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Abstract
Multiferroicmaterials that exhibit coupling between ferroelectric andmagnetic properties are of
considerable utility for technological applications and are also interesting from a fundamental
standpoint.When reduced to the nanoscale,multiferroicmaterials often display additional
functionality that is dominated by interfacial and confinement effects. Bismuth ferrite (BiFeO3) is one
suchmaterial with room temperature anti-ferromagnetic and ferroelectric ordering. Optical
excitation of BiFeO3 crystals results in an elastic structural deformation of the lattice with a fast
response on the pico-second time scale.Here we report on dynamicmeasurements to investigate the
structural properties of BiFeO3 nanoscale crystals using laser excitation and three-dimensional Bragg
coherent x-ray diffraction imaging. Tensile strain beyond 8´ -10 2 was observed predominantly at the
surface of the nanoscale crystal as evidenced in the reconstructed phase information andwas
correlated to photo-induced lattice deformation.

1. Introduction

Single phasematerials that simultaneously exhibitmore than one ferroic property including ferromagnetism,
ferroelectricity, ferroelasticity or ferrotoroidicity are often described asmultiferroic [1–3].Many of these
materials are transitionmetal oxides with perovskite crystal structure. They are of great interest as the interplay
betweenmultiple ferroic properties has numerous potential applications [4–7]. For example, the coupling
betweenmagnetic and ferroelectric ordering can be utilised to developmagnetoelectronic devices where spin
transport can be controlled electrically. As a result there is a vibrant effort to understand the underlying
mechanisms at play in bulk and thin filmmaterials. To date however there are fewer studies dedicated to
understandingmultiferroics in the nanoscale setting. This is largely due the the limited tools that are able to
probe crystalline andmagnetic structure on the nanoscale.Moreover, whenmultiferroicmaterials are scaled
down to the nanoscale, their functional properties are increasingly dominated by surface effects. As a result,
conventionalmeans to describe their behaviourmust account for surface and interfacial properties.

Bismuth ferrite (BiFeO3) is a perovskitemetal-oxide semiconductingmaterial with a band-gap of 2.8 eV that
shows both antiferromagnetic and ferroelectric ordering at room temperature.When comparedwith the
conventional bulk perovskite structure, BiFeO3 can be described as rhombohedrally distortedwith lattice
constants of a=5.63Å and a = 59.35 . The rhombohedral unit cell consists of two conventional perovskite
unit cells with the two oxygen octahedra rotated by 13.8 about the [111] plane. In addition, the Fe atom is
shifted away from the octahedral centre while the Bi atom is shifted away from the conventional position
between the octahedral centres [8–10]. Ferroelectric ordering in BiFeO3 therefore results from the reduction in
symmetry due to the two Fe–Obond lengths. In BiFeO3 each Fe ion is surrounded by six neighbouring Fe ions
with antiparallel spin orientation leading toG-type antiferromagnetic ordering and a coupled long-range
incommensurate spin-cycloid antiferromagnetic ordering along the [110] directionwith cycle length of 62 nm.
Magnetic ordering results from the spontaneous breaking of time reversal symmetrywhile and ferroelectric
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ordering is due to spatial inversion symmetry breaking and is permitted as a result of the lack of inversion
symmetry in the lattice, of space groupR3c. Coexistence of the two phenomena is generally observed in
perovskite structures where the ferroelectric displacement from centrosymmetry occurs in the non-magnetic
ion. In the case of BiFeO3, the ferroelectric displacement is primarily due to a distortion of the Bi ions from a
centrosymmetry configuration. BiFeO3 also exhibits a significant visible light-mediated photostrictive effect
withmagnitude dependent on the intensity and polarisation of the lightfield. It has promising applications in
magnetoelectricmemory storage and electric-field control ofmagnetic sensors and photovoltaics [4, 5, 11]. Here
we are interested in studying the visible light photostrictive effect using coherent x-ray diffraction imaging
(CXDI). Using this technique, we are able to observe a three-dimensional structural deformation of the lattice
that correlates with increasing continuouswave visible laser light illumination. Our observations suggest that
structural distortion results fromphotoexcited charge carriers that are separated by the ferroelectric polarisation
fieldwithin the crystal.

CXDI is a lens-less farfield imaging technique that allows imaging of nanometre scale crystallinematerials
with a sensitivity below a single angstrom.Due to the high penetration power of x-rays inmatter, CXDI is largely
non-destructive and provides information on how atoms are displaced from a reference position at the surface
and throughout the bulk of amaterial [12]. BraggCXDI is performed by illuminating a sample with a spatially
coherent x-ray source so that the coherence length exceeds the dimensions of the crystal, in the Bragg reflection
geometry. Coherent light scattered from the entire volume of the crystal will interfere and produce a three-
dimensional speckle pattern in the Fraunhofer limit [13]. Two-dimensional slices of the diffracted intensity are
measured using an area detector which is positioned far enough away from the sample to resolve the finest
fringes of the speckle pattern. The third-dimension is obtained by rotating the Ewald sphere through the Bragg
conditionwhilemaintaining a largely fixed incident and reflectedwave vector (the rocking curve technique).
When performing CXDImeasurements, only the intensity of the speckle pattern = f( ) ∣ ( ) ∣( )I Aq q e qi 2 is
recorded and the phase information (f) is lost. Provided that the crystal has sufficiently few defects and is well-
faceted, a speckle pattern is observedwith sufficient fringe visibility to permit inversion and recovery of the phase
information. If the speckle pattern is sufficiently oversampled, inversion is possible to recover the complex
three-dimensional electron density of the object and its phase information by using iterative projection phase
retrieval techniques.We are then able to directly relate the recovered phase information to the atomic
displacements in the direction of thewave transfer vector Q as f =( ) · ( )r Q u r , where ( )u r is the average unit
cell displacement vector [14–17]. Algorithmically, phase information is recovered by propagating the
corresponding electron density r r= f-( ) ∣ ( )∣ ( )r r e ri of themeasured intensity back and forth between the
sample and detector planes. This is equivalent to a transformation between direct and reciprocal space,
respectively. At each turn a constraint is imposed according to the physical properties of the imaging field
[18–21]. In reciprocal space, the computedmodulus of the object propagated to the detector plane, r̂ ( )q , must

almost everywhere reside in the set of points with amplitude  ( )I q . In direct space, the density of the object is
non-zerowithin a confined ‘support’ region and isminimised in someway outside of this region.When both
constrains are simultaneously satisfied a solution is found.

2. Experiment

Single crystals of BiFeO3 are readily synthesised by solid phase reaction between Bi2O3 and Fe2O3 powders. This
process however is plagued by the presence of parasitic intermediate phases that tend to seed and grow from
grain boundary sites [22–24]. To obtain high qualitymaterial, BiFeO3 nanoscale crystals were synthesised on
r-plane sapphire substrates using a pulsed laser deposition (PLD) technique. A solid target of BiFeO3was used as
sourcematerial and ablated using a 248 nm, 20 mJKrF excimer laser system in an oxygen partial pressure of
0.03 hPa. X-ray diffractionmeasurements confirmed single phase BiFeO3 growth constituents whenPLD
synthesis was performed at 550 °C.Nanocrystal sizes were largely dependent on the duration of the synthesis
process and the laserfluence. Synthesising for 30 minwith a repetition rate of 200 Hzwas sufficient to yield
highly faceted nanocrystals of BiFeO3 approximately 200 nm in size (figure 1(b)).

Experiments were performed in air at the coherence branch of beamline I13 at the diamond light source
[25]. A double bounce Si (111)monochromator was used to select an energy of 9.1 keV corresponding to the
minimumgap (6.15 mm) of theU25 (2.8 m)undulator insertion device (ID) in ‘mini-beta’ configuration. The
horizontal spatial coherencewas directly tuned by closingwhite-beam slits located at the virtual focus of the ID.
The beamwas condensed to 10 μmusing a defocussed, blazed, zoneplate assembly (D=400 μm,
D =r 150 nm, efficiency 35%). To reduce vibrational effects, but allow the long propagation distances required
for BraggCXDI experiments, the 3 mega-pixel photon counting Excalibur detector [26] alongwith the 2 m
flight-tubewasmounted using a robotic cell comprising two industrial robots controllable through EPICS,
mechanically separated from the sample goniometer. A polarised 632.8 nmHelium–Neon (HeNe) laser was
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focussed via a 0.28NAmicroscope objective on to the eucentric point of the sample goniometer and aligned to
the x-ray beam. A sample of sparsely arranged BiFeO3 nanocrystals wasmounted onto the goniometer assembly,
a single nanocrystal aligned to the eucentric point and the (110) specular reflection located. The crystal was then
irradiatedwith theHeNe radiation of variable intensity by attenuation through a combination of 8N-BK7
reflective neutral density (ND)filters with transmissions ranging from1% to 79%. The powerwas then
modulated up to amaximumof 20 mWby selectively removingNDfilters.

Experimental results were gathered by identifying the speckle pattern of a single nanoscale crystal of BiFeO3

on the area detector and then acquiring the three-dimensional speckle pattern using the rocking curve
technique. The crystal was then illuminatedwith successivelymore intense red laser light by removing a single
NDfilter from the path of the beam. At each interval, the resulting speckle patternwas acquired. Amplitude and
phase reconstruction of the object from the speckle patternwas carried out using a customversion of the
‘shrink-wrap’ algorithm found in the interactive phase retrieval suite [27]. This was found to improve
convergence of the algorithmby defining a support regionwith amorphology thatmimics that of the
reconstructed object. For each speckle pattern, 103 iterations of the hybrid input–output (HIO) algorithmwere
performed first using a loose support to allow an unrestricted solution to form. A total of ´3 106 iterations of
theHIO algorithmwere performedwith the support updated at intervals of 500 iterations. Subsequently, 103

iterationswere performed of the phase-onlyHIO algorithm that optimised the phasewhile leaving the
amplitude unchanged.

3. Results and discussions

Line scans of speckle patterns taken from the (110) reflection of a single BiFeO3 nanocrystal are shown in
figures 2(c) and (d). This is accompanied by two-dimensional slices of the speckle patterns (2(a) and (b)) to
indicate the direction of each set of line scans. A progressively distorted speckle pattern is observed. As the
photo-induced structural deformation effect is directed normal to the (100) lattice plane, a component of the
deformation is directed along thewave transfer vector ( )Q 110 . This is significant as it allows us to quantify the
component of atomic displacement along this direction from the phase of the reconstructed object. Photo-
induced structural deformationwill therefore result in an atomic displacement field ( )u r with structure that is
determined by the ferroelctric andmagnetoelectric response. The resulting instantaneous scattering amplitude
is given by [17]:

ò rµ - +( ) ∣ ( )∣ ( )·( ( ) )A q r rd e . 1q u r r3 i

In each line scan shown infigures 2(c) and (d) thewave transfer vector isfixedwhile the illumination intensity of
the laser is exponentially increased from zero to 2.5 W cm−2. Upon increasing the excitation laser intensity,
distortions in the speckle pattern began to appear andweremanifest as increased asymmetry in the speckle
pattern resulting largely from localised changes in the intensity distribution. This asymmetrywas previously
associatedwith lattice strain in thematerial. It is possible to quantify changes in each speckle pattern by
contrasting the intensity sumof the cross-correlation for each successive speckle patternwith that of the
unperturbed speckle pattern. If the cross-correlation of the nth successive speckle pattern ( )I qn with that of the

Figure 1. (a)Experimental geometry at the coherence branch of beamline I13, diamond light source. (b)Electronmicrograph of
BiFeO3 nanocrystals as synthesised on r-plane sapphire (1μmscale bar is shown). (c) Illustration of oxygen octahedral tilting in the
ideal perovskite structure that results in the rhombohedrally distorted BiFeO3 structure. Inset of (a)depicts the BiFeO3 lattice structure
and thewave transfer vector normal to the (110) lattice plane. The photo-induced structural deformation is directed normal to the
(100) lattice plane.
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unperturbed is denoted as G = Ä( ) ( ) ( )I Iq q qn n 0 , then the normalised change in sumDGn is given by:

åDG =
G - G

G
( ) ( )

( )
( )q q

q
. 2n

n

q

0

0

Here, G ( )q0 is the auto-correlation for the unperturbed speckle pattern. This result is shown infigure 2(e)
alongwith a linearfit to the change in correlation sumwith the logarithmof the laser intensity. Deformation of
the speckle pattern therefore rapidly increases with an increase in the intensity of the excitation source and then
saturates as laser intensity approaches 1W cm−2. This effect was found to persist in all samplesmeasured. The
inset offigure 4 demonstrates repeatability of this effect when the laser illumination is repeatedly cycled between
off and on states.

The reconstructed amplitude and phase of the BiFeO3 nanocrystal is shown infigure 3. Reconstruction is
shown in the absence of laser illumination ((a), (b), (c) and (d)) andwithmaximum laser illumination of
2.5W cm−2 ((e), (f), (g) and (h)) to correspondwith speckle patterns infigures 2(c) and (d). An isosurface of 86%
is used in each rendering of the objects amplitude. The nanocrystal was found to have nominal dimensions of
300×280×150 nmandwas reconstructedwith a resolution down to 15 nm.Morphological features
associatedwith the rhombohedral crystal structure can be seen in the reconstruction alongwithfiner step-
terraced surface features along theCartesian z-axis direction, as indicated in 3(f). The experimental wave transfer
vector direction is also indicated infigure 3 and appears normal to the x–y plane. Phase informationmapped
onto the isosurface of the object is shown infigures 3(c), (d), (g) and (h).Without laser illumination ((c) and (d)),
the phase information at the surface contains regions of positive and negative phase indicating the presence of
tensile and compressive strain near to the surface. The phase approaches zero towards the centre of the
nanocrystal with only a small and compact region of negative phase down to−0.39 radians remaining at its
centre. This ismore easily observed in the phase line scans shown infigure 4. Although BiFeO3 is known to form

Figure 2.Two-dimensional slices of the speckle pattern of a single BiFeO3 nanocrystal unilluminated (a) and illuminatedwith
maximum intensity of 2.5 W cm−2 of 632.8 nmwavelength laser light (b). Line scans along the path indicated in each speckle pattern
for increasing intensity are shown in (c) and (d), respectively. The arrow indicates the direction of increasing illumination intensity.
The change in intensity of the cross-correlationmeasure for each speckle pattern is shown in (e).
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ferroelectric domains, no phase wraps in the phase information, thatmight be associatedwith domains
boundaries, were observed in our samples [28–30].

For the case ofmaximum illumination (figures 3(g) and (h)), the phase towards the surface is now
prominently positive in value suggesting an overall increase in tensile strain. The observed increase in phase (as
indicated infigure 3(g)) is equivalent to a lattice displacement of upto 23.6±2 pmand an induced inter-planar
strain of upto ´ -8.48 10 2 at the surface of the nanocrystal. Phase informationwithin the bulk of the
nanocrystal is redistributedwith a reduction in size of the region of narrowly varying negative phase at the centre
of the nanocrystal and broadening of the surrounding region of zero phase in its immediate vicinity. This effect is
indicated infigure 3(h). A trivial phase shift in the solution as permitted by Fourier amplitudemeasurements (as
r r=f-∣ ( ) ∣ ∣ ( )∣ r re i 0 ) cannot account for this effect as broadening of regionswhere the phase varies narrowly

is observed, as opposed to a uniform shift in phase (see alsofigure S1 of the supplementarymaterial). Instead it is
likely due to deformation of the lattice as a result of light-mediated photostriction. This effect is thought to result
fromphoto excited electron–hole pairs created by the photovoltaic effect within thematerial that are
subsequently separated by the electricfield due to the internal polarisation. Their separation yields an internal
voltage that further induces a reverse piezoelectric effect. This is further supported by the rapid saturation ofDGn

as shown infigure 2(e).

Figure 3.Reconstructed amplitudes and phases for a single BiFeO3 nanocrystal in the absence of laser illumination ((a), (b), (c) and
(d)) andwithmaximum laser illumination ((e), (f), (g) and (h)). All amplitudes are shown at an 86% isosurface. Phase information is
mapped onto the surface of the object in (c), (d), (g) and (h). In addition, (d) and (h) show the reconstructed amplitudes with a
quadrant section removed to reveal phase information through the bulk of the nanocrystal.

Figure 4. Line scans of the reconstructed phase through the centre and along the orthogonal z-direction (figure 3) of the BiFeO3

nanocrystal, in the absence of and during laser illuminationwith 2.5 W cm−2 of 632.8 nmwavelength laser light. The inset shows
variation inDGwhen the laser illumination is repeatedly cycled between off and on states (The line is afit to the data and serves only as
a guide).
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As bulk single crystal BiFeO3 is known to have fewer defects than thinfilms and generally exhibits a low
leakage current and a spontaneous electric polarisation that is comparable to the theoretical value of 90
μC cm−2, we can expect self-assembled BiFeO3 nanocrystals to also have a comparatively low density of
crystalline defects when compared to thin films [31–33]. In addition, BraggCXDI has angstrom sensitivity to
crystalline defects and is not suited to the study of amorphous or polycrystallinematerials. This suggests that any
defects present in BiFeO3 nanocrystals used here are of a sufficiently low concentration to permit BraggCXDI
measurements. High electrical leakage currents that result fromdefects such as oxygen vacancies are therefore
less likely to occur in self-assembled BiFeO3 nanocrystals for this same reason. This reasoning is also supported
by the absence of tensile strain in the bulk region of the nanocrystal thatmight be associatedwith free charges
that persist in the absence of laser illumination (figure 4).

While the photostrictive effect was understood to occur in previous studies where band-edge illumination
was used as an excitation source, it is also known to occurwith below band-gap excitation[11, 34]. This can be
understood if the photostrictive effect in BiFeO3 is considered to include amagneto-electric coupling
component that additionally couples to Fe3+ ions in the lattice. Similar findingsweremade in neutron scattering
experiments [35–38]. The observation of a surface dominated photostrictive effect was not anticipated as the
absorption length in our experiments exceeds the dimensions of the nanocrystal [39, 40]. This suggest a need to
consider additional surface effects for an adequate description of light-mediated photostriction in BiFeO3

nanocrystals.

4. Conclusion

The possibility of harnessingmultiferroic compounds such as BiFeO3 that can operate at room temperature is
desirable for the realisation of numerous technological applications.We have shown that photostriction in
BiFeO3 is both stable and repeatable in nanoscale crystals and results in tensile strain in the lattice structure upon
illumination.We have also demonstrated the use of BraggCXDI for observing lattice distortions in dynamical
studies. This approach can be extended for the study of ultra-fast processes in BiFeO3 nanoscalematerials using
sub pico-second laser excitation and femto-second hard x-rays available at free-electron laser facilities.
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