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A remarkable property of dense suspensions is that they can transform from liquid-like at rest
to solid-like under sudden impact. Previous work showed that this impact-induced solidification
involves rapidly moving jamming fronts; however, details of this process have remained unre-
solved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior
of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that
the solidification proceeds without a detectable increase in packing fraction, and imaging the
evolving flow field we find that the shear intensity is maximized right at the jamming front.
Taken together, this provides direct experimental evidence for jamming by shear, rather than
densification, as driving the transformation to solid-like behavior. Based on these findings we
propose a new model to explain the anisotropy in the propagation speed of the fronts and
delineate the onset conditions for dynamic shear jamming in suspensions.
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Dense suspensions are complex fluids that can ex-
hibit strong, discontinuous shear thickening (DST),
where the viscosity jumps up orders of magnitude when
a critical shear stress is exceeded [1, 2, 3, 4]. Under a
wide range of dynamic conditions, dense suspensions
can also undergo a transformation to solid-like behav-
ior, for example during sudden impact at their free sur-
face [5, 6, 7], ahead of quickly sinking objects [8, 9], un-
der shear [10] or during rapid extension [11]. Detailed
investigation of the dynamics during impact has shown
how such solidification is associated with a propagat-
ing front that converts fluid-like, unjammed suspension
into rigidly jammed material in its wake [5, 12]. This
dynamic jamming front moves through the suspension
with a speed much greater than the impactor itself.

To explain this solidification, a model was proposed
[5] that assumed the impact pushes the particles closer
together until they jam. This densification scenario
was based on the standard jamming phase diagram for
frictionless hard particles, where entry into a jammed
state requires an increase in particle packing fraction
φ [13]. Since the volume of particles is conserved, the
front propagation speed vf along the direction of im-
pact then is related to the impactor speed vp via [14]

vf =
φJ

φJ − φ0
vp, (1)

where φJ is the packing fraction at which jamming oc-
curs and φ0 < φJ is the packing fraction of the initially
unjammed suspension at rest. The closer the initial
packing fraction is to jamming, the faster the front will
propagate, in principle diverging at φJ. This model
shows excellent agreement with measurements of vf in
systems where the local packing fraction can change
easily, such as dry granular particle layers that are be-
ing compacted snowplough-like from one end [14].

In suspensions the presence of an interstitial liquid
makes it possible to prepare three-dimensional systems
at packing fractions φ well below φJ by density match-
ing the particles to the liquid. Given that such systems
can still exhibit impact-induced solidification, jamming
by densification would imply significant particle pack-
ing fraction changes ∆φ = φJ−φ. However, unless the
impact speed is so high that the liquid becomes com-
pressible [15], viscous drag will counteract any den-
sification of the particle sub-phase. This calls into
question the mechanism underlying Eq. 1, even though
there is experimental evidence for the basic outcome,
namely that the ratio vf/vp increases dramatically as
∆φ approaches zero [5, 12].

One intriguing alternative mechanism has recently
emerged with the concept of jamming by shear [3, 16].
In this extension of frictionless, standard jamming,
the presence of frictional interactions between parti-
cles makes it possible to start from initially isotropic,
unjammed configurations at φ = φ0 < φJ and, with-
out changing φ, rearrange the particles into anisotropic
fragile or jammed configurations by applying shear.
Shear jamming is also possible in frictionless systems,
albeit over a much smaller range in ∆φ [17]. So far,
such shear jamming has been observed experimentally

in two-dimensional (2D) dry granular systems under
quasi-static conditions, where there is direct visual ac-
cess to particle positions and stresses by imaging per-
pendicular to the 2D plane [16]. Investigating the role
of shear jamming in dynamic impact-induced solidi-
fication of 3D suspensions requires the capability of
non-invasively tracking the jamming fronts and the as-
sociated, quickly evolving flow field in the interior of
an optically opaque system.

Here we achieve this with ultrasound. Related
methods have been applied to studying dry granular
materials [18, 19] and steady-state flow in suspensions
[20, 21]. Measuring the speed of sound c we obtain
an upper bound on the change of packing fraction
∆φ as the suspension jams. We find that at vp � c,
∆φ is much smaller than required if densification
was the primary driver for impact-activated solidifi-
cation. To investigate the crossover as vp increases,
we use high-speed ultrasound imaging to track the
emergence of concentrated shear bands at the location
of the propagating jamming fronts. In the regime
of small vp, the suspension responds to stress like a
fluid, and in the regime of large vp, the suspension
develops solid-like characteristics, which we identify
by investigating the flow fields. The invariant packing
fraction and existence of shear bands provides direct
evidence of dynamic shear jamming in 3D suspensions.
Furthermore, access to the full flow field allows us to
extract the local shear rates and identify the origin of
a key, but so far unexplained, feature of the response
to impact: the longitudinal front propagation speed
exceeds the transverse propagation speed by a factor
very close to two [12].

Results

Experimental setup and extraction of the flow
field. The experiments were performed with a pro-
totypical suspension: cornstarch particles dispersed in
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Figure 1: Schematic illustration of the experimental
setup. The sample container and impactor are cylindrical
and concentric. The ultrasound transducer scans a vertical
slice centered along the central z-axis, providing a field of
view as indicated by the striped area.
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Figure 2: Visualization of the flow field with ultrasound. (a)-(c) Velocity field during an impact at time 6.0 ms
(a), 13.2 ms (b) and 20.3 ms (c) (the impactor reached the surface when time t = 0 ms). The images are snapshots
from a high-speed ultrasound movie (shown in gray scale) with overlaid velocity field from particle image velocimetry
(PIV) analysis. The color code represents the magnitude and sign of the vertical component of the local velocity uz
(red corresponds to downward, blue to upward flow). Dashed yellow lines indicate the locations of the free surface of
the suspension and of the bottom of the container. The impactor is outlined in red. The experimental parameters are
φ = 0.47, vp = 175 mm·s−1, liquid viscosity η0 = 4.6 ± 0.2 mPa·s, fill depth H = 30 mm, and impactor diameter of
6.0 mm. The black scale bar in (b) represents 1 cm for (a)-(c). (d),(e) Two components of the shear rate tensor, |ε̇zz|
(d) and |ε̇rz| (e), shown for the same instant in time as the flow field in (c). Dashed lines are contours connecting points
with the same uz. The thicker line indicates uz = vp/2, which defines the front position. The white scale bar is 1 cm for
(d) and (e). The whole process is shown in Supplementary Movie 1.

water-glycerol CsCl solutions. The experimental setup
is illustrated in Fig. 1. In the impact experiments the
impactor was driven vertically downward with constant
velocity vp by a linear actuator. A representative flow
field (ur, uz) inside the suspension during an impact is
shown in Fig. 2 a-c. The vertical and horizontal axes
in the image correspond to the z and r directions in
cylindrical coordinates. The flow field shows a jammed
solid-like plug in the center, as evidenced by the fact
that all points move vertically with speed close to vp.
Also evident is a strong velocity gradient around the
periphery of the jammed region. To show this more
explicitly, we calculate the local shear rate from the
velocity field (ur, uz). Given rotational symmetry, the
shear rate tensor becomes

ε̇ =

 ∂ur

∂r 0 1
2 (∂ur

∂z + ∂uz

∂r )
0 ur

r 0
1
2 (∂ur

∂z + ∂uz

∂r ) 0 ∂uz

∂z

 . (2)

Fig. 2 d and e show the two components |ε̇zz| = −∂uz

∂z

and |ε̇rz| = − 1
2 (∂ur

∂z + ∂uz

∂r ). Underneath the jammed
region, i.e., in longitudinal direction, ε̇zz dominates.
This corresponds to pure shear that compresses the
suspension in the z direction and expands it radially.
By contrast, along the sides of the jammed plug ε̇rz
dominates, and here the main contribution arises
from the term ∂uz

∂r . As a result, the velocity gradient
is mainly perpendicular to vp. This is analogous to
simple shear as seen, for example, in parallel plate
setups. We will return below to the implications of
having both types of shear.

Speed of sound. In an unjammed suspension of solid
particles in a Newtonian liquid the shear modulus van-
ishes. In the limit that the solid particles are much
smaller than the wavelength, the speed of sound is
then given by c = (K/ρ)

1
2 , where K is the average

bulk modulus and ρ the average material density of
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Figure 3: Direct measurement of packing fraction
changes. (a) Speed of sound c as a function of packing
fraction φ. All data were taken with suspensions in their
quiescent fluid-like state, at packing fractions well below
φJ. From the scattering of the data points we can see the
overall uncertainty of this experiment. (b) Sketch of the
region beneath the impactor. The black dashed line repre-
sents the initial suspension surface at a fill height H above
the bottom of the container (bold black solid line). As the
impactor (outlined in red) pushes down a vertical distance
zp the front (orange region) propagates a distance zf. (c)
Change in sound speed ∆c as a function of time (black
trace) at φ0 = 0.48. Impact at the free suspension surface
occurs at t = 0 ms. Once the jamming front has reached the
bottom of the container, the suspension below the impactor
has been transformed into a solid-like material. At that
point, near t = 35 ms, the force on the impactor (red trace)
rises dramatically. Note that within our experimental un-
certainties, the speed of sound does not increase until the
shear-jammed region becomes compressed. Data are aver-
ages from seven experiments that simultaneously measured
force and sound speed as functions of time. Dashed lines
indicate one standard deviation. The grey region shows the
uncertainty (given by one standard deviation) in determin-
ing ∆c at low vp, where no solidification takes place.

the suspension [22, 23]. In our experiments the parti-
cles and suspending solvent are density matched (see
Methods), but the averageK still increases with φ since
cornstarch particles have a bulk modulus larger than
that of the liquid [24]. As shown in Fig. 3a, the result-
ing dependence of c on φ is, to a good approximation,
linear across the regime of packing fractions probed by
our experiments. This allows us to obtain ∆φ straight-
forwardly by detecting changes in c with ultrasound.

A schematic illustration of the suspension under im-
pact is shown in Fig. 3b, indicating two regions: a
jammed region (orange) directly underneath the im-
pactor and an unjammed region (yellow) ahead of the
jamming front. Our measurements provide the average

speed of sound c̄ as determined from the time it takes
sound pulses to traverse both regions (see Methods).
The process of transforming unjammed suspension to
jammed suspension could be expected to increase the
speed of sound via three possible mechanisms: (1) an
increase ∆φ in packing fraction; (2) an increase in effec-
tive bulk modulus K; (3) the development of a finite
shear modulus G as the suspension jams [13]. Cur-
rently we can not determine how much they each con-
tribute, but we can estimate the upper limit of each
individual term by assuming the other two zero.

Firstly, we estimated the maximum possible increase
in φ. Figure 3c shows the measured change in sound
speed ∆c = c̄ − c(φ0) during impact for a suspension
prepared at φ0 = 0.48. The impactor hits the suspen-
sion surface at time t = 0, generating a jamming front
that reaches the bottom at t ≈ 0.035 s. We can identify
this point by the dramatic increase in force on the im-
pactor, as established by prior investigations of quasi-
2D [12] and 3D [5] systems. Until the jamming front
interacts with the bottom wall ∆c = c̄ − c(φ0) is less
than the measurement uncertainty of about 5 m/s. Ne-
glecting any increases in K and G, we find from Fig. 3a
that our noise floor ∆c ≈ 5m/s implies ∆φ ≈ 0.006
during the free propagation of the fronts. This means
that φ could have increased to 0.49 at best. On the
other hand, even at the highest packing fraction in
Fig. 3(a) φ = 0.52, the suspension can still flow when
sheared slowly, implying an isotropic jamming thresh-
old φJ greater than 0.52. This means that the increase
in packing fraction due to impact is much less than
required for jamming by the densification model.

If instead we assume ∆φ = 0 and use c = [(K +
4
3G)/ρ]

1
2 , as appropriate for solids [25], to describe the

dependence of the speed of sound on K and G within
the jammed region behind the front, the same noise
floor ∆c ≈ 5 m/s implies that the net increase in the
sum of the moduli K̃ = K + 4

3G could not have been

larger than ∆K̃ ≈ 32 MPa. This is very small com-
pared to the bulk modulus K0 of the quiescent suspen-
sion at φ0 = 0.48: ∆K̃/K0 ≈ 0.5%.

Once the front has reached the bottom, ∆c in-
creases to ≈ 16 m·s−1. While this is significantly
above the noise floor, it limits any packing fraction
changes to ∆φ ≈ 0.02, still less than necessary to
reach φJ. Nevertheless, the interaction with the solid
boundary increases the stress in the dynamically
jammed region significantly and this drives the sus-
pension deeper into the shear jammed state. We can
therefore expect concomitant increases in bulk and
shear moduli and thus in sound speed. From the
sound speed data in Fig. 3, the upper limit of the net
increase in the sum of the moduli K̃ is ∆K̃ ≈ 101 MPa.

Propagation of fronts. From the evolution of the
flow fields as shown in Fig. 2 we extract the position of
the moving jamming front, defining the front position
as the line of points where the vertical component of the
impact velocity has dropped to vp/2. In the following
we focus on the points in the flow field that propagate
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the furthest in z and r directions, i.e., on the maximum
longitudinal and transverse front speeds. As shown in
Fig. 4a, after an initial stage the fronts in both direc-
tions propagate essentially linearly as function of time
before slowing down when they start to interact with
boundaries and the incipient jammed region gets com-
pressed by the impactor; further compression causes
the motion to stop quickly (see Supplementary Fig. 1).
Here we investigate this linear regime, where the front
propagates freely. To compare how quickly the front
propagates relative to vp, we define two dimensionless
front propagation factors, or normalized front speeds,
k as

kt =
vft

vp
, kl =

vfl

vp
− 1, (3)

where the subscripts t and l represent transverse and
longitudinal directions, respectively. The “−1” in kl

compensates for the vertical motion of the impactor
itself.

Our experiments show that the parameters that af-
fect kl and kt include φ, vp, and the suspending liquid’s
viscosity η0. For a suspension with given η0 and φ0

that is impacted very slowly, the response is fluid-like
and both kt and kl are close to zero. However, beyond
a threshold value vp0 jamming fronts start to appear.
Their normalized speed initially increases quickly with
impactor speed vp but eventually asymptotes to a fixed
k∗. The relation between kl and vp in suspensions with
the same η0 but different φ0 is shown in Fig. 4b; the
behavior of kt is similar. As φ increases the curves shift
towards lower vp0 and higher k∗. For comparison, in
suspensions with the same φ0, larger solvent viscosity
η0 leads to lower threshold vp0 (see Supplementary Fig.
2). In order to extract k∗ and vp0 we fit the data to

k

k∗
=

{
0 (vp ≤ vp0),

1− e1−vp/vp0 (vp > vp0).
(4)

Eq. 4 is not derived but a phenomenological relation
that captures the key aspects of the data discussed
above: (1) k = 0 at small vp; (2) k increases when
vp > vp0; (3) k approaches k∗ as vp →∞. Plotting the
data in terms of normalized variables k/k∗ and vp/vp0

scales out the dependencies on φ0 and η0. The result-
ing data collapse for the longitudinal front speed ratio
kl/k

∗
l is plotted in Fig. 4c. A similar result is obtained

for the transverse speed ratio kt/k
∗
t .

To quantify the anisotropy in front propagation
in longitudinal and transverse directions, we plot k∗l
versus k∗t in Fig. 4d, using data from experiments
varying φ (larger packing fraction increases both k∗l
and k∗t ) and η0. To a good approximation, all data
follow k∗l = 2k∗t . Comparison with data obtained for
quasi-2D suspension [12] shows excellent agreement as
well, except that for higher kt the ratio kl/kt slightly
exceeds 2.

Discussion
Our data in Fig. 3c demonstrate that impact-

activated jamming of dense suspensions proceeds with-
out significant increase of φ, and certainly without in-
creasing φ to values close to φJ. This rules out earlier
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Figure 4: Propagation of jamming fronts. (a) Front
position in longitudinal (black) and transverse (blue cir-
cles: right, blue squares: left) directions as functions of
time. The impactor touches the suspension surface at time
t = 0 ms. The grey shaded background indicates the initial
front build-up (left), and the regime where the fronts starts
to interact with boundaries and slows down (right). For
these data vp = 200 mms, φ = 0.460. (b) Normalized front
propagation speed kl in longitudinal direction as function
of vp for different φ (magenta: 0.439, orange: 0.453, green:
0.460, blue: 0.474, black: 0.498). All data are for suspend-
ing liquid viscosity η0 = 4.6 ± 0.2 mPa·s. Error bars show
the standard deviation of three measurements. The same
data plotted in log-linear scale is shown in Supplementary
Fig. 3. (c) Front speed kl/k

∗
l normalized by its asymp-

totic value as function of impactor speed vp normalized by
threshold speed vp0. Data from experiments with different
φ and η0 collapse onto a master curve fit by Eq. 4 (solid
red line). (d) Relationship between the asymptotic front
speeds k∗l and k∗t in longitudinal and transverse direction,
respectively. Data from both quasi-2D [12] (turquoise) and
3D (black) impact experiments are shown. The solid red
line is the prediction from Eq. 5. The slope approaches 2
as k∗t increases. The dashed red line is a modified version
of the model, which includes a small strain anisotropy δ,
here plotted using a value of δ = 0.01. Error bars are the
asymptotic standard error from the fittings of each k-vp

curve with Eq. 4.

explanations based on entering the jammed state via
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densification of the particle sub-phase [5, 14]. On the
other hand, analysis of the flow field shows that the
jamming fronts initiated by the impact coincide with
the location of the maxima in local shear rate (Fig. 2 d
and e). Together, these two findings provide strong ev-
idence for dynamic shear jamming: the impact triggers
propagating fronts that locally create sufficient shear to
reorganize particles into (anisotropic) jammed configu-
rations without changing the average packing fraction.
There are several implications of the shear jamming
scenario for suspensions and several differences from
dry granular systems, both of which we discuss next.

To start, we examine the stress. In a dry granu-
lar system stress is sustained only via direct contact
between particles. By contrast, in a dense suspension
stress can also be transmitted without contact via lu-
brication forces. Thus while in dry granular systems
there is only a single characteristic stress scale for en-
try into the shear-jammed regime [16], for a suspension
the situation can be more complex. A number of theo-
retical models [3], simulations [2, 26] and experiments
[27, 28, 29] have recently suggested that lubrication
breaks down and particles start to experience frictional
interactions beyond a local stress threshold σ1. Thus,
for stress levels below σ1 the suspension behaves fluid-
like, while above σ1 the system can be thought to be-
have more like a frictional granular system, i.e., enter
a fragile regime before crossing over into the shear-
jammed regime at a second characteristic stress level
σ2 [16]. Within this picture, we associate the transi-
tion at vp0 with the situation where the stress levels
at the leading edge of the jamming front have reached
σ1 and are large enough for frictional interactions to
occur. Thus, when vp < vp0 the suspension is in the
lubrication regime, but when vp > vp0 it transitions
into a fragile state with behavior intermediate between
solid and fluid [16, 30, 31], as frictional contacts start
percolating through the system to form a load-bearing
network, eventually reaching a shear-jammed state as
vp increases further. We point out that a nonzero shear
modulus is not strictly necessary for the front to prop-
agate (with k > 0). The front will propagate as long
as it transforms the initially liquid-like suspension into
a state with sufficiently large viscosity. However, we
know that this state behaves solid-like while interact-
ing with a system boundary [5, 6, 10, 12]. Thus, how
the shear modulus evolves in the region behind the
jamming front before a system-spanning jammed state
has been established remains an open question.

The stress-based argument also provides an expla-
nation of the relaxation or “melting” of the jammed
region when the impact stops. During front propaga-
tion the stress inside the jammed region is sustained by
the inertia of the suspension in the shear zone ahead
of the jammed region. When the motion of the im-
pactor stops, the shear zone disappears and the stress
applied on the boundary of the jammed suspension falls
below σ1, insufficient to sustain frictional interactions
between particles and therefore any network of force
chains that could generate a yield stress and support a
load. As a result, the suspension returns to the lubri-

cation regime.
However, while necessary, the existence of threshold

stress levels is not sufficient to explain the asymptotic
front speed k∗ at high vp and the seemingly univer-
sal anisotropy in front propagation, expressed by the
ratio k∗l /k

∗
t ≈ 2. Particles also need to move out of

an initial uniform isotropic distribution and reorganize
under shear into anisotropic structures (force chains)
that can support the stress. Such reorganization re-
quires a minimum shear strain εc to engage neighbor-
ing particle layers. As a result, shear jamming happens
only when stress and strain both reach their threshold
values. In a quasi-static granular system [16, 17] the
threshold strain only matters when the shear jammed
state is prepared or when the shear is reversed. In the
dynamic system considered here, the front continues to
propagate into unperturbed suspension, and therefore,
the front advances by applying strain εc locally during
the whole process of front propagation.

For dense suspensions in the high vp regime, where
the stress threshold is clearly exceeded, we can show
that k∗ is governed by εc and that, in fact, the front
speed anisotropy is a direct consequence of the exis-
tence of a strain threshold. As described above, the
suspension experiences pure shear in the longitudinal
direction and simple shear in the transverse direction.
In 2D we can directly compare the two types of shear
using the positive eigenvalues of the shear rate tensors,
treating the propagation of the front in the longitu-
dinal and transverse directions as two effectively 1D
problems. We now assume that a suspension element
jams when the shear strain it experiences reaches εc,
irrespective of propagation direction. This leads to the
following relations between k∗l , k∗t and εc (see Meth-
ods):

k∗t = 1/(2εc), k∗l = 1/(eεc − 1) (5)

and

k∗l =
1

e1/(2k∗t ) − 1
. (6)

Eq. 6 is plotted in Fig. 4d. For small εc we find from
Eq. 5 that k∗l ≈ 2k∗t = 1/εc. In other words, the
anisotropy ratio of 2 in the normalized front speeds
originates from the factor 1/2 in the non-diagonal
terms of the shear rate tensor, which in turn arises
because simple shear can be decomposed into a com-
bination of pure shear and solid body rotation. In 3D
it is not possible to quantify the effects of pure shear
and simple shear via the same approach (see Methods).
However, one possible solution is to use the “strain in-
tensity” D suggested by Ramsay and Huber [32], which
provides a scalar measure of the relative strength of the
two types of shear. As we show in the Methods section,
this leads to a ratio k∗l /k

∗
t ≈ 3/

√
2 ≈ 2.12, very close

to the value for the 2D case. Therefore, an anisotropy
ratio ≈ 2 agrees very well with the experimental data
for both quasi-2D [12] and 3D systems within our mea-
surement precision.

With increasing packing fraction φ the average dis-
tance between particles decreases and we expect the
strain threshold εc to decrease as well, which agrees
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qualitatively with the measurements of εc in dry gran-
ular systems [16]. Via Eq. 5 this explains the increase
in k∗ with φ seen in Fig. 4b: since it takes less strain
to reorganize the particles into a shear-jammed net-
work the front will propagate faster for given impactor
velocity. We point out that Eq. 1, which formalizes
such relationship between packing fraction and front
speed, appears to capture the overall trend qualita-
tively. However, this seems fortuitous, since Eq. 1 was
based on the assumption that the moving front signifi-
cantly increases the packing fraction, in fact driving it
up all the way to φJ, which we now can rule out in our
system. In addition, Eq. 1 cannot predict the observed
propagation anisotropy. One of the outstanding tasks
therefore is to develop a model for k∗(φ) that is based
on jamming by shear rather than densification.

An interesting aspect of the data in Fig. 4d is the de-
viation from the anisotropy ratio ≈ 2 at large k∗ values
or, equivalently, large packing densities. This is most
apparent in the data available for the quasi-2D system
and it indicates that the longitudinal speed becomes
faster. We speculate that this may be connected to a
breakdown of the assumption of an isotropic thresh-
old εc. For example, if the impact were to introduce a
small amount of compression of the particle sub-phase
in longitudinal direction, εc would be reduced in that
direction. This effect would become increasingly sig-
nificant at large φ. We can model this by introducing
a correction δ so that

k∗l = 1/(eεc−δ − 1). (7)

Using εc = 1/(2k∗t ) and δ ≈ 0.01 we can reproduce the
trend in Fig. 4d well (dotted red line). However, we
point out that this is just the simplest way to account
for the trend in the data and there might be other
reasons for the deviation.

Taken together, these results provide important
insights into the mechanism responsible for impact-
induced solidification of dense suspensions. The
finding that the packing fraction does not increase
measurably during impact, together with the ob-
servation of strong shear at the leading edge of the
propagating solidification fronts, rules out jamming
via densification as the dominant mechanism and
points to jamming by shear (densification is likely to
play a significant role at much larger impact velocities,
when the interstitial liquid’s compressibility can no
longer be neglected [15]). In dense suspensions this
introduces a new stress scale or, equivalently, an
impact velocity threshold, which we associate with the
breakdown of lubrication films between particles and
the onset of frictional interactions [2, 3, 27, 28, 29].
Behind the front, these frictional interactions create
a dynamically shear-jammed region (corresponding
to fragile and/or shear jammed states in [3, 16]).
Further support for the shear-jamming scenario comes
from the observation of anisotropic front propagation,
where we can relate the fact that the fronts propagate
longitudinally twice as fast as in transverse direction
to an equivalent factor in the ability to transmit shear
strain. We point out that for dynamic shear jamming,

both shear stress and strain need to exceed threshold
values, and the critical shear strain determines the
front propagation speed.

Methods
Experimental setup. The ultrasound measurements
and imaging were performed with a Verasonics Vantage
128 system. The sample container was 3D-printed from
UV-cured resin (“Vero White Plus”, Objet Geometries
Inc.) whose acoustic impedance matched the suspensions
we studied. The inner diameter of the container was
10.0 cm and the typical depth H of the suspension was 2.5
to 3.5 cm. This insured that the front reached the bottom
before it interacted with the side wall. The impactor
was a cylinder of diameter of 6 mm or 10 mm, driven
by a computer controlled linear actuator (SCN5, Dyadic
Systems) and equipped with a force sensor (DLC101,
Omega). The ultrasound transducer (Philips L7-4; 128
independent elements; total width of 3.8 cm) contacted the
bottom of the container through a thin layer of ultrasound
gel. The ultrasound system was triggered as the impactor
approached the surface; images were taken at a frame rate
of 10 to 10,000 frames per second, adjusted according to
vp. The spatial resolution of the ultrasound was limited
by the wavelength, about 0.4mm in our experiments.

Suspensions. The cornstarch (Ingredion) was stored in
the lab environment at 22.5 ± 0.5 ◦C and 51 ± 2% rela-
tive humidity. Individual particles had a diameter of 5 -
30 µm [5, 33]. The suspending solvent was a solution of
CsCl, glycerol and water. Its viscosity η0 was adjusted by
the mass ratio of glycerol and water, and its density was
matched to that of the cornstarch particles by adjusting
the mass ratio of CsCl. The density of the particles was
ρcs = (1.63 ± 0.01) × 103 kg m−3 as measured by density
matching. To calculate the packing fraction φ, an accurate
determination of the volume occupied by particles and in-
terstitial liquid is required. For cornstarch this is difficult
because the particles are porous and they already contain
some moisture before they are dispersed in the suspending
solvent. Therefore, often a value φm based on the mass
fractions before mixing is quoted [4, 5, 7], which is propor-
tional to φ. For example, in Figs. 4b, the φm values were
0.390, 0.402, 0.409, 0.425, and 0.444. To obtain the actual
packing fraction, we account for a small fraction α of sus-
pending liquid that is wicked up by the porous particles
and write φ = (1 + α)φv, where φv is the material volume
packing fraction [34, 35]. When calculating φv, we consid-
ered the moisture in the cornstarch particles. We assume
the moisture is pure water and its mass ratio in cornstarch
is β in our lab environment. This leads to

φv =
(1− β)mcs/ρcs

(1− β)mcs/ρcs +ml/ρl + βmcs/ρw
, (8)

where mcs is the mass of cornstarch particles, ml is the
mass of the solvent liquid, ρl is the density of the solvent
and ρw is the density of pure water. In this paper we use
α = 0.3 and β = 0.11 by estimation. Changing of these
numbers will not affect the conclusions we make.

Since air bubbles mixed in the suspension scatter ultra-
sound signals significantly, the suspensions were debubbled
before using. To keep φ fixed during debubbling, we filled
the suspensions into sealed syringes and then lowered
the pressure by pulling the plungers. The syringe walls
were tapped gently to help bubbles separate from the
suspension. After debubbling a small amount of suspension
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was used to measure the speed of sound c as required for
image reconstruction. For imaging the flow field, a small
amount of air bubbles were added back to the debubbled
suspensions to act as tracer particles. This was done by
slowly stirring the suspension, then tilting and slowly
rotating the container till the bubbles were uniformly
distributed. We verified that the amount of bubbles did
not suppress the penetration of the ultrasound in the
suspensions and made negligible change in speed of sound.
We also determined that the effect of the bubbles on the
suspension viscosity is limited (see Supplementary Fig. 4).
Between successive impact experiments the suspension was
relaxed by gently shaking and rotating the container.

Data acquisition and analysis. Once triggered, the
ultrasound system made several hundred acquisitions con-
secutively. In one acquisition each of the 128 transducer
elements transmitted the same ultrasonic pulse at the
same time and received an individual reflected time series.
The pulse was a 5 MHz sinusoidal wave modulated by a
Gaussian profile (Gaussian envelope) for a pulse length of
6 periods. From the time series received by the transducer
and using the previously measured speed of sound c we re-
constructed B-mode images (using brightness to represent
the echo signal amplitude) [25] that captured the positions
of the tracer particles (air bubbles) in the suspension.
Given our finding that c does not change measurably
during the impact, the image reconstruction process does
not need to account for spatial or temporal variations in
c. By tracking the tracer bubble displacements with a
particle imaging velocimetry (PIV) algorithm, we obtained
a two-dimensional flow field from within the bulk of the
suspension.

Change of packing fraction measurements. The ex-
perimental setup was identical to the one illustrated in
Fig. 1 and a schematic illustration is shown in Fig. 3b.
The impactor started from the surface of the suspension
and pushed down a distance zp. The position of the im-
pactor was measured with a high speed camera (Phantom
V9, Vision Research). The ultrasound measured the time
of flight T of the signal transmitted from the bottom, re-
flected by the impactor and sent back to the bottom. Thus
the average speed of sound c̄ along this path is

c̄ = 2
H − zp

T
. (9)

We started with experiments at a low vp (5 mm·s−1) to
measure the speed of sound in the liquid-like, unjammed
suspension, where c̄ = c(φ0). Define T0 as the initial time
of flight when zp = 0 mm, we have H = c(φ0)T0/2, and
from this

c(φ0) =
2zp

T0 − T
. (10)

The initial packing fraction φ0 in these experiments was
0.48. The liquid was a mixture of 44.3% CsCl, 27.8% glyc-
erol and 27.8% water by mass, with η0 = 4.6 mPa·s and
ρ = 1.63 × 103 kg·m−3. From six measurements we ob-
tain c(φ0) = 1939.2 ± 4.6 m·s−1 and H = c(φ0)T0/2 =
34.1± 0.1 mm.

For the high vp (200 mm·s−1) experiments we used the
value of H measured above and equation 9 to calculate c̄.
The time of flight now becomes

T = 2
[H − zf

c(φ0)
+

zf − zp

c(φ0 + ∆φ)

]
. (11)

For ∆φ = 0, T∆φ=0 = 2(H − zp)/c(φ0). If ∆φ > 0,
there will be a difference between T and T∆φ=0, and the
difference becomes increasingly large as zf increases, which
leads to an increase in c̄ according to equation 9.

Derivation of Equation 5 in 2D. For an idealized 2D
system we define a Cartesian coordinate with x axis in the
transverse and y axis in the longitudinal direction. To ob-
tain the relation between the strain threshold εc and the
normalized front speeds k we consider how much shear
strain a suspension element experiences when it acceler-
ates from uy = 0 to uy = vp. We consider the propagation
in the transverse and longitudinal directions separately as
two quasi-1D problems. Exemplary sketches of the veloc-
ity profiles are provided in Supplementary Fig. 5. The ex-
perimental data did not show a significant change in front
width, so here we assume the shape of the front does not
change during propagation. In this case the velocity profiles
can be expressed as

uy(x, t) = ft(x− vftt) (12)

in the transverse direction and

uy(y, t) = fl(y − vflt) (13)

in the longitudinal direction. In both equations t is time,
vft and vfl are front propagation speeds. ft(X) and fl(X)
are functions that satisfy ft = fl = vp as X → −∞ and
ft = fl = 0 as X → +∞.

On either side of the impactor the front propagates in
transverse direction and the front speed vft = ktvp, while
the suspension itself is sheared longitudinally by the ad-
vancing front. The acceleration of a suspension element is
then

Duy(x, t)

Dt
=
∂ft

∂t
= −ktvpf

′
t = −ktvp

∂uy
∂x

, (14)

where D/Dt is the material derivative and f ′t = dft(X)/dX.
Below the impactor there are two differences: one is that
the suspension element now moves along the propagation
direction of the front and the other is that vfl = (kl + 1)vp

as defined in Eq. 3. The acceleration then becomes

Duy(y, t)

Dt
=
∂fl

∂t
+ (uy

∂

∂y
)fl = [uy − (kl + 1)vp]f ′l

= [uy − (kl + 1)vp]
∂uy
∂y

.

(15)

Now we look at the relation between the local shear rate ε̇
and the velocity gradient. In general, for an incompressible
2D fluid the shear rate tensor is

ε̇ =

[
∂ux
∂x

1
2
( ∂ux
∂y

+
∂uy

∂x
)

1
2
( ∂ux
∂y

+
∂uy

∂x
)

∂uy

∂y

]
,

where ∂ux
∂x

= − ∂uy

∂y
. From experimental observation we

have ∂ux
∂y
� ∂uy

∂x
. For the transverse direction, where sim-

ple shear dominates, the diagonal terms vanish and the
shear rate tensor becomes

ε̇t =

[
0 1

2

∂uy

∂x
1
2

∂uy

∂x
0

]
,

while for pure shear in the longitudinal direction the off-
diagonal terms vanish and we have

ε̇l =

[
− ∂uy

∂y
0

0
∂uy

∂y

]
.
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In either case the matrix has two eigenvalues with the same
magnitude but opposite sign and the eigenvalues represent
the shear rate on the principal axes. Thus we can represent
the shear intensities by the tensors’ positive eigenvalues:
ε̇l = | ∂uy

∂y
| = − ∂uy

∂y
and ε̇t = 1

2
| ∂uy

∂x
| = − 1

2

∂uy

∂x
.

Using the velocity gradient, we relate the local shear rate
with the acceleration of the element:

ε̇t =
1

2

1

ktvp

Duy
Dt

, (16)

ε̇l =
1

(kl + 1)vp − uy
Duy
Dt

. (17)

Consequently, the total shear strain ε a suspension element
experiences before jamming is:

εt =

∫ ∞
0

ε̇tdt =

∫ vp

0

1

2ktvp
duy =

1

2kt
, (18)

and

εl =

∫ ∞
0

ε̇ldt =

∫ vp

0

1

(kl + 1)vp − uy
duy = ln(

kl + 1

kl
).

(19)
Eq. 19 gives εl ≈ 1/kl for kl � 1. If we assume the strain
threshold to jamming εc is isotropic, then kt = 1/(2εc)
and kl = 1/(eεc − 1).

Relation between kl and kt in 3D. In 3D the shear rate
tensor is shown in equation 2. In the longitudinal direction
pure shear dominates and the shear rate tensor is

ε̇l =

 ∂ur
∂r

0 0
0 ur

r
0

0 0 ∂uz
∂z

 , (20)

where ∂ur
∂r
≈ ur

r
and ∂ur

∂r
+ ur

r
+ ∂uz

∂z
= 0. In the transverse

direction simple shear dominates. This gives

ε̇t ≈

 0 0 1
2
∂uz
∂r

0 0 0
1
2
∂uz
∂r

0 0

 , (21)

where we have used ∂ur
∂z
� ∂uz

∂r
. Note that though the sys-

tem is three-dimensional simple shear only operates in the
rz plane while leaving the azimuthal direction invariant.
The eigenvalues become ėl = {− 1

2
∂uz
∂z
,− 1

2
∂uz
∂z
, ∂uz
∂z
} and

ėt = {− 1
2
∂uz
∂r
, 0, 1

2
∂uz
∂r
}. Unlike the 2D case, we cannot sim-

ply use a positive eigenvalue to represent the shear intensity.
However, we can define infinitesimal strains ei (i = 1, 2, 3)
along the three principal axes and rank-order them accord-
ing to e1 > e2 > e3. Following the definition given in Ref.
[32], the “strain intensity” D is

D =

√(
ln

1 + e1

1 + e2

)2
+
(
ln

1 + e2

1 + e3

)2
≈
√

(e1 − e2)2 + (e2 − e3)2.

(22)

For pure shear in the longitudinal direction e1 = e2 =
−e3/2 and ė3 = ∂uz

∂z
, so Dl ≈ 3

2
|e3|, which leads to

Ḋl ≈ − 3
2
∂uz
∂z

. For simple shear in the transverse direc-

tion e1 = −e3, e2 = 0 and ė3 = 1
2
∂uz
∂r

. This leads to

Dt ≈
√

2|e3|, and therefore Ḋt ≈ −
√

2
2
∂uz
∂r

. Following the
procedure for the 2D case we have

Ḋt =

√
2

2

1

ktvp

Duz
Dt

, (23)

Ḋl =
3

2

1

(kl + 1)vp − uz
Duz
Dt

. (24)

Integration then leads to

Dt =

√
2

2

1

kt
, Dl =

3

2
ln(

kl + 1

kl
). (25)

Now we again assume that the system shear-jams when D
reaches a threshold strain value Dc, independent of the type
of shear it experiences. From this we find

k∗l =
1

e
√

2/(3k∗t ) − 1
. (26)

and k∗l /k
∗
t ≈ 3/

√
2 ≈ 2.12 for large k.

Data availability. The data that support the findings
of this study are available from the corresponding author
upon request.
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