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High-speed ultrasound imaging in dense
suspensions reveals impact-activated solidification
due to dynamic shear jamming
Endao Han1,2, Ivo R. Peters1,3 & Heinrich M. Jaeger1,2

A remarkable property of dense suspensions is that they can transform from liquid-like at rest

to solid-like under sudden impact. Previous work showed that this impact-induced solidifi-

cation involves rapidly moving jamming fronts; however, details of this process have remained

unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the

interior of a dense suspension responds to impact. Measuring the speed of sound we

demonstrate that the solidification proceeds without a detectable increase in packing fraction,

and imaging the evolving flow field we find that the shear intensity is maximized right at the

jamming front. Taken together, this provides direct experimental evidence for jamming by

shear, rather than densification, as driving the transformation to solid-like behaviour. On the

basis of these findings we propose a new model to explain the anisotropy in the propagation

speed of the fronts and delineate the onset conditions for dynamic shear jamming in

suspensions.
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D
ense suspensions are complex fluids that can exhibit
strong, discontinuous shear thickening, where the viscos-
ity jumps up orders of magnitude when a critical shear

stress is exceeded1–4. Under a wide range of dynamic conditions,
dense suspensions can also undergo a transformation to solid-like
behaviour, for example, during sudden impact at their free
surface5–7, ahead of quickly sinking objects8,9, under shear10 or
during rapid extension11. Detailed investigation of the dynamics
during impact has shown how such solidification is associated
with a propagating front that converts fluid-like, unjammed
suspension into rigidly jammed material in its wake5,12. This
dynamic jamming front moves through the suspension with a
speed much greater than the impactor itself.

To explain this solidification, a model was proposed5 that
assumed the impact pushes the particles closer together until they
jam. This densification scenario was based on the standard
jamming phase diagram for frictionless hard particles, where
entry into a jammed state requires an increase in particle packing
fraction f (ref. 13). Since the volume of particles is conserved, the
front propagation speed vf along the direction of impact is then
related to the impactor speed vp via14

vf ¼
fJ

fJ�f0
vp; ð1Þ

where fJ is the packing fraction at which jamming occurs and
f0ofJ is the packing fraction of the initially unjammed
suspension at rest. The closer the initial packing fraction is to
jamming, the faster the front will propagate, in principle
diverging at fJ. This model shows excellent agreement with
measurements of vf in systems where the local packing fraction
can change easily, such as dry granular particle layers that are
being compacted snowplough-like from one end14.

In suspensions, the presence of an interstitial liquid makes it
possible to prepare three-dimensional (3D) systems at packing
fractions f well below fJ by density matching the particles to the
liquid. Given that such systems can still exhibit impact-induced
solidification, jamming by densification would imply significant
particle packing fraction changes Df¼fJ�f. However, unless
the impact speed is so high that the liquid becomes compres-
sible15, viscous drag will counteract any densification of the
particle sub-phase. This calls into question the mechanism
underlying equation (1), even though there is experimental
evidence for the basic outcome, namely that the ratio vf/vp

increases dramatically as Df approaches zero5,12.
One intriguing alternative mechanism has recently emerged

with the concept of jamming by shear3,16. In this extension of
frictionless, standard jamming, the presence of frictional
interactions between particles makes it possible to start from
initially isotropic, unjammed configurations at f¼f0ofJ and,
without changing f, rearrange the particles into anisotropic
fragile or jammed configurations by applying shear. Shear
jamming is also possible in frictionless systems, albeit over a
much smaller range in Df (ref. 17). So far, such shear jamming
has been observed experimentally in two-dimensional (2D) dry
granular systems under quasi-static conditions, where there is
direct visual access to particle positions and stresses by imaging
perpendicular to the 2D plane16. Investigating the role of shear
jamming in dynamic impact-induced solidification of 3D
suspensions requires the capability of non-invasively tracking
the jamming fronts and the associated, quickly evolving flow field
in the interior of an optically opaque system.

Here we achieve this with ultrasound. Related methods have
been applied to studying dry granular materials18,19 and steady-
state flow in suspensions20,21. Measuring the speed of sound c we
obtain an upper bound on the change of packing fraction Df as

the suspension jams. We find that at vpooc, Df is much smaller
than required if densification was the primary driver for impact-
activated solidification. To investigate the crossover as vp

increases, we use high-speed ultrasound imaging to track the
emergence of concentrated shear bands at the location of the
propagating jamming fronts. In the regime of small vp, the
suspension responds to stress like a fluid, and in the regime of
large vp, the suspension develops solid-like characteristics, which
we identify by investigating the flow fields. The invariant packing
fraction and existence of shear bands provides direct evidence of
dynamic shear jamming in 3D suspensions. Furthermore, access
to the full flow field allows us to extract the local shear rates and
identify the origin of a key, but so far unexplained, feature of the
response to impact: the longitudinal front propagation speed
exceeds the transverse propagation speed by a factor very close to
two12.

Results
Experimental set-up and extraction of the flow field. The
experiments were performed with a model suspension: cornstarch
particles dispersed in water–glycerol CsCl solutions. The
experimental set-up is illustrated in Fig. 1. In the impact
experiments the impactor was driven vertically downward with
constant velocity vp by a linear actuator. A representative flow
field (ur, uz) inside the suspension during an impact is shown in
Fig. 2a–c. The vertical and horizontal axes in the image corre-
spond to the z and r directions in cylindrical coordinates. The
flow field shows a jammed solid-like plug in the centre, as
evidenced by the fact that all points move vertically with speed
close to vp. Also evident is a strong velocity gradient around the
periphery of the jammed region. To show this more explicitly, we
calculate the local shear rate from the velocity field (ur, uz). Given
rotational symmetry, the shear rate tensor becomes
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Figure 1 | Schematic illustration of the experimental set-up. The sample

container and impactor are cylindrical and concentric. The ultrasound

transducer scans a vertical slice centred along the central z axis, providing a

field of view as indicated by the striped area.
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Figure 2d,e shows the two components _ezzj j¼� @uz
@z and

_erzj j¼� 1
2

@ur
@z þ

@uz
@r

� �
. Underneath the jammed region, that is, in

longitudinal direction, _ezz dominates. This corresponds to pure
shear that compresses the suspension in the z direction and
expands it radially. By contrast, along the sides of the jammed
plug _erz dominates, and here the main contribution arises from
the term @uz

@r . As a result, the velocity gradient is mainly perpen-
dicular to vp. This is analogous to simple shear as seen, for
example, in parallel plate setups. We will return below to the
implications of having both types of shear.

Speed of sound. In an unjammed suspension of solid particles in
a Newtonian liquid, the shear modulus vanishes. In the limit that
the solid particles are much smaller than the wavelength, the
speed of sound is then given by c¼ K=rð Þ

1
2, where K is the average

bulk modulus and r the average material density of the suspen-
sion22,23. In our experiments, the particles and suspending
solvent are density matched (see Methods section), but the
average K still increases with f since cornstarch particles have a
bulk modulus larger than that of the liquid24. As shown in Fig. 3a,
the resulting dependence of c on f is, to a good approximation,
linear across the regime of packing fractions probed by our
experiments. This allows us to obtain Df straightforwardly by
detecting changes in c with ultrasound.

A schematic illustration of the suspension under impact is
shown in Fig. 3b, indicating two regions: a jammed region

(orange) directly underneath the impactor and an unjammed
region (yellow) ahead of the jamming front. Our measurements
provide the average speed of sound �c as determined from the time
it takes sound pulses to traverse both regions (see Methods
section). The process of transforming unjammed suspension to
jammed suspension could be expected to increase the speed of
sound via three possible mechanisms: (1) an increase Df in
packing fraction; (2) an increase in effective bulk modulus K; (3)
the development of a finite shear modulus G as the suspension
jams13. Currently, we cannot determine how much they each
contribute, but we can estimate the upper limit of each individual
term by assuming the other two zero.

First, we estimated the maximum possible increase in f.
Figure 3c shows the measured change in sound speed
Dc¼�c� c(f0) during impact for a suspension prepared at
f0¼ 0.48. The impactor hits the suspension surface at time
t¼ 0, generating a jamming front that reaches the bottom at
tE0.035 s. We can identify this point by the dramatic increase in
force on the impactor, as established by prior investigations of
quasi-2D (ref. 12) and 3D (ref. 5) systems. Until the jamming
front interacts with the bottom wall Dc¼�c� c(f0) is less than the
measurement uncertainty of about 5 m s� 1. Neglecting any
increases in K and G, we find from Fig. 3a that our noise floor
DcE5 m s� 1 implies DfE0.006 during the free propagation of
the fronts. This means that f could have increased to 0.49 at best.
On the other hand, even at the highest packing fraction in Fig. 3a
f¼ 0.52, the suspension can still flow when sheared slowly,
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Figure 2 | Visualization of the flow field with ultrasound. (a–c) Velocity field during an impact at time 6.0 ms (a) 13.2 ms (b) and 20.3 ms (c) (the

impactor reached the surface when time t¼0 ms). The images are snapshots from a high-speed ultrasound movie (shown in grey scale) with overlaid

velocity field from particle image velocimetry (PIV) analysis. The colour code represents the magnitude and sign of the vertical component of the local

velocity uz (red corresponds to downward, blue to upward flow). Dashed yellow lines indicate the locations of the free surface of the suspension and of the

bottom of the container. The impactor is outlined in red. The experimental parameters are f¼0.47, vp¼ 175 mm s� 1, liquid viscosity Z0¼4.6±0.2 mPa � s,

fill depth H¼ 30 mm, and impactor diameter of 6.0 mm. The black scale bar in (b) represents 1 cm for (a–c). (d,e) Two components of the shear rate tensor,

_ezzj j (d) and _erzj j (e) shown for the same instant in time as the flow field in (c). Dashed lines are contours connecting points with the same uz. The thicker

line indicates uz¼ vp/2, which defines the front position. Scale bar, (d,e) 1 cm. The whole process is shown in Supplementary Movie 1.
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implying an isotropic jamming threshold fJ40.52. This means
that the increase in packing fraction due to impact is much less
than required for jamming by the densification model.

If instead we assume Df¼ 0 and use c¼ K þ 4
3 G

� �
=r

� �1
2, as

appropriate for solids25, to describe the dependence of the speed
of sound on K and G within the jammed region behind the front,
the same noise floor DcE5 m s� 1 implies that the net increase in
the sum of the moduli ~K¼K þ 4

3 G could not have been larger
than D~K � 32 MPa. This is very small compared with the bulk
modulus K0 of the quiescent suspension at f0¼ 0.48:
D~K=K0 � 0:5 % .

Once the front has reached the bottom, Dc increases to
E16 m s� 1. While this is significantly above the noise floor, it
limits any packing fraction changes to DfE0.02, still less than
necessary to reach fJ. Nevertheless, the interaction with the solid
boundary increases the stress in the dynamically jammed region
significantly and this drives the suspension deeper into the shear-
jammed state. We can therefore expect concomitant increases in

bulk and shear moduli and thus in sound speed. From the sound
speed data in Fig. 3, the upper limit of the net increase in the sum
of the moduli ~K is D~K � 101 MPa.

Propagation of fronts. From the evolution of the flow fields as
shown in Fig. 2, we extract the position of the moving jamming
front, defining the front position as the line of points where the
vertical component of the impact velocity has dropped to vp/2. In
the following we focus on the points in the flow field that
propagate the furthest in z and r directions, that is, on the
maximum longitudinal and transverse front speeds. As shown in
Fig. 4a, after an initial stage the fronts in both directions
propagate essentially linearly as function of time before slowing
down when they start to interact with boundaries and the
incipient jammed region gets compressed by the impactor;
further compression causes the motion to stop quickly
(Supplementary Fig. 1). Here we investigate this linear regime,
where the front propagates freely. To compare how quickly the
front propagates relative to vp, we define two dimensionless front
propagation factors, or normalized front speeds, k as

kt ¼
vft

vp
; kl ¼

vfl

vp
� 1; ð3Þ

where the subscripts t and l represent transverse and longitudinal
directions, respectively. The ‘� 1’ in kl compensates for the
vertical motion of the impactor itself.

Our experiments show that the parameters that affect kl and kt

include f, vp and the suspending liquid’s viscosity Z0. For a
suspension with given Z0 and f0 that is impacted very slowly, the
response is fluid like and both kt and kl are close to zero.
However, beyond a threshold value vp0 jamming fronts start to
appear. Their normalized speeds initially increase quickly with
impactor speed vp but eventually asymptote to a fixed k�. The
relation between kl and vp in suspensions with the same Z0 but
different f0 is shown in Fig. 4b; the behaviour of kt is similar. As
f increases, the curves shift towards lower vp0 and higher k�. For
comparison, in suspensions with the same f0, larger solvent
viscosity Z0 leads to lower threshold vp0 (Supplementary Fig. 2).
To extract k� and vp0 we fit the data to

k
k�
¼ 0 vp � vp0

� �
;

1� e1� vp=vp0 vp4vp0
� �

:

�
ð4Þ

Equation (4) is not derived but a phenomenological relation that
captures the key aspects of the data discussed above: (1) k¼ 0 at
small vp; (2) k increases when vp4vp0; (3) k approaches k� as
vp-N. Plotting the data in terms of normalized variables k/k�

and vp/vp0 scales out the dependencies on f0 and Z0. The
resulting data collapse for the longitudinal front speed ratio kl=k�1
is plotted in Fig. 4c. A similar result is obtained for the transverse
speed ratio kt=k�t .

To quantify the anisotropy in front propagation in longitudinal
and transverse directions, we plot k�1 versus k�t in Fig. 4d, using
the data from experiments varying f (larger packing fraction
increases both k�1 and k�t ) and Z0. To a good approximation, all
the data follow k�1¼ 2k�t . Comparison of our data with the data
obtained for quasi-2D suspensions12 shows excellent agreement
as well, except that for higher kt the ratio kl/kt slightly exceeds 2.

Discussion
Our data in Fig. 3c demonstrate that impact-activated jamming of
dense suspensions proceeds without significant increase of f, and
certainly without increasing f to values close to fJ. This rules out
earlier explanations based on entering the jammed state via
densification of the particle sub-phase5,14. Instead, analysis of the
flow field shows that the jamming fronts initiated by the impact
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Figure 3 | Direct measurement of packing fraction changes. (a) Speed of

sound c as a function of packing fraction f. All the data were taken with

suspensions in their quiescent fluid-like state, at packing fractions well

below fJ. From the scattering of the data points we can see the overall

uncertainty of this experiment. (b) Sketch of the region beneath the

impactor. The black dashed line represents the initial suspension surface at

a fill height H above the bottom of the container (bold black solid line). As

the impactor (outlined in red) pushes down a vertical distance zp the front

(orange region) propagates a distance zf. (c) Change in sound speed Dc as

a function of time (black trace) at f0¼0.48. Impact at the free suspension

surface occurs at t¼0 ms. Once the jamming front has reached the bottom

of the container, the suspension below the impactor has been transformed

into a solid-like material. At that point, near t¼ 35 ms, the force on the

impactor (red trace) rises markedly. Note that within our experimental

uncertainties, the speed of sound does not increase until the shear-jammed

region becomes compressed. Data are averages from seven experiments

that simultaneously measured force and sound speed as functions of time.

Dashed lines indicate 1 s.d. The grey region shows the uncertainty (given by

1 s.d.) in determining Dc at low vp, where no solidification takes place.
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coincide with the location of the maxima in local shear rate
(Fig. 2d,e). Altogether, these two findings provide strong evidence
for dynamic shear jamming: the impact triggers propagating
fronts that locally create sufficient shear to reorganize particles
into (anisotropic) jammed configurations without changing the

average packing fraction. There are several implications of the
shear jamming scenario for suspensions and several differences
from dry granular systems, both of which we discuss next.

To start, we examine the stress. In a dry granular system, stress
is sustained only via direct contact between particles. By contrast,
in a dense suspension stress can also be transmitted without
contact via lubrication forces. Thus, while in dry granular systems
there is only a single characteristic stress scale for entry into the
shear-jammed regime16, for a suspension the situation can be
more complex. A number of theoretical models3, simulations2,26

and experiments27–29 have recently suggested that lubrication
breaks down and particles start to experience frictional
interactions beyond a local stress threshold s1. Thus, for stress
levels below s1 the suspension behaves fluid-like, while above s1

the system can be thought to behave more like a frictional
granular system, that is, enter a fragile regime before crossing
over into the shear-jammed regime at a second characteristic
stress level s2 (ref. 16). Within this picture, we associate the
transition at vp0 with the situation where the stress levels at the
leading edge of the jamming front have reached s1 and are large
enough for frictional interactions to occur. Thus, when vpovp0

the suspension is in the lubrication regime, but when vp4vp0 it
transitions into a fragile state with behaviour intermediate
between solid and fluid16,30,31, as frictional contacts start
percolating through the system to form a load-bearing network,
eventually reaching a shear-jammed state as vp increases further.
We point out that a non-zero shear modulus is not strictly
necessary for the front to propagate (with k40). The front will
propagate as long as it transforms the initially liquid-like
suspension into a state with sufficiently large viscosity.
However, we know that this state behaves solid-like, while
interacting with a system boundary5,6,10,12. Thus, how the shear
modulus evolves in the region behind the jamming front before a
system-spanning jammed state has been established remains an
open question.

The stress-based argument also provides an explanation of the
relaxation or ‘melting’ of the jammed region when the impact
stops. During front propagation the stress inside the jammed
region is sustained by the inertia of the suspension in the shear
zone ahead of the jammed region. When the motion of the
impactor stops, the shear zone disappears and the stress applied
on the boundary of the jammed suspension falls below s1,
insufficient to sustain frictional interactions between particles and
therefore any network of force chains that could generate a yield
stress and support a load. As a result, the suspension returns to
the lubrication regime.

However, while necessary, the existence of threshold stress
levels is not sufficient to explain the asymptotic front speed k� at
high vp and the seemingly universal anisotropy in front
propagation, expressed by the ratio k�1=k�t E2. Particles also need
to move out of an initial uniform isotropic distribution and
reorganize under shear into anisotropic structures (force chains)
that can support the stress. Such reorganization requires a
minimum shear strain ec to engage neighbouring particle layers.
As a result, shear jamming happens only when stress and strain
both reach their threshold values. In a quasi-static granular
system16,17 the threshold strain only matters when the shear-
jammed state is prepared or when the shear is reversed. In the
dynamic system considered here, the front continues to propagate
into unperturbed suspension, and therefore, the front advances by
applying strain ec locally during the whole process of front
propagation.

For dense suspensions in the high vp regime, where the stress
threshold is clearly exceeded, we can show that k� is governed by
ec and that, in fact, the front speed anisotropy is a direct
consequence of the existence of a strain threshold. As described
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above, the suspension experiences pure shear in the longitudinal
direction and simple shear in the transverse direction. In 2D, we
can directly compare the two types of shear using the positive
eigenvalues of the shear rate tensors, treating the propagation of
the front in the longitudinal and transverse directions as two
effectively 1D problems. We now assume that a suspension
element jams when the shear strain it experiences reaches ec,
irrespective of propagation direction. This leads to the following
relations between k�1, k�t and ec (see Methods section):

k�t ¼ 1= 2ecð Þ; k�l ¼ 1= eec � 1ð Þ; ð5Þ

and

k�l ¼
1

e1= 2k�tð Þ � 1
: ð6Þ

Equation (6) is plotted in Fig. 4d. For small ec we find from
equation (5) that k�1 � 2k�t¼ 1=ec. In other words, the anisotropy
ratio of 2 in the normalized front speeds originates from the
factor 1/2 in the non-diagonal terms of the shear rate tensor,
which in turn arises because simple shear can be decomposed into
a combination of pure shear and solid body rotation. In 3D, it is
not possible to quantify the effects of pure shear and simple shear
via the same approach (see Methods section). However, one
possible solution is to use the ‘strain intensity’ D suggested by
Ramsay and Huber32, which provides a scalar measure of the
relative strength of the two types of shear. As we show in the
Methods section, this leads to a ratio k�l =k�t � 3=

ffiffiffi
2
p
� 2:12,

very close to the value for the 2D case. Therefore, an anisotropy
ratio E2 agrees very well with the experimental data for both
quasi-2D (ref. 12) and 3D systems within our measurement
precision.

With increasing packing fraction f the average distance
between particles decreases and we expect the strain threshold
ec to decrease as well, which agrees qualitatively with the
measurements of ec in dry granular systems16. Via equation (5)
this explains the increase in k� with f seen in Fig. 4b: since it
takes less strain to reorganize the particles into a shear-jammed
network the front will propagate faster for given impactor
velocity. We point out that equation (1), which formalizes such
relationship between packing fraction and front speed, appears to
capture the overall trend qualitatively. However, this seems
fortuitous, since equation (1) was based on the assumption that
the moving front significantly increases the packing fraction, in
fact driving it up all the way to fJ, which we now can rule out in
our system. In addition, equation (1) cannot predict the observed
propagation anisotropy. One of the outstanding tasks therefore is
to develop a model for k�(f) that is based on jamming by shear
rather than densification.

An interesting aspect of the data in Fig. 4d is the deviation
from the anisotropy ratio E2 at large k� values or, equivalently,
large packing densities. This is most apparent in the data available
for the quasi-2D system and it indicates that the longitudinal
speed becomes faster. We speculate that this may be connected to
a breakdown of the assumption of an isotropic threshold ec. For
example, if the impact were to introduce a small amount of
compression of the particle sub-phase in longitudinal direction, ec

would be reduced in that direction. This effect would become
increasingly significant at large f. We can model this by
introducing a correction d so that

k�l ¼ 1= eec � d� 1
� �

: ð7Þ

Using ec¼1= 2k�t
� �

and dE0.01 we can reproduce the trend in
Fig. 4d well (dotted red line). However, we point out that this is
just the simplest way to account for the trend in the data and
there might be other reasons for the deviation.

Taken together, these results provide important insights into
the mechanism responsible for impact-induced solidification of
dense suspensions. The finding that the packing fraction does not
increase measurably during impact, together with the observation
of strong shear at the leading edge of the propagating
solidification fronts, rules out jamming via densification as the
dominant mechanism and points to jamming by shear (densifica-
tion is likely to play a significant role at much larger impact
velocities, when the interstitial liquid’s compressibility can no
longer be neglected15). In dense suspensions this introduces a
new stress scale or, equivalently, an impact velocity threshold,
which we associate with the breakdown of lubrication films
between particles and the onset of frictional interactions2,3,27–29.
Behind the front, these frictional interactions create a dynamically
shear-jammed region (corresponding to fragile and/or shear-
jammed states in refs 3,16). Further support for the shear-
jamming scenario comes from the observation of anisotropic
front propagation, where we can relate the fact that the fronts
propagate longitudinally twice as fast as in transverse direction to
an equivalent factor in the ability to transmit shear strain. We
point out that for dynamic shear jamming, both shear stress and
strain need to exceed threshold values, and the critical shear
strain determines the front propagation speed.

Methods
Experimental set-up. The ultrasound measurements and imaging were performed
with a Verasonics Vantage 128 system. The sample container was 3D-printed from
ultraviolet-cured resin (‘Vero White Plus’, Objet Geometries Inc.) whose acoustic
impedance matched the suspensions we studied. The inner diameter of the
container was 100 mm and the typical depth H of the suspension was 25 to 35 mm.
This insured that the front reached the bottom before it interacted with the side
wall. The impactor was a cylinder of diameter of 6 or 10 mm, driven by a computer
controlled linear actuator (SCN5, Dyadic Systems) and equipped with a force
sensor (DLC101, Omega). The ultrasound transducer (Philips L7-4; 128 inde-
pendent elements; total width of 38 mm) contacted the bottom of the container
through a thin layer of ultrasound gel. The ultrasound system was triggered as the
impactor approached the surface; images were taken at a frame rate of 10 to 10,000
frames per second, adjusted according to vp. The spatial resolution of the ultra-
sound was limited by the wavelength, about 0.4 mm in our experiments.

Suspensions. The cornstarch (Ingredion) was stored in the lab environment at
22.5±0.5 �C and 51±2% relative humidity. Individual particles had a diameter of
5–30 mm (refs 5,33). The suspending solvent was a solution of CsCl, glycerol and
water. Its viscosity Z0 was adjusted by the mass ratio of glycerol and water, and its
density was matched to that of the cornstarch particles by adjusting the mass ratio
of CsCl. The density of the particles was rcs¼ (1.63±0.01)� 103 kg m� 3 as
measured by density matching. To calculate the packing fraction f, an accurate
determination of the volume occupied by particles and interstitial liquid is
required. For cornstarch this is difficult because the particles are porous and they
already contain some moisture before they are dispersed in the suspending solvent.
Therefore, often a value fm based on the mass fractions before mixing is
quoted4,5,7, which is proportional to f. For example, in Fig. 4b, the fm values were
0.390, 0.402, 0.409, 0.425 and 0.444. To obtain the actual packing fraction, we
account for a small fraction a of suspending liquid that is wicked up by the porous
particles and write f¼ (1þ a)fv, where fv is the material volume packing
fraction34,35. When calculating fv, we considered the moisture in the cornstarch
particles. We assume the moisture is pure water and its mass ratio in cornstarch is
b in our lab environment. This leads to

fv ¼
1�bð Þmcs=rcs

1�bð Þmcs=rcs þml=rl þ bmcs=rw
; ð8Þ

where mcs is the mass of cornstarch particles, ml is the mass of the solvent liquid,
rl is the density of the solvent and rw is the density of pure water. In this paper we
use a¼ 0.3 and b¼ 0.11 by estimation. Changing of these numbers will not affect
the conclusions we make.

Since air bubbles mixed in the suspension scatter ultrasound signals
significantly, the suspensions were debubbled before using. To keep f fixed during
debubbling, we filled the suspensions into sealed syringes and then lowered the
pressure by pulling the plungers. The syringe walls were tapped gently to help
bubbles separate from the suspension. After debubbling a small amount of
suspension was used to measure the speed of sound c as required for image
reconstruction. For imaging the flow field, a small amount of air bubbles were
added back to the debubbled suspensions to act as tracer particles. This was done
by slowly stirring the suspension, then tilting and slowly rotating the container till
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the bubbles were uniformly distributed. We verified that the amount of bubbles
did not suppress the penetration of the ultrasound in the suspensions and
produced a negligible change in the speed of sound. We also determined that the
effect of the bubbles on the suspension viscosity is limited (Supplementary Fig. 4).
Between successive impact experiments the suspension was relaxed by gently
shaking and rotating the container.

Data acquisition and analysis. Once triggered, the ultrasound system made
several hundred acquisitions consecutively. In one acquisition each of the 128
transducer elements transmitted the same ultrasonic pulse at the same time and
received an individual reflected time series. The pulse was a 5-MHz sinusoidal wave
modulated by a Gaussian profile (Gaussian envelope) for a pulse length of 6
periods. From the time series received by the transducer and using the previously
measured speed of sound c we reconstructed B-mode images (using brightness to
represent the echo signal amplitude)25 that captured the positions of the tracer
particles (air bubbles) in the suspension. Given our finding that c does not change
measurably during the impact, the image reconstruction process does not need to
account for spatial or temporal variations in c. By tracking the tracer bubble
displacements with a particle imaging velocimetry (PIV) algorithm, we obtained a
2D flow field from within the bulk of the suspension.

Change of packing fraction measurements. The experimental set-up was iden-
tical to the one illustrated in Fig. 1 and a schematic illustration is shown in Fig. 3b.
The impactor started from the surface of the suspension and pushed down a
distance zp. The position of the impactor was measured with a high-speed camera
(Phantom V9, Vision Research). The ultrasound measured the time of flight T of
the signal transmitted from the bottom, reflected by the impactor and sent back to
the bottom. Thus the average speed of sound �c along this path is

�c ¼ 2
H� zp

T
: ð9Þ

We started with experiments at a low vp (5 mm � s� 1) to measure the speed of
sound in the liquid-like, unjammed suspension, where �c¼ c(f0). Define T0 as the
initial time of flight when zp¼ 0 mm, we have H¼ c(f0)T0/2, and from this

c f0ð Þ ¼
2zp

T0 �T
: ð10Þ

The initial packing fraction f0 in these experiments was 0.48. The liquid was a
mixture of 44.3% CsCl, 27.8% glycerol and 27.8% water by mass, with
Z0¼ 4.6 mPa � s and r¼ 1.63 � 103 kg �m� 3. From six measurements we obtain
c(f0)¼ 1939.2±4.6 m s� 1 and H¼ c(f0)T0/2¼ 34.1±0.1 mm.

For the high vp (200 mm s� 1) experiments we used the value of H measured
above and equation (9) to calculate �c. The time of flight now becomes

T ¼ 2
H� zf

c f0ð Þ
þ zf � zp

c f0 þDfð Þ

� 	
: ð11Þ

For Df¼ 0, TDf¼ 0¼ 2(H� zp)/c (f0). If Df40, there will be a difference between
T and TDf¼ 0, and the difference becomes increasingly large as zf increases, which
leads to an increase in �c according to equation (9).

Derivation of equation 5 in 2D. For an idealized 2D system we define a Cartesian
coordinate with x axis in the transverse and y axis in the longitudinal direction. To
obtain the relation between the strain threshold ec and the normalized front speeds
k we consider how much shear strain a suspension element experiences when it
accelerates from uy¼ 0 to uy¼ vp. We consider the propagation in the transverse
and longitudinal directions separately as two quasi-1D problems. Exemplary
sketches of the velocity profiles are provided in Supplementary Fig. 5. The
experimental data did not show a significant change in front width, so here we
assume the shape of the front does not change during propagation. In this case the
velocity profiles can be expressed as

uy x; tð Þ ¼ ft x� vfttð Þ; ð12Þ

in the transverse direction and

uy y; tð Þ ¼ fl y� vfltð Þ; ð13Þ

in the longitudinal direction. In both the equations t is time, vft and vfl are front
propagation speeds. ft(X) and fl(X) are functions that satisfy ft¼ fl¼ vp as X-�N

and ft¼ fl¼ 0 as X-þN.
On either side of the impactor the front propagates in transverse direction and

the front speed vft¼ ktvp, while the suspension itself is sheared longitudinally by the
advancing front. The acceleration of a suspension element is then

Duy x; tð Þ
Dt

¼ @ft

@t
¼ � ktvpf 0t ¼ � ktvp

@uy

@x
; ð14Þ

where D/Dt is the material derivative and f 0t¼dft Xð Þ=dX. Below the impactor there
are two differences: one is that the suspension element now moves along the
propagation direction of the front and the other is that vfl¼ (klþ 1)vp as defined in

equation (3). The acceleration then becomes

Duy y;tð Þ
Dt ¼ @fl

@t þ uy
@
@y


 �
fl ¼ uy � kl þ 1ð Þvp

� �
f 01

¼ uy � kl þ 1ð Þvp
� � @uy

@y :
ð15Þ

Now we look at the relation between the local shear rate _e and the velocity
gradient. In general, for an incompressible 2D fluid the shear rate tensor is

_e ¼
@ux
@x

1
2

@ux
@y þ

@uy

@x


 �
1
2

@ux
@y þ

@uy

@x


 �
@uy

@y

2
4

3
5;

where @ux
@x ¼�

@uy

@y . From experimental observation we have @ux
@y �

@uy

@x . For the
transverse direction, where simple shear dominates, the diagonal terms vanish and
the shear rate tensor becomes

_et ¼
0 1

2
@uy

@x
1
2
@uy

@x 0

" #
;

while for pure shear in the longitudinal direction the off-diagonal terms vanish and
we have

_el ¼
� @uy

@y 0

0 @uy

@y

" #
:

In either case the matrix has two eigenvalues with the same magnitude but opposite
sign, and the eigenvalues represent the shear rate on the principal axes. Thus,
we can represent the shear intensities by the tensors’ positive eigenvalues:
_el ¼ j@uy

@y j¼�
@uy

@y and _et¼ 1
2 j
@uy

@x j¼� 1
2
@uy

@x .
Using the velocity gradient, we relate the local shear rate with the acceleration of

the element:

_et ¼
1
2

1
ktvp

Duy

Dt
; ð16Þ

_el ¼
1

kl þ 1ð Þvp � uy

Duy

Dt
: ð17Þ

Consequently, the total shear strain e a suspension element experiences before
jamming is:

et ¼
Z 1

0
_etdt ¼

Z vp

0

1
2ktvp

duy ¼
1

2kt
; ð18Þ

and

el ¼
Z 1

0
_eldt ¼

Z vp

0

1
kl þ 1ð Þvp � uy

duy ¼ ln
kl þ 1

kl

� 

: ð19Þ

Equation (19) gives elE1/kl for k1441. If we assume the strain threshold to
jamming ec is isotropic, then kt¼ 1/(2ec) and kl¼1= eec � 1ð Þ.

Relation between kl and kt in 3D. In 3D, the shear rate tensor is shown in
equation (2). In the longitudinal direction, pure shear dominates and the shear rate
tensor is

_el ¼
@ur
@r 0 0
0 ur

r 0
0 0 @uz

@z

2
4

3
5; ð20Þ

where @ur
@r �

ur
r and @ur

@r þ
ur
r þ

@uz
@z ¼0. In the transverse direction simple shear

dominates. This gives

_et �
0 0 1

2
@uz
@r

0 0 0
1
2
@uz
@r 0 0

2
4

3
5; ð21Þ

where we have used @ur
@z �

@uz
@r . Note that though the system is 3D simple shear

only operates in the rz plane while leaving the azimuthal direction invariant. The
eigenvalues become _el¼ � 1

2
@uz
@z ; � 1

2
@uz
@z ;

@uz
@z

� �
and _et¼ � 1

2
@uz
@r ; 0; 1

2
@uz
@r

� �
. Unlike

the 2D case, we cannot simply use a positive eigenvalue to represent the shear
intensity. However, we can define infinitesimal strains ei (i¼ 1, 2, 3) along the three
principal axes and rank-order them according to e14e24e3. Following the defi-
nition given in ref. 32, the ‘strain intensity’ D is

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 1þ e1
1þ e2


 �2
þ ln 1þ e2

1þ e3


 �2
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 � e2ð Þ2 þ e2 � e3ð Þ2:

q ð22Þ

For pure shear in the longitudinal direction e1¼ e2¼ � e3/2 and _e3¼ @uz
@z , so

Dl � 3
2 e3j j, which leads to _Dl � � 3

2
@uz
@z . For simple shear in the transverse

direction e1¼ � e3, e2¼ 0 and _e3¼ 1
2
@uz
@r . This leads to Dt �

ffiffiffi
2
p

e3j j, and therefore
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_Dt � �
ffiffi
2
p

2
@uz
@r . Following the procedure for the 2D case we have

_Dt ¼
ffiffiffi
2
p

2
1

ktvp

Duz

Dt
; ð23Þ

_Dl ¼
3
2

1
kl þ 1ð Þvp � uz

Duz

Dt
: ð24Þ

Integration then leads to

Dt ¼
ffiffiffi
2
p

2
1
kt
; Dl ¼

3
2

ln
kl þ 1

kl

� 

: ð25Þ

Now we again assume that the system shear-jams when D reaches a threshold
strain value Dc, independent of the type of shear it experiences. From this we find

k�l ¼
1

e
ffiffi
2
p

= 3k�tð Þ � 1
: ð26Þ

and k�l =k�t � 3=
ffiffiffi
2
p
� 2:12 for large k.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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6. Roché, M., Myftiu, E., Johnston, M. C., Kim, P. & Stone, H. A. Dynamic
fracture of nonglassy suspensions. Phys. Rev. Lett. 110, 148304 (2013).

7. Mukhopadhyay, S., Allen, B. & Brown, E. A shear thickening transition in
concentrated suspensions under impact. Preprint at http://arxiv.org/abs/
1407.0719 (2014).

8. Liu, B., Shelley, M. & Zhang, J. Focused force transmission through an aqueous
suspension of granules. Phys. Rev. Lett. 105, 188301 (2010).

9. von Kann, S., Snoeijer, J. H., Lohse, D. & van der Meer, D. Nonmonotonic
settling of a sphere in a cornstarch suspension. Phys. Rev. E 84, 060401 (2011).

10. Peters, I. R., Majumdar, S. & Jaeger, H. M. Direct observation of dynamic shear
jamming in dense suspensions. Nature 532, 214–217 (2016).

11. Smith, M. I., Besseling, R., Cates, M. E. & Bertola, V. Dilatancy in the flow and
fracture of stretched colloidal suspensions. Nat. Commun.. 1, 114 (2010).

12. Peters, I. R. & Jaeger, H. M. Quasi-2D dynamic jamming in cornstarch
suspensions: visualization and force measurements. Soft Matter 10, 6564–6570
(2014).

13. Liu, A. J. & Nagel, S. R. Jamming is not just cool any more. Nature 396, 21–22
(1998).

14. Waitukaitis, S. R., Roth, L. K., Vitelli, V. & Jaeger, H. M. Dynamic jamming
fronts. Europhys. Lett. 102, 44001 (2013).

15. Petel, O. E., Ouellet, S., Loiseau, J., Frost, D. L. & Higgins, A. J. A comparison of
the ballistic performance of shear thickening fluids based on particle strength
and volume fraction. Int. J. Impact Eng. 85, 83–96 (2015).

16. Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Jamming by shear. Nature
480, 355–358 (2011).

17. Kumar, N. & Luding, S. Memory of jamming and multiscale flow in soft and
granular matter. Granular Matter. Preprint at http://arxiv.org/abs/1407.6167
(2016).

18. Jia, X., Caroli, C. & Velicky, B. Ultrasound propagation in externally stressed
granular media. Phys. Rev. Lett. 82, 1863 (1999).

19. Khidas, Y. & Jia, X. Anisotropic nonlinear elasticity in a spherical-bead pack:
influence of the fabric anisotropy. Phys. Rev. E 81, 021303 (2010).

20. Ouriev, B. & Windhab, E. J. Rheological study of concentrated suspensions in
pressure-driven shear flow using a novel in-line ultrasound Doppler method.
Exp. Fluids 32, 204–211 (2002).

21. Ouriev, B. & Windhab, E. J. Novel ultrasound based time averaged flow
mapping method for die entry visualization in flow of highly concentrated
shear-thinning and shear-thickening suspensions. Meas. Sci. Technol. 14,
140–147 (2003).

22. Urick, R. J. A sound velocity method for determining the compressibility of
finely divided substances. J. Appl. Phys. 18, 983 (1947).

23. McClements, D. J. & Povey, M. J. W. Ultrasound velocity as a probe. Adv.
Colloid Interface Sci. 27, 285–316 (1987).

24. Johnson, B. L., Holland, M. R., Miller, J. G. & Katz, J. I. Ultrasonic attenuation
and speed of sound of cornstarch suspensions. J. Acoust. Soc. Am. 133,
1399–1403 (2013).

25. Cobbold, R. S. C. Foundations of Biomedical Ultrasound (Oxford Univ. Press,
2007).

26. Rognon, P. G., Einav, I. & Gay, C. Flowing resistance and dilatancy of dense
suspensions: lubrication and repulsion. J. Fluid Mech. 689, 75–96 (2011).

27. Fernandez, N. et al. Microscopic Mechanism for Shear Thickening of Non-
Brownian Suspensions. Phys. Rev. Lett. 111, 108301 (2013).

28. Lin, N. Y. C. et al. Hydrodynamic and contact contributions to continuous
shear thickening in colloidal suspensions. Phys. Rev. Lett. 115, 228304 (2015).

29. Guy, B. M., Hermes, M. & Poon, W. C. K. Towards a unified description of the
rheology of hard-particle suspensions. Phys. Rev. Lett. 115, 088304 (2015).

30. Cates, M. E., Wittmer, J. P., Bouchaud, J. P. & Claudin, P. Jamming force chains
and fragile matter. Phys. Rev. Lett. 81, 1841 (1998).

31. Vitelli, V. & van Hecke, M. Marginal matters. Nature 480, 325–326 (2011).
32. Ramsay, J. G. & Huber, M. I. The Techniques of Modern Structural Geology Vol.

1Academic Press Inc.1st edition, 1983).
33. BeMiller, J. & Whistler, R. Starch: Chemistry and Technology (Academic Press

Inc.3rd edn, 2009).
34. Sair, L. & Fetzer, W. R. Water sorption by starches. Ind. Eng. Chem 36, 205–208

(1944).
35. Hellman, N. H. & Melvin, E. H. Surface area of starch and its role in water

sorption. J. Am. Chem. Soc. 72, 5186–5188 (1950).

Acknowledgements
We thank Patrick La Riviere for help with the ultrasound system. We thank Mengfei He,
Nicole James, Victor Lee, Sayantan Majumdar, Daniel Szyld, Scott Waitukaitis, Tom
Witten, Matthieu Wyart and Qin Xu for insightful discussions. This work was supported
by the US Army Research Office through grants W911NF-12-1-0182 and W911NF-16-1-
0078. Additional support was provided by the Chicago MRSEC, which is funded by NSF
through grant DMR-1420709.

Author contributions
All authors designed the experiments and wrote the paper. E.H. performed the experi-
ments and analysed the data. I.R.P. contributed the PIV code.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Han, E. et al. High-speed ultrasound imaging in dense
suspensions reveals impact-activated solidification due to dynamic shear jamming.
Nat. Commun. 7:12243 doi: 10.1038/ncomms12243 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12243

8 NATURE COMMUNICATIONS | 7:12243 | DOI: 10.1038/ncomms12243 | www.nature.com/naturecommunications

http://arxiv.org/abs/1407.0719
http://arxiv.org/abs/1407.0719
http://arxiv.org/abs/1407.6167
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Experimental set-up and extraction of the flow field

	Figure™1Schematic illustration of the experimental set-up.The sample container and impactor are cylindrical and concentric. The ultrasound transducer scans a vertical slice centred along the central z axis, providing a field of view as indicated by the st
	Speed of sound

	Figure™2Visualization of the flow field with ultrasound.(a-c) Velocity field during an impact at time 6.0thinspms (a) 13.2thinspms (b) and 20.3thinspms (c) (the impactor reached the surface when time t=0thinspms). The images are snapshots from a high-spee
	Propagation of fronts

	Discussion
	Figure™3Direct measurement of packing fraction changes.(a) Speed of sound c as a function of packing fraction phi. All the data were taken with suspensions in their quiescent fluid-like state, at packing fractions well below phiJ. From the scattering of t
	Figure™4Propagation of jamming fronts.(a) Front position in longitudinal (black) and transverse (blue circles: right, blue squares: left) directions as functions of time. The impactor touches the suspension surface at time t=0thinspms. The grey shaded bac
	Methods
	Experimental set-up
	Suspensions
	Data acquisition and analysis
	Change of packing fraction measurements
	Derivation of equation™5 in 2D
	Relation between kl and kt in 3D
	Data availability

	BarnesH. A.Shear-thickening (’dilatancyCloseCurlyQuote) in suspensions of nonaggregating solid particles dispersed in Newtonian liquidsJ. Rheol.333293661999SetoR.MariR.MorrisJ. F.DennM. M.Discontinuous shear thickening of frictional hard-sphere suspension
	We thank Patrick La Riviere for help with the ultrasound system. We thank Mengfei He, Nicole James, Victor Lee, Sayantan Majumdar, Daniel Szyld, Scott Waitukaitis, Tom Witten, Matthieu Wyart and Qin Xu for insightful discussions. This work was supported b
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




