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The influence of a multi-scale fractal-based geometry on the decay of turbulence is
investigated by comparing the turbulence produced by a square-fractal-element grid
to that produced by two regular grids with similar physical properties. Comparison
of the grid wakes at constant grid Reynolds number, ReM , identifies that in the far-
field both regular grids produce comparable or higher turbulence intensities and local
Reynolds numbers, Reλ, than the square-fractal-element grid. This result is illustrative of
a limitation of multi-scale geometries to produce the oft-quoted high levels of turbulence
intensity and Reλ. In the far-field, the spectra are approximately collapsed at all scales
for all three grids at a given Reλ. When a non-equilibrium near-field spectrum with
〈uv〉 6= 0 is compared to a far-field spectrum at the same Reλ but with 〈uv〉 ≈ 0, it is
shown that their shapes are markedly different and that the non-equilibrium spectrum
has a steeper slope, giving the appearance of being nearer k−5/3, although there is no
theoretical expectation of an inertial range at such locations in the flow. However, when a
non-equilibrium spectrum with 〈uv〉 ≈ 0 is compared to a far-field spectrum at the same
Reλ, they are once again collapsed. This is shown to be related to non-zero Reynolds
shear stress at scales that penetrate the scaling range for the present experiment, and
hence the influence of shear is not limited to the largest scales. These results demonstrate
the importance of local properties of the flow on the turbulence spectra at given locations
in the inherently inhomogeneous flow found in the non-equilibrium region downstream
of grids. In particular, how the presence of local shear stress can fundamentally change
the shape of the spectra at scales that can be mistakenly interpreted as an inertial range.
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1. Introduction

The advent of fractal-generated multi-scale turbulent flows has allowed new and
innovative questions to be posed of our understanding of the turbulent motion of fluids;
see for instance the review by Vassilicos (2015). Fractal-generated flows also open the door
for several novel applications of multi-scale turbulence generators, e.g., low-noise aero-
dynamic spoilers (Nedić et al. 2012) and enhanced mixing for combustion applications
(Soulopoulus et al. 2013; Verbeek et al. 2015). Practically, fractal-generated flows are
attractive because they have been reported to produce turbulence with higher turbulence
intensities and local Reynolds numbers than regular grids with similar blockage, σ, and
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pressure drops (Hurst & Vassilicos 2007; Geipel et al. 2010; Valente & Vassilicos 2011;
Kinzel et al. 2011; Laizet & Vassilicos 2015). Theoretically, fractal-generated flows have
garnered interest because they produce a region of rapid energy decay that exhibits a
long (two decade) power-law range in the spectra that closely matches k−5/3 (Mazellier
& Vassilicos 2010), but that has non-constant normalised dissipation scaling (Valente
& Vassilicos 2011; Hearst & Lavoie 2014a; Vassilicos 2015). This appears to be at
odds with our classical understanding of the dynamics of turbulence. Flow with similar
phenomenology has also been observed behind regular grids (Valente & Vassilicos 2012;
Isaza et al. 2014). Such turbulence has been termed ‘non-equilibrium’ turbulence, and is
a topic of intense contemporary research with far reaching consequences for others flows,
e.g., wakes (Nedić et al. 2013; Dairay et al. 2015; Castro 2016), and jets (Geipel et al.
2010; Cafiero et al. 2015).

The wake of square fractal grids has been an area of particular interest in recent years
because they were shown to produce turbulence that was markedly different from regular
grids and fractal cross-grids (Hurst & Vassilicos 2007; Valente & Vassilicos 2011). For
instance, square fractal grids produce an extended non-equilibrium region (relative to
regular grids) that experiences rapid decay of the turbulent kinetic energy (Hurst &
Vassilicos 2007; Valente & Vassilicos 2011; Hearst & Lavoie 2014a). The decay of the
energy in this region follows a power-law,

〈
q2
〉
∼ (x − x0)n, with n . −2.5 (Valente

& Vassilicos 2011; Hearst & Lavoie 2014a); where
〈
q2
〉

=
〈
u2
〉

+
〈
v2
〉

+
〈
w2
〉

is twice
the turbulent kinetic energy, x is the downstream distance from the grid, and x0 is
a virtual origin. However, canonical decay rates range −1 > n > −1.4, which are
substantially slower (Comte-Bellot & Corrsin 1966; Mohamed & LaRue 1990; Lavoie
et al. 2007; Krogstad & Davidson 2010, 2011). Despite the rapid decay of energy in the
non-equilibrium region, it is the region with the highest turbulence intensities and Taylor
microscale Reynolds numbers. The Taylor microscale Reynolds number is given by,

Reλ =

〈
u2
〉1/2

λ

ν
, (1.1)

where the Taylor microscale is,

λ2 = 15ν

〈
u2
〉

〈ε〉
, (1.2)

and 〈ε〉 is the mean turbulent kinetic energy dissipation rate (hereafter referred to simply
as dissipation). The assertion that square fractals produce higher turbulence intensities
and Reλ than regular grids has largely been based on comparisons where a single square
fractal occupied the entire wind tunnel cross-section and the mesh length, M , of the
regular grid was significantly smaller than the maximum length of an element in the
fractal geometry, L0, i.e., L0 � M (Hurst & Vassilicos 2007; Laizet & Vassilicos 2015);
for a regular grid, L0 = M . In the few studies where L0 of the fractal and M of the regular
grid were comparable, the regular grid configuration included only four bars (Valente &
Vassilicos 2012, 2014; Zhou et al. 2014; Laizet et al. 2015) and it is quite possible the
interaction of the bar wakes with the domain edges/walls influenced the development of
the flow (Wang & George 2002). Moreover, all such comparisons have been made in the
region x/L0 < 20, where the fractals experience non-equilibrium phenomenology (Hearst
& Lavoie 2014a), while the regular grids have already begun to transition to a canonical
grid turbulence far-field (Isaza et al. 2014). In an unconfined environment, the turbulence
in the wake of multi-scale and regular grids would continue to evolve laterally as well as
in the streamwise direction, and there has not been a rigorous comparison of the far-field
of regular grids and square fractal grids where L0 = M and σ has been matched. Indeed,



Effects of multi-scale and regular grid geometries on decaying turbulence 3

one might expect that given the extended region of rapid decay behind a fractal relative
to a regular grid, the far-field might be less energetic. However, there is no information in
the literature that has identified or inferred that this is the case. This point is important
for applications where grids are used to produce enhanced turbulence, either locally or
for an extended region. Investigating this further is the first focus of the present work.

The second focus is centred about the the shape of the spectra in the scaling range.
Here, the term scaling range is used to describe the subset of wavenumbers where the
velocity spectrum scales with a power-law, km, where m is a constant. The scaling range is
the inertial range predicted by Kolmogorov-based analysis when k−5/3. For both regular
and multi-scale grids, it would appear that spectra in the non-equilibrium region approach
an apparent k−5/3 region at lower Reλ than equivalent spectra in the far-field (Mazellier &
Vassilicos 2010; Valente & Vassilicos 2011, 2012; Hearst & Lavoie 2014b; Isaza et al. 2014;
Laizet et al. 2015). The presence of a near k−5/3 spectrum in the non-equilibrium region is
interesting because the non-equilibrium region experiences non-constant normalised dissi-
pation scaling (Valente & Vassilicos 2011, 2014). Constant normalised dissipation scaling
and k−5/3 are thought to be results of the same phenomenology as they are classically
derived from the same base set of assumptions (Lumley 1992). Interestingly, recent studies
have observed turbulent transport of kinetic energy and turbulent production in the
region that experiences a near k−5/3 spectrum (Valente & Vassilicos 2011, 2014; Nagata
et al. 2013; Hearst & Lavoie 2014b). This is also curious because Kolmogorov-based
theory is meant to apply for turbulence that is sufficiently removed from its boundary
and initial generating conditions to be uninfluenced by them (Kolmogorov 1941; Frisch
1995; Isaza et al. 2014). These near k−5/3 spectra have typically been reported along a
single axis of the flow, and hence it is unclear if these observations are a consequence of a
global phenomenological difference between the non-equilibrium region and the far-field,
or whether they are a consequence of local properties present at very specific locations in
the flow field. For instance, observations of near k−5/3 spectra have also been reported for
the highly sheared regions of a turbulent boundary layer (Saddoughi & Veeravalli 1994),
and jets (Mi & Antonia 2001). Laizet et al. (2015) conducted an extensive study along
the centreline of the wakes of space-filling square fractal and four-bar regular grids to
demonstrate that a f−5/3 range in the frequency spectrum originates in the production
region that precedes the peak in the turbulence intensity. They associated this range with
intermittent clusters of elongated vortices prevalent near the grid. They also noted that
the f−5/3 region should not be confused with a Kolmogorov k−5/3 spectrum because
their results did not collapse when normalised by the dissipative Kolmogorov scaling.
A common theme amongst these observations of near k−5/3 spectra is the presence of
Reynolds shear stress, 〈uv〉, which is also featured in the production term (Nagata et al.
2013; Valente & Vassilicos 2014; Hearst & Lavoie 2014b; Isaza et al. 2014). This may
be a statistical marker of the vortex clusters identified by Laizet et al. (2015). Perhaps
the near k−5/3 spectra at the relatively low Reλ of grid turbulence are only present
at locations where there is 〈uv〉, similar to observations in turbulent boundary layers
and jets. Determining this requires more detailed measurements of the non-equilibrium
region including both positions where 〈uv〉 6= 0 and 〈uv〉 = 0 with direct comparison
to the far-field at similar Reλ. Thus, clarifying the conditions that generate a spectrum
that appears to have a k−5/3 range where one is not expected is the second focus of this
work.

To address the above issues, we investigate the wake of a square-fractal-element grid
and compare it to the wakes of two different regular grids with the same blockage.
Comparisons are made of the evolution of the turbulence intensity and Reλ at constant
ReM = U0M/ν in order to ascertain how long the desirable characteristics of fractal-
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Grid L0 = M L1 L2 L3 τ0 τ1 τ2 τ3 σ x∗ Type

Fs39 100.0 55.6 24.7 11.0 6.7 4.1 2.5 1.5 0.39 1493 fractal-element

Sq39 100.0 − − − 22.0 − − − 0.39 455 planar regular

Rd38 32.0 − − − 6.8 − − − 0.38 151 bi-planar round-rod

Table 1. Grid dimensions and properties; lengths and thicknesses are given in mm. For Fs39,
Li, and τi, with i = 0, 1, 2, 3, represent the length and the thickness, respectively, of the elements
in the square-fractal-element grid from largest to smallest.

generated flows persist relative to the regular grids; U0 is the velocity immediately up-
stream of the grid. Comparisons are also made between positions in the non-equilibrium
region and in the far-field at constant Reλ. The purpose of the Reλ matched survey is
to determine: (i) if the spectra indeed are closer to k−5/3 in the non-equilibrium region,
(ii) what characteristics the flow possesses at locations where a near k−5/3 spectrum is
observed, and (iii) if near k−5/3 spectra are ubiquitous across the non-equilibrium region.

2. Experimental procedure

2.1. The grids

The first grid is the square-fractal-element grid, Fs39, used by Hearst & Lavoie
(2014a,b, 2015b). This grid consists of several N = 3 square-fractal-elements mounted
to a 12 × 8 background mesh (where N is the number of times the fractal shape is
repeated). This grid includes multiple prefractal elements across the test-section, allowing
for measurements to be made without influence from the walls, and farther downstream
relative to the largest element in the grid, L0. Throughout this work, we define the mesh
length of a grid as M = L0; Hearst & Lavoie (2014a) showed that this was a relevant
choice based on the far-field collapse of normalised dissipation for Fs39 with regular
grids. Fs39 was laser cut from a single piece of 3 mm thick stainless steel. The exact
dimensions of the square-fractal-element grid are provided in table 1.

Two canonical ‘regular’ grids were also used as benchmarks. The first is a standard
square mesh, Sq39, with M = 100 mm such that M is the same for both Sq39 and Fs39.
The solidity, σ, of Sq39 and Fs39 was also designed to be the same. Sq39 was water
jet cut from a single piece of 6.35 mm thick aluminum. The last grid is Rd38, which is
a classic bi-planar round rod grid. The grid is composed of aluminum round rods with
a 6.8 mm nominal diameter, mounted into a machined frame with M = 32 mm. The
maximum bar thickness, τ0, and the blockage, σ, of Rd38 and Fs39 are nearly equal.
Dimensions for all three grids are provided in table 1, and images of a sample area of each
grid are shown in figure 1. The ‘wake interaction length scale’ as defined by Mazellier &
Vassilicos (2010), x∗ = L2

0/τ0, is also provided in table 1 for reference.

2.2. Experimental facility

All measurements were performed in the low-speed, recirculating wind tunnel at the
University of Toronto Institute for Aerospace Studies. A schematic of the tunnel is
provided in figure 2. The wind tunnel is powered by a 60 h.p. 3-phase motor. The motor
is situated inside the wind tunnel and the motor housing section is isolated from the
rest of the wind tunnel by soft connections that reduce the transmission of mechanical
vibrations. Without a grid, a mean flow velocity of 40 m/s is achievable and the turbulence
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(a) (b) (c)

Figure 1. Photographs of a nominally 260 mm× 340 mm area of each of the
1200 mm× 800 mm grids; (a) Fs39, (b) Sq39, (c) Rd38.

intensity is less than 0.05% up to 13 m/s, monotonically growing to 0.08% at full speed.
The settling chamber consists of a honeycomb and three screens that are specifically
manufactured such that there are no seams as to not induce inhomogeneities in the flow.
A 9:1 contraction accelerates the flow into the 5 m long test-section. The test-section
itself has an octagonal cross-section that is 0.8 m high and 1.2 m wide (see cross-section
of figure 2). The corners of the test-section have a nominal length of 0.28 m with flexible
extremities such that they can be adjusted to create a near-zero pressure gradient along
the test-section length. The test-section allows for optical access on all eight surfaces.
Immediately preceding the test-section is a grid holder where the grids were placed.
Downstream of the test-section there are breather vents that equalize the pressure with
the room. The test-section is also mechanically isolated from the rest of the wind tunnel
by soft connectors used to attach it to the contraction and to the rear diffuser. Finally,
before returning to the fan, the flow passes through a heat exchanger that is controlled
by an external cooling unit.

For this study, the wind tunnel test-section was modified by adding a slight secondary
contraction; this methodology has previously been shown to decrease anisotropy in grid
turbulence measurements (Comte-Bellot & Corrsin 1966; Lavoie et al. 2007). Specifically,
the secondary contraction was employed to reduce the variability of the anisotropy in
the wakes of the various grids and hence remove it as a driving factor in the analysis of
the produced turbulence. The secondary contraction ratio is 1.23:1 and its longitudinal
dimensions are given in figure 3. The contraction was composed of 50.8 mm thick
insolation foam attached to the inside walls of the wind tunnel. The profile of the
secondary contraction was designed following recommendations by Bell & Mehta (1988).

The downstream distance relative to the grid was measured by the transit time of the
turbulence advection from the grid to a given streamwise position, x, (Comte-Bellot &
Corrsin 1966)

t =

∫ x

0

1

U(s)
ds, (2.1)

where U(x) is the local mean velocity at a position x, and s is a dummy integration
variable. Streamwise position is thus denoted U0t/M rather than the typical x/M . For
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Figure 2. Schematic of the low-speed, recirculating wind tunnel at the University of Toronto
Institute for Aerospace Studies.
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Figure 3. Schematic of the wind tunnel test-section with secondary contraction.

the present study, we also define Uc as the measured mean velocity inside the secondary
contraction, which is calculated from the mean of U(x) between 1.5 m 6 x 6 4.0 m.

2.3. Instrumentation

Measurements were performed with a Dantec StreamLine constant temperature hot-
wire anemometer. For streamwise scans, data were acquired with three hot-wire probes
simultaneously, a single-wire, a X-wire, and a nano-scale thermal anemometry probe
(NSTAP). For transverse scans, data were acquired simultaneously with only the single-
wire and X-wire. For both series of tests, the various probes were separated in the z-
direction by 10 mm. The single-wire and the X-wire were manufactured in-house by
mounting 2.5µm diameter tungsten wire to Dantec-style prongs. Sensing lengths were
isolated by coating the excess wire with copper. All traditional hot-wire sensing lengths
were maintained at ` = 0.50± 0.05 mm. The separation between the wires of the X-wire
was 1.1 mm. The traditional hot-wires were operated at an overheat ratio of 1.6. The
NSTAPs were developed at Princeton University by Smits and co-workers (Bailey et al.
2010; Vallikivi et al. 2011). The particular probes used here are described in detail by
Vallikivi et al. (2011). An NSTAP is a micro-manufactured single-wire with a 60µm ×
2µm×0.1µm sensing element and a frequency response up to 150 kHz, vastly improving
the spatial and temporal resolution compared to traditional hot-wires. The NSTAPs were
also operated with the StreamLine, but at an overheat ratio of 1.3 as recommended by
Vallikivi et al. (2011). The sampling frequency, fs, was set to fs = 2fc + 500 Hz, where
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Grid Uc ReM fc ts Resolution Meas. range Max step size

(m/s) (kHz) (min) (`u/η) (`v/η) (U0t/M) (∆x/M)

Rd38 17.0 28,500 30 4.0 [0.1, 0.4] [1.2, 3.0] [21.5, 113.2] 1.41

Fs39 5.5 28,500 10 4.1 [0.1, 0.3] [0.7, 2.2] [6.9, 39.8] 0.45

Sq39 5.5 28,500 10 4.0 [0.1, 0.4] [0.8, 3.0] [6.9, 40.5] 0.48

Table 2. Experimental setup details for streamwise measurements. All scans were performed
along the (y, z) = (+15, 0) mm axis. The square brackets, [·], imply a range of values. The
NSTAP and X-wire were used to estimate quantities along these scans.

Grid Uc ReM fc ts Resolution Meas. range Max step size

[m/s] [kHz] [min] [`/η] [y/M ] [∆y/M ]

Rd38 20.2 32,500 30 5.0 [1.5, 3.0] [-8.13, 6.56] 1.41

Fs39 17.4 88,500 30 5.1 [2.1, 4.9] [-2.50, 2.00] 0.35

Sq39 15.7 80,000 30 5.1 [2.1, 4.9] [-2.50, 2.00] 0.35

Table 3. Experimental setup details for transverse measurements. Each case was performed
at x = 1.25 m, 2.00 m, 3.25 m, and 4.50 m. This corresponds to U0t/M = 34.2, 53.2, 84.8,
and 116.5 for Rd38, and U0t/M = 10.9, 17.0, 27.2, and 37.3 for Fs39 and Sq39. All scans were
performed at z = 0. A single-wire and X-wire were used to estimate quantities along these scans.

fc is the cut-off frequency of the chosen analog filter. The sample time, ts, was chosen
such that

〈
q2
〉

was converged to at least ±1% at every location using the 95% confidence

interval (Benedict & Gould 1996). Here,
〈
q2
〉

is estimated from
〈
q2
〉

=
〈
u2
〉
NSTAP

(1 +

2
〈
v2
〉
XW

/
〈
u2
〉
XW

). Except when stated otherwise, all results presented for the u velocity
component are from the NSTAP. Information on fc and ts for the various tests is provided
in tables 2 and 3. The single-wire and NSTAP were calibrated over 10 velocities and
fitted with a fourth-order polynomial. The X-wires were calibrated over 10 velocities and
7 angles using the look-up table approach described by Burattini & Antonia (2005). All
calibrations were performed in situ near the end of the test-section where the turbulence
intensity was below 2% for all grids.

To compare Fs39, Sq39, and Rd38 at a constant ReM , streamwise measurements were
performed between 0.75 m and 4.90 m from the grid along the (y, z) = (+15, 0) mm axis
using an automated traverse; (y, z) = (0, 0) is the centre of the wind tunnel test-section
cross-section, which corresponds to the middle of an opening in Sq39 and Rd38, and
the centre of the background mesh opening for Fs39. This axis was selected because it
gave the best approximation of constant U(x) for all grids. Direct comparisons between
the turbulence evolution in the wake of the three grids were made only in the far-field
where the flow was homogeneous and the choice of axis was thus irrelevant. Near-field
comparisons were done on a point-by-point basis using both streamwise and transverse
scans and incorporate all statistics at a given point. Measurements were not performed
closer to the grid because the pressure had to be allowed to recover downstream of the
secondary contraction. We also note that the secondary contraction alters the flow passing
through it and as such drawing a direct line back to the point of origin on the grid should
be done with caution. Experimental parameters for the streamwise scans are provided in
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table 2. The approximate resolution of the u and v measurements based on the sensing
lengths of the wires are also provided in tables 2 and 3 relative to the Kolmogorov

microscale η = ν3/4/ 〈ε〉1/4. The measurement range is given for each streamwise test
case in non-dimensional U0t/M . Finally, the maximum step size is given as ∆x/M , and
indicates the size of the largest step taken between any two streamwise measurements.
Some measurements were more finely spaced in regions where increased spatial resolution
was desired.

Transverse measurements were acquired downstream of all three grids at x = 1.25 m,
2.00 m, 3.25 m, and 4.50 m. The hot-wires were traversed across the test-section using
an automated system that spanned −0.25 m 6 y 6 +0.20 m along z = 0. The flow was
measured at two mean velocities for each grid; one test at Uc = 6 m/s and another at
the maximum speed that was sustainable in the tunnel. These maximum mean velocities
were Uc = 20.2, 17.4, and 15.7 m/s for Rd38, Fs39, and Sq39, respectively, and were
different because each grid produced a different pressure drop. The two mean velocities
were used to ascertain if there was a ReM dependence of the flow homogeneity, but
the spanwise scans were not sensitive to ReM at the given stations. As such, we only
present the higher ReM case for each grid. Experimental parameters for the transverse
measurements are provided in table 3.

For the streamwise measurements at ReM = 28, 500, the pressure drop, ∆P , across
each grid was measured using a 10 torr MKS Baratron transducer. The ∆P was taken
between a static wall port upstream of the grid and the static port on a Pitot static
tube located approximately in the centre of the test-section, 2 m downstream of the
grid. This was well downstream of the secondary contraction such that the pressure had
recovered. Bernoulli’s equation was used to correct the measured pressure drop to the
actual pressure drop given the post-grid measurements were performed downstream of
the secondary contraction. The normalised pressure drop is thus given by

C∆P =
∆P
1
2ρU

2
0

=
∆Pm
1
2ρU

2
0

−
(
U2
c

U2
0

− 1

)
, (2.2)

where ∆Pm is the measured pressure drop and ∆P is the true pressure drop across
the grid. To produce the same ReM for each grid, the normalised pressure drops were
C∆P = 0.61, 1.21, and 1.72 for Rd38, Fs39, and Sq39, respectively. This result contrasts
with the DNS of Laizet & Vassilicos (2015) who found that the pressure drop did not
vary significantly with grid design for a given σ. However, we recognise that our grid
bars have different geometries (e.g., round bars compared to square cross-sections). The
downstream pressure measurements were performed in a region that can be reasonably
identified as the far-field (as discussed in section 3), and the facility was set-up to have an
approximately zero-pressure gradient in the test-section. The normalised pressure drop
changes by nearly a factor of 3 between Rd38 and Sq39, and by a factor of 1.4 between
Fs39 and Sq39, both of which are non-negligible changes and well above the uncertainty
bounds of the present measurements. As will be shown in section 4, these pressure drop
measurements are consistent with the turbulence intensity measured for each grid.

Finally, in order to produce measurements with approximately the same Reλ for all
grids, a series of scans were performed along the (y, z) = (+15, 0) mm axis at Reynolds
numbers spanning 17, 500 6 ReM 6 93, 000. The relevant measurements from the Reλ
matching survey are presented in table 4. The local Reynolds number used to compare
the measurements was that based on the Taylor microscale and assuming isotropy as
given in (1.1). This in turn requires computation of the dissipation rate of the turbulent
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Test Grid U0t/M y/M ReM Reλ

F1a Fs39 28.3 +0.15 40,000 65

F1b Fs39 17.4 +0.15 28,500 66

S1 Sq39 32.2 +0.15 17,500 66

R1 Rd38 26.4 +0.15 35,000 66

S2 Sq39 19.5 +0.15 44,000 112

F2a Fs39 21.6 +0.15 93,000 113

F2b Fs39 8.6 +0.15 30,500 116

F2c Fs39 10.4 +0.15 39,500 117

S3† Sq39 27.8 +0.15 70,500 134

F3a† Fs39 10.9 +1.25 88,500 134

F3b† Fs39 10.9 +1.00 88,500 180

F3c† Fs39 10.9 −0.25 88,500 180

S4† Sq39 17.0 +0.15 84,500 180

Table 4. Details for measurements designed to compare turbulence at the same Reλ. † indicates
measurements performed with a single-wire. All other measurements were performed with the
NSTAP.

kinetic energy for which we use the isotropic definition,

〈ε〉 = 15ν

〈(
∂u

∂x

)2
〉
. (2.3)

The isotropic definitions are used throughout this study because they are those most com-
monly reported in the literature and are thus easily used for comparison. Furthermore,
in previous multi-scale studies it has been demonstrated that estimating the dissipation
with different assumptions may marginally influence the magnitude of the estimates but
does not change the trends (Hearst & Lavoie 2014a; Valente & Vassilicos 2014). Finally,
we note that the discussion and conclusions of this work are not influenced by the specific
estimate used for the dissipation.

2.4. Data post-processing and uncertainty analysis

Post-acquisition, data were low-pass filtered at recursively updated estimates of the
Kolmogorov frequency, fK = U/2πη, using a fifth-order digital Butterworth filter as
described by Mi et al. (2005). This reduces high-frequency noise associated with over-
sampling the noise floor. The uncertainties associated with finite spatial resolution of
the hot-wires were estimated using a Wyngaard (1968) approach. In general, the spatial
resolution uncertainty associated with the NSTAP was negligible due to its size being
smaller than η. The spatial resolution uncertainty associated with the estimates of

〈
v2
〉

was less than 0.5%. Gradients were calculated from the time-series with Taylor’s frozen
flow hypothesis, allowing x = Ut, and a sixth-order centred-difference scheme that has
been shown to provide a good balance of high-frequency noise filtering and resolution for
hot-wires (Hearst et al. 2012). Maximum uncertainties on the gradients due to spatial
resolution and filtering inherent to the choice of numerical differentiation scheme were 4%
on
〈
(∂u/∂x)2

〉
and 10% on

〈
(∂v/∂x)2

〉
(evaluated at the most upstream measurement

station), however, these uncertainties decrease with growing x because the smallest scales
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in the flow grow. Estimates of the uncertainties on the presented values are given as
error bars or in the captions of the figures throughout this work. In general, the bias
uncertainties were estimated with the break-down given by Jørgensen (2002) and the
random uncertainties were estimated from the boot-strapping technique described by
Benedict & Gould (1996).

3. Flow characterisation

Before in-depth analysis of the turbulence intensity and spectra can be performed,
it is relevant to separate the flow into two regions: the non-equilibrium near-field, and
the far-field. Here we identify the near-field as the region where the initial generating
conditions of the flow still directly influence the evolution of the turbulence. This is
identified as the region in the flow that experiences transverse inhomogeneity as well as
non-constant evolution of the Reynolds shear stress, 〈uv〉, and the velocity derivative
skewness, S(∂u/∂x) = 〈(∂u/∂x)3〉/〈(∂u/∂x)2〉3/2. This is the same technique as that
used by Isaza et al. (2014). Further to the above, these metrics have previously been
shown to approximately correlate to regions where the dissipation scaling, Cε, grows
before becoming roughly constant in the far-field (Hearst & Lavoie 2014a, 2015b).

Transverse scans of the Reynolds shear stress are shown in figure 4. The wakes of both
regular grids have near zero 〈uv〉 at all transverse measurement stations, while the wake
of Fs39 is initially inhomogeneous with transverse oscillations of a period of M . As the
Fs39 flow evolves, the 〈uv〉 profile homogenizes between x = 2.00 m and 3.25 m. In
figure 5 it is shown that 〈uv〉 ≈ 0 along the (y/M, z/M) = (0.15, 0.0) axis for Fs39 for
x & 2.3 m (U0t/M & 19). The velocity derivative skewness is also shown in figure 5,
and was found to become approximately constant near U0t/M = 19 as well. We note
that this is quite close to x/M = 20 established in our previous work for Fs39 without
a secondary contraction (Hearst & Lavoie 2014a,b, 2015b). We thus distinguish the flow
ahead of U0t/M = 19 as the near-field and the flow downstream as the far-field. The
transition occurs near U0t/M = 14 for Sq39 (using the same criteria) and the entire
measurement range of Rd38 is within the far-field. These results for the regular grids
corroborate the findings of Isaza et al. (2014). This discrimination is further validated in
appendix A with measurements of the transverse transport of turbulent kinetic energy
and turbulent production.

In figure 5, 〈uv〉 and S(∂u/∂x) are also plotted against U0t/x
∗. Under this nor-

malisation, it would appear that the wake of Fs39 reaches its far-field state sooner
in its evolution than that of Sq39, an observation made by Isaza et al. (2014) when
comparing their regular grid measurements to the Fs39 data from Hearst & Lavoie
(2014a). However, under U0t/M normalisation and in dimensional units, the wake of
Sq39 reaches a far-field state (including transverse homogeneity) before that of Fs39;
recall M = L0 is the same for these two grids. This observation may be more practical
given that an application of a turbulence generating technology would likely consider the
generated turbulence in either physical units or relative to the mesh length. Moreover,
the dissipation appears to scale downstream with M (Hearst & Lavoie 2014a).

Samples of various turbulent quantities are provided in table 5 to provide understand-
ing of how the various grid wakes evolve. In this work, the integral scale was estimated
from,

Lu =
1

〈u2〉

∫ r0

0

〈u(x)u(x+ r)〉 dr, (3.1)

where r0 is the first zero-crossing of the auto-correlation 〈u(x)u(x+ r)〉. From table 5,
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the global isotropy (u′/v′) is collapsed to within 1.10 ± 0.04 for x > 2 m, which is
within the far-field for all flows. This is an improvement on the global isotropy reported
without a secondary contraction for both traditional grid turbulence and in our previous
measurements behind Fs39 (Hearst & Lavoie 2014a); typically, u′/v′ & 1.2. The local
isotropy is estimated from the ratio

〈
(∂v/∂x)2

〉
/
〈
(∂u/∂x)2

〉
which would be 2 in an

isotropic flow. The wakes of Fs39 and Rd38 both approximate local isotropy to within
5% for the majority of their evolution and the wake of Sq39 is within 10%. We are thus
confident that any differences in the far-field turbulence generated by the various grids
is not a property of global and local isotropy at a particular position.
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x U0t/M U0t/x
∗ u′/U Reλ u′/v′

〈(∂v/∂x)2〉
〈(∂u/∂x)2〉 S

(
∂u
∂x

)
Lu λ η

(m) (%) (mm) (mm) (mm)

Fs39

1.00 8.9 0.60 5.56 104 1.19 2.16 −0.42 22 5.1 0.26

2.00 17.0 1.14 2.99 66 1.14 2.06 −0.45 25 6.2 0.39

3.00 25.1 1.68 2.02 53 1.09 2.09 −0.46 29 7.4 0.52

4.00 33.2 2.23 1.56 48 1.07 2.12 −0.46 33 8.8 0.65

4.50 37.3 2.50 1.44 48 1.11 2.04 −0.46 35 9.5 0.70

Sq39

1.00 8.9 2.00 7.49 115 1.14 1.75 −0.48 31 4.3 0.21

2.00 17.0 3.83 4.12 97 1.14 1.79 −0.47 43 6.6 0.34

3.00 25.1 5.65 3.04 90 1.14 1.80 −0.48 48 8.3 0.45

4.00 33.2 7.48 2.48 86 1.14 1.83 −0.47 55 9.8 0.54

4.50 37.3 8.39 2.25 83 1.12 1.85 −0.48 55 10.3 0.58

Rd38

1.00 27.8 5.96 1.82 58 1.03 2.03 −0.42 12 2.9 0.20

2.00 53.2 11.4 1.17 53 1.07 2.09 −0.43 16 4.1 0.29

3.00 78.5 16.8 0.93 50 1.10 2.08 −0.43 18 5.0 0.36

4.00 103.9 22.2 0.79 50 1.13 2.04 −0.43 21 5.8 0.42

4.37 113.2 24.2 0.74 49 1.13 2.12 −0.43 26 6.2 0.44

Table 5. Flow parameters for all three grids at ReM = 28, 500 for five downstream positions.

4. Turbulence intensities and Reynolds numbers

The turbulence intensities and local Reynolds numbers are investigated in figure 6,
which shows Sq39 produced the highest turbulence intensities and Reλ of the three grids
within the measurement range. For the U0t/M range where the Rd38 and Fs39 data
overlap, Reλ and the turbulence intensity are higher for Rd38. This is to say that for
an equivalent streamwise spacing, U0t/M , for the square-fractal-element grid and the
two regular grids, the regular grids produced higher Reλ and turbulence intensity at
ReM = 28, 500 within the present measurement range. It was verified that the results
are not dependent on the choice of dissipation estimator.

To confirm that the above observations are not simply a consequence of the normalising
length scale, the evolution of the turbulence intensity and Reλ are also plotted versus
U0t/x

∗ and dimensional x in figure 6. Relative to the wake interaction length scale, the
entire measurement range in the wake of Fs39 occurs over less space than the two regular
grids, as observed by Isaza et al. (2014). As such, this normalisation corroborates that
sufficiently far from the grids Fs39 produces lower turbulence intensities and Reλ than
equivalent regular grids. In dimensional units, the relative magnitude of the turbulence
intensities and Reλ between Sq39 and Fs39 are unchanged, and Reλ for Rd38 is higher
than for Fs39 at the end of the test-section. Thus, sufficiently far from the grids, the two
regular grids produce higher Reλ than the fractal, in both normalised and dimensional
units.



Effects of multi-scale and regular grid geometries on decaying turbulence 13

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

U0t/M

u
′
/U

0 5 10 15 20

U0t/x
∗

0 1 2 3 4 5

x [m]

(a)

0 20 40 60 80 100
20

40

60

80

100

120

140

U0t/M

R
e λ

0 5 10 15 20

U0t/x
∗

0 1 2 3 4 5

x [m]

(b)

Figure 6. Streamwise evolution of the (a) turbulence intensity and (b) local Reynolds number
at ReM = 28, 500. Only every third point is plotted for clarity. (4) Fs39, (�) Sq39, (#) Rd38.

Ultimately, the far-field of Fs39 is less energetic than that of the regular grids. Insight
into this can be found by comparing the decay rates of the turbulent kinetic energy,
which, in the far-field, are expected to follow a power-law of the form,〈

q2
〉

U2
= A

(
U0t

M
− U0t0

M

)n
, (4.1)

where t0 is a virtual origin and A is a constant of proportionality. We use the same power-
law fitting process as described by Hearst & Lavoie (2014a) to fit power-law unknowns,
A, n, and U0t0/M , over the ranges specified in table 6 where fitting results are also
given; results are plotted in figure 7. The fitting algorithm tested virtual origins within
the range −20 6 U0t0/M 6 +20. Fits were made to both the near- and far-field wakes
of Fs39 as distinguished in section 3. The power-laws were also calculated from

〈
u2
〉

and
〈
v2
〉
, resulting in nu and nv, respectively, which are also provided in table 6. In

general, the estimates of n, nu and nv are consistent to within 5%, except for the near-
field measurements of Fs39 where the disparity is 10%; however, the flow is highly
inhomogeneous near Fs39 where one might expect

〈
u2
〉

and
〈
v2
〉

to decay differently.
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Fit Grid Region Fit range U0tmin/M U0t0/M n nu nv

# [U0t/M ]

1 Rd38 far-field [21.5, 113.2] 27.8 +3.5 −1.23 −1.17 −1.28

2 Sq39 far-field [14.2, 40.5] 15.6 +3.0 −1.32 −1.32 −1.30

3 Fs39 far-field [19.6 39.8] 19.6 +8.0 −1.25 −1.25 −1.27

4 Fs39 near-field [6.9, 19.2] 8.6 −8.0 −2.92 −3.19 −3.00

Table 6. Power-law fitting parameters and results.
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Figure 7. Decay of turbulent kinetic energy at ReM = 28, 500 with power-law fits for (a) Rd38,
(b) Sq39, (c) Fs39 far-field, and (d) Fs39 near-field. The power-law decay range (PLDR) is
marked by a dashed line. The estimated uncertainty on 〈q2〉 is of approximately ±4% when
considering both bias and random uncertainties.

Furthermore, there is no theoretical expectation for a power-law form to the decay in the
sheared non-equilibrium near-field, and any such fit would have a spatial dependence.
The near-field fit is provided here for a relative comparison to the far-field where the
decay rate is lower.

In the far-field wake of all three grids, the power-law exponent is −1.27± 4%, demon-
strating their far-field energy decay is not appreciably different. While this has been
implied or suggested by previous studies, this is the first time it has been explicitly
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demonstrated for the same ReM for grids with different geometries but the same blockage
(including square fractal). This far-field decay rate is not far removed from the measure-
ments of Sinhuber et al. (2015) who tested a regular grid at a variety of ReM using a
variable density facility, or Krogstad & Davidson (2010, 2011) who used both regular and
multi-scale cross grids, or the seminal study of Comte-Bellot & Corrsin (1966). Thormann
& Meneveau (2014) also found values of −1.16 > n > −1.19 in the wake of their passive
square fractal wing grid which is within 6% of the present measurements.

In the near-field, figure 7(d) clearly shows an extended range (in terms of U0t/M and
dimensional units) of rapid energy decay in the wake of Fs39 relative to the regular grids.
While it is known that this rapid decay range does exist close to the regular grids as well
(Krogstad & Davidson 2012; Isaza et al. 2014), it is drawn out over more M = L0 for the
square-fractal-element grid. Thus, the produced flow dissipates more of its energy before
transitioning to the far-field, resulting in a less energetic far-field. Hence, the far-field
wakes of the regular grids have higher turbulence intensities and Reλ.

These results contrast with the concept promoted by several studies that a fractal
produces higher turbulence intensities and Reynolds numbers than an equivalent regular
grid (Hurst & Vassilicos 2007; Valente & Vassilicos 2011, 2014; Zhou et al. 2014; Laizet
& Vassilicos 2015). However, this is also the first test explicitly comparing an array of
fractals to equivalent regular square meshes (relative to σ, M , and τ0), and removing
the transverse limitations imposed on the turbulence evolution by the wind tunnel walls,
while also allowing for the wakes of multiple regular bars and fractal elements to interact
downstream. While this latter fact may not significantly alter the evolution of the square
fractal’s wake (Weitemeyer et al. 2013), comparing a full mesh with M and σ matched
to Fs39 is conceivably preferable to comparing a space-filling square fractal to a mesh
composed of four bars or with L0 � M . The comparison of Fs39, Sq39, and Rd38
highlights that if the high Reλ and turbulence intensities that a fractal can produce
are desired, one must take careful consideration of the length scales in the grid and
the downstream range. Otherwise, it is possible that after a sufficient decay time, a
regular grid could provide higher turbulence intensity and Reλ. These results focus on
the far-field of the various grid wakes. For results comparing the near-field of regular and
multi-scale grids, we refer the reader to the works by Hurst & Vassilicos (2007), Krogstad
& Davidson (2012), and Laizet & Vassilicos (2015).

At this juncture it is necessary to highlight a difference between Fs39 and the space-
filling square fractals used in more recent studies. For the present grid, τr = 4.5 (the ratio
of thickest to thinnest element in the grid), which is within the range tested by Hurst
& Vassilicos (2007), but is below τr = 17 adopted by more recent studies, e.g., Valente
& Vassilicos (2011, 2014), Laizet et al. (2015). The choice of τr in the present study
was limited by manufacturing constraints balanced with keeping the blockage within
acceptable margins. The higher τr is desirable because Hurst & Vassilicos (2007) showed
that the flow homogenizes more rapidly in physical space in the wake of a high τr
space-filling square fractal compared to a similar grid with low τr. However, even for
grids with τr = 17, non-zero production and transverse transport have been measured
(Valente & Vassilicos 2011, 2014), which by definition implies that the flow is not globally
homogeneous. Furthermore, in the parametric study performed by Hurst & Vassilicos
(2007), although the peak values of Reλ and turbulence intensity grew with τr, it was
shown that after a sufficient streamwise distance (x/M = x/L0 & 13), fractals with
2.5 6 τr 6 17 all reached comparable states with respect to turbulence intensity and Reλ
(see figures 38 and 39 in Hurst & Vassilicos (2007)). The present measurements do not
capture the peak values of the turbulence intensity and Reλ, since the measurements were
restricted—for practical reasons—to the region downstream of the secondary contraction
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(U0t/M & 7). It is therefore not possible to know which grid produces the maximum
turbulence intensity and Reλ close to the grid. Nonetheless, the data of Hurst & Vassilicos
(2007) suggest that the present results for the far-field of our multi-scale grid would not
change appreciably even if a larger value of τr was used.

The results presented herein imply that multi-scale grids can produce locally high
turbulence intensity and Reλ at the cost of a more rapid energy decay beyond the
peak of production, while regular grids sustain the turbulence level at farther distances
from the grid because of a shorter near-grid rapid decay region. These findings have
important implications for a number of engineering and scientific applications requiring
the generation of turbulence by grids and demonstrate that the optimal type of grid for
a particular application will depend on the goals to be achieved, e.g., peak turbulence
intensity, sustained turbulence intensity.

5. Spectral scaling in the non-equilibrium region

One of the most puzzling features of the non-equilibrium near-field turbulence is the
apparent appearance of a k−5/3 spectrum in the region where the initial generating
conditions’ footprint still exists (Isaza et al. 2014; Vassilicos 2015; Laizet et al. 2015).
Relative to normalisation by M , this occurs fairly close to the grids (Hearst & Lavoie
2014a). This result appears paradoxical because k−5/3 is expected to occur at scales of
flows that are free from the initial generating conditions (Frisch 1995; Isaza et al. 2014).
The existence of a k−5/3 inertial region is predicated on there being the same amount
of energy entering and leaving the inertial range and thus turbulent production and
turbulent transport, for instance, should not influence such scales (although they can
be present at larger scales). Laizet et al. (2015) demonstrated that along the centre-line
of space-filling square fractals and large four bar regular grids the frequency spectrum
exhibits f−5/3 in the production region before the peak of the turbulence intensity.
Farther downstream, where Taylor’s hypothesis can be applied, this manifests as a k−5/3

spectral region that eventually decays away from −5/3 with streamwise distance from the
grid (Laizet et al. 2015), presumably due to decaying Reλ (Mydlarski & Warhaft 1996;
Isaza et al. 2014). However, this has not been explored off-axis. Off-axis measurements
can contribute valuable insight into the conditions required to steepen the scaling range
spectrum toward k−5/3 or perhaps passed it. Recall that sheared regions with 〈uv〉 6= 0
in both turbulent boundary layers (Saddoughi & Veeravalli 1994) and turbulent jets
(Mi & Antonia 2001) also produce near k−5/3 spectra. In fact, Mi & Antonia (2001)
showed that in highly sheared regions of the flow where there was also significant large-
scale intermittency it was possible for the spectral slope to exceed k−5/3, and that shear
and large-scale intermittency were more important factors in determining the spectral
topology than Reλ. We thus seek to clarify if the apparent appearance of k−5/3 in the near
wake of grids is ubiquitous across the non-equilibrium flow field, and what properties are
present when such a spectrum is observed. This is addressed by comparing the spectra at
constant Reλ in the non-equilibrium region and far-field of both multi-scale and regular
grids.

First, the spectra (
〈
u2
〉

=
∫∞
0
F11(k) dk) are compared in the far-field wakes of all

three grids. Figure 8 shows the compensated spectra for each grid at Reλ ≈ 66. To
generate the same Reλ, the downstream position and ReM had to be varied between test
cases, as detailed in table 4. Despite the relatively low Reλ, the spectra appear to be
approximately independent of ReM and grid geometry as the four curves from the three
grids are approximately collapsed at all wavenumbers. The significance of this finding
is two-fold. First, the spectrum from the multi-scale grid is indistinguishable from that
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Figure 8. Compensated spectra at Reλ ≈ 66 in the far-field of each grid along y/M = +0.15.
(4) F1a, Fs39, U0t/M = 28.3, ReM = 40, 000, Reλ = 65; (O) F1b, Fs39, U0t/M = 17.4,
ReM = 28, 500, Reλ = 66; (�) S1, Sq39, U0t/M = 32.2, ReM = 17, 500, Reλ = 66; (#) R1,
Rd38, U0t/M = 26.4, ReM = 35, 000, Reλ = 66.

of the regular grids in the far-field. No previous study has explicitly observed this nor
suggested it might be the case, instead they have focussed on the existence of an apparent
k−5/3 spectrum in the non-equilibrium region without performing detailed investigations
farther downstream at the same Reλ. Second, the fact that the spectra from all three
grids are remarkably similar demonstrates that the spectral distribution of the energy
has predominately forgotten its generating conditions, at least at intermediate and small
scales, even at this very low Reλ. A similar result was observed by Hearst & Lavoie
(2015a) using an active grid for Reλ up to 485. They used various grid operational
settings to produce the same Reλ and found the scaling and dissipative ranges of the
spectra approximately collapsed despite their very different initial generating conditions.

The comparison of all three grids at one Reλ is limited by the relatively low Reynolds
numbers produced by Rd38. From this point forward, we compare only Sq39 and Fs39
so that higher Reλ are achievable. In figure 9, the compensated spectra measured at
Reλ ≈ 115 from both the near- and far-fields of Fs39 are compared to the far-field of
Sq39. Although the Reλ is matched, the scaling range transitions to the dissipation range
at a higher wavenumber for the far-field turbulence compared to the non-equilibrium
near-field turbulence. The non-equilibrium turbulence produces a scaling range that is
closer to, but is still different from, k−5/3. This result is verified for different ReM and
in the far-field of both Fs39 and Sq39. Hence, degradation away from or an approach
toward a scaling range slope of k−5/3 cannot be solely related to variations in Reλ as is
oft reported (Mydlarski & Warhaft 1996; Isaza et al. 2014), but must be related to local
properties that are evolving (Laizet et al. 2015).

It is significant to remind the reader that there is no theoretical expectation for a
k−5/3 inertial range in a highly sheared flow with production and transverse transport,
such as that in the near wake of grids (Kolmogorov 1941; Frisch 1995; Isaza et al. 2014).
Rigorously, it may be argued that for “an arbitrary turbulent flow with a sufficiently large
Reynolds number the hypothesis of local isotropy is realised with good approximation
in sufficiently small domains ... not lying near the boundary of the flow or its other
singularities” (Kolmogorov 1941, p. 10). However, if these conditions were achieved
here, then the spectra should not show a dependence on their measurement in the non-
equilibrium region or far-field. Thus, the range of Reλ here is insufficient for manifestation
of a k−5/3 range in the non-equilibrium region based on Kolmogorov’s framework.
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Figure 9. Comparison of compensated spectra at Reλ ≈ 115 from both the near- and far-field
of Sq39 and Fs39 along y/M = +0.15. (�) S2, far-field, Sq39, U0t/M = 19.5, ReM = 44, 000,
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U0t/M = 10.4, ReM = 39, 500, Reλ = 117. Only F2a and F2b are plotted in the inset for
clarity.
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Figure 10. Compensated spectra at U0t/M = 10.9 behind Fs39 with ReM = 88, 500. (.) F3a,
y/M = +1.25, Reλ = 134; (4) F3b, y/M = +1.00, Reλ = 180; (/) F3c, y/M = −0.25,
Reλ = 180. These spectra are estimated using a single-wire.

Nonetheless, the slope of the scaling range is closest to −5/3 in the non-equilibrium
region, and we thus seek to understand what causes the spectrum to increase in slope.

To determine how the spectra change in the non-equilibrium region, three spectra
from the transverse scan of Fs39 at U0t/M = 10.9 with ReM = 88, 500 are shown in
figure 10. The two curves with scaling ranges nearer k−5/3 correspond to peaks of opposite
magnitude in the Reynolds shear stress (| 〈uv〉 /U2| ≈ 6 × 10−4) as shown in figure 4,
which results in production on the order of 30% of the dissipation (Appendix A). In
contrast, the spectrum that deviates the most from k−5/3 occurs at a transverse location
that experiences negligible Reynolds shear stress and thus no production. This suggests
that the spectra with a steeper slope are linked to locations where 〈uv〉 6= 0. Note that
in general locations where 〈uv〉 6= 0 correspond to locations where there is production
(compare figures 4 and 16).

In figure 10, all the spectra do not have the same Reλ. The two spectra that lie closest
to k−5/3 have Reλ = 180, while the other is for a case where Reλ = 134. To address this
issue, figure 11(a) compares one of the curves with 〈uv〉 6= 0 from figure 10 to a spectrum
from the far-field of Sq39 at ReM = 84, 500 where 〈uv〉 = 0 but where Reλ = 180. Here,
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Figure 11. Comparison of (a) compensated spectra and (b) spectral coherence as measured
in the non-equilibrium near-field and the far-field at Reλ = 180. (/) F3c, near-field, Fs39,
U0t/M = 10.9, y/M = −0.25, ReM = 88, 500; (�) S4, far-field, Sq39, U0t/M = 17.0,
y/M = +0.15, ReM = 84, 500. Vertical lines roughly identify the scaling range. F11 is measured
using a single-wire and ζ12 is measured with a X-wire.

at a higher Reλ than figure 9, we again demonstrate that we can have two different
spectral shapes for the same Reλ if the two flows have different contributions from the
Reynolds shear stress.

While it would appear that 〈uv〉 has an influence on the spectral shape in the scaling
range, this should only be possible if 〈uv〉 penetrates to scales that overlap with the
scaling range. A true k−5/3 inertial range as described by Kolmogorov (1941) can only
exist under very specific circumstances, one of which is that there is a sufficient separation
of scales such that there is no production at scales associated with the inertial range. The
region with a steeper slope that is nearer k−5/3 in figure 11 is highlighted with vertical
lines at kaLu = 1 and kbLu = 15. As we know that there is Reynolds shear stress present
in instances where the scaling range slope is steeper for a given Reλ, and 〈uv〉 is in the
production term, we can gain insight on the scales influenced by production from the
cross-spectral coherence,

ζ12 =
|F12|2

F11F22
, (5.1)

where
〈
v2
〉

=
∫∞
0
F22 dk, and 〈uv〉 =

∫∞
0
<{F12}dk. The coherence in the non-

equilibrium region of Fs39, shown in figure 11(b), has a peak at 20% near kLu = 0.7
that remains non-zero for the large scales and decreases for increasing wavenumbers.
For ka 6 k 6 kb, ζ12 drops from 15% at kLu = 1 to approximately zero at kLu = 8,
which contrasts with ζ12 ≈ 0 for all k in the wake of Sq39. Quantitatively, the
contributions to the normalised Reynolds shear stress from the range ka 6 k 6 kb (i.e.,

(1/u′v′)
∫ kb
ka
<{F12} dk) is 9.6% for Fs39, compared to approximately zero for Sq39.

The evolution of ζ12 in U0t/M is shown for Fs39 at ReM = 28, 500 in figure 12, further
identifying that as one moves out of the non-equilibrium region, ζ12 → 0 for all k.
This is consistent with the evolution of 〈uv〉 for the same flow reported in figure 5, and
demonstrates both that the correlation between u and v diminishes with position away
from the grid and that the scales influenced by this correlation include the scaling range
until the far-field is reached.

The inference of the above is that production at scales that overlap with a steeper
scaling range results in a spectrum that appears nearer to k−5/3 compared to a position
in the flow at the same Reλ without production. However, the kinematics in spectral space
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Figure 12. Spectral coherence at several locations downstream of Fs39 at ReM = 28, 500.
(�) U0t/M = 6.9, (�) U0t/M = 9.9, (#) U0t/M = 13.3, (N) U0t/M = 16.7.

are non-linear and thus coherence at scales that overlap with the ‘inertial range’ does
not necessitate a change to the energy balance and F11 at those scales. The structure
function analog of F11 ∼ k−5/3 is

〈
(δu)2

〉
∼ r2/3, and the latter relationship is that

actually reported by Kolmogorov (1941);
〈
(δu)2

〉
=
〈
(u(x+ r)− u(x))2

〉
is the second-

order structure function. With respect to the equations for the structure functions, the
various terms of the energy budget sum linearly, and hence the existence of Reynolds
shear stress on a scale-by-scale basis, as indicated by 〈(δu)(δv)〉 can be assessed.

Figure 13 shows both the compensated
〈
(δu)2

〉
and native 〈(δu)(δv)〉 for the same

cases as shown in figure 11. The approximate scaling range is highlighted by the dashed
vertical lines. The dashed and dashed-dotted lines represent the r > 0 and r < 0 sides
of 〈(δu)(δv)〉, respectively. It is clear that there is no significant content in 〈(δu)(δv)〉
at any scale in the wake of Sq39 for a position where 〈uv〉 ≈ 0, which contrasts starkly
with changing 〈(δu)(δv)〉 in the range that overlaps with the scales associated with the
steeper scaling range for the same Reλ for Fs39. Thus, figures 11-13 clearly identify that
not only is 〈uv〉 6= 0 but that it also penetrates to scales that overlap with the perceived
‘inertial range’.

In order to confirm that it is the presence of local 〈uv〉 that manipulates the shape of
the spectrum, we compare a near-field non-equilibrium spectrum measured at a position
with 〈uv〉 ≈ 0 to a far-field spectrum at the same Reλ and also with 〈uv〉 ≈ 0 in
figure 14. The figure once again confirms that for a given Reλ the compensated spectra
are approximately collapsed. This result is quite remarkable given it is observed between
a near-field non-equilibrium spectrum and a far-field spectrum from different grids. It
also strongly suggests that the steepening of the scaling range slope and the early onset
of a near k−5/3 spectrum observed in previous studies is related to local properties of the
flow rather than being a general consequence of non-equilibrium phenomenology.

The steepening of the scaling range slope in the non-equilibrium region has been
primarily attributed to the existence of shear forces that exist at a range of scales that
overlap with the scaling range. In the non-equilibrium region the velocity derivative
statistics also have a spatial dependence, e.g., figure 5 and Hearst & Lavoie (2015b). This
could suggest internal intermittency plays a role in the present observations (Kolmogorov
1962; Mi & Antonia 2001). However, we have focussed on the Reynolds shear stress
because it is demonstrable that it influences scales where a steepened scaling range slope
was observed. Furthermore, previous studies have demonstrated internal intermittency
causes deviations away from k−5/3, i.e., a flattening of the scaling range slope rather than
a steepening of it. Withal, in flows such as these where the large scale shear penetrates
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Figure 14. Comparison of (a) compensated spectra and (b) spectral coherence as measured
in the non-equilibrium near-field and the far-field at Reλ = 134 for cases where 〈uv〉 ≈ 0.
(.) F3a, near-field, Fs39, U0t/M = 10.9, y/M = +1.25, ReM = 88, 500; (3) S3, far-field, Sq39,
U0t/M = 27.8, y/M = +0.15, ReM = 70, 500. Vertical lines roughly identify the scaling range.
F11 is measured using a single-wire and ζ12 is measured with a X-wire.

to the intermediate scales in the spectra and structure functions, k−5/3 may not in fact
be the asymptote. For instance, Mi & Antonia (2001) showed scaling ranges with slopes
that exceed −5/3 in the sheared region of a turbulent jet.

There is some evidence in other measurements to support the correlation observed
here. Saddoughi & Veeravalli (1994) investigated the assumption of local isotropy in
a large turbulent boundary layer. This flow included both mean shear and 〈uv〉. For
cases where they observed a near k−5/3 inertial range, they also noticed that F12 did
not become approximately zero for at least a decade after the start of the k−5/3 region.
Thus, their flow also experienced a steep scaling range slope at scales influenced by 〈uv〉.
In the intermittent and highly sheared periphery of a turbulent jet, Mi & Antonia (2001)
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observed a steepening of the scaling range slope. In their case, they measured slopes that
exceeded k−5/3, which is a reminder that in such flows where the small scales are not
independent of the large scales there is no expectation of k−5/3 nor is it necessarily an
asymptote. Their results cannot be directly related to the presence of 〈uv〉 because they
did not report measurements of this parameter, however, it is known to be non-zero in
the region of their measurements. More recently, Vassilicos and co-workers have shown
in various studies that a k−5/3 range that is up to two decades long manifests in the non-
equilibrium region of the wake of multi-scale grids (Hurst & Vassilicos 2007; Seoud &
Vassilicos 2007; Mazellier & Vassilicos 2010; Valente & Vassilicos 2011; Laizet et al. 2015).
It has been demonstrated that the non-equilibrium region of these flows experiences non-
zero production (Hurst & Vassilicos 2007; Nagata et al. 2013; Hearst & Lavoie 2014b),
which implies 〈uv〉 6= 0. Furthermore, comparing the coherence in figure 4(c) to the
compensated spectra in figure 15(c) of Valente & Vassilicos (2011) shows that there is
some overlap of the non-zero coherence with the start of the scaling range (which is
reminiscent of the results of Saddoughi & Veeravalli (1994)), and figure 14 of the same
work shows that for similar Reλ, the spectrum is nearer to k−5/3 for the multi-scale
generated non-equilibrium turbulence. Laizet et al. (2015) focussed on the appearance
of a −5/3 region in the spectra and traced it to the production region immediately
behind the grid where 〈uv〉 6= 0 and k−5/3 is not expected. They clearly state that
the appearance of a −5/3 region is not related to the Kolmogorov framework. Finally,
for regular grids, Isaza et al. (2014) have also observed steeper slopes in the scaling
range for measurements in the non-equilibrium region near their grid where they report
〈uv〉 /u′v′ 6= 0. Thus, in addition to the results reported here, there is significant evidence
in the literature suggesting there is a correlation between regions that experience 〈uv〉
and steepening of the scaling range spectral slope.

6. Conclusions

Two regular grids were compared to a square-fractal-element grid in order to investigate
key phenomenological differences between the turbulence produced by a multi-scale
fractal-based geometry and regular grids. The square-fractal-element grid, Fs39, was
composed of an array of square fractal elements mounted to a background mesh. A
square bar regular grid, Sq39, was designed with matched M = L0 and σ to Fs39.
A round-rod regular grid, Rd38, was designed with τ0 and σ approximately matched
to Fs39. A secondary contraction was employed downstream of the grids in order to
decrease the anisotropy in the flow and facilitate distinction of the turbulence produced
by each grid based on parameters other than anisotropy levels.

When compared at constant ReM , it was demonstrated that the regular grids produced
higher turbulence intensities and Reλ in the far-field than the multi-scale geometry used
here. In particular, Sq39 produced higher turbulence intensities and Reλ for the entire
investigation range. It is possible the peak turbulence intensity in the wake of Fs39
exceeded that of Sq39, but the present measurements show that if this were the case,
it is not sustained beyond U0t/M > 7. Furthermore, both regular grids homogenized
more rapidly than the fractal. These results may suggest that the regular grids act as
more efficient mixers than the present multi-scale geometry, particularly given that one
of the regular grids also had a lower pressure drop than the multi-scale geometry. Future
studies investigating the evolution of passive scalars in the wakes of comparable regular
and multi-scale grids may provide further insight on this topic. Regardless, the primary
influence of the fractal geometry appears to be to extend the non-equilibrium near-field
region in the wake of the grid. This region experiences rapid decay of the turbulent
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kinetic energy, and by extending it the fractal essentially creates a less energetic far-field
relative to the regular grids. This is the first reporting of a flow where a regular grid with
similar properties to a square-fractal-based geometry clearly produces higher turbulence
intensities and Reλ in the far-field of its evolution for the same global ReM . This result is
particularly significant for engineers who wish to use turbulence generators in practical
applications, as it demonstrates that the ‘beneficial’ properties of the fractal only persist
for a finite period of the decay, and if sustained homogeneous turbulence levels and Reλ
are required, a regular grid may be better suited for the application.

The steepening of the velocity spectrum scaling range slope in the non-equilibrium
region was shown to be a phenomenon dependent, at least in part, on the local 〈uv〉.
When a near-field, non-equilibrium spectrum with 〈uv〉 6= 0 was compared to a far-field
spectrum at the same Reλ, the non-equilibrium spectrum was steeper. For these non-
equilibrium spectra with steeper scaling range slopes for a given Reλ and 〈uv〉 6= 0,
it was observed that the Reynolds shear stress penetrated to scales that overlapped
with the scaling range. In contrast, when a spectrum from the non-equilibrium region
with 〈uv〉 ≈ 0 was compared to a far-field spectrum also with 〈uv〉 ≈ 0 at the same
Reλ, they were not appreciably different, irrespective of which grid produced the flow.
Some previous studies have associated this steepened scaling range with a k−5/3 region,
although they are always careful to note that this is not a Kolmogorov-based inertial
range, e.g., Mazellier & Vassilicos (2010), Laizet et al. (2015). The present results show
that the near k−5/3 spectrum in the non-equilibrium region is not a universal property
of this region and is rather dependent on local properties, particularly 〈uv〉.
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Appendix A. Turbulent production and transverse transport

This appendix presents additional statistics from the transverse scans behind all three
grids in order to help paint a full picture of the evolution of the turbulence. Figure 15
shows transverse profiles of the mean velocity normalised by the mean of U(y) across
a transverse scan, denoted Uy, for each grid. From the first measurement position (x =
1.25 m) behind Sq39 and Rd38 (U0t/M = 10.9 and U0t/M = 34.2, in non-dimensional
units, respectively) the flow is homogeneous to within ±1%. The homogeneity of U in
the wake of Fs39 contrasts with the regular grid results. At x = 1.25 m (U0t/M =
10.9) the mean velocity varies in the range ±4%, however, it homogenizes to ±2% by
x = 2.00 m (U0t/M = 17.0); this is similar to the results presented by Hearst & Lavoie
(2014a,b) without a secondary contraction. For U0t/M > 17.0, the flow is approximately
homogeneous with respect to U .

Production and transverse transport of turbulent kinetic energy have been identified
as key differentiating factors between non-equilibrium turbulence and theoretical equilib-
rium homogeneous, isotropic turbulence (Valente & Vassilicos 2011, 2014; Nagata et al.
2013; Hearst & Lavoie 2014b). Assessment of these parameters is done in the context of
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Figure 15. Transverse profiles of the normalised mean velocity for the conditions identified in
table 3; (#) x = 1.25 m, (�) x = 2.00 m, (3) x = 3.25 m, (4) x = 4.50 m.

the turbulent kinetic energy equation, given by,

Uk
2

∂
〈
q2
〉

∂xk
= −〈uiuj〉

∂Ui
∂xj
− ∂

∂xk

(〈
ukq

2
〉

2
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∂

∂xk

(
〈ukp〉
ρ

)
+
ν

2

∂2
〈
q2
〉

∂xm∂xm
− 〈ε〉 , (A 1)

where Einstein’s summation notation is used. In (A 1), the terms on the right-hand-
side are production, triple-correlation transport, pressure transport, viscous diffusion,
and dissipation, respectively. The left-hand-side represents the decay of turbulent kinetic
energy. The terms of (A 1) that can be directly measured with the transverse scans are
the production, specifically 〈uv〉 ∂U/∂y and

〈
v2
〉
∂V/∂y, and the transverse transport

of turbulent kinetic energy, (∂/∂y)(
〈
vq2
〉
/2). Hearst & Lavoie (2014b) demonstrated

that
〈
v2
〉
∂V/∂y was much smaller than the other terms, which is consistent with the

present measurements and hence this term is not shown here. Figures 16 and 17 show the
relevant production and transverse transport terms for all three grids normalised by the
mean dissipation across the span, 〈ε〉y. For Fs39, peaks in the production representing
nearly 25% of the energy dissipation are present. Similarly, there are peaks of ±20%
of the dissipation in the transverse transport of turbulent kinetic energy generated in
the wake of Fs39. These peaks decrease and become negligible as x grows and the
flow homogenizes, which is consistent with the results without a secondary contraction
presented by Hearst & Lavoie (2014b).

The first measurements of non-zero transverse transport in the wake of a fractal
geometry were performed by Valente & Vassilicos (2011) who remarked that similar
measurements had never been performed in the wake of regular grids, and hence it was
not known if transverse transport is indeed present there or not. For completeness, the
production and transverse transport of turbulent kinetic energy for Sq39 and Rd38 are
shown in figures 16 and 17. It is evident that the regular grids do not have substantial
production or transverse transport for measurements performed at the same stream-
wise positions as Fs39. However, we emphasize that the fractals also have diminishing
production and transverse transport as their turbulence evolves downstream.
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Laizet, S., Nedić, J. & Vassilicos, J. C. 2015 The spatial origin of −5/3 spectra in grid-
generated turbulence. Phys. Fluids 27 (065115).

Laizet, S. & Vassilicos, J. C. 2015 Stirring and scalar transfer by grid-generated turbulence
in the presence of a mean scalar gradient. J. Fluid Mech. 764, 52–75.

Lavoie, P., Djenidi, L. & Antonia, R. A. 2007 Effects of initial conditions in decaying
turbulence generated by passive grids. J. Fluid Mech. 585, 395–420.

Lumley, J. L. 1992 Some comments on turbulence. Phys. Fluids A 4 (2), 203–211.

Mazellier, N. & Vassilicos, J. C. 2010 Turbulence without Richardson-Kolmogorov cascade.
Phys. Fluids 22 (075101).

Mi, J. & Antonia, R. A. 2001 Effect of large-scale intermittency and mean shear on scaling-
range exponents in a turbulent jet. Phys. Rev. E 64 (026302).

Mi, J., Deo, R. C. & Nathan, G. J. 2005 Fast-convergence iterative scheme for filtering
velocity signals and finding Kolmogorov scales. Phys. Rev. E 71 (066304).

Mohamed, M.S. & LaRue, J.C. 1990 The decay power law in grid-generated turbulence.
J. Fluid Mech. 219, 195–214.

Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated
wind tunnel turbulence. J. Fluid Mech. 320, 331–368.

Nagata, K., Sakai, Y., Inaba, T., Suzuki, H., Terashima, O. & Suzuki, H. 2013
Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-
generated turbulence. Phys. Fluids 25 (065102).
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