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ABSTRACT

This paper describes a method to survey the distribution of megabenthos over multi-hectare regions of
the seafloor. Quantitative biomass estimates are made by combining high-resolution 3D image re-
constructions, used to model spatial relationships between representative taxa, with lower-resolution
reconstructions taken over a wider area in which the distribution of larger predatory animals can be
observed. The method is applied to a region of the Iheya North field that was the target of scientific
drilling during the IODP Expedition 331 in 2010. An area of 2.5 ha was surveyed 3 years and 4 months
after the site was drilled. More than 100,000 organisms from 6 taxa were identified. The visible effects of
drilling on the distribution of megabenthos were confined to a 20 m radius of the artificially created
hydrothermal discharges, with the associated densities of biomass lower than observed in nearby
naturally discharging areas.

Underwater vehicle

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Deep-sea hydrothermal systems can support diverse and den-
sely populated biological communities (Corliss et al., 1979; Spiess
et al,, 1980; Rona et al., 1986). While primary production in surface
communities is typically based on photosynthesis, deep-sea vent
ecosystems largely rely on the metabolic activity of free-living and
symbiotic microorganisms that form the basis of chemosynthetic
communities. The primary production of these microorganisms
and the diverse communities of megabenthos they support rely on
the oxidisation of reduced inorganic compounds in discharging
hydrothermal fluids (Jannasch et al., 1989; Wirsen et al., 1993;
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Bach and Edwards, 2003; Cowen et al.,, 2003; Bachraty et al,,
2009). As a result, any changes in seafloor hydrothermal fluid
discharge can have an impact on the distribution and abundance
of these communities (Juniper et al., 1992; Shank et al., 1998;
Copley et al., 1999; Kawagucci et al., 2013; Nakajima et al., 2015).
The interest in deep-sea mining raises concern about the potential
impacts of human activities in these areas and drives the need to
develop ways to systematically assess the response of these
complex ecosystems over wide-areas (Glover and Smith, 2003;
Gena, 2013; Van Dover, 2014).

The distribution of microbial and megabenthic biomass on the
seafloor has been the subject of several studies over the past
decades and many of the functional relationships that drive these
ecosystems have been clarified (Jannasch and Mottl, 1985; Fisher
et al,, 1994; Johnson et al., 1994; McCollom and Shock, 1997; Sar-
razin et al., 1999; Desbruyéres et al., 2000; Luther et al., 2001; Van
Dover et al., 2002; Bergquist et al., 2007; Nakamura and Takai,
2014). However, while primary production is strongly related to
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the physical and chemical characteristics of discharging hydro-
thermal fluids (Bach and Edwards, 2003; Nakamura and Takai,
2015), chemical and temperature gradients in these areas can be
steep and can change rapidly in time. Furthermore, the interac-
tions between different taxa of animals are complex, making it
difficult to apply these relationships to make bounded predictions
of biomass. At the same time, direct observation of megabenthic
animals, which typically range from centimetres to tens of centi-
metres in size, generally requires color images to be taken from a
range of ~2 m to achieve sufficient contrast and spatial resolution
to identify individuals (ind.) from different taxa (Connelly et al.,
2012; Nakajima et al., 2015). While these images can be combined
into 2D mosaics (Palterson, 1975; Marks et al., 1995; Pizarro and
Singh, 2003) or 3D image reconstructions (Negahdaripour and
Madjidi, 2003; Nicosevici et al., 2009; Pizarro et al., 2009; John-
son-Roberson et al., 2010; Bodenmann et al., 2010, 2016), the
limited footprint of each image combined with the difficulty of
accessing these remote environments has confined visual surveys
of megabenthos in hydrothermally active seafloors to spatial scales
of 100-1,000 m? (Podowski et al., 2009, 2010; Kim and Hammer-
strom, 2012; Marsh et al., 2012, 2013; Sen et al., 2013, 2014). Visual
surveys over multi-hectare regions have been demonstrated by
obtaining seafloor imagery from higher altitudes of ~8 m (Escar-
tin et al,, 2008; Bodenmann et al., 2013; Kwasnitschka et al., 2016).
However, the increased coverage comes at the cost of resolution
and detailed survey of seafloor biota distribution over these spatial
scales has not yet been realised. Since it is not uncommon for
hydrothermal fields to extend over several hectares (Hannington
et al., 1995, 2011; Tsuji et al., 2012), the technical limitation in our

ability to observe these areas at sufficient resolution over the ne-
cessary spatial scales means that the distribution and abundance
of vent-endemic biological communities over entire vent-fields
remains uncertain.

In this work, the authors apply the concept of using surrogate
taxa (Kremen, 1992; Wiens et al., 2008) to estimate the quantita-
tive distribution of vent-endemic megabenthic biological com-
munities over multiple hectares of seafloor. The method uses un-
derwater robots equipped with instruments to generate multi-
resolution 3D image reconstructions of the seafloor that can effi-
ciently observe deep-sea benthic environments on spatial scales
that cannot otherwise be practically achieved. The method is ap-
plied to survey the distribution of vent-endemic megabenthic
communities in a multi-hectare region of the Iheya North field
located in the Okinawa Trough (27°45.50'N 126°53.90'E, Fig. 1).
The site is a hydrothermal field at a depth of ~1,000 m that was
drilled during the Integrated Ocean Drilling Program (IODP) Ex-
pedition 331 in September 2010 (Takai et al., 2011, 2012). The site
is characterised by a thick layer of sediments and the presence of
several large chimneys (Tsuji et al., 2012), with the 20 m high
North Big Chimney (NBC) mound at the centre of its activity (Fig. 1
(d)). While 33 species of fauna have been reported to exist in the
Iheya North Field (Nakajima et al., 2014; Watanabe et al., 2015) the
majority of megabenthic biomass is composed of 3 chemosyn-
thetic taxa, the Shinkaia crosnieri galatheid crab and two species of
Bathymodiolus mussel, where genetic studies have shown that the
B. platifrons and B. japonicus are the only species of Bathymodiolus
in the Theya North field (Fujiwara et al., 2000). In addition to these
main taxa, alvinocaridid shrimps have also been reported to form
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Fig. 1. Location of the Iheya North field in the East China Sea. (a) Regional location of the Theya North field. The depth contours shown have an interval of 1,000 m. (b) Multi-
beam bathymetry of the surveyed area obtained using the autonomous underwater vehicle Urashima. The depth contours have an interval of 1 m. The shaded areas show
regions where visual surveys were performed in this work. (¢) Underwater images showing the CO016B hole and its guide base, located at the base of the NBC mound. Each
edge of the triangular guide base has a length of 5.13 m. (d) Location of the CO016A hole that was drilled on top of the NBC mound. The base of the visible part of the chimney
protruding from the mound has a diameter of ~5 m. (e) The C0014G hole and its guide base that was drilled in an area of sediments located ~450 m from the most active
region of the Iheya North field. The diameter of the yellow circular landing platform on the guide base is 1.43 m. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 2. Images of megabenthic vent animals representative of this region. (a) Underwater images showing an assemblage of S. crosnieri galatheid crab, where an average ind.
measures ~4 cm along its major axis. (b) A mixed assemblage consisting predominantly of B. platifrons mussels, which have shells with a light orange tint. (c) A mixed
assemblage consisting predominantly of B. japonicus mussels, which have shells that are darker in color than the B. platifrons. Both species of mussel measure ~5 cm along
the major axis of their shells. (d) A small assemblage of alvinocaridid shrimp, each measuring ~5 cm in length. (e) Two Paralomis lithodid crabs, where an average ind.
measures ~30 cm along its major axis. The ind. on the right of the image is located further away from the camera than the ind. on the left. (f) Three T. desbruyeresi (indicated
by the white arrows), each of length ~8 cm along the major axis of their shell. All images shown were taken by the forward looking camera of the ROV. (For interpretation of
the references to color in the text, the reader is referred to the web version of this article.)

dense assemblages in this region (Watanabe et al., 2010; Yahagi
et al., 2015). While less abundant in numbers, the Paralomis li-
thodid crab and Thermosipho desbruyeresi whelk are the largest
crustaceans and gastropods in this region, where isotopic analysis
of 8N (Yamanaka et al., 2015) has shown that the Paralomis is a
predator in the Okinawa trough and the T. desbruyeresi is known to
be a common predator-scavenger in hydrothermal vent fields in
Pacific Ocean (Sasaki et al., 2010). These 6 taxa (Fig. 2) have been
cited as being representative of megabenthos in this region (Na-
kajima et al., 2014) and are considered in this study. In order to
determine the effects of drilling on the distribution of mega-
benthos at this site, a two-phase seafloor imaging survey was
performed in January 2014, 3 years and 4 months after the area
was drilled. Two regions were surveyed during a single dive using
a Remotely Operated Vehicle (ROV). The area surveyed to the west
in Fig. 1(b) is centered near the NBC mound and covers the area
considered the most active in the Iheya North field (Watanabe
et al., 2010; Takai et al., 2011, 2012; Tsuji et al., 2012). Two holes
were drilled in this region during the IODP 331 expedition. The
first hole, CO016A, was drilled on top of the NBC mound and
reaches a depth of 18 m below the seafloor (mbsf). The second
hole, C0016B, was drilled to a depth of 45 mbsf at the base of the
NBC mound. The C0016B hole is capped and an open outlet pipe is
mounted on a guide base. The photo (Fig. 1(c)) shows significant
growth of hydrothermal deposits around the CO016B guide base

(Bodenmann et al., 2014). The other surveyed region, C0014, is
located ~450 m east of the NBC mound. Assemblages of Calypto-
gena okutanii clam were identified in the central part of this region
more than 10 years before it was drilled (Nakajima et al., 2015).
However, pre-drilling surveys confirmed that over 90% of the C.
okutanii were dead prior to drilling and that no endemic vent
animals were present within a 15 m radius of the locations that
were subsequently drilled (Takai et al., 2011, 2012; Nakajima et al.,
2015). A total of 7 holes were drilled within a 10 m radius. White-
colored clay-like sediments, thought to originate from drill cut-
tings, were observed extending 13-25 m from the centre of the
drill holes during ROV surveys that took place 16 months after
drilling, with the newly formed sediment layer reported to be
~300 mm thick based on the observation of buried dead C. oku-
tanii clam shells on the edge of hole CO014D/E (Nakajima et al.,
2015). The deepest hole, C0014G (Fig. 1(e)), was drilled to a depth
of 136.7 mbsf. The inner wall of the C0014G hole is lined with a
casing pipe and is capped with an open outlet pipe mounted on a
guide base. The temperature of the post-drilling hydrothermal
discharge of the drill-hole has been measured at 311 °C (Kawa-
gucci et al,, 2013). The photo, which was taken during the ROV
dive described in this study, shows that the hole has remained
active for an extended period. The penetration depths of the other
holes drilled in this region range from 4.2 to 44.5 mbsf (Takai et al.,
2011, 2012). Details concerning the drill-holes that were surveyed
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Table 1

Details of the holes drilled during IODP 331 that were surveyed during this study. The values for temperature are as reported in Kawagucci et al., 2013. The locations of holes
CO014F and C0014G have been updated from previous publications (Nakajima et al., 2015; Takai et al., 2011) based on the reconstructions generated in this study.

Region Hole

Latitude (N) Longitude (E) Seafloor depth (m) Penetration depth (mbsf) Maximum temperature Comments

at orifice (°C)

NBC CO016A  27°47.4548" 126°53.8034" 982.0 18.0
C0016B  27°47.4538' 126°53.7860" 995.0 449

C0014 COO014A 27°47.4140° 126°54.0487" 1059.5 6.5
C0014B  27°47.4131'  126°54.0448" 1059.0 44.5
C0014C  27°47.4194° 126°54.0391" 1060.0 6.5
C0014D 27°47.4158'  126°54.0406" 1060.0 16.0
CO014E 35.0
CO014F  27°47.4185"  126°54.0443' 1060.8 4.2
C0014G  27°47.4165'  126°54.0463" 1059.8 136.7

310 Bare hole, located on top of NBC mound
308 Bare hole, guide base

- Bare hole

- Bare hole

- Bare hole

301 Bare hole

- Bare hole

311 Casing pipe, guide base

+C0014A

C0014B

®

10m

C0014D/E

m .
1063 1058 m

Fig. 3. Reconstruction of the C0014 region. (a) Orthographic top view projection of the wide-area reconstruction C0014g,, that was surveyed from an altitude of ~8 m. The
green outline shows the boundary of the close-up view of the drilled region in (c). The purple outline shows the boundary of the high-resolution reconstruction C0014,,, in
(d). (b) The corresponding bathymetry generated using the stereo-images, with the boundary of the high-resolution bathymetry shown by the purple outline. (c) Close-up
view of the drilled region in C0014g,, that is outlined in green in (a). (d) Orthographic top view projection of the high-resolution reconstruction C0014,,, that was surveyed
from an average altitude of ~2 m in the region outlined in purple in (a)-(c). (e) The corresponding bathymetry generated using the stereo-images. The areas outlined in
yellow in (c) and (d) highlight the same area of seafloor and are shown in more detail in Fig. 5. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

during this study are summarised in Table 1. It should be noted
that the locations of holes CO014F and C0014G have been updated
from previous publications (Nakajima et al., 2015; Takai et al.,
2011) based on the reconstructions generated in this study. High
temperature venting has been confirmed at the CO016A and
C0016B holes and the CO0014D/E and C0014G holes (Kawagucci
et al.,, 2013). Diffuse flows were observed seeping out of the se-
diments near the C0014 drill-site where the seafloor is discolored
in Fig. 3(c) and also around the CO016B drill-hole. Diffuse flows

were also observed seeping out of several of the mounds and
rocky outcrops in the NBC region. Studies have shown that phy-
sical and chemical alterations have taken place locally within a few
meters of the drill-holes (Kawagucci et al., 2013; Thornton et al.,
2015), with local changes in vent communities also reported
(Nakajima et al., 2015). However, the effects of the sustained hy-
drothermal discharge are not well understood for spatial scales
larger than a few meters. The results of this work provide valuable
insight regarding the impacts of anthropogenic drilling on deep-
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sea vent-endemic biological communities over multi-hectare
spatial scales.

2. Seafloor imaging
2.1. Method

Surveys were conducted using the ROV Hyperdolphin of the
Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
during the KY14-01 cruise of the R/V Kaiyo. The ROV was equipped
with two imaging systems and a two-phase survey was carried out
to obtain seafloor imagery at different resolutions. Wide-area
surveys were performed in the regions shown in blue in Fig. 1
(b) from a high-altitude of ~8 m using the SeaXerocks long-range
3D seafloor imaging instrument (Bodenmann et al., 2013). Seafloor
imagery covering a total area of 2.5 ha was obtained in ~6 h from
this altitude. Overlapping areas, shown in red in Fig. 1(b), were
surveyed at higher resolution from an altitude of ~2 m using the
Serpent 3D seafloor imaging instrument (Le Dantec et al., 2013). A
total area of ~1,500 m? was surveyed in ~3 h from this altitude.
Overlapping areas of the seafloor were surveyed consecutively and
all seafloor observations were completed in ~ 10 h during a single
ROV dive. The instruments used in this study each consist of
downward-looking digital still stereo-pair cameras, where each
system contains the necessary electronics to drive synchronised
flashes and store the acquired images. SeaXerocks uses 4 syn-
chronised Xenon flash lamps for illumination of the seafloor and
images are acquired at an interval of 5s. The Serpent has 2 syn-
chronised LED flashes and images are acquired at an interval of
0.5 s. Vehicle navigation data was acquired using a 1.2 MHz Dop-
pler velocity log (DVL: Teledyne RDI WHN1200), a 3-axis fiber-
optic gyro (iXBlue PHINS), a pressure-depth sensor (Paroscientific,
Inc. 8CB4000-1) and super short baseline (SSBL: SGK) acoustic
positioning system. During the dive, data from the DVL, 3-axis
gyro and depth sensor were recorded on SeaXerocks. The ROV was
manually piloted along a predetermined path using the View-
Xerocks waypoint graphical user interface (GUI), developed by the
University of Tokyo, which provides real-time visual feedback re-
garding the planned and actual paths taken by the ROV together
with its altitude and velocity. Lawn mower grid pattern surveys
were performed with 3 orthogonal transects added to improve the
accuracy of localisation in post processing. The terrain was fol-
lowed at a fixed target altitude, where the overlap in the projected
image area between adjacent track lines from the target altitude
was set at 30% to provide full area coverage. However, due to the
influence of strong currents it was not possible to achieve full
coverage in the time available for data acquisition and some gaps
exist in the reconstructions. SSBL data was recorded on a separate
PC onboard the R/V, where the timestamps for all the data ac-
quired were synchronised using a network time protocol (NTP)
server. The images and navigation data were processed using a
stereo pipeline that implements visual simultaneous localisation
and mapping (SLAM) in order to generate self-consistent, geo-re-
ferenced 3D color image reconstructions (hereafter reconstruc-
tions) of the seafloor (Mahon et al., 2008; Johnson-Roberson et al.,
2010).

The wide-area reconstructions generated in this study have an
average resolution of ~8 mm per pixel in the horizontal plane and
a vertical depth resolution of ~14 cm. The high-resolution re-
constructions have an average resolution of ~1.6 mm per pixel in
the horizontal plane and a vertical depth resolution of ~4 cm. The
dimensional accuracy of the reconstructions is difficult to de-
termine since high-resolution ground-truth data is not available
for the natural underwater scenes imaged in this study. However,
based on the known dimensions of the two guide bases that

appear in the wide-area reconstructions, the average root-mean-
square error in the horizontal and vertical directions can be esti-
mated to be in the order of ~0.1 and ~0.3 m, respectively. The
sources of error are inaccuracies in the calibration of the stereo-
imaging instrument and in the localisation of the ROV. While there
is no reference available on the seafloor to assess the accuracy of
the high-resolution reconstructions, the dimensions of over-
lapping features are consistent with the wide-area reconstructions
and it is reasonable to assume that the dimensional accuracy is no
worse than that of wide-area data. It should be noted, that while
the SLAM algorithm used in this work is capable of producing
individually self-consistent reconstructions, the absolute position
errors of the reconstructions are expected to be higher than the
stated values for dimensional accuracy in the horizontal direction
due to the inherent uncertainty of SSBL localisation. For a vehicle
depth of ~1000 m, this would be expected to be in the region of
~10 m. The absolute accuracy in the vertical direction is expected
to be of similar order to the stated value for dimensional accuracy,
i.e. 0.3 m, since the error in the depth measurements when op-
erating at a depth of ~1,000 m is < 0.1 m for the pressure sensor
used in this work (Jalving, 1999).

Top-view projections of the reconstructions, as shown in Figs. 3
(a) and (d) and 4(c) and (d) at reduced resolution, were used to
generate geo-referenced digital labels for ind. animals. Labels were
generated manually by an expert using the same taxonomy as
used in Fig. 2, i.e. S. crosnieri, B. platifrons, B. japonicus, alvinocar-
idid, Paralomis and T. desbruyeresi which is considered to be the
lowest level of taxonomy that can be reliably achieved using the
data obtained in this work. While the two species of Bathymodiolus
are morphologically similar (Hashimoto and Okutani, 1994; Sasaki
et al., 2005) the B. platifrons is lighter in color and have an orange
tint compared to the darker B. japonicus. Labeling was performed
using qGIS (version 2.6.1), where the original images were also
used as a reference in situations where the taxa were ambiguous
or where there were possible artifacts in the reconstructions.
While top views of the reconstructions were used in this work, the
approach described can also be applied to 2D image mosaics.
However, 2D approaches to image mosaicking suffer from in-
accuracies due to perspective errors that occur in rough terrains
when the imaged regions cannot be assumed piece-wise flat (Pi-
zarro et al., 2009; Johnson-Roberson et al., 2010; Bodenmann et al.,
2016; Garcia et al., 2011; Inglis et al., 2012). While this would not
affect the inventory of biomass predicted using the method de-
scribed, the assumption of piece-wise flat terrains would cause
artifacts in the local distribution of animals in regions where
vertical profiles smaller than the footprint of a single image exist.

Spatial analysis was performed using Matlab (R2011), where
population densities were computed for each taxa using the geo-
referenced digital labels. The densities were calculated using a
Gaussian-weighted convolution operator with a 1c diameter of
0.3 m. This was chosen based on the relative dimensional accuracy
of the reconstructions in the horizontal plane (~0.1 m) in order to
generate highest resolution maps of distribution that can be re-
liably achieved using the available data. The same spatial resolu-
tion was used for all taxa considered in this study for both the
high-resolution and the wide-area reconstructions. The spatial
analysis is performed by applying the convolution operator to
every labeled ind. of each taxon. The cumulative sum of the op-
erators of each taxon gives the population density distribution,
which is determined for each of the taxa identified in this work.
Although information about the local terrain is not directly used in
our analysis of distribution, the availability of high-resolution
bathymetry data is useful since the observed patterns can be in-
terpreted in relation to their geological context. While stereo-
imagery was used in this work, similarly high-resolution bathy-
metry can also be obtained using autonomous underwater vehicle
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Fig. 4. Reconstruction of the NBC region. (a) Orthographic top view projection of the wide-area reconstruction NBCgp,, surveyed from an altitude of ~8 m. The green outline
shows the boundary of the close-up view of the region shown in (c). The purple outline shows the boundary of the high-resolution reconstruction NBCy, in (d). (b) The
corresponding bathymetry generated using the stereo-images, with the boundary of the high-resolution bathymetry shown by the purple outline. (c) Close-up view of region
in NBCgp, that is outlined in green in (a). (d) Orthographic top view projection of the high-resolution map NBC,,, that was mapped from an average altitude of ~2 m in the
region outlined in purple in (a)-(c). (e) The corresponding bathymetry generated using the stereo-images. The areas outlined in yellow and blue in (c) and (d) highlight the
same areas of the seafloor and are shown in more detail in Fig. 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

(AUV) or ROV multi-beam at close range, or through the use of
optical methods such light-sectioning (Bodenmann et al., 2010,
2016; Inglis et al., 2012; Massot-Campos et al., 2015), structure
from motion (Garcia et al., 2011), plenoptic imaging (Dansereau
and Williams, 2011) and laser time of flight (Moore and Jaffe,
2002).

2.2. Results

Fig. 3 shows top-view reconstructions and bathymetries gen-
erated near the C0014 drill-site. The wide-area reconstruction,
C0014Gg,, was generated from images obtained from an average
altitude of 8.4 m and covers 1.3 ha of seafloor at an average re-
solution of 7.9 mm (Fig. 3(a) and (b)). The green box outlines the
area that was intensively drilled during the IODP 331 expedition
(Nakajima et al., 2015; Takai et al., 2011, 2012). The bathymetry in
Fig. 3(b) shows that the region is relatively flat with a depression
towards the central north area of the surveyed region that reaches
a depth of 1066 m and a shallow slope of < 10° that rises towards
the east of the region upto a depth of 1040 m. The drill-site is
centered on a flat sediment-covered plateau of diameter ~80 m at
a depth of ~1060 m. This drill-site is shown in more detail to-
gether with the locations of the drill-holes (Table 1) in Fig. 3(c).
The C0014G guide base is the yellow triangular construction

visible near the centre of the image with the C0014D/E drill-hole
visible ~8 m southwest of it. This area was almost exclusively
covered by dark sediments prior to drilling (Nakajima et al., 2015)
and has been visibly altered by the post-drilling hydrothermal
discharge with white discoloration of the area surrounding the
drill-holes caused by both the formation of bacteria mats and
mineralisation of the seafloor (Kawagucci et al., 2013). Part of the
discoloration can also be attributed to drill cuttings that have
settled near the drill-site (Nakajima et al., 2015). The purple out-
line (Fig. 3(a)~(c)) shows the C0014,, region where high-resolu-
tion imagery was obtained from an average altitude of 2.2 m.
C0014,,, covers an area of 846 m? at an average resolution of
1.5 mm (Fig. 3(d) and (e)). The CO014D/E drill-hole is located on
the eastern edge of the C0014,,,. The region is relatively flat (Fig. 3
(e)), with sediments covering the southeast area of the re-
construction and rocky outcrops towards the northwest. The yel-
low boxes in Fig. 3(c) and (d) outline the same overlapping area of
seafloor in the two reconstructions. A comparison of these areas
can be found in Fig. 5(a) and (b).

The wide-area reconstruction of the NBC region, NBCg,, covers
an area of 1.2 ha and includes the NBC mound where the CO016A
hole was drilled, the C0016B guide base and several other active
mounds that have not been drilled (Fig. 4(a) and (b)). Seafloor
imaging was performed from an average altitude of 9 m to achieve
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Fig. 5. Comparison of reconstructions obtained from the 2 different altitudes. The reconstructions taken from 2 m and 8 m altitude have average resolutions of 1.6 and
8.0 mmy/pixel, respectively. (a) The top panel shows the yellow outlined region of C0014,,, in Fig. 3(d) taken from ~2 m altitude. The insets show S. crosnieri (left),
alvinocaridid (centre, indicated by white arrows) and Paralomis (right) observed from this altitude. (b) The top panel shows the yellow outlined region of C0014s,, in Fig. 3(c),
taken from ~8 m altitude that shows the same area of seafloor as (a), where the insets show the regions (or animal taxon in the case of the Paralomis) that correspond to
those in (a). (c) The top panel shows the yellow outlined region of NBC,,, in Fig. 4(d) taken from ~ 2 m altitude. The insets show B. platifrons (left), B. japonicus (centre) and T.
desbruyeresi (right, indicated by white arrows) observed from this altitude, where the region showing the T. desbruyeresi is located in the blue outlined region of NBCyy, in
Fig. 4(d). (d) The top panel shows the yellow outlined region of NBCs, in Fig. 4(c) taken from ~8 m altitude that shows the same area of seafloor as (c), where the insets
correspond to those in (c). The location of the bottom right panel in (d) is indicated by the blue outlined region of NBCg, in Fig. 4(c). (For interpretation of the references to
color in the text, the reader is referred to the web version of this article.)

Table 2

Individuals identified in the C0014;,,,, NBC,y,, C0014g,,, and NBCg,, regions together with the average and maximum population densities of each species. The location of each
region is shown in Fig. 1 and the individual reconstructions are shown in Figs. 3 and 4. The projected planar areas of the high-resolution reconstructions C0014,,, and NBCy,
are 846 and 695 m? with average pixel resolutions of 1.5 and 1.8 mm, respectively. The projected planar areas of the wide-area reconstructions C0014g,, and NBCg,, are
1.3 and 1.2 ha with average resolutions of 7.9 and 8.2 mm, respectively. While all 6 taxa in Fig. 2 were identified in the high-resolution reconstructions, only the S. crosnieri
and Paralomis could be reliably identified in the wide-area reconstructions. The values of o,,, represent the densities above which 68.2% of the ind. of each taxa are found in
the high-resolution reconstructions.

Species C0014Gop, NBCom Gom ind./m2 C0014Ggp, NBCgp,

Ind. Density ind./m? ind. density ind./m? ind. density ind./m? ind. density ind./m?

Av. Max. Av. Max. Av. Max. Av. Max.

S. crosnieri 3,536 4.2 319 7,160 10 465 54 6,336 0.50 274 47,335 3.9 393
B. platifron 7,282 8.6 863 12,885 19 597 99 - - - - - -
B. japonicus 6,780 8.0 498 7,339 11 494 99 - - - - - -
Alvinocaridid 170 0.20 170 500 0.72 186 16 - - - - - -
Paralomis 96 0.11 29 109 0.16 18 2.8 195 0.015 11 1,050 0.086 16
T. desbruyeresi 12 0.014 19 7 0.010 19 3.8 - - - -

Total ind. 17876 - - 28,000 - - - 6,531 - - 48385 - -
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Fig. 6. Population density maps for the C0014s, region. (a) The density distributions of S. crosnieri, and (b) Paralomis identified in the reconstruction. The S. crosnieri form
densely packed assemblages and are most abundant near the drill-site. While the Paralomis do not form assemblages they also tend to be located near the drill-site. (For
interpretation of the references to color in the text, the reader is referred to the web version of this article.)

an average resolution of 8.2 mm. The region is characterised by
extremely rough, rocky terrains with steep slopes and strong
vertical profiles of several tens of meters, as seen in Fig. 4(b). The
NBC and CBC mounds each have a diameter of ~40 m and mea-
sure ~20 m in height. In addition to these large mounds, there
exist several smaller mounds and rocky outcrops in the surveyed
area, where most of these have active diffuse flows. The CO016B
guide-base is located at the base of the NBC and CBC mounds in an
area that is relatively flat and is covered by sediments. The area
outlined in green, shown in more detail in Fig. 4(c), is a natural
hotspot for bioactivity located 40 m north of the NBC mound. The
high-resolution reconstruction NBC,,,, in Fig. 4(d) and (e) fills the
area outlined in purple in Fig. 4(a)—(c), and shows this area in more
detail. Here seafloor imaging was performed from an average al-
titude of 2.6 m to cover 695 m? of the seafloor at an average re-
solution of 1.8 mm. The bathymetry in Fig. 4(e) shows that the
southern part of this region is sloped by ~25° downwards to the
east, with exposed rocky outcrops at a depth of 990 m towards the
west of the reconstruction. The northern part of the high-resolu-
tion reconstruction is less steeply sloped (~10°) and is covered by
sediments. The yellow and blue boxes in Fig. 4(c) and (d) highlight
the same area of seafloor in the two reconstructions. A comparison
of these highlighted areas can be found in Fig. 5(c) and (d).

A total of 100,792 ind. from 6 different taxa were identified in
the reconstructions and digital labels were generated. A summary
of the animals identified in each reconstruction is given in Table 2.
While ind. from all 6 of the taxa in Fig. 2 can be identified in the

high-resolution reconstructions (C0014,,, and NBGC,.,), the re-
solution and color contrast in the wide-area reconstructions
(C0014g,, and NBCgyy,) is only sufficient for reliable detection of S.
crosnieri and Paralomis. The results of the spatial analyses in the
C0014g,, C00145,,, NBCgy, and NBC,y, regions are shown in
Figs. 6-9, respectively. Fig. 10 shows histograms of the number of
ind. of each taxon identified at a particular population density in
the high-resolution reconstructions (Figs. 7 and 9). The red lines
represent the population densities above which > 68.2% of the
total number of ind. of each taxon are found in the high-resolution
data, where the numerical values, c,, determined from the data
are given in Table 2. The delineated maps in Figs. 11(a) and (b) and
12(a) and (b) show the areas where the population density of each
taxon is larger than the corresponding value of o,,. These are
overlaid onto grey-scale shaded relief maps generated from the
seafloor bathymetry. Figs. 11(c) and 12(c) show the relative po-
pulations of each of the taxa identified in the high-resolution data.

Three chemosynthetic species S. crosniori, B. platifrons and B.
japonicus form assemblages with maximum densities of > 400
ind./m2. These taxa are found in areas where diffuse hydrothermal
fluids are visibly discharged from the seafloor. The two species of
Bathymodiolus mussel are found in mixed assemblages that can
cover areas of several meters in diameter (Figs. 7(b) and (c),11
(b) and 9(b) and (c) and 12(b)). B. japonicus are typically sur-
rounded by B. platifrons, possibly indicating a niche separation for
certain physical and chemical conditions (Fujiwara et al., 2000;
Kyuno et al., 2009). Both species of mussel attach themselves to
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Fig. 7. Population density maps for the C0014,,, region. (a) The S. crosnieri form dense assemblages, where the highest population density is found on the eastern side of the
region in sediment covered areas with active diffuse flows. Both the (b) B. platifrons and (c) B. japonicus form dense assemblages located in the rocky outcrop at the northwest
of the reconstruction. (d) The Alvinocaridid shrimp form smaller assemblages than the S. crosnieri and Bathymodiolus mussels and are located in the sediment covered region
on the eastern side of the reconstruction in areas with diffuse flows. (e) The Paralomis are dispersed in areas that are covered by sediments and have exposed rocky outcrops,
with a tendency to be located near dense S. crosnieri and Bathymodiolus assemblages. (f) The T. desbruyeresi, do not form assemblages and are found on the rocky outcrop at
the northwest of the reconstruction near assemblages of S. crosnieri and Bathymodiolus mussels. (For interpretation of the references to color in the text, the reader is referred

to the web version of this article.)

exposed rocks and the influence of the type of seafloor on their
distribution can be clearly seen in the data. While no ind. from
these species are observed in sediment-covered areas, dense as-
semblages are found on rocky outcrops that are both flat (e.g.
northwest of C0014,,) and steeply sloped (e.g. southwest of
NBC,,, with a slope of ~25°).

S. crosnieri are also found in similar areas to the Bathymodiolus
mussel. However, while Bathymodiolus mussels are observed on
steeply sloped surfaces, assemblages of are typically found on
surfaces that are sloped by < 10°, as can be seen in the NBCgy,, and
NBC,, regions in Figs. 4(b),8(a) and 4(e) and 9(a) where assem-
blages are not observed on the slopes of the NBC and CBC mounds.
This is also noticeable in the southwest part of the NBC,, region,
where the assemblages of S. crosnieri are located on a small ledge
at the top of a steep slope, and not on the slope itself. Their dis-
tribution however, is not limited to exposed rock surfaces. Dense
assemblages of S. crosnieri are found in the hydrothermally altered
region of site C0014 that was intensively drilled (Figs. 6(a), 7
(a) and 11(a) and (b)) and at the base of the C0016B guide (Figs. 8

(a) and 12(a)). In each case the relief is smooth in these areas since
the seafloor covered by sediments. The remaining 3 taxa account
for < 3% of the ind. identified in the high-resolution reconstruc-
tions. The alvinocaridid form small assemblages of diameter
< 0.3 m with maximum densities of > 180 ind./m?. These are lo-
cated near assemblages of S. crosnieri and are found in both rocky
and sediment-covered areas. The Paralomis is a predator that po-
tentially lies at the top of the food-chain in the Theya North field.
Individuals of this taxon measure ~0.3 m along their major axis
and comprise between 0.4-0.5% of the total number of ind. ob-
served in the high-resolution reconstructions. While the Paralomis
are sparsely distributed, they have a tendency to be found near
dense assemblages of other animals. This is seen in the high-re-
solution reconstruction NBCy, (Fig. 12(b)) where the Paralomis are
found near mixed assemblages of chemosynthetic species on the
rocky outcrop. Paralomis are also found near assemblages that
consist of only S. crosnieri in sediment-covered areas, such as the
east of C0014,,, (Fig. 11(b)) and near assemblages that consist
mainly of Bathymodiolus mussel in the rocky outcrop to the west of
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Fig. 8. Population density maps for the NBCg, region. (a) The density distributions of S. crosnieri, and (b) Paralomis identified in the reconstruction. The S. crosnieri form large
assemblages on mounds and rocky outcrops. While the Paralomis do not form assemblages, it is clear from the distribution that the Paralomis also tend to be located near
areas where there are assemblages of S. crosnieri. (For interpretation of the references to color in the text, the reader is referred to the web version of this article.)

C0014;,,. This pattern is also seen in the wide-area reconstructions
(Figs. 11(a) and 12(a)), where the Paralomis tend to be located near
assemblages of S. crosnieri, which is the only chemosynthetic
taxon identified at the lower-resolution. Paralomis are also ob-
served on steep surfaces such as on the slopes of the NBC and CBC
mounds, which are sloped by > 30°. The distribution patterns
observed suggest that the Paralomis are not confined to any par-
ticular type of terrain and do not have any obvious preference to
be located near a specific type of prey. The T. desbruyeresi also tend
to be distributed amongst the chemosynthetic animals, though the
number of ind. identified in this work is too few to draw any
further insight.

The densities of Bathymodiolus mussel observed in the C0014;,,
and NBC,,, regions are similar in order to those reported by Fuji-
kura et al. (2002) for a 546 m? region of the Minami-Ensei Knoll, a
hydrothermally active site located 100 km north of the Iheya North
field at a depth of between 600-740 m. The average density of
Bathymodiolus in the Knoll was reported to be 53.0 ind./m? with a
maximum density 644 ind./m? The average density of Bath-
ymodiolus (combined B. japonicus and B. platifrons) for the
C00145,,, and NBC;, regions determined in this work are 16.6 and
29.1 ind./m? with maximum densities of 863 and 597 ind./m?,
respectively. While the maximum density of Paralomis sp. in the
Knoll is not reported, the average density of 0.4 ind./m? is in the
same order as in the C00145, (av. 0.11 ind./m?) and NBC,, (av. 0.16
ind./m?) regions. Similar densities have also been reported in the
Lau Basin by Podowski et al. (2010), where the average density of
Paralomis sp. observed in a 195 m? region was 0.11 ind./m?. While
density of Bathymodiolus sp. in the Lau Basin is not reported, the

average density of T. desbruyeresi (1.0 ind./m?) is significantly
higher than in the C0014,, (0.014 ind./m?) and NBC,, (0.010 ind./
m?) regions. The population densities for alvinocaridid in the
C0014,,, (0.20 ind./m?) and NBC,, (0.72 ind./m?) regions are of
similar order to the Lau Basin (1.2 ind./m?), but are lower than in
the Minami-Ensei Knoll (3.2 ind./m?). While the maximum den-
sities of alvinocaridid in the Minami-Ensei Knoll and Lau Basin are
not reported, the maximum values in the C0014,, (170 ind./m?)
and NBC,,, (186 ind./m?) regions are an order of magnitude lower
than the densities of > 2,000 ind./m? estimated at the Von Damm
Vent field (2,300 m depth) and the Beebe Vent field (4960 m
depth) located in the Mid-Cayman spreading centre (Connelly
et al., 2012). The values of density should however be treated with
caution when making inter-site comparisons since the distribution
of megabenthos in hydrothermally active areas have high local
variability and the observational footprints of visual surveys are
small, typically in the order of a few hundred m2. This point is
illustrated by the observations made in this study, where the
average population densities of the Paralomis and S. crosnieri in the
wide-area reconstructions C0014g,, and NBCg,, are between 12%
and 55% of the respective average densities observed in the
smaller C0014,,, and NBC,,, sub-regions.

The main sources of uncertainty in determining the distribu-
tion of megabenthos in this study lie in the labeling of the geo-
referenced reconstructions. The dimensional accuracy of the re-
constructions is ~0.1 m in the horizontal plane, which is smaller
than the resolution of the convolution window used to determine
population density, and the use of a 3D approach to generate the
image reconstructions means that the distributions determined do
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Fig. 9. Population density maps for the NBC,,,, region. (a) The S. crosnieri form dense assemblages, where the highest population density is found on the rocky outcrop
located towards the southwest corner of the reconstruction. Both the (b) B. platifrons and (c) B. japonicus form dense assemblages in the same area of the reconstruction as
the S. crosnieri. (d) The alvinocaridid shrimp form small assemblages near the larger assemblages of S. crosnieri and Bathymodiolus mussel on the rocky outcrop. (e) The
Paralomis are scattered around the reconstruction in areas of both sediment and exposed rocky outcrop with a tendency to be located near areas where there are as-
semblages of S. crosnieri and Bathymodiolus. (f) The T. desbruyeresi do not form assemblages and are found on the rocky outcrop. (For interpretation of the references to color

in the text, the reader is referred to the web version of this article.)

not suffer from perspective errors in areas with rough terrains.
However, since visual techniques are limited to surficial counts of
resolvable ind., the values of density for taxa that can form multi-
layered aggregates, such as the S. crosnieri and Bathymodiolus
mussels, represent minimum estimates of abundance. A further
limitation of the proposed method is that even though the re-
construction is performed in 3D, since the images are obtained
using vertically downward looking cameras, regions that are
steeply sloped or have a rugged terrain, such as the NBC and CBC
mounds in NBCgy, are likely to have occlusions in the line of sight
of the cameras. This limitation also suggests that the approach
describe is likely to underestimate the abundance of ind. in
strongly profiled regions. Finally, while the spatial resolution of
the reconstructions taken from ~2 m altitude is sufficient to re-
solve the species > 1 cm, poor color contrast with the seafloor in
the case of the alvinodaridid and T. desbruyeresi may introduce an
intrinsic labeling bias that favors the more salient S. crosnieri,
Paralomis and two species of Bathymodiolus mussel.

3. Estimation of megabenthic biomass

The 3 representative chemosynthetic species account for more
than 97% of the ind. observed in the high-resolution reconstruc-
tions (Figs. 11(c) and 12(c)). Considering that the resolution of the
reconstructions is <2 mm, it can be reasonably assumed that
these 3 species represent almost all the megabenthic biomass of

animals > 1 cm in size. In order to convert the population density
maps into biomass estimates, ind. of the 3 major chemosynthetic
species were sampled to determine their total organic carbon
(TOC). S. crosnieri (173 ind.) were recovered from the NBC and
C0014 regions. B. platifrons (93 ind.) and B. japonicus (11 ind.) were
recovered from the NBC region and a region located approximately
50 m southeast of the mound, known as site C0013 (Takai et al.,
2011, 2012). Each recovered ind. was weighed and measured along
its major axis. No significant difference in size was found between
the 2 species of Bathymodiolus mussel and so these were com-
bined into a single aggregated set. Of the samples, a representative
subset of S. crosnieri (11 ind.) and Bathymodiolus (13 ind.) were
chosen to determine their fractional organic carbon content. The
whole bodies of representative ind. were rinsed in filtered sea-
water, vacuum freeze-dried, and ground into a fine powder. The
fine powders were weighed and subjected to further analysis. Ei-
ther hydrochloric or sulfurous acids were applied as a pretreat-
ment to remove inorganic carbon. After the acid treatment, the %
organic carbon content of the subsamples was analysed using an
elemental analyzer (Flash EA 1112, Thermo Fisher Scientific). The
average and standard deviation of TOC determined for each subset
is given in Table 3. These values can be used to determine the
distribution of biomass in the high-resolution reconstructions.
However, further consideration is necessary to quantify the bio-
mass in the wide-area reconstructions since the Bathymodiolus
mussels, which account for ~65% of the ind. observed in the high-
resolution data, cannot be reliably identified.
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Fig. 10. Histograms of the number of ind. from each taxa observed at a given density in the high-resolution maps. (a) Population density histograms for S. crosnieri observed
in C0014Gyy, (top), NBCyy, (centre), and combined C0014G,,, U NBC,,, (bottom) regions. (b) Population density histograms for B. platifrons observed in C0014G,, (top),
NBGC,;, (centre), and combined C0014G;,,, U NBC,,, (bottom) regions. (c) Population density histograms for B. japonicus observed in C0014G;,, (top), NBCyy, (centre), and
combined C0014G;;,, U NBCyy, (bottom) regions. (d) Population density histograms for alvinocaridid shrimp observed in C0014G,,, (top), NBC,py, (centre), and combined
C0014Gy, U NBCypy, (bottom) regions. (e) Population density histograms for Paralomis observed in C0014G;,, (top), NBCyy, (centre), and combined C0014Gyy,, U NBCopy,
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red lines in the combined data show the density threshold above which more than 68.2% (1c) of the population of each taxa are observed. (For interpretation of the
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Fig. 11. Distribution of megabenthos in the C0014 region. (a) Distribution of S. crosnieri and Paralomis identified in the C0014g,,, region. The purple outline shows the location
of the C0014,,, region. (b) Distribution of the 6 taxa identified in the C0014,,, region. (d) Relative abundance of ind. identified from the different taxa in C00145,. (For
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In this work, the distribution of biomass in the wide-area re-
constructions is estimated by using the Paralomis as a surrogate.
The spatial relationship between the predatory Paralomis and the
3 dominant chemosynthetic species is modeled through regres-
sion analysis of the high-resolution data (C0014,,, and NBCy,).
Since the distribution of Paralomis can be observed over spatial
scales of several hectares in the wide-area reconstructions
(C0014g,, and NBCgp,) it is possible to apply the modeled re-
lationship to estimate the distribution of megabenthic biomass
over the entire seafloor reconstructed in this work.

3.1. Method

To model the relationship between the distribution of Paralomis
and megabenthic biomass, it is first necessary to express the dis-
tribution of the chemosynthetic species in the high-resolution
data in terms of their TOC so that the different species can be
treated together without biasing the model in favor of larger
species. Fig. 13(a) shows the average ratio of megabenthic biomass
and Paralomis density distribution in the C0014,,, and NBC;,,, re-
gions for different radius Gaussian-weighted convolution win-
dows. For smaller window radii, the density ratios are low since
the Paralomis are often located several meters away from the
nearest chemosynthetic assemblages. However, the ratio begins to
converge as the radius of the window increases and a convolution

window of radius =5 m was finally chosen for the model since
the ratio is within 5% of the ratio of the total TOC of megabenthos
and the number of Paralomis observed in the high-resolution maps
while still maintaining a high-spatial resolution. Fig. 13(b) shows
the relationship between the density of megabenthic biomass and
Paralomis for the 5m o radius convolution window. The plot
shows that while the NBC,,, region has higher densities of bio-
mass and Paralomis, both C0014,,,, and NBC,,, follow the same
trend even though the two regions are located ~450 m apart. The
regression model was derived by applying an ordinary least square
fit to a power relationship of the form y=ax®, where the coeffi-
cients a=308.6 and b=1.663 provided the best fit to the data.
Fig. 13(b) shows the derived regression curve as a solid line to-
gether with the 95% confidence interval shown by the shaded
region. The predictive accuracy of the model is assessed using a
Monte-Carlo cross-validation technique that consists of 3,000
randomly split sets of independent training and test data extracted
from the high-resolution reconstructions (Picard and Cook, 1984).
For each split, the model was fit to the training data and used to
predict megabenthic biomass in an independent test set based on
the distribution of Paralomis. Independent training and test data
were ensured for each split by restricting the test data to ind. lo-
cated more than 5 m away from any member of the corresponding
training data. Fig. 14 shows a normalised histogram of the relative
error for the 3,000 randomly generated sets. The mean relative
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Table 3

Analysis of biological samples. The samples were collected from the survey area.
The average and standard deviations for shell length and mass are determined from
measurement made on all ind. recovered from each taxon. The average and stan-
dard deviation of total organic carbon (TOC) are determined from the fractional
organic carbon content of a representative subset of S. crosnieri (11 ind.) and
Bathymodiolus (13 ind.).

S. crosnieri Bathymodiolus
No. samples 173 108
Shell major 35.8+78 53.2+26.2
Axis length, mm
Mass, g 3.0+05 156 +8.8
TOC, g C 0.90 +0.14 0.40 + 0.11

error is < 1% and the uncertainty of the model used for the con-
version is determined as 21.1% based on the standard deviation of
the relative prediction error.

In order to apply this relationship to the wide-area re-
constructions, it is necessary to account for systematic errors in
the identification of ind. mapped at the lower-resolution. This is
characterised based on the number of ind. observed in overlapping
regions of the reconstructions generated from the different alti-
tudes. For this, it is important that the position error between the
overlapping reconstructions is small. A relative position error of
< 0.1 m is achieved by aligning the individual reconstructions ta-
ken from different altitudes using the Georeferencer tool in qGIS
by manually identifying visual features that are common between
the different resolution reconstructions, where the high-resolution
reconstructions are translated and rotated to be consistent with
the wide-area data. It is also necessary to assume that the net
movement of ind. across the boundaries of the overlapping areas
between reconstructions is negligible. This is reasonable since the
duration of the survey is short compared to the time scales on
which the underlying processes that sustain the benthos are ex-
pected to vary (Copley et al., 1999; Kawagucci et al., 2013; Naka-
jima et al.,, 2015). Subject to these conditions, the low-altitude

reconstructions can be used as a basis for comparison. The
counting uncertainty for the wide-area reconstructions is de-
termined to be 16.3% for the Paralomis in the overlapping regions
C00145,n C0014g, and NBCapy N NBCgp, illustrated by the purple
outlines in Figs. 15(a), (b) and 16(a) and (b), respectively. This is
less than the conversion model uncertainty and the propagated
counting and conversion errors give a total biomass estimation
uncertainty of 26.7%, which is considered acceptable for the pur-
pose of this research.

3.2. Results

The estimated distribution of megabenthic biomass in the
C00145,, and NBCg, regions are shown in Figs. 15 and 16, re-
spectively. Figs. 15(a) and 16a show the distributions of S. crosnieri
in units of g C/m? that were determined from direct observation in
the high-altitude reconstructions. Here a value of 0.90 + 0.14 g C/
ind., determined from sampled ind., was used where a counting
uncertainty of 33.5% was introduced based on the number of S.
crosnieri observed in the overlapping regions C0014,,, n C0014gy,
and NBCy,, n NBCgpy,. Figs. 15(b) and 16(b) show the distribution of
biomass estimated from the Paralomis identified in the wide-area
reconstructions as determined using the method described in
Section 3.1. Table 4 summarises the parameters used to convert
the wide-area reconstructions into estimates of biomass together
with their uncertainties.

The accuracy of the estimated biomass is evaluated through
comparison with the distribution of biomass calculated from direct
observations of S. crosnieri and Bathymodiolus mussels in the
overlapping regions of the high-resolution data C0014;;, n
C0014g,, and NBCy,, n NBCgy,. Fig. 15(c) and (d) shows the S.
crosnieri biomass determined through direct observation in the
wide-area reconstructions and the megabenthic biomass esti-
mated based on the distribution of Paralomis in the overlapping
region C0014;5, n C0014gy,. Fig. 15(e) shows the corresponding
distribution of biomass calculated based on the direct observations
made in the high-resolution data. Fig. 16(c)-(e) shows the
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of the radius of the Gaussian-shaped convolution operator used to determine each density. The plot shows the average values determined for all Paralomis ind. in both
regions. (b) Density of megabenthic biomass as a function of Paralomis density for a Gaussian-shaped convolution operator with a o radius of 5 m. The solid line shows the
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provided the best fit to the data. The shaded region shows the 95% confidence interval of the model. (For interpretation of the references to color in the text, the reader is
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Fig. 14. Relative prediction error of the modeled relationship between the density
of megabenthic biomass and Paralomis in the C0014,,, and NBC,,, regions. The
histogram shows the relative error for 3,000 randomly selected sets of independent
training and test data.

equivalent data for the overlapping region NBC;,, N NBCgy,,. The
abundance and maximum density of biomass in each of the re-
constructions are summarised in Table 5 together with bounded
uncertainty estimates for each of the different methods used. The
TOC of S. crosnieri in the overlapping regions observed in the wide-
area reconstructions account for just 28% and 40% of the respective
values of abundance and maximum density of biomass de-
termined from the distribution of chemosynthetic species in the
overlapping regions of the high-resolution data. The relative pro-
portions of biomass and density described by the S. crosnieri are
different since their spatial distribution differs from the Bath-
ymodiolus mussels that make up a significant portion of the total
biomass. This implies that the distribution of S. crosnieri is not a
reliable indicator of biomass since even if a correction factor is
introduced to correct for the relative abundance that the S. cros-
nieri account for, this would not necessarily translate to a sensible
prediction of the distribution and density of biomass. This can be
seen in Fig. 15(e) where the location of the maximum density of S.
crosnieri (blue marker) in the wide-area reconstructions is located

18.5 m from the maximum density of biomass (purple marker)
determined from the high-resolution data. For the data described
in this study, a correction factor based on abundance would result
in a significant over prediction of the maximum biomass density
and would also not accurately describe biomass distribution. It is
noted however, that the difference in the distribution patterns
observed between the S. crosnieri and Bathymodiolus are most
noticeable near post-drilling hydrothermal discharges in sedi-
ment-covered areas. Therefore, it is possible that the distribution
patterns observed in this study are unique to areas that have been
perturbed by anthropogenic drilling activity. The megabenthic
biomass estimates made based on the distribution of Paralomis in
the wide-area reconstructions account for 99% and 94% of the
respective values of abundance and maximum density of biomass
in the overlapping regions of the high-resolution data. Figs. 15
(e) and 16(e) show that the location of the maximum biomass
density determined from the distribution of Paralomis (green
markers) in the overlapping areas differs from those observed in
the high-resolution data (purple markers) by straight-line dis-
tances of 8.6 and 5.2 m respectively. The discrepancy in location of
the predicted maximum biomass density is reasonable considering
the o=5 m radius of the Gaussian-shaped convolution window
used in the model. The validation demonstrates that regression
based on Paralomis distribution can estimate the distribution and
amount of megabenthic biomass within the derived limits of
uncertainty.

4. Discussion

The abundance and maximum density of megabenthic biomass
in the C0014g,, and NBCg,, regions surveyed in this study are
summarised in Table 5. The megabenthic biomass in the C0014g,
region determined from the distribution of Paralomis is 25 + 7 kg C
over a projected horizontal surface area of 1.3 ha. The maximum
biomass density is determined to be 27 + 7 g C/m? and is located
in the area that was intensively drilled during the IODP 331 ex-
pedition (Figs. 3(c) and 15(b) and (e)). The majority of the re-
maining biomass is located toward the west of the surveyed re-
gion, where the highest biomass densities are ~5 + 2 gC/m?. The
density of biomass near the drill-site is significantly higher than in
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biomass distribution shown in (b) for the C0014,,,, n C0014g;, region. (e) Megabenthic biomass distribution determined from direct observations in the C0014,,,, reconstruction for the
C0014,, N C0014g, region. The purple marker in (e) shows the location of the maximum density of biomass observed in the high-resolution data, the blue marker shows the location
of the maximum density of S. crosnieri observed in C0014g,,, and the green marker shows the location of the maximum biomass estimated from the distribution of Paralomis in
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Fig. 16. Distribution of megabenthic biomass in the NBC region. (a) S. crosnieri biomass determined from direct observation of ind. in the NBCs,, reconstruction.
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other areas in the C0014g,, region. Biomass densities >7 g C/m? et al. (2015) that some S. crosnieri and Bathymodiolus mussel as-
are localised to within a 20 m radius of drilled area. While it is semblages were present in the rocky area ~20 m west of the area
known that the region within a 15 m radius of the drilled area was that was drilled. As such, it is not possible to determine the
not inhabited before drilling, it has been reported in Nakajima amount of biomass that can be directly attributed to post-drilling
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discharge since the number of ind. in this area prior to drilling is
not known. However, at the time of the survey the drilled area
supported a large megabenthic assemblage of 11 + 3 kg C that
covered an area of 560 m?, corresponding to an average density of
19 + 5 g C/m?. This forms an upper limit for the effects of post-
drilling discharge in this area. The abundance of megabenthic
biomass in the highly active NBCg,,, region is 140 + 40 kg C over a
projected horizontal surface area of 1.2 ha. Both the abundance of
biomass and the average density per unit area are more than
5 times those of the C0014g,, region. The drill-holes in this region
are located at the CO016B guide base and CO016A located on top of
the NBC mound. Large assemblages of biomass are also found on
several mounds that have not been drilled. The maximum density
of biomass observed on the NBC mound is 33 +9 g C/m? It is
known that the NBC mound was densely populated by mega-
benthos before hole C0O016A was drilled (Watanabe et al., 2010;
Kawagucci et al., 2013). However, since the abundance and density
of biomass prior to drilling are not known it is not clear what
portion of the observed biomass can be attributed to the effects of
drilling. The maximum density of biomass on the NBC mound
however, is not significantly different from the densities on the
other mounds in this region that have not been drilled, which
range from 22 +6 to 56 + 15 g C/m?. The C0016B guide base is
located in a small area covered by sediments located 30 m west of
the CO016A hole at the base of the NBC and CBC mounds. In-
spection of Fig. 4(a) shows white sediments, possibly originating
from drill cuttings, extending 15 m east of the CO016B hole
forming a layer of deposit of unknown thickness. Fig. 12(a) shows
that there is a small assemblage of S. crosnieri at the southwest
corner of the guide base and a small number of Paralomis. The
estimated maximum density of biomass in this area is 7 + 2 g C/m?
where the increased density is confined to within 7 m of the
centre of C0016B. The highest density of megabenthic biomass in
the NBCg, region is found 40 m north of the NBC mound on top of
a 6 m high mound that has a diameter of 20 m. This area partially

Table 4

Functions used to estimate the distribution of biomass from the observed dis-
tributions of Paralomis and S. crosnieri, respectively. The input variable x is the
density distribution of each respective taxon as determined using a 5 m radius
Gaussian-shaped convolution operator. The conversion function for S. crosnieri
corresponds to the TOC of recovered ind. given in Table 3. The conversion function
for Paralomis corresponds to the regression curve shown in Fig. 13(b).

Species Conversion function Model uncertainty, %
Counting Conversion Total
S. crosnieri 0.90x 335 <01 335
Paralomis 308.6x"663 16.3 21.1 26.7
Table 5

overlaps with the high-resolution NBC,,, reconstruction and is
characterised by visible diffuse flow. No drilling has been per-
formed on this mound and the high density of biomass
(56 + 15 g C/m?) observed can be attributed to naturally occurring
hydrothermal discharge.

This study provides insight into the effects on megabenthos
(> 1 cm) of drilling in hydrothermally active areas. Drilling activ-
ities in the C0014 region of the Iheya North field, consisting of
seven holes that were drilled within a 10 m radius and to max-
imum drill depth of 137.6 mbsf, have generated post-drilling hy-
drothermal discharges that sustain an assemblage of S. crosnieri
more than 3 years and 4 months after the site was drilled (Ka-
wagucci et al., 2013; Nakajima et al.,, 2015). The seafloor sur-
rounding the drill-site supports a diverse assemblage of mega-
benthos that is confined to an area of diameter 20 m centered
around the drill-holes, with no noticeable affect on the distribu-
tion of biomass in the surrounding 1.3 ha region. While it has been
suggested that a large proportion of this biomass may be attrib-
uted to post-drilling hydrothermal discharge (Nakajima et al.,
2015), the projected area, abundance and maximum density of the
assemblage are smaller than those observed in the natural as-
semblages in the nearby NBC region, where the maximum density
of biomass near the C0014 drill-site is approximately half of the
density observed in the most active area of the NBC region. Dril-
ling activities in the region surrounding the NBC mound were less
extensive than at the C0014 drill-site. While a small assemblage of
< 0.5+ 0.1 kg C was observed <7 m from the C0016B hole, the
density of biomass here is less than one-third of that observed on
adjacent mounds that were not drilled. Similarly, no significant
difference was observed in the density of biomass on the NBC
mound, where the CO016A hole was drilled, compared to adjacent
mounds that have not been drilled.

5. Conclusions

This study is the first multi-hectare scale survey of the quan-
titative distribution of a vent-endemic megabenthic community.
This was achieved through the application of a novel multi-re-
solution 3D reconstruction technique and the use of surrogate taxa
that can rapidly survey multi-hectare regions of the seafloor using
an appropriately instrumented underwater robot. The method is
practical and can be used to survey deep-sea benthic ecosystems
on spatial scales that could not previously be studied. The tech-
nique was applied to investigate the post-drilling response of
megabenthic communities in the [heya North field. The data forms
the largest spatially continuous dataset for vent ecology and the
results find that, 3 years and 4 months after the drilling activities
of the IODP 331 expedition, the effects of post-drilling discharge

Abundance and maximum density of biomass determined for each of the surveyed areas. The biomass determined for the high-resolution reconstructions is based on direct
observations of S. crosnieri and Bathymodiolus mussel ind. where the values of TOC in Table 3 have been used to convert the population densities into biomass estimates. The
biomass estimated from the wide-area reconstruction is computed based on the conversion functions in Table 4. A 5 m radius Gaussian-shaped convolution operator is used

for all calculation made.

Region Biomass from high-resolution reconstructions Biomass from wide-area reconstructions
Method Abundance, kg C  Max. density, g C/m®>  Method Abundance, kg C  Max. density, g C/m?
C0014;, n C0014g, Combined S. cronieri and Bathymodulii 7.94 1+ 0.01 30.0+0.1 S. crosnieri 274+09 14+5
Paralomis 86+23 27+7
NBC,,, N NBCgpy Combined S. cronieri and Bathymodulii 13.24 4+ 0.01 576 +0.1 S. crosnieri 29+1.0 19+6
Paralomis 12+3 56 + 15
C0014Gg,, - - - S. crosnieri 57+19 14+5
Paralomis 25+7 27 +7
NBCsm - - - S. crosnieri 42+ 14 39+ 13
Paralomis 140 + 40 56 + 15
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on the distribution of megabenthos in the surveyed regions has
remained bounded to spatial scales of several tens of meters from
the drill-holes. While it is difficult determine the extent to which
the observed distributions can be attributed to drilling activity, the
density of megabenthos in the drilled areas are found to be within
the order that is associated with naturally occurring hydrothermal
discharges in this region. It is important to recognise however that
drilling activities may potentially redirect vent fluid away from
existing discharge channels and so biomass in these areas may
decrease. However, it is not known over what spatial or temporal
scales these effects may occur.

Some unique characteristics have been observed regarding the
influence on the local distribution of megabenthos. In particular,
the areas surrounding the C0014G and CO016B holes are the only
locations where S. crosnieri were observed on flat, sediment-cov-
ered terrains. All other assemblages of S. crosnieri identified in the
2.5 ha of seafloor that was surveyed were found on rocky outcrops.
This may be because in this region, naturally occurring hydro-
thermal discharges are usually accompanied by the formation of
mineral deposits. However, the drill-holes made during the IODP
331 expedition penetrated some distance into the base rock in
sediment-covered areas (Takai, 2011, 2012) and have resulted in
the sustained discharge of hydrothermal fluids. This has attracted
assemblages of S. crosnieri to sediment-covered areas, which now
support vent communities with a unique structure. While this
study has found the effects of drilling in the Theya North field on
the distribution of megabenthos to be bounded to within naturally
occurring levels, some changes in distribution have been observed
and it is not clear how these effects would scale with more ex-
tensive drilling or how the changes observed will evolve with
time. It is clear that potential changes in benthic communities
need to be considered when planning drilling activities in hydro-
thermally active areas and that these activities should be sup-
ported by appropriate efforts in monitoring.
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