mode design W Optimized ring+rod four LP mode design
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Figure 8-4: Comparison between mode spacing of Sillard four LP mode step-index design and
optimised ring+rod design @ 1550nm

For ease of interpretation, we also show the data of Table 8-2 in Figure 8-4. We see that the addition
of the ring and rods has achieved closer equalisation of mode spacings for the four mode-group case
and quite significantly increased the LP21-LPg, spacing when compared with the original Sillard et
al. [8.4] design (0.8x10° vs 1.2x10%) while the other spacings are either comparable or large enough
to lead to significant reductions in cross-mode coupling anyway. It is our belief that this addition of

core perturbations is novel.

Further to this we investigated for completeness a six LP mode-group design proposed by Sillard et
al. [8.6] which has the limitations as in the effective index curves of Figure 8-5.
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Figure 8-5: Effective index distribution for the Sillard [8.6] four mode-group step index design

We see that both the LP2:-LPo2 and LPsi-LP12 mode spacings are limited but intuition suggests that
six optimised high-index rods could be used to selectively ‘lift’ the LPs; and LP2; modes due to the
their preferential overlap with the fields as suggested again by (8.1) and illustrated in Figure 8-6.

134



Chapter 8

l'"""l
| —
- I
=
pum———
| S
3
[N
l'"""l
| I —
=
-
| S —— I Y
‘ 3
%]

initial RI distribution
——— H

I ! Rl perturbation

Figure 8-6: Refractive index distribution schematics of a step index fibre with (a) six high-index

rod perturbations and (b) a high-index ring perturbation

Figure 8-7: Orientation of modes with respect to index
modifying rods (a) LPos , (b) LP11, (C) LP21, (d) LPo, (€) LP3; and (f) LP12

We perform this perturbation and show graphically in Figure 8-7 the overlaps between the fields and
rod perturbations. It can be seen clearly that the fields of the LP2: and LP3; modes have preferential
overlap with the six high-index rods and the high periodicity is such that it suggests that a simple
ring might also achieve a very similar effect and the field profile and their overlap with an optimised

ring are shown in Figure 8-8 and demonstrate this same behaviour.

The effective index spacings are given in graphical form in Figure 8-9 where it can be seen that the
addition of the six high-index rods lifts all modes to some extent but most preferentially the LP»;, and
LPsimodes leading to an increase in LP21-LPo; and LPsi-LP12 spacing. It is interesting to note that
the data for the high-index ring perturbation provides even better equalisation of mode spacings
across the board (>2x1073), with even more significant increases in LP21-LPo, spacing than the rod
design (2x107 vs 1.3x10°®)
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Figure 8-8: Orientation of modes with respect to index
modifying ring (a) LPo1 , (b) LP11, (C) LP21, (d) LPo2, (€) LP3: and (f) LP12
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Figure 8-9: Mode spacings for the original Sillard [8.6] six mode-group step index design and the

perturbed rod and ring designs with varying positions
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8.3 Conclusions

We have proposed new MMF designs for both four and six mode-groups with improved mode
spacing, suitable for UC-MDM optical communications. The first four mode-group design involves
two steps and is based on fundamental and intuitive waveguide principles. The new design
incorporates first an optimised core depression, which affects primarily LPo and LPg, mode effective
indices. This optimised perturbation increases the LP21-LPo; mode spacing but can potentially
compromise the fibre micro- and macro-bending behaviour. This effect has been counter-balanced
by incorporating four optimally placed thin high-index rods in close proximity with the fibre core.
This increases primarily the effective indices of the LP21 and LPg; modes without affecting
significantly their spacing. The small LP2;-LPg, mode spacing limitation, encountered in standard Sl
profiles, has been substantially improved by 40-100%. In addition, the new four mode-group fibre
design shows increased effective areas, in excess of 150 um? for all supported modes, which is

expected to give superior nonlinear performance.

An additional element of this work was the investigation of a six mode-group design by perturbing
the step-index design of Sillard [8.6]. Following the introduction of a core depression, the minimum
mode spacing, which occurs between the LP2; and LPg; modes, has increased by 100% through the
use of a ring perturbation. This is even an improvement over the six high-index rod design which
increased the spacing by 30%. In addition an advantage of this ring design is ease of manufacture by
methods such as MCVD. All fibre designs shows increased or comparable effective areas, in for all

supported modes, which is expected to give good nonlinear performance.
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Chapter 9: Inverse scattering designs of mode-selective

fibre couplers

9.1 Introduction

Recent works have described how supersymmetry (SUSY), which originated in the context of
qguantum field theory, can be applied to the design of optical structures for integrated optics
applications with prescribed eigenmode spectra such as by Miri et al. [9.1] as well as methods for
selective mode filtering Heinrich et al. [9.2] and of particular interest to us, applications to the design
of optical fibres [9.1]. In each case, SUSY operates on a trunk waveguide and provides a partner
which is in some way perfectly phase-matched to the trunk. This perfect phase-matching between
waveguides resolves a significant challenge in waveguide design in general. However, as we
indicated recently [9.3], a flaw in the SUSY approach is that the partner waveguide cannot
incorporate the fundamental mode unless complex refractive index (RI) profiles are utilised as
discussed by Miri et al. [9.4], and must in addition contain all other modes supported by the trunk.
As such, selective filtering must incorporate all other higher-order modes, and as such any selective
filtering must be done through the use of a ladder or cascade of partner waveguides. In addition, there
has been no discussion as to quite how the filtering process might be carried out as different phase-

matched modes of coupled structures have differing coupling lengths for power transfer.

In this chapter we expand upon our previous works and describe how an alternative approach based
upon inverse scattering theory [9.5] can be used to design optical fibres supporting linearly-polarized
(LP) modes for which the propagation constants of the modes (the eigenmode spectra) are specified
for a fixed azimuthal number I. This differs from the previous SUSY fibre works because we can
selectively populate the modes of the partner fibre and are not limited to the removal of the
fundamental LPo; mode at each stage as is the case with real RI profiles using the SUSY approach.
We are also not restricted to a partner fibre design for which all higher-order fixed azimuthal value
modes are automatically phase-matched and we are able to achieve this for the same fixed value of |
(or any other) in the partner, not just I+1 as in the case of SUSY. It should be noted that there does
not exist a method by which independent selection of mode azimuthal number | and energy E
(propagation constant) can be achieved and typically either | or E is fixed. The most general method

that does exist only allows specification along straight lines in the (12,E) plane [9.6].

In addition to discussion of the above design of selectively phase-matched partner fibres, we will
discuss the potential for equalization of mode coupling lengths such that power transfer occurs at the
same length. This follows along the same lines as that described in our previous work in Chapter 7
and is based upon the insight that gain or loss may be carefully used in a coupler to perform total

power transfer of a specific mode as suggested by Chen et al. [9.7].
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9.2  Selective phase-matching of modes

As discussed in the introduction, the advantage of the IS approach is the ability to selectively populate
the LP modes of fixed azimuthal value | of a partner fibre and are not limited to the removal of the
fundamental LPo; mode and the automatic phase-matching of all higher-order modes. We can also
phase match the trunk modes to the same azimuthal value | in the partner, which is not the case with
SUSY. We illustrate this process by considering a 12-mode step-index (SI) trunk fibre which has the

following distribution of modes in Figure 9-2.
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Figure 9-1: Eigenvalue spectra in terms of azimuthal mode number for a 12
mode step-index fibre with An=1.44x107?, r;=10.56 um, n=1.444 and A=1.55um

We now demonstrate the process by creating a partner fibre (design #1) for which we have selectively
phase-matched to the I=0 modes LPo; and LPgs in the trunk fibre (red) to the I=0 modes LPy and LPg
in the partner (green) in Figure 9-3. Table 9-1 gives the effective indices of the modes in the trunk

and the partner respectively and Figure 9-4 gives its refractive index profile.
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Figure 9-2: Eigenvalue spectra for design #1 - trunk fibre LPg1 & LPos modes (red)
phase matched to the LPo; & LPo, modes of the partner fibre (green)

Table 9-1: Realised phase-matching modes for design #1

Mode (Trunk) Mode (Partner)
LPo: (1.457528) LPo: (1.457522)
LPos (1.447562) LPo2 (1.447580)

Design #1 partner RI
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Figure 9-1: Refractive index profile of design #1 partner fibre with Nciaddging=1.444 @ A=1.55pm

We could also selectively phase match the I=2 modes LP,; and LP2; ‘backwards’ to the 1=0 LPy; and

LPo> modes of the partner (design #2) as shown in Figure 9-5. Once again, the effective indices
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achieved are shown in Table 9-2 and the refractive index profile is given in Figure 9-6. Once again,
this could not be achieved with SUSY. It would also be possible to continue this process for any
desired I. It is worth noting that all other modes between the trunk and partner, as in the case of
SUSY, are disjoint. In each of the cases described, the choice of the arbitrary parameters ¢, and c
were chosen (design #1 c1=c,=V0.2; design #2 ¢;=V0.1, c=V0.2) simply by trial and error to produce

a ‘smooth’ refractive index profile and their effect is discussed further in the next section.

We note that the effective indices are in good agreement and any discrepancy is due to the
implementation of the finite mesh size, the position of the boundary conditions used in the
simulations and the fact that we utilise a fully vectorial solver (MODE Solutions) in this work. We
have confirmed that accuracy to within less than +1x107 in the effective index can be achieved using

a trial version of the LP mode solver (OptiFiber).
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Figure 9-2: Eigenvalue spectra for design #2 - trunk fibre LPy; & LPos modes
(red) phase matched to the LPo1 & LPg, modes of the partner fibre (green)
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Table 9-2: Realised phase-matching modes for design #2

Modes (Trunk) Modes (Partner)
LP21 (1.454448) LPo: (1.454445)
LP2, (1.448064) LPo (1.448071)

Design #2 pariner RI
0.015 T T T

0.01f

An

0.005F

1 {um)

Figure 9-3: Refractive index profile of design #2 partner fibre with Nciaddging=1.444 @ A=1.55pm

We now proceed to discuss the coupling of modes between the trunk and partner fibres.

9.3 Designs with identical coupling lengths

We begin the process as follows: (1) we start with a trunk fibre that supports a set of guided modes.
(2) We choose the azimuthal value | and particular modes from that set we wish to remove and IS
design a partner fibre that is phase-matched to these modes. (3) We calculate the coupling coefficients
Cizm and C21m for each phase-matched set of modes. (4) We now solve (7.14) and use (7.15) to
determine the optimum combination of (n,q). From this we then determine the optimum mode

effective index correction Amp.

Following step (1) we calculate the coupling coefficients in terms of the RI profile, angular frequency
(w=2mc/L), permeability of free space o, permittivity of free space &, and the normalized transverse
LP mode electric fields Ey;, and Ey; where F; indicates that the integral should be performed over the

cross section of fibre i.

Cy =g, [(n* =%} JE, (X Y)E,; (x, ) clxcly (9.1)

R
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We note that the normalization of the electric fields here follows that of [9.2] such that, for i=1,2

4{

As examples we now consider the design of the coupler designs #1 and #2 described at the start of

25”0 .F|:|Ey(x, y)|2 dxdy} =1 (9.2)

this chapter where in design #1 the LPo; and LPoz modes are dropped from the trunk and coupled into
the LPo and LPo; modes of the partner, and in design #2 the LP2 and LP2 modes are dropped and
coupled into the LPg: and LPo; modes of the partner. It is interesting to note that in recent work
Riesen & Love [9.15] discussed mode-selective fibre couplers and the necessity for specific
azimuthal orientations of the trunk and partner modes in addition to phase-matching, for optimal
power transfer. The coupling coefficient between the trunk LPy, and partner LPon modes is found to
have a cos(lo)) dependence [9.15] on the line defined by angle o which is perpendicular to the zero

line of the anti-symmetric trunk mode field. Here we assume for simplicity that o=0.

9.3.1 Design #1 — LPo; & LPgs dropped

As an example, the coupling coefficients are given in Table 9-3 for the case of design #1 involving
the phase-matching of the 12-mode Sl trunk fibre modes (LPo1 & LPgs) and the IS partner fibre modes
(LPo1 and LPgy) with a spacing between profile centres of 22 um. This was chosen experimentally
leading to a relatively low-loss and short length device. The optical power transfer between the trunk
and partner fibres are shown in Figures 9-7 & 9-8 respectively. It is observed that, as expected, all
the power of the LPo: trunk mode is removed in Figure 9-7 after ~66 LPgs —LPg2 coupling lengths due
to the disparity in coupling coefficients between the pairs, whereas in Figure 9-8 the removal of LPg;

power from the trunk occurs at one LPgs-LPg, coupling length.

Table 9-3: Coupling coefficients for design #1 with two phase-

matched modes with trunk-partner spacing 22 um apart

Modes (Trunk-Partner) Ci2/ Ca1 (m?)
LPo1 -LPos 3.33/3.33
LPos-LPo2 220/ 222
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Figure 9-5: Variation in optical power between the trunk SI LPos and partner IS LPo, modes as a
function of LPgs-LPo, coupling lengths

From Figure 9-7 we see that the 0""-order coupling length of the LPo;-LPo; pair is equal to ~66 LPos-
LPo2 coupling lengths and since total transfer of power occurs between the LPgs-LPo, pair at odd
numbers of coupling lengths, the current configuration would not result in total power transfer from
the trunk for both the LPo: and LPo3 modes at the same device length. In particular, at ~67 LPo3s-LPo2
coupling lengths the remaining LPo: power in the trunk is ~-37 dB, which although small in this
particular case, does not compare with the <-100 dB level of the LPo; mode.
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Figure 9-6: Loss curves for determining the design #1 correction - (a) the (n,q) loss curve showing
the loss (dB) at the q’th order coupling length of the LPos-LPo pair for various
corrected n’th order LPo1-LPo: coupling lengths, (b) the same but with length of device
in metres

As such we wish to perturb the effective index of the LPo; partner mode with gain/loss to correct for
this. Using Figure 9-9 we see that the 33"-order coupling length of the LPos-LPo, pair can be
equalised to the 0™-order LPo:-LPo; pair with a loss in power transfer of the LPg-LPo; pair of ~0.2
dB. Thus the (n,q) pair is (0,33) and associated using (9.31) with a value of M= 0.015 and therefore
an effective index correction of A11=i2.46x108 . The corrected effective indices of the partner fibre
are given in Table 9-4. The resulting coupler design is shown in Figure 9-10 where it can be seen
that the refractive index profile of the partner fibre now contains an imaginary component given by
the dotted line resulting in the above effective index perturbation. The real part of the refractive
index profile remains the same as before the imaginary corrected. The corrected power transfer
curves are shown in Figure 9-11 where it can now be seen that the power left in the trunk at
[9.33x2+1=67] (478mm device length) coupling lengths is now <-71 dB which is an improvement.

In addition, we see that the LPo; power in the partner is, as expected, approximately -0.2 dB.

Table 9-4: Corrected partner fibre modes for design #1

Mode (Trunk) Mode (Partner)
LPo1 (1.457528) LPo: (1.457528+ i2.46x10°%)
LPos3 (1.447562) LPo2 (1.447562)
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It is possible to repeat this process for any of the higher-order modes or even a combination of them.
We now show this by considering the ‘drop’ at the LP2,-LPoz coupling length in design #2 of both
the LP21-LP01 and LPzz-LPoz pairs.

9.3.2 Design #2 — LP2; & LP2; dropped

Here, the coupling coefficients are given in Table 9-5 for the case of design #2 involving the phase-
matching of the 12-mode SI trunk fibre modes (LP21 & LP2) and the IS partner fibre modes (LPo1
and LPg;) with a spacing of 23 um. The optical power transfer between the trunk LP,; and partner

LPo; modes are shown in Figure 9-7 where it is observed that, as expected, all the power of the LP;
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trunk mode is removed after ~2/6/11 LP2, —LPo, coupling lengths for the 0™, 15t and 2™ order lengths

once again due to the disparity in coupling coefficients between the pairs.

Table 9-5: Coupling coefficients for design #2 with two phase-

matched modes with trunk-partner spacing 23 um apart

Modes (Trunk-Partner) Ci2/ Co (Mm?)
LP21 -LPos 12.2/12.2
LP22-LPo2 26.4/26.5

Trunk LP21 - Partner LP‘]1 uncorrected
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Figure 9-9: Variation in optical power between the design #2 trunk SI LPo; and partner IS LPo;

modes as a function of the LP2, —LPo, coupling lengths

From Figure 9-12 we see that for odd numbers of the LP2-LPq, coupling lengths, the power of the
LP2; mode remaining in the trunk is at least -5 dB when there is full power transfer of the LP2, mode.
As such we wish to perturb the effective index of the LPo; partner mode with gain/loss to correct for

this and we once again use ‘correction curves’ in Figure 9-13 to identify the optimum correction.
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the loss (dB) at the q’th order coupling length of the LP2,-LPo, pair for various
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As such we wish to perturb the effective index of the LPo; partner mode with gain/loss to correct for
this. Using Figure 9-13 we see that the 5"-order coupling length of the LP2-LPo, pair can be
equalised to the 2"-order LP2:-LPo; pair with a loss in power transfer of the LP2;1-LPo; pair of ~5.8
dB. Thus the (n,q) pair is (2,5) and is associated using (9.31) with a value of Mj3= 0.0833 and
therefore an effective index correction of A13=i5.00x107 . The corrected effective indices of the
partner fibre are given in Table 9-6. The resulting coupler design is shown in Figure 9-14 where it
can be seen that the refractive index profile of the partner fibre now contains an imaginary component
given by the dotted line resulting in the above effective index perturbation. The real part of the
refractive index profile remains the same as before the imaginary corrected. The corrected power
transfer curves are shown in Figure 9-15 where it can now be seen that the power of the LPo; mode
left in the trunk after [9.5x2+1=11] (655mm device length) coupling lengths is now <-63 dB which
is again a large improvement. Once again, the power of the LPo: mode in the partner is now ~-5.8

dB as predicted.

Table 9-6: Corrected partner fibre modes for design #1

Mode (Trunk) Mode (Partner)
LP21(1.454448) LPo1 (1.454448+i5x107)
LP2, (1.448064) LPo2 (1.448064)
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9.4 Discussion

In this chapter we have demonstrated that it is possible to remove or ‘drop’ selected modes
simultaneously from a trunk fibre using a coupled partner fibre which has a calculated imaginary
phase-mismatch first suggested by Chen et al. [9.7]. In our case we have limited our discussion to
the use of loss in a partner fibre, while it would also be possible to investigate the use of gain, the
value of both being calculated using coupled-mode theory, and then implemented using inverse-

scattering theory. In each case it was necessary to select the spacing between the trunk and partner
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fibres in order to calculate coupling coefficients and in turn the optimum correction. Here we have
simply used some intuition and trial and error in order to find devices of reasonable length, but the
general pattern to be noted is that smaller trunk-partner fibre spacings tend to lead to shorter equalised
devices, though there is always a balance to be had also with respect to the loss in the process. This
use of a lossless trunk fibre and a lossy partner has also been considered fairly recently in the context
of quantum mechanical PT-symmetry breaking [9.16]. However, it is our belief that this is the first
time this has been considered from a more practical point of view with respect to mode-selective
couplers, especially in terms of their inverse design. It must be noted that the issues relating to the
azimuthal orientation of modes and associated coupling strengths must also be taken into account,
but we believe that this work will contribute to the design of mode-selective couplers with a more
general and useful approach than that considered in by the use of SUSY.
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Chapter 10:  Conclusions and Future Work

10.1 Inverse scattering designs of optical waveguides

In this thesis the design of optical waveguides by inverse scattering has been considered and there
has been a successful investigation over how dispersion can be controlled through the manipulation
of the transverse reflection response of a waveguide. In general, the reflection response can be
approximated by a rational reflection coefficient with varying numbers of poles, and here for the first
time a larger numbers of poles have been investigated and found to “fine-tune” the waveguide
dispersion. To my knowledge this is also the first time that the more general inverse scattering
algorithm for rational reflection coefficients devised by Pechnick [10.1] has been applied to

waveguides.

Following on from the work of Mills and Tamil [10.2] the design of multimode planar waveguides
was considered using Darboux transformations from the point of view of group velocity equalisation
[10.3] and the design of mode-selective waveguide couplers [10.4] as an alternative to the recently
proposed SUSY approach. The addition of mode-selective gain or loss was then investigated through
the use of complex propagation constants [10.5] which for the first time showed theoretically that
both gain and loss are required in the refractive index profile for exact equalisation of modal gain.
Finally, the combination of arbitrary phase-matching of modes and the addition of tailored loss/gain
in trunk-partner designs was used to drop arbitrarily chosen modes and equalise their coupling
lengths. By the end of the aforementioned works, it was discovered that the SUSY approach is in
fact a particular case of the Darboux transformation approach as discussed in Chapter 2. It is
interesting to note that for the reflectionless potentials considered in the design of multimode
waveguides above, both the solution to the Gel’fand-Levitan-Marcheko equations and Darboux

transformation approach lead to the very same family of potentials [10.6].

This work has shown that inverse scattering techniques open up new previously unexplored
possibilities in the design of planar waveguides and we discuss this in the following future work

section.

10.2  Inverse scattering designs of optical fibres

This thesis began with the aim of applying inverse scattering techniques to the design of optical fibres
and although a lot of the achievements to date have been with respect to planar waveguides, much
has been learnt in the process. The similarity in mode intensity field profiles between low-order fibre
LP modes and that of the TE modes of planar waveguides meant that intuition could be gained from

studying the waveguide designs. Initially this led to the design of a few-mode fibre with improved
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LP mode spacing [10.7] whereby the core depressions observed in the waveguide designs were
carried over to a fibre design. This particular design was further improved through the addition of
‘rod-like’ features which preferentially ‘lift’ modes with similar symmetries. This approach is also
justified by considering the formula derived by Snyder and Love [10.8] which gives the effective
index of a perturbed fibre design in terms of a weighed integral of the perturbation itself and the
mode field intensity.

Towards the end of the thesis it was found that previous work performed by Yukon and Bendow
[10.9] had investigated the solution of the Gel’fand-Levitan-Marchenko approach in cylindrical
coordinates under the weakly-guiding approximation. In particular, phaseless scattering potentials
were considered, in an analogous way to the reflectionless potentials of planar waveguides, and
explicit solutions were found for specifying the effective index of LP;, modes for m modes of fixed
azimuthal value I. While another paper was found by Hooshyar and Tamil [10.10] that discussed
another class of the problem, the specification of fixed effective index for varying azimuthal value I,
it became clearer that it is not possible to specify freely in advance the effective index of LP modes
of varying azimuthal | value, when the paper by Rudyak [10.11] was discovered. Here the
aforementioned two different classes of inverse scattering problem were described as being particular
cases of their formalism which allowed for the closed-form solution of the problem along arbitrary
lines in the (12, E) plane. What this showed was that at its most general the problem only had a solution
along lines in the (1%, E) plane and therefore the more general approach that was sought at the start of

the work was not achievable.

However, it was found that the approach adopted for fixed | still allowed for the design of fibre
couplers based upon the very same trunk-partner formalism adopted in the waveguide designs above.
In fact, recent work using SUSY [10.12] had obtained cascades of fibres where the partners always
produced phase-matched LPi» modes but with increased order 1+1 at each stage. The Gel’fand-
Levitan-Marchenko approach, on the other hand, had no such limitation and as discussed in Chapter
9 phase-matching of selected trunk modes is possible for any fixed I. In addition, an attempt to add
modal gain/loss to fibre designs was met through trial and error with designs which had very good
equalisation of modal gain across the board, simply by specifying the fixed gain and varying the
effective indices of the modes. It is interesting to note that iterative variation of the free parameters
in the Gel’fand-Levitan-Marchenko design process for fixed effective indices also allows for a
certain tailoring of the mode spectra of modes that ‘fill the gaps’ between the effective indices
specified for the fixed | modes. This, due to time constraints, was not included in this thesis, but will
be discussed in a future paper. As in the case of waveguide couplers above, the very same approach

to coupling length equalisation using the tailoring of gain/loss in the design process is possible.

It is felt that the work performed on fibres here has shown both the benefits and limitations of the
inverse scattering approach to fibre design. On one hand the approach described is an alternative and

more general one to that of SUSY as described in Chapter 2, while it has been shown that there is no
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freedom to obtain fibre designs with arbitrarily prescribed LP modes. However, as above, it has also
been shown that variation of free parameters in the design process gives an element of control over
the modes that “fill the gaps’. There is certainly further work possible on the iterative fine-tuning of
mode spectra through this approach.

10.3  Future work

In the above, some conclusions have been drawn regarding the success of this research work in both
the design of planar waveguides and optical fibres. As discussed, the work has shown that there are
both more possibilities as well as limitations, particularly in the design of fibres, than previously
thought.

While completing this thesis it has come to our attention that considerable work has been carried out
on mode selective excitation and gain control in special large-mode area (LMA) fibres known as
‘ribbon fibres’ [10.13]. These fibres are expected to be used as alternatives to standard circular LMA
fibres as they can potentially offer superior bending performance, better heat dissipation and
improved power scalability. The work performed in this thesis on the mode-selective tailoring of
gain could be applied to this design problem as ribbon fibres are known to utilise high-aspect ratio
rectangular cores which are “semi-guiding” in the sense that only one axis is guiding and the other

effectively un-guiding which can be approximated by a simple planar waveguide design.

Our novel inverse scattering approaches can also be used to design semiconductor amplifiers and
lasers with improved modal properties and output power stability. In this case, gain and loss can be
introduced in the waveguiding section by locally pumping the semiconductor. This can be achieved

by appropriately patterned electrodes or interference patterns [10.14]-[10.16].

Recent work has shown that ring-core fibre designs [10.17] may be used for a very good standard of
gain equalisation and qualitatively similar designs can be obtained without any assumptions as to the
form of the rings, from inverse scattering theory and as mentioned above will be published shortly
in a paper. It is expected that significant equalisation of gain across a large number of LP mode

groups is possible using this approach, even if in an iterative manner.

The design of mode-selective waveguide and fibre couplers could be investigated further but from
the point of view of loss-less designs that allow for the incorporation of both loss and gain in both
the trunk and partner. This would be timely considering the work using PT-symmetry [10.18] where

de-multiplexing using such a design approach has been considered.

Finally, it should added that in the case of optical fibres, the localised gain and loss can be potentially
distributed accurately inside the core and/or cladding regions using “pixilation” techniques. In this
case, sub-wavelength rods, doped with active ions that can absorb or amplify the signal [10.19] can

be optimally assembled and drawn into fibres by a standard “stack-and-draw” technique [10.20].
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These fibre drawing techniques have been extensively used in modern advanced active fibre designs
[10.21].
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