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Abstract—Quantum Turbo Codes (QTCs) are known to operate
close to the achievable Hashing bound. However, the sequential
nature of the conventional quantum turbo decoding algorithm
imposes a high decoding latency, which increases linearly with the
frame length. This posses a potential threat to quantum systems
having short coherence times. In this context, we conceive a Fully-
Parallel Quantum Turbo Decoder (FPQTD), which eliminates
the inherent time dependencies of the conventional decoder by
executing all the associated processes concurrently. Due to its
parallel nature, the proposed FPQTD reduces the decoding times
by several orders of magnitude, while maintaining the same
performance. We have also demonstrated the significance of
employing an odd-even interleaver design in conjunction with
the proposed FPQTD. More specifically, it is shown that an odd-
even interleaver reduces the computational complexity by 50%,
without compromising the achievable performance.

Keywords—Quantum Error Correction, Turbo Codes, Fully-
Parallel decoding, Iterative Decoding.

ACRONYMS
EXIT EXtrinsic Information Transfer
FPTD Fully-Parallel Trubo Decoder
FPQTD  Fully-Parallel Quantum Trubo Decoder
MAP Maximum A Posteriori
PCM Parity Check Matrix
QBER  QuBit Error rate
QCC Quantum Convolutional Code
QECC Quantum Error Correction Code
QIRCC  Quantum IRregular Convolutional Code
QTC Quantum Turbo Code
SISO Soft-In Soft-Out

I. INTRODUCTION

Quantum Error Correction Codes (QECCs) are indispens-
able for the reliable transmission of fragile quantum infor-
mation (or qubits) over noisy quantum channels. In its literal
sense, a quantum channel can be a transmission medium,
including free-space channels and optical fiber links, which
may find application in quantum key distribution systems [1],
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[2], quantum teleportation [3], quantum secure direct com-
munication [4], [5] as well as distributed quantum computing
networks [6], [7]. Furthermore, a noisy quantum channel may
also be interpreted as the imperfections in quantum computing
hardware, namely quantum flips inflicted by quantum decoher-
ence and faulty quantum gates. In this context, efficient QECCs
are essential for the practical realization of quantum commu-
nication as well as quantum computing systems. From the
perspective of classic communications, this is also particularly
important because the quantum domain parallel computations
offer a potential solution to the joint optimization in large-scale
communication systems [8]-[10].

Analogous to the realm of classical code design [11],
[12], which aims for approaching Shannon’s capacity limit,
QECC:s are designed to operate close to the quantum channel’s
capacity [13]-[15], or more specifically to the Hashing bound,
which constitutes a lower bound on the achievable capacity
of a quantum channel. In pursuit of this objective, quantum-
domain counterparts of the capacity-achieving classical turbo
codes [16] were conceived in [17], [18]. The proposed Quan-
tum Turbo Codes (QTCs) are based on the serial concate-
nation of Quantum Convolutional Codes (QCCs) [19]-[22].
Later, Wilde and Hseih [23] extended the concept of pre-
shared entanglement to QTCs for the sake of designing codes
having an unbounded minimum distance, implying that the
minimum distance increases with the frame length. In [24]
Wilde et al. improved the quantum turbo decoding algorithm
by introducing the notion of extrinsic information. The QTC
designs of [17], [18], [23], [24] are based on the tedious
analysis of the distance spectra of QCCs. To dispense with
this time-consuming design approach, in [25] we appropriately
adapted the classical non-binary EXtrinsic Information Trans-
fer (EXIT) charts [26] for designing QTCs. Finally, in [27] we
conceived Quantum IRregular Convolutional Code (QIRCC)
for facilitating a Hashing bound approaching QTC design.

Owing to the astounding performance of QTCs and moti-
vated by the recently proposed fully-parallel decoder conceived
for classical turbo codes [28]-[31], in this paper we focus on
improving the latency associated with the iterative quantum
turbo decoding process. If the decoding times are significant as
compared to the coherence time, then the qubits may decohere
faster than they can be corrected. This would in turn render the
error correction procedure useless. Against this background,
our novel contributions are:

o We have conceived the Fully-Parallel Quantum Turbo
Decoder (FPQTD) counterpart of the classical Fully-
Parallel Turbo Decoder (FPTD) of [28], which circum-
vents the sequential nature of the conventional quan-
tum turbo decoding algorithm of [17], [18], thereby
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incurring a lower latency. In addition to the plausible
benefit of imposing a reduced processing delay and
hence an increased throughput, having a low latency
is particularly crucial in the quantum domain because
of the short coherence time of the qubits.

e We have benchmarked the performance of the proposed
FPQTD against the conventional quantum turbo decoder
in terms of its achievable QuBit Error Rate (QBER) as
well as the required decoding time periods. In particular,
our results demonstrate that the fully-parallel architec-
ture reduces the total decoding time periods by a factor
of 0.8 N for the rate-1/9 QTC of [24], where N is the
input frame length. Hence, the benefits accrued increase
with the frame length.

e We demonstrate the explicit benefit of using an odd-
even interleaver design in the context of quantum turbo
decoding. It is shown that an odd-even interleaving
pattern reduces the computational complexity by 50%,
while exhibiting the same QBER performance.

The rest of the paper is organized as follows. Section II
provides a rudimentary introduction to stabilizer codes. We
then present the general structure of QTCs in Section III
This is followed by a description of the conventional quantum
turbo decoder in Section IV-A, while our proposed FPQTD
is detailed in Section IV-B. Finally, the performance of our
proposed scheme is quantified in Section V, followed by our
conclusions in Section VI

II. REVIEW OF STABILIZER CODES

QTCs belong to the family of stabilizer codes, which are
inherently similar to the classical linear block codes. We
commence our discourse with a brief review of the stabilizer
formalism. For a detailed description, please refer to [27], [32].
Let us first recall some fundamental definitions from [33].

Pauli Operators: The I, X, Y and Z Pauli operators are
defined by the following matrices:

10 0 1
=5 1) x= (0 0),
0 —i 10
<Y‘_<i 0)’ Z“<o —1>’ M

where the X, Y and Z operators anti-commute with each other.

Pauli Group: A single qubit Pauli group G; is a group
formed by the Pauli matrices of Eq. (1), which is closed under
multiplication. Therefore, it consists of all the Pauli matrices
together with the multiplicative factors £1 and 43¢, which may
be formulated as:

Gy = {2, +il, +X, +iX, +Y, +iY, +Z, +iZ}.  (2)

The general Pauli group G,, is an n-fold tensor product of G;.

Depolarizing Channel: A depolarizing channel, which is
characterized by the probability p, inflicts an error P € G,
on n qubits, where each qubit may independently experience
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either a bit-flip (X), a phase-flip (Z) or both (Y) with a prob-
ability of p/3 each, when considering the so-called symmetric
depolarizing channel having identical flip probabilities.

An [n, k] stabilizer code, constructed over a code space C,
maps the information word (logical qubits) |¢) € c?* onto
the codeword (physical qubits) [1)) € C2", where C? denotes
the d-dimensional Hilbert space. The resultant stabilizer code
is defined by the stabilizer group H, which may be uniquely
characterized by a set of (n— k) independent commuting Pauli
generators g; € G, , for 1 < j < (n — k). More explicitly,
the stabilizer group H contains both g; and all the products
of gj for 1 < j < (n — k) and forms an abelian subgroup of
Gy A unique feature of these stabilizer generators is that they
do not perturb the state of valid codewords, while yielding an
eigenvalue of —1 for the invalid codewords. Consequently, the
eigenvalue is —1 if the channel error P € G,, anti-commutes
with the stabilizer g;, while it is +1 if P commutes with
g;. Hence, the operation of jth stabilizer generator may be
expressed as:

w10, 9P ="Py; 3
wihi={ L on =", ®

where [¢)) = P[¢) is the received codeword. The +1 eigen-
values give the corresponding error syndrome, when observed
using auxiliary qubits. The resultant syndrome is O for an
eigenvalue of 41, while it is 1 for an eigenvalue of —1. Hence,
stabilizer codes observe the error syndromes without reading
the actual quantum information. The classical syndrome de-
coding approach [34] may then be invoked for estimating the
errors incurred during transmission. However, errors, which
differ only by an element of the stabilizer group, have the
same impact on the codewords and therefore can be corrected
by the same recovery operations. This gives quantum codes
the intrinsic property of degeneracy [35].

The Pauli operators I, X, Y and Z may also be represented
as two binary digits, i.e. we have:

I 1=(0,0),
Y-—>Y=(1,1),

X = X =(0,1),
Z— 7 =(1,0), 4)

which constitute the effective Pauli group G;. Similarly, an
n-qubit Pauli operator may be mapped onto a 2n-bit vector
belonging to the effective Pauli group G,,, such that the first
n bits represent the Z operator, while the next n bits represent
the X operator. The elements of the effective Pauli group G,,
differ from the corresponding elements of the Pauli group G,
by a multiplicative constant, implying that we have:

where [.] denotes the effective Pauli group. Based on this Pauli-
to-binary isomorphism, stabilizer codes may be characterized
in terms of an equivalent binary Parity Check Matrix (PCM)
notation, which satisfies the commutativity constraint of the
stabilizer generators [36], [37]. The (n — k) stabilizers of an
[n, k] stabilizer code constitute the rows of the binary PCM
H, which is a concatenation of a pair of (n — k) x n binary
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matrices H, and H,, as given below:
H=(H,|H,). (6)

Each row of H corresponds to an independent stabilizer of H,
so that the ith columns of H, and H, act on the ith qubit.
Given the matrix notation of Eq. (6), the commutative property
of stabilizer generators is transformed into the orthogonality
of rows with respect to the symplectic product (also referred
to as a twisted product), which is formulated as:

H.H' + H,HI = 0. (7)

Based on the mapping of Eq. (4), a channel error P can be
represented by the effective error P = [P, : P.], which is
a concatenation of n bits for Z errors represented by P,,
followed by another n bits for X errors denoted by P,. The
resultant syndrome is given by the symplectic product of H
and P, which is equivalent to H[P, : P.]”". Thus, the quantum-
domain syndrome is equivalent to the classical-domain binary
syndrome and a basic quantum-domain decoding procedure
is similar to the syndrome based decoding of the equivalent
classical code [37]. However, due to the degenerate nature of
quantum codes, quantum decoding aims for finding the most
likely error coset, while the classical syndrome decoding finds
the most likely error.

III. SYSTEM ARCHITECTURE OF QUANTUM TURBO
CODES

Fig. 1 shows the general schematic of the encoder and
decoder of a QTC, relying on a pair of serially concatenated
stabilizer codes. In our setting, the outer code C; is an
[n1, k1, m1] QCC, while the inner code is an [ng, ks, ma]
QCC, resulting in an overall coding rate of (kik2/ning).
At the transmitter, the outer encoder V; encodes the logical
qubits |¢1) into the physical qubits [¢);), with the aid of
(n1 — kq) auxiliary qubits, which are initialized to state |0).
This encoding process may be modeled as:

1) = V1 ([1) @ [0)&™—F) (8)

The physical qubits [¢;) are then interleaved by the quantum
interleaver () before being fed to the inner encoder. More
specifically, the interleaved qubits |t)3) constitute the logical
qubits for the inner encoder V>, which encodes them into
|¥;) using (ng — k2) auxiliary qubits analogous to Eq. (8).
The n physical qubits [¢)5) of the inner encoder, where we
have n = nins, are then transmitted to the receiver over a
depolarizing channel, which imposes an n-tuple error Py € G,
on the transmitted stream.

Both the encoders V; and Vs are Clifford unitary op-
erators [38], acting on m; and no qubits, respectively. In
general, such Clifford encoders may be implemented using
the Hadamard (H), phase (S) and controlled-NOT (C-NOT)
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Fig. 2: Encoder V of an [n, k, m] quantum convolutional code.

gates, which are defined as follows [33]:
1 /1 1 1 0
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A unique property of Clifford operations is that they preserve
the elements of the Pauli group under conjugation such that
for P € G,,, we have [38]:

VPV € G, (10)

This in turn ensures that the Clifford encoding operation intrin-
sically preserves the commutativity of the associated stabilizer
generators depicted in Eq. (7). It is pertinent to mention here
that the Clifford encoder V of an [n, k,m] QCC, having m
memory qubits |¢), may be constructed from an (n + m)-
qubit seed transformation U/, as illustrated in Fig. 2. More
specifically, the encoder V consists of repeated applications
of the seed transformation U/ such that the adjacent seed
transformations have an overlap of m memory qubits. At time
instant ¢, the sub-encoder U of Fig. 2 takes as its input the
previous memory state |¢);—1 as well as the logical qubits
|1)+ and the auxiliary qubits to generate the updated memory
state |¢), for the next time instant as well as the physical qubits
|1)+. More explicitly, analogous to the classical convolutional
codes, the memory qubits |¢);—1 are flushed out of the shift
registers as part of the physical qubits, while the incoming
information is fed into the registers'. The overall encoder may
be formulated as:

V= u[l,...,n+m]u[n+1,...,2n+m] .- 'u[(N—l)n-l-l,...,Nn-i—m]a
N
= Hu[(t—l)n-l—l,...,tn-l-m]v (11)
t=1

where N is the length of the convolutional code and
Ui(t—1)n+1,....tn+m] acts on (n + m) qubits, i.e. m memory
qubits |p);—_1, k logical qubits |1); and (n—k) auxiliary qubits.

IPlease refer to [39, Chapter 9] for further details about the implementation
of quantum circuits with shift registers.
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Fig. 1: General schematic of quantum turbo codes. P¢(.), P{(.) and P{(.) denote the a-priori, extrinsic and a-posteriori

probabilities related to the ith decoder.

At the receiver, the received physical information |1/32> =
Pal1b,) is processed by the inverse inner encoder? V%, yielding
the logical information and auxiliary qubits. Since the input of
the inverse encoder is perturbed by transmission errors, both
the output logical information and the auxiliary qubits are also
corrupted. More explicitly, we have:

ViPa[i,) = ViPaWs([y) @ |0)@na—Fe)
= (La]tp2)) ® (S2|0)®m27k2), (12)

where Lo is the error imposed on the logical qubits of the
inner encoder, while S is the error inflicted on the (n2 — k2)
auxiliary qubits. The resultant logical information is then de-
interleaved to serve as the input Py|¢;) of the outer inverse
encoder. Analogous to the inverse encoder of Eq. (12), the
inverse encoder VI generates the erroneous logical qubits
Li|11) of the outer encoder and the associated erroneous
auxiliary qubits S;|0)®™ %1 ag its output.

Recall that stabilizer codes invoke the syndrome decoding
approach for estimating the channel errors. The auxiliary
qubits Sz|0)®™1=F1 and S;|0)®"2*2 of the inner and outer
inverse encoders, respectively, are measured before being fed
to the corresponding syndrome-based Soft-In Soft-Out (SISO)
decoders. Upon measurement the auxiliary qubits collapse
to the classical syndromes S5 and S{, which only depend
on the X-component of the errors So and Sp, respectively.
More precisely, the syndrome sequence |0)®™1~*1 (and simi-
larly |0)®™2=k2) is invariant to the Z-component of S, since
Z|0) = |0). Therefore, the syndrome-based SISO decoders
of Fig. 1 engage in degenerate iterative decoding [18] for
estimating the error coset £; imposed on the logical qubits
of the outer decoder, given only the X-component of S. More

2In contrast to an encoder, which encodes logical qubits onto the physical
qubits, an inverse encoder carries out the inverse operation by mapping
physical qubits onto the corresponding logical qubits.

explicitly, the inner SISO decoder of Fig. 1 exploits the channel
information P (P2), the a-priori information P§(L2) gleaned
from the outer decoder (initialized to be equiprobable for
the first iteration) and the syndrome S5 for computing the
extrinsic information pertaining to the error imposed on the
logical qubits of the inner decoder, which may be denoted
as P5(L2). The resultant extrinsic information P5(L3) is de-
interleaved (7~ 1), so that the permuted output P§(7P;) serves
as the a-priori information pertaining to the error imposed on
the physical qubits of the outer decoder. Then the outer SISO
decoder of Fig. 1 computes both the a-posteriori information
P{(Ly) as well as the extrinsic information P§(P;) using
the a-priori information P{(P;) and the syndrome S7. The
output P{(P;) is then interleaved to yield P§(L2), which is
fed back to the inner SISO decoder of Fig. 1. This iterative
procedure continues, until either convergence to a vanishingly
low QBER is achieved or the maximum affordable number of
iterations is reached. Finally, a Maximum A Posteriori (MAP)
decision is made based on the a-posteriori information P7(L1)
for estimating the most likely error coset £; imposed on the
logical qubits of the outer decoder. A recovery operation R,
which is based on the estimated error coset £, may then be
applied to the erroneous logical qubits L£q|¢)1) of the outer
inverse decoder, yielding the estimated logical information

[$1).

IV. QUANTUM TURBO DECODER
A. Conventional Decoder

The quantum turbo decoder of Fig. 1 operates over the
equivalent classical representation of the Clifford encoders V;
and V,. More explicitly, an n-qubit encoder, acting on a 2"-
dimensional Hilbert space, has a 2" x 2" unitary matrix, which
describes the evolution of the associated n-qubit system. How-
ever, according to the Heisenberg representation of Gottesman-
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Knill theorem [40], the 2" x 2™ matrix may be simplified
for Clifford encoders by only tracking the evolution of the
operators {Z1,Zs,...,Z,,X1,Xs,...,X,}, where Z; and
X; represents the Pauli Z and X operator, respectively, acting
on the jth qubit and the identity I on all other qubits. Conse-
quently, the operation of a Clifford encoder may be completely
defined by specifying its action under conjugation on the Pauli-
X and Z operators acting on each of the n qubits. Another
point to notice here is that two Clifford encoders V and V',
which are related through a global phase such that V' = 7%V,
yield the same output under conjugation. Therefore, the global
phase can be ignored, since it has a trivial impact. This in
turn implies that the n-qubit encoder V can be completely
defined by its action on the binary equivalent (Eq. (4)) of
the Pauli operators {Z1, Zs, ..., Z,,X1,Xa,...,X,}, which
may be denoted as {Z1, Zs, ..., Z,, X1, X2, ..., X, }. Hence,
the Clifford transformation V has an equivalent 2n X 2n binary
symplectic matrix V' for which we have:

VPV = [PV = PV. (13)

The n-qubit operators {Z1,Zs,...,Zn, X1,X2,..., X0},
which are used for characterizing V, are known as the
unencoded operators. In particular, the unencoded operators
{Zk+1,...,Zy} stabilize the unencoded state of Eq. (8), i.e.
(|) ®]0,—k)), and are therefore termed as the unencoded sta-
bilizer generators. By contrast, the operators { Xyi1,..., X, }
anti-commute with the corresponding unencoded stabilizer
generator Z;, resulting in an error syndrome of 1. They
may be referred to as the pure errors. Furthermore, the
unencoded logical operators acting on the logical qubits are
{Z1,X1,...,Zk, X}, which commute with the unencoded
stabilizers {Z41,...,Zn}. The encoder V maps the un-
encoded operators {Z1, X1,...,Zn, X} onto the encoded
operators {Z1,X1,...,Zn, Xn}, which may be represented
as follows:

X;=[X] = XV =X,V
Z; = [Z;] = [VZ;V'] = Z;V. (14)

Let us recall that Clifford operations preserve the commutativ-
ity of the stabilizer generators. Hence, the resultant encoded
stabilizers { Zy1 1, ..., Z,} constitute the stabilizers of Eq. (3),
while {X}..1,...,X,} are the pure errors t; of the resultant
stabilizer code, which trigger a non-trivial syndrome. More-
over, {Z1,X1,...,Zy, X} are the encoded logical operators,
which commute with all the stabilizers. In particular, the
logical operators map one codeword onto the other codeword
within the codespace of the stabilizer code. The (2n x 2n)-
element binary symplectic encoding matrix V is therefore
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given by: -
71 71
_7k Zy,
Zk+1 g1
Zn _ gn—k
= _— = - 1
v=| ¥ ik (15)
X X,
Xk+1 11
X tnfk

n

where {Zy11,...,Z,} constitute the binary PCM of Eq. (6).
Based on the equivalent binary encoder of Eq. (15), the

operation of the ith inverse encoder VZ-T depicted in Eq. (12)
may be expressed as:

PV ' =(L;: S), (16)

where we have P, = [P;], L; = [£;] and S; = [Si]
Similarly, when the inner and outer components of a QTC
are convolutional codes, their seed transformations are 2(n +
m) x 2(n + m)-element symplectic matrices, which may be
denoted as U; for the ith encoder. For the ith inverse encoder,
the operation of Eq. (16) at time instant ¢ may be reformulated
as:

(Mip—1: Liy : Si) = (Mg, Py) U (17)

where M denotes the effective m-qubit error inflicted on
the memory qubits. More explicitly, for an [n;,k;, m;]

QCC, we have M;;, = [M},, M7, ... MY, Ly =
(LY, L2, LE). Sie = [Sh, 82,8 ) and Py =
[Py, P?, ..., P/] for 1 <t < Nj. For clarity, we will ignore

the subscript ‘2’ wherever our discussions apply to both the
inner as well as the outer decoders.

The quantum turbo decoder of Fig. 1 consists of two
serially concatenated SISO decoders, each obeying the general
schematic of Fig. 3. In Fig. 3, the Pauli operators P, L
and S are replaced by the effective operators P, L and
S, respectively. Please note that [S] = S, which may be
represented as S = S* 4+ S%, where S* and S* are the X
and Z components of S. Recall from Section III that the
measurement of S only reveals the syndrome S*. Therefore,
the syndrome-based SISO decoder of Fig. 3 only depends
on S*. Furthermore, for the sake of avoiding any potential
numerical instability as well as for reducing the computational
complexity, we have used logarithmic probabilities in Fig. 3,
which are denoted as P in contrast to the probabilities P of
Fig. 1, i.e. we have:

P(z) = In(P(z)). (18)

Classical SISO decoders rely on the trellis of the constituent
convolutional codes. By contrast, the SISO decoder of Fig. 3
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Fig. 3: General schematic of a SISO decoder. P*(.), P°(.) and
P°(.) denote the a-priori, extrinsic and a-posteriori logarith-
mic probabilities.

invoked for quantum turbo decoding operates over the circuit-
based representation of Eq. (16) or equivalently Eq. (17),
as detailed in [18]. We may further decompose the seed
transformation as U = (Uyps : Up), where Uy, is the binary
matrix formed by the first 2m columns of U, while Up is the
binary matrix formed by the last 2n columns of U. Therefore,
we have:

M; = (Mtfl t Ly St) Unr, (19)

Pt = (Mt,1 : Lt : St) UP. (20)

Using the circuit-based representation of Eq. (19) and Eq. (20),
the SISO decoder of Fig. 3 computes the extrinsic probabilities
as follows:

1) The process begins by calculating the a-priori transition
metric 7, for all valid transitions using:

H (My—1, Ly, S) = P* (L) + P* (P)), 21

where we have P; = (M;_1 : Ly : St)Up. In the clas-
sical convolutional codes, all transitions present in their
state transition diagram are defined as being valid. By
contrast, in the circuit-based representation of QCCs, all
possible combinations of (M;_; = p, Ly =\, St = o),
for p € Gy, A € G and 0 = (6* 4+ %) € Gpp,
having o® = S, are considered as valid transitions.

2) The a-priori transition metric of Eq. (21) and the a-
priori forward state metric a;—1, gleaned from the
previous time instant, are then used for calculating the
extrinsic forward state metric a; as’:

oy (My) £ P (M| SZ,)
= max*

{HEGH ANEGL,0EG |
o®=Sy Mi=(p,\,0)Uns }

[/775 (:U'v A, U) + a1 (:U')] )

(22)

3 We exploit the Jacobian logarithm, which is defined as [41]:

max" [p1, p2] £ In (et + eP2)
= max(p1, p2) + In (1 + 67‘[)—170_20

= max(p1, p2) + fe (|p1 — p21) .
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where we have S%t = (S;P)Ogjgt' Eq. (22) is a
recursive formula, which ensures that the resultant
extrinsic forward state metric ¢&; constitutes the a-priori
information for the next time instant. This implies that
for calculating &y we first have to calculate the forward
state metric for all the previous time instances ¢ < .
Hence, the calculation of Eq. (22) spans over N time
periods for ¢ = V. ~

3) Next, the extrinsic backward state metric 5;_1 is com-
puted using the a-priori transition metric ; of Eq. (21)
and the a-priori backward state metric /3; gleaned from
the time instant (¢ 4+ 1) as follows:

Brot (M) 2P (My1]S2, )
(3¢ (My—1, X, 0) + B, (My)] , (23)

*
= max
{\eG,0€G, k|
0" =57}

where we have M, = (My;_1 : u o)Up and
r A T L. .
g = (Sj ) t<j<N" The resultant extrinsic information

Bi—1 is employed as the a-priori information for the
time instant ¢ — 2. Hence, similar to the computation
of the forward recursive coefficients &, of Eq. (22), the
processing of the backward coefficients is also spread
over N time periods. However, unlike the forward
coefficients, which are computed in the direction of
increasing t, i.e. from ¢t = 1 to t = N, the backward
coefficients are calculated in the reverse direction, i.e.
fromt=Ntot=1 B

4) Finally, the a-posteriori transition metric J; is computed
for all valid transitions using:

5t (Mt_l,Lt,St) = B
At (My—1, Ly, St) + ap—n (My—1) + B (M),  (24)

where we have M; = (M;—1 : Ly : S;)Upn. Eq. (24)
combines the a-priori transition metric 4; with the
extrinsic forward state coefficient &;_; gleaned from
the previous time instant and the extrinsic backward
state coefficient 3; gleaned from (¢ + 1). If the forward
and backward coefficients are already available, the a-
posteriori transition metric can be calculated in parallel
for the entire frame.

5) Based on Eq. (24), the a-posteriori logarithmic prob-
abilities pertaining to the logical error L; and the

For more than two operands, Jacobian logarithm can be extended using the
associative property. For the sake of reducing the computational complexity,
the correction function f. can be approximated using a pre-computed look-
up table, resulting in an approximate-log function [41]. Alternatively, if the
difference between p1 and p2 is significant, the exact-log may also be
approximated as max-log, yielding [41]:

* — — — —
max” 41, 2] & max(gi, 52)-

The complexity reduction associated with the max-log comes at the cost
of a modest performance degradation. However, the performance of the
approximate-log based decoder is similar to that of the exact-log based
decoder, despite its reduced complexity.
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physical error P; are given by:
P’ (L) 2 P (L;|S%)
= ma : [515 (Mu Lt7 0)} )

= X
{n€Gm,0€GH k|

v _g®

—~t

(25)

P’ (P,) 2 P(P;|S")

E3
= max
{HEG W AEG,0EC, 1]
0 =87 Pr=(1u.)\0)Up }

[gt (:u‘a Lt7 0)} 9 (26)

where we have S% £ (S¥) << n-
6) The corresponding extrinsic logarithmic probabilities
may then be calculated using:

P* (L) = P7 (Ly) = P* (L),
P (P) =P"(P) —P"(Py).

27)
(28)

Both the inner as well as the outer SISO decoders of
Fig. 1 execute the SISO algorithm encapsulated in Eq. (21)
to Eq. (28) during each decoding iteration. Explicitly, as seen
in Fig. 1, the channel information and the a-priori information
P (La,) gleaned from the outer SISO decoder constitute the
inputs of the inner SISO decoder, which is driven by the
syndrome sequence S3. The channel information gives the
a-priori information pertaining to the error on the physical
qubits of the inner decoder P», which is computed by assuming
that each qubit is independently transmitted over a quantum
depolarizing channel having a depolarizing probability of p.
For the jth qubit at time instant ¢, we have:

S0 (i 5 (i n(l1—p), if Py, =1
J o) J o\ ) 2.t
P (Pg,t) =Pa (Pg,t) = { In(p/3), if P, € {X, Z32Y9%7

where 1 < j < ng, while 1 < ¢ < N,. During each iteration,
the inner SISO decoder calculates the extrinsic information for
each ko-qubit Lo 4 using Eq. (21) to Eq. (25) and Eq. (27). This
has to be carried out sequentially for 1 < ¢ < Ny due to the
time-dependencies exhibited in Eq. (22) to Eq. (24). Intuitively,
we may consider the SISO decoder to be composed of Na
algorithmic blocks, which are capable of executing Eq. (21) to
Eq. (28), as demonstrated in the schematic of Fig. 4. During
the first Ny time periods, the Ny algorithmic blocks operate
sequentially from the first block to the last block for processing
Eq. (21) and Eq. (22), as shown in Fig. 4 with bold arrows.
During the next N» time periods, the Ny algorithmic blocks
execute the rest of the algorithm, commencing from the last
block. Hence, the processing time of the inner SISO algorithm
of a conventional quantum turbo decoder spans over 2N, time
periods for each decoding iteration.

Thereafter, the extrinsic information P°(Ly) is de-
interleaved, yielding P*(Py), which is fed to the outer SISO
decoder for computing the extrinsic information P°(P;) using
Eq. (21) to Eq. (28). It may be noticed here that a qubit-
based interleaver/de-interleaver is used in the configuration of
Fig. 1. Consequently, the logarithmic probabilities P (L5 ;) are
marginalized to Pe(Lét), for 1 < j < ko, before the de-
interleaver and then théy are recombined thereafter, assuming
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that the constituent qubits are independent. The operation of
the outer SISO decoder, consisting of N; algorithmic blocks,
requires another 2N, time periods. This results in a total of
(2N7 + 2N3) time periods for each iteration. The two SISO
decoders exchange their information iteratively, until either
convergence to a vanishingly low QBER is achieved or the
maximum number of decoding iterations is reached. After the
last decoding iteration, a MAP decision is made based on the
a-posteriori information P’(L,), produced by the outer SISO
decoder, for estimating the most likely error coset L;.

B. Fully-Parallel Decoder

As a counterpart of the conventional quantum turbo de-
coding algorithm, which requires (2N 4+ 2N3) time periods
for each decoding iteration, we conceive a Fully-Parallel
Quantum Turbo Decoder (FPQTD), which dispenses with the
time dependencies associated with the conventional decoding
process. More explicitly, all the N» algorithmic blocks of the
inner SISO decoder as well as the N; algorithmic blocks
of the outer decoder operate concurrently in each decoding
iteration, as illustrated in Fig. 5. For the sake of achieving this
parallelism, the conventional SISO algorithm of Eq. (21) to
Eq. (26) is modified as follows:

1) The process commences by calculating the a-posteriori
transition metric J; for all valid transitions using:

gt (Mt—la Lt7 St) =
P* (Ly) + P* (Py) + a—1 (My—1) + B (Mz), (30)

where we have P, = (My_q1 : Ly : S;)Up, while
M; = (My—1 : L¢ : Si)Up. For executing all al-
gorithmic blocks concurrently, the a-priori information
pertaining to the logical error L; and the physical error
P, as well as the a-priori forward state metric ;1
and the a-priori backward state metric 3, are gleaned
from the previous decoding iteration. By contrast, the
d¢ of Eq. (24) relies on the updated a-priori forward
and backward state metrics received from the adjacent
(t —1)st and (¢ + 1)st algorithmic blocks, respectively,
resulting in sequential processing.

2) The a-posteriori transition metric ¢; of Eq. (30) may
then be invoked for calculating the extrinsic probabil-
ities using Eq. (25) to Eq. (28), which serve as the
a-priori information for the other SISO decoder in
the next decoding iteration, hence eliminating the time
dependencies between the two decoders.

3) Since in the fully-parallel architecture the algorithmic
blocks exploit the a-priori information received during
the previous decoding iteration, we substitute Eq. (24)
in Eq. (22), which yields:

Qi (Mt) = max*

{n€Gm NG ,0€G 1|

o =S¢ Mi=(p,\,o)Uns }

[St (,U/7 )\, U)] _Bt (Mt) .

€29
Each algorithmic block updates the extrinsic forward
state metric &y using Eq. (31), which is fed to the (¢ +
1)st algorithmic block for use in the next iteration.
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Fig. 4: Schematic of a conventional quantum turbo decoder. The algorithmic blocks are processed in the order of the bold arrows.
The inner and outer components are assumed to be rate-1/3 convolutional codes.

4) Similarly, the extrinsic backward state metric Bt,l is
updated using:

Bi—1 (My—q1) =
maX*

{AeG,0€G k|
0" =57}

[St (Mtfla A Uﬂ — Qg1 (Mtfl) ’

(32)

which is fed to the (¢ — 1)st algorithmic block for use
in the next iteration.

Hence, in the proposed FPQTD, relying on Eq. (30) to
Eq. (32), both the inner as well as the outer decoders operate on
the basis of the a-priori information gathered from the previous
decoding iteration and the resultant extrinsic information is
utilized during the next decoding iteration. Consequently,
the time dependencies exhibited in the conventional turbo
decoding algorithm are broken down, since all the operations
of the (N; + Nj) algorithmic blocks rely on the a-priori
information of the previous iteration. The resultant parallel
architecture only requires a single time period for processing
all the (N7 + N3) algorithmic blocks.

It is pertinent to mention here that a-priori information is
not available for the first decoding iteration. Following the
usual convention, the a-priori information P (Ly ;) of the
inner SISO decoder and P* (P ;) of the outer SISO decoder is
initialized to be equiprobable, or equivalently to [0,0,...,0],
for all algorithmic blocks. Similarly, the a-priori forward state
metric ;1 of the algorithmic blocks having indices ¢t € [2, N]

and the a-priori backward state metric 3; of the algorithmic
blocks having indices ¢t € [1, N — 1] are set to [0,0,...,0].
Recall that the syndrome decoding process outputs information
pertaining to the errors rather than to the actual information.
Therefore, in all decoding iterations, the a-priori forward state
metric &g of the first algorithmic block is set according to the
actual error inflicted on the memory qubits. More explicitly,
once all the physical qubits are processed by the inverse
encoder, the memory registers are measured, which reveals
the X -component of the error inflicted on it. Then &g may be
initialized on the basis of the measured error. Furthermore, for
all decoding iterations, the a-priori backward state metric Sy,
of the inner decoder is initialized according to the channel
model, while Sy, of the outer decoder is initialized on the
basis of P* (P n;, ).

Analogous to the classic FPTD [28]-[31], an odd-even
interleaver can be used for further reducing the computational
complexity of the FPQTD. More specifically, an odd-even
interleaving pattern can be exploited to connect the odd
numbered algorithmic blocks of the inner decoder with
the odd numbered blocks of the outer decoder, while the
inner algorithmic blocks having an even index are only
connected to the outer algorithmic blocks having an even
index, as shown in Fig. 5. In essence, the inner and outer
algorithmic blocks are divided into two independent sets,
which are marked as black and white in Fig. 5. Let us
assume that the inner and outer components of Fig. 1
are rate-1/3 QCCs. Then the encoded output of the outer
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Fig. 5: Schematic of a fully-parallel quantum turbo decoder. The inner and outer components are assumed to be rate-1/3

convolutional codes.

encoder consists of three qubits, which may be represented
as |1, )12 for the tth output. The odd-even connection
of Fig. 5 can be achieved by re-arranging the output of
the outer encoder before the interleaver, so that we have
{_|1Z11.,1>1|7/)1,_2>1 e |"/)1,N1>1|"/)1,1>2|7/)1,2>2 N Nl>2|7/)1,1>3
[t 5)3 ... |thy, N1)3}. Similarly, the output of the de-
interleaver at the decoder is also re-arranged before being
fed to the outer inverse encoder. When the inner and outer
algorithmic blocks are discretely distributed in the odd and
even sets, then the FPQTD procedure may be modified so
that each decoding iteration consumes two time periods.
During the first time period, all odd blocks of the inner
decoder and all even blocks of the outer decoder, which
are marked in black in Fig. 5, operate concurrently. During
the next time period, all even blocks of the inner decoder
and all odd blocks of the outer decoder, which are marked
in white in Fig. 5, operate using the a-priori information
gleaned from the previous time period. This doubles the
rate of convergence, as the extrinsic information propagates
faster between the algorithmic blocks as well as between
the inner and outer decoders. Consequently, while each
decoding iteration consumes two time periods, the total
number of decoding iterations is reduced to half, as it will
be demonstrated in Section V-B. Hence, the complexity is
reduced by 50%, while the latency/throughput remains the
same.

V. RESULTS AND DISCUSSIONS

In this section, we quantify the explicit benefits of our
proposed FPQTD by analyzing the performance of a rate-1/9
QTC, consisting of two serially concatenated [3, 1, 3] QCCs. In
particular, for both the inner as well as the outer components,
we have used the configuration termed as “PTOIR” in [23],
[24], whose seed transformation (decimal notation) is:

U = {1355, 2847, 558, 2107, 3330, 739, 2009, 286, 473,
1669, 1979, 189} decimal (33)

More explicitly, the elements of Eq. (33) represent the decimal
equivalent of the rows of the (12 x 12)-element binary seed
transformation U corresponding to the Pauli seed transforma-
tion U of Eq. (11). Furthermore, we have used approximate-log

for evaluating the max” operator®.

A. Performance Comparison with Conventional Decoder

In Fig. 6a, we compare the QBER performance of the
proposed FPQTD to that of the conventional decoder for
an interleaver length of 3,000 qubits. Since we have used
rate-1/3 QCCs, an interleaver length of 3,000 qubits implies
that we have N; = 1000, while N = 3000. Hence, the
conventional quantum turbo decoding would require (2N; +
2N5) = 4000 time periods for each decoding iteration.
In Fig. 6a, the performance of the conventional decoder

4Please refer to Footnote 3.
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(a) Interleaver length of 3,000 qubits.
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(b) Interleaver length of 1,500 qubits.

Fig. 6: Achievable QBER performance for I € {1,2, 4,6, 8} iterations of the conventional decoder, while I € {10, 20, 40, 60,80}

iterations are used for the fully-parallel turbo decoder.

D | Conventional | Fully-Parallel
0.125 | 6.5 80
0.12 4.6 50
0.115 | 34 35
0.11 2.8 28

TABLE I: Average number decoding iterations required for the
conventional and fully-parallel quantum turbo decoder.

is plotted for T € {1,2,4,6,8} decoding iterations, while
I € {10,20,40, 60,80} iterations are invoked for the FPQTD.
It may be observed that at a higher iteration index (or
equivalently close to convergence), the FPQTD requires about
ten times more iterations than the conventional decoder for
the sake of achieving a similar performance. We further
compare the average number of decoding iterations invoked
by the proposed FPQTD to that of the conventional decoder
in Table I. It may be observed in Table I that the FPQTD
requires on average about 10 to 12 times more iterations than
the conventional scheme. The slower convergence of FPQTD
is imposed by its parallel nature. More explicitly, since the
information is not propagated through the algorithmic blocks
as well as to the other decoder in the same decoding iteration,
the FPQTD requires significantly more decoding iterations for
propagating the information, thus imposing a higher computa-
tional complexity, which is quantified in Table I in terms of the
average number of decoding iterations required for attaining
convergence. Nevertheless, the FPQTD brings with it huge
benefits in terms of the total number of time periods required
for decoding. More explicitly, while the conventional decoder
requires a total of (2N7 +2N3) x I time periods, i.e. 8000 X I
when N; = 1000 and Ny = 3000, the number of time periods
required by the fully-parallel scheme is as low as the number

of decoding iterations. This is because our FPQTD scheme
requires a single time period for each decoding iteration. Since
the FPQTD requires about ten times more iterations, it reduces
the total number of decoding time periods by a factor of
800, thereby reducing the associated latency (or equivalently
increasing the maximum tolerable clock-rate and hence the
throughput).

Let us now extend our analysis to an interleaver length of
1,500 qubits in Fig. 6b, which exhibits the same trend as that
of Fig. 6a. Hence, regardless of the interleaver length, the fully-
parallel scheme converges to the same QBER performance as
that of the conventional decoder by invoking around ten times
more iterations. We further compare the performance of the
two schemes in Fig. 7 by quantifying their discrepancy from
the Hashing bound at a QBER of 10~ for different interleaver
lengths. It may be observed in Fig. 7 that the FPQTD exhibits
the same performance as that of the conventional scheme for
all interleaver lengths, provided that ten times more iterations
are invoked. Hence, the FPQTD is likely to reduce decoding
times by a factor of (2N7 4+ 2N3)/10 = 0.8 N; for any input
frame length Ny of the rate-1/9 QTC of [24].

B. Impact of Odd-Even Interleaver

In Fig. 8, we quantify the benefits of exploiting the knowl-
edge of the odd-even interleaving pattern in the fully-parallel
architecture. More specifically, we compare the performance
of FPQTD having a random interleaver to that of an odd-
even interleaver. Fig. 8 portrays the performance of the ran-
dom interleaver for I € {10, 20,40, 60,80} iterations, while
I € {5,10,20,30,40} iterations are used for the odd-even
interleaver. As observed in Fig. 8, the odd-even interleaving
pattern yields faster decoding convergence without compro-
mising the achievable QBER performance. In particular, the
odd-even interleaving gives around 50% reduction in the
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Fig. 8: Achievable QBER performance of a fully-parallel quan-
tum turbo decoder, when a random and an odd-even interleaver
are used. I € {10, 20,40, 60, 80} iterations are invoked for the
random interleaver, while I € {5, 10,20, 30, 40} iterations are
used for the odd-even interleaver.

number of decoding iterations, which is also seen from the
average number of decoding iterations tabulated in Table II.
Furthermore, since an odd-even QFPTD decoder uses two time
slots for each decoding iteration, the total latency is the same
as that of QFPTD relying on a random interleaver. However,
the overall complexity is reduced to half.

VI. CONCLUSIONS

In this contribution, we have conceived a fully-parallel
architecture for quantum turbo decoding. The proposed scheme
circumvents the inherent time dependencies associated with
the conventional quantum turbo decoding by allowing all
the constituent algorithmic blocks to operate concurrently.
Consequently, while the decoding delay or latency of the
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D | random | odd-even
0.125 | 80 41
0.12 50 26
0.115 | 35 18
0.11 28 15

TABLE II: Average number decoding iterations required for
the fully-parallel quantum turbo decoding with random and
odd-even interleavers.

conventional sequential decoding is a function of the frame
length, the decoding delay incurred by the proposed QFPTD
is independent of the frame length. We have demonstrated that
QFPTD reduces the total number of decoding time periods
by a factor of 800 for a frame length of 1,000 qubits. This
is particularly important for quantum systems, which have
low coherence times at the time of writing. We have also
quantified the benefits of employing an odd-even interleaver
pattern in conjunction with FPQTD. More specifically, the odd-
even interleaver design reduces the computational complexity
by half, while exhibiting the same QBER.
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