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Value Modelling for Multi-Stakeholder and Multi-Objective 

Optimization in Engineering Design 

 

The work presented culminates in the development of a value model used in the 

conceptual phase of engineering design, with the preferences of more than one 

stakeholder addressed in the Multi-Stakeholder and Multi-Objective 

Optimization. The “value” of proposed solutions is assessed in an objective way 

both from performance and economic perspectives, while the optimal solution is 

identified based on the needs of the user and manufacturer, as major stakeholders. 

This novel value model for consistent value assessment synthesizes the multi-

attribute value/utility analysis with the Game Theory and Analytic Hierarchy 

Process (AHP) assessment methodologies. During the multi-criteria decision 

analysis, the deficiencies, introduced by the arbitrary numerical scales used in 

AHP to convert the linguistic preferences of the user between the various 

attributes to numerical values, are resolved. The preferences of a group of 

experts/decision makers are synthesized in the group value model through the 

extraction of weighting factors from the individuals’ AHP pairwise comparison 

matrices. Moreover, Game Theory is used in a hybrid cooperative/bargaining, 

non-cooperative non-zero sum game between the stakeholders as players, 

identifying the optimal design through the simultaneous employment of the Nash 

bargaining solution and the Nash equilibrium. 

Keywords: Multi-Criteria Decision Analysis (MCDA), Analytic Hierarchy 

Process (AHP), Multi-attribute Utility Theory (MAUT), Nash equilibrium, Nash 

bargaining solution (NBS). 

1. Introduction 

In order to locate the best solution in engineering design, the optimization process 

should explore the widest possible design space; however, to address all economic and 

non-economic needs of stakeholders involved in order to identify the value-enhancing 

design(s), the goodness of all proposed system solutions needs to be assessed using the 

multiple criteria decision analysis (MCDA) approach. This paper presents 



methodologies and results of the authors’ current research for the assessment of “value” 

of proposed systems solutions, relying on both performance and financial needs 

analysis, within the development of a value-driven conceptual design assessment 

framework. It is imperative that the value model captures the needs and requirements of 

all stakeholders involved during the designed system’s whole lifecycle through the 

appropriate design attributes, framing and guiding the intricate process of engineering 

design. During the conceptual design phase, only basic needs and vague requirements 

are known and the widest possible design space is explored. Ultimately, the most 

preferred designs, based on their evaluation against technical and economic criteria, are 

selected for further analysis. Therefore, the objectivity of the evaluation has to be based 

only on those needs and preferences of the stakeholders involved, with criteria 

independent of the proposed alternative solutions. Multi-criteria decision analysis 

techniques are reviewed in Section 2, followed by the presentation in Section 3 of the 

proposed value model utilised in a conceptual value driven design optimization. An 

application of this value model in a case study of a small Unmanned Air System (UAS) 

conceptual design is described in Section 4 and finally primary contributions to the 

current state of knowledge and conclusions are outlined in Section 5. 

2. Literature Review 

The identification and structuring of all stakeholders' needs/requirements, covering the 

complete lifecycle of the designed product, is the first step of the engineering design 

process. As Keeney (1996) points out, these needs will pronounce the values that should 

be addressed with the engineering design and steer both the collection of information 

and decision making. Keeney and Raiffa (1976) describe the process of constructing a 

non-unique hierarchy of objectives, with one or more comprehensive and measurable 

attributes associated to each of them; constituting thus a complete, operational, 



decomposable, non-redundant, and minimal full set of attributes as the input of the 

objective/value function, modelling the overall goodness of a particular design 

alternative. 

Several approaches can be used during the multi-criteria decision making 

process of evaluating a set of alternatives which are depicted by a number of attributes 

with the corresponding objectives being pursued. The maximization of value is 

fundamental to any decision-making problem solving; hence, economic theory reflected 

in cost contributes pari passu with system performance in the creation of the value 

model. The most significant approaches in Multi-Criteria Decision Analysis (MCDA) 

include ELECTRE (Roy 1991), multi-attribute utility theory (MAUT) ((Fishburn 1970), 

(Keeney and Raiffa 1976)), simple multi-attribute rating technique (SMART) 

((Edwards 2009), (Edwards and Barron 1994)), Analytic Hierarchy Process (AHP) 

(Saaty 1980), Weighted Objectives Method (Roozenburg and Eekels 1995), technique 

for order preference by similarity to ideal solution (TOPSIS) (Yoon and Hwang 1995) 

and simple additive weighting (SAW) (Kirkwood and Corner 1993). Collopy (2009), 

surveying some of these MCDA techniques used in the development of the value model 

for engineering design, concluded that it is the user’s point of view, adopted in value 

modelling, that defines the selection of the most appropriate tools. The MCDA 

techniques utilised in the development of the value model for the conceptual phase of 

engineering design are presented in the following sections. 

2.1 Multi-Attribute Utility and Value Modelling 

Among the various multiple criteria decision-making approaches, the multi-attribute 

utility theory (MAUT) has a prominent place, mainly due to its comprehensive 

theoretical structure. Its limitations lie in the fact that the goodness of design 

alternatives is measured through an abstract utility index and it is inappropriate when 



more than one individual is considered due to Arrow’s Impossibility Theorem, (Arrow 

1963). 

Utility and multi-attribute utility theory, (Fishburn 1970) and (Keeney and 

Raiffa 1976) respectively, measure preferences of consequences with one or more 

dimensions, capturing the stakeholder’s attitude towards uncertainty. The preferential 

independence and utility independence are usually assumed and the model is a 

multiplicative one: 

 𝐾 ∙ 𝑈(𝑋) + 1 = ∏ [𝐾 ∙ 𝐾𝑖 ∙ 𝑈𝑖(𝑋𝑖) + 1]𝑛
𝑖=1  (1) 

In this equation, 𝑈 and 𝑈𝑖 are the total and individual utility functions 

respectively, while 𝐾𝑖 are the scaling constants and 𝐾 is an additional normalization 

constant generated through the iterative process presented in Appendix 6B, (Keeney and 

Raiffa 1976). Multi-attribute utility theory has been used as a standard MCDA 

technique in several applications in research and real-world problems, such as the 

airline industry (Chang and Yeh 2001), farming systems (Van Calker et al. 2006), 

nuclear energy (Kim and Song 2009) and earthquake projects (Butler, Morrice and 

Mullarkey 2001) to deep-space observation missions (Ross et al. 2010). 

Value functions, as special cases of utility functions, ignore the stakeholder’s 

risk attitude and represent the worth the stakeholder gives under certainty to achieve a 

certain value for a design attribute. The additive (preferential) independence among the 

attributes is assumed, yielding the following multi-attribute additive value model: 

 𝑉(𝑋1, 𝑋2, … , 𝑋𝑛) = ∑ 𝐾𝑖 ∙ 𝑉(𝑋𝑖)
𝑛
𝑖=1  (2) 

The scaling constants 𝐾𝑖 are assessed using two approaches, the trade-off and 

the direct rating approaches, described by Keeney and Raiffa (1976) and Dyer and Sarin 

(1979) respectively. The individual value functions 𝑉(𝑋𝑖) of the attributes are computed 



independently with a direct value estimation technique, using three distinctive 

approaches: direct rating, direct midpoint and direct ordered metric (Fishburn 1970). 

Multi-attribute value models are employed when the stakeholder’s risk attitude is 

ignored, as in the value assessment of various business airplane designs (Downen, 

Nightingale and Magee 2005). They were also used in conjunction with bio-economic 

modelling to study production strategies and the use of soil nutrient resources (Berkhout 

et al. 2011), and with AHP and fuzzy set based approach in the nuclear spent fuel 

management (Sohn, Yang and Kang 2001). Value functions were combined with utility 

functions, eliciting values (through linear value functions) at lower-levels of the 

objectives hierarchy and assessing risk attitudes at higher levels (Schuwirth, Reichert 

and Lienert 2012). 

2.2 Analytic Hierarchy Process 

The Analytic Hierarchy Process (AHP) is based on judgments from a group of experts 

or decision makers and it applies hierarchical decomposition of a high level objective to 

lower level sub-objectives as described by Saaty (1980). AHP uses pairwise 

comparisons between all possible pairs to establish an objective weighting for 

evaluation of a number of alternatives with respect to several criteria/attributes (Saaty 

and Vargas 2001). Additionally, AHP compensates for any bias or inconsistency 

through the redundant pairwise comparisons’ construction of the judgment matrix, 

assessing the consistency/validity of the model. 

However, AHP lacks the sound theoretical axiomatic foundation of the utility 

theory (Von Neumann and Morgenstern 1953), as pointed out by Dyer (1990). Also, the 

phenomenon of Rank Reversal could happen, with the ranking between the dominating 

alternatives changing, when other dominated or inferior alternatives are introduced 

(Perez 1995). Another disadvantage of the AHP is the construction of its matrix, which 



is based on the ambiguous question: ‘How much better/more important is 

attribute/alternative 𝐴𝑖 than 𝐴𝑗?’ assessing the ratio scaled strength of preference. It is 

however used for defining the problem, considering a large number of attributes, 

communicating value, identifying differences and similarities between various 

stakeholders’ points of view and aggregating them as presented in (Lai, Wong and 

Cheung 2002), (Morera 1998), (Gass 2005), (Chen 2007) and (Scholl et al. 2005). 

Nevertheless, it is the synthesis of MAUT with AHP that offers significant benefits in 

the preferences’ assessment, as discussed by Dyer (1990) and corroborated by several 

applications, such as (Poyhonen 2001), (Sohn, Yang and Kang 2001), (Crossman 2011), 

(Abu Dabous 2010), (Sha and Che 2005) and (Tarek and Elsayed 2013). 

2.3 Group Decision Making 

Multi-attribute utility theory elicits the preferences of an individual decision maker, 

assessing the entire set of alternatives by developing and adding up appropriate utility 

functions for all attributes. In most cases, several individuals/experts constitute a 

decision group and an appropriate aggregation method is required to obtain the 

corresponding group objective function, while the conflict between the preferences of 

the group members is a common situation. 

MCDA methods provide useful tools to deal with interpersonal preferential 

conflicts, aiming to achieve group members’ consensus. AHP is well equipped for 

group decision making (Dyer and Forman 1992) through consensus, 

voting/compromising, computing the geometric/arithmetic mean of individuals’ 

judgments, or any other way of averaging the individual results. Several applications of 

this aggregation are presented in literature, such as the computation of the arithmetic 

mean of the individuals’ preferences after being normalized appropriately in 



(Matsatsinis, Grigoroudis and Samaras 2005) and (Feng and Lai 2013). Alternatively, 

the geometric mean is also used in AHP and fuzzy AHP techniques (Lai, Wong and 

Cheung 2002), (Kim and Song 2009), and (Carnero 2013). In an ordinal ranking, the 

individuals’ preferences can also be aggregated (Hurley and Lior 2002) and quite often 

the preferential differences among different alternatives and priorities are also 

considered/weighted to obtain the group utility values (Huang et al. 2013). Dijkstra 

(2013) presented a method for the extraction of group weighting factors from the group 

members’ AHP pairwise comparison matrices, minimizing the inconsistencies 

introduced in the group preference synthesizing. Nevertheless, the selection of the 

averaging method used in the aggregation of the individuals’ preferences is rather 

arbitrary, unless it explicitly deals with the interpersonal comparison of preferences. 

2.4 Application of Game Theory in Engineering Design 

In engineering design, several decisions have to be taken into account concerning the 

whole lifecycle of the designed system, including the design, manufacturing, use, 

maintenance, repair and disposal stages. These decisions made by different stakeholders 

can be studied using the Game Theory, since all N (>1) stakeholders as players aim to 

better promote their interests, through the maximization of their own objective function, 

while they are affected by the others’ choices. 

Although John Von Neumann is considered to be the founder of the Theory of 

Games (Von Neumann and Morgenstern 1953), the keystone was set by John Nash with 

his proposed Nash equilibrium solution of non-cooperative games (Nash 1950) and 

Pareto optimal Nash bargaining solution (NBS) of cooperative games (Nash 1950). The 

Nash equilibrium constitutes the set of all players’ strategic choices and their 

corresponding payoffs, if each player has chosen a strategy and no player can benefit by 

changing their strategy, while the other players keep theirs unchanged. Game Theory as 



an optimisation tool, modelling decision interactions among rational players as non-

cooperative games, has been applied in numerous engineering design cases. Nash 

equilibrium was employed in the engineering asset management between maintenance 

chain participants in a negotiation model (Trappey, Trappey and Ni 2013), between 

engineering disciplinary teams for collaborative decision making (Xiao et al. 2005), and 

the design of an aero-structural aircraft wing shape optimisation (Desideri 2012). The 

selection of players varies from actual persons, agents to aircraft components evaluated 

(Runyan et al. 2010) or using different disciplines/technologies (Habbal, Petersson and 

Thellner 2004). It was also applied based on gene expression programming in multi-

objective multidisciplinary design optimization (MDO) problems (Xiao 2015). Players 

can be fictitious, each having control of one design variable in a particle swarm 

optimisation (Annamdas and Rao 2009), or even objective functions in a bargaining 

multi-objective optimal design (Gonzalez et al. 2007) and (Hu and Rao 2009). A 

hybrid-game strategy for multi-objective design optimization was proposed by Lee et 

al. (Lee 2011), employing Nash equilibrium as a fast companion optimizer to guide the 

slower multi-objective evolutionary optimizer, capturing the Pareto non-dominated 

front. 

Nash equilibrium of games between non-cooperative players does not guarantee 

the property of Pareto Optimality of the solution obtained. However, if players 

cooperate through a bargaining process, they are rewarded with a solution that belongs 

to the Pareto optimal set. The problem of indeterminacy of the Pareto front was solved 

by Nash (1950) through the determination of a definite solution among all the Pareto 

optimal candidates, representing the anticipations the players would agree upon as fair 

bargains. It is based on the criterion of maximization of the product of utilities’ 

distances from the disagreement points for the bargaining problem between two players, 



reaching a binding agreement. Harsanyi and Selten (1972) generalized the bargaining 

problem for two or more players of not equal relative authorities. The NBS has been 

identified in several cases modelled by cooperative games, such as the design and 

management of microwave access networks (Jiao et al. 2011), design of controllers in a 

multi-agent team cooperation approach (Semsar-Kazerooni and Khorasani 2009), 

bandwidth allocation in high-speed networks (Yaiche, Mazumdar and Roseberg 2000), 

(Ma et al. 2012), design of water distribution networks, (Beygi 2014), and collaborative 

product development (Arsenyan, Buyukozkan and Feyzioglu 2015). 

3. Multi-Stakeholder Multi-Objective Value Model 

In engineering design, two distinctive features are involved, the complexity/uncertainty 

analysis required to develop and validate the design generative model, and the 

preference analysis to capture the values of the stakeholders in the value model. As 

Keeney and Raiffa (1976) point out, the engineering design practice is clearly in favour 

of the alternatives’ generation modelling and against the preferences/value modelling. 

In the proposed value model, an array of attributes which is based on the 

objectives of all involved stakeholders reflecting performance, economic and other 

concerns and measured in incommensurable units, models the relative goodness of any 

future design. These attributes are measured in incommensurable units and they cannot 

be collated into an objective function. Hence, the multi-attribute multiplicative utility 

model of equation (1) and the additive value model of equation (2) were developed to 

assess the stakeholders’ preferences. The multiplicative utility model was created based 

on standard MAUT, following the methodology presented in (Keeney and Raiffa 1976). 

This model is more complicated and elaborate to develop than the value model, since it 

requires more interaction with the stakeholders, in order to assess their risk attitude and 

obtain the utility functions. However, the effectiveness of MAUT in capturing the 



preferences of the stakeholder has been validated and it has been used as a standard 

technique in both research and real-world problems, as already discussed in section 2.1. 

Hence, this multi-attribute utility model is utilised as a means of validating the proposed 

additive value model. 

The multi-stakeholder, multi-objective value model, assessing the stakeholders’ 

preferences during the conceptual design phase, is based on MAUT, AHP and Game 

Theory. MAUT is employed in the multiple objectives optimization due to its 

theoretical axiomatic foundation, while Game Theory is used to address the preferences 

of multiple stakeholders in engineering conceptual design. The aggregation of 

individual preferences is performed through a synthesization averaging AHP-based 

method. 

The assignment of average levels of expectations with respect to the attributes 

by the stakeholder is the basis of this additive value model, used for both the scaling 

constants 𝐾𝑖  and value functions 𝑉𝑖  assessments. Thus, as Keeney (1996) advocates, the 

alternative-focused process of selecting the best from what is readily available, is 

converted to a value-focused process of identifying needs, attributes and values of these 

attributes that give the user a ‘neutral’ response, a 50% satisfaction level, described by 

Eres et al. (2014) in the Concept Design Analysis (CODA) methodology. The major 

advantage of this value model is that it is an efficient and operational way to evaluate 

each design point with minimum interaction with the stakeholder during the conceptual 

phase, when only basic needs and vague requirements are known and the design is not 

finalized. The objectivity of the evaluation is maintained, capturing the stakeholder’s 

preferences with criteria independent of information, other available data or the 

proposed alternative solutions.  The advantages and disadvantages of the proposed 

value model compared to the multi-attribute utility model based on standard MAUT are 



presented in Table 1. The constituent parts of this model are presented in the following 

subsections.  

Table 1 Advantages/Disadvantages of Value/Utility Models Near Here 

3.1 Value Functions 

Before the conceptual design space exploration starts (subject to the technology 

readiness level assumed), neutral values for all attributes are provided a priori by the 

stakeholder. Next, the relationship type for each attribute is defined, i.e. maximizing, if 

more is better (for performance attributes), minimizing, if less is better (for cost related 

attributes) or optimizing, if a specific attribute value is better. The preferences of the 

stakeholder are qualitatively assessed in terms of the marginal evaluation with respect to 

each attribute, i.e. how much they are willing to sacrifice in terms of other attributes for 

a positive change of this attribute as its value changes, reflected in the slope of the value 

functions. The attributes’ value functions are thus adjusted as concave, convex or 

sigmoidal functions. A convex value function reflects the preferences of a stakeholder 

who is willing to sacrifice more and more in terms of other attributes for the same 

positive increment as this attribute’s values increase. A concave value function is 

selected if they are willing to sacrifice less and less in terms of other attributes for the 

same positive increment as this attribute’s values increase. A sigmoidal shape is 

selected for mixed preferences, i.e. if they are willing to sacrifice more and more in 

terms of other attributes for the same positive increment of this attribute up to the 

neutral point/inflection point and less and less beyond that. 

Depending on the previous selections, the appropriate, ready to use, value 

function is automatically generated from all available, presented in Table 2, with the 

minimal interaction with the stakeholder. In this Table, 𝑋 is the input attribute value for 



any design, 𝑛 is the assigned neutral value of the design attribute, while 𝑉𝑖𝑛 and 𝑉𝑓  are 

the initial and final values of the value functions (set accordingly 0 and 1, depending on 

their type).  

Table 2 Value Functions Near Here 

3.2 Assessment of Weighting Factors 

Next, AHP is employed to perform pairwise comparisons between the attributes and not 

only provide the values of the weighting factors, but also assess the consistency of the 

answers provided by the stakeholder.  However, as stated before, the construction of the 

AHP matrix is based on the ambiguous question: ‘How much better/more important is 

attribute/alternative 𝐴𝑖 than 𝐴𝑗?’ which assesses the ratio scaled strength of preference. 

It has been found that this unjustifiable selection of numerical scale, such as those 

presented by Elliot (2010), converting the linguistic response to the above question to 

ratio scaled numerical values, greatly affects the identification of optimal design.  

The following AHP numerical scales convert the stimuli/psychological 

perception of strength of preference increments among various attributes to a 

response/numerical value through the use of an arbitrary relation. The integer scale 

assumes a logarithmic relation between stimuli and response; it was used by Saaty 

(2000) to obtain the integer sequence 1,2,3,… ,9 of the integer scale in AHP. The 

balanced scale assumes an even distribution of attribute weights, (Salo and Hamalainen 

1997), obtaining the following scale: 1,
11

9
, 1.5,

13

7
,

7

3
, 3, 4,

17

3
, 9. Whilst the power 

scale assumes a geometric relation between stimuli/psychological perception of strength 

of preference increments among various attributes and response/numerical values 

(Lootsma 1991). Hence, for a 1 − 9 numerical scale and nine increments, the power 

scale sequence is 1, 1.316,1.732, 2.28, 3, 3.948, 5.196, 6.84, 9. 



As presented in Table 3 for integer and power scale and five degree of 

preference scheme, they quantify exactly the same linguistic responses to different 

numerical values. For instance the verbal response: ‘Ai is much more important than 

attribute Aj’ is converted to a numerical value of 7 with integer scale and to a value of 

5.2 with power scale, with the integer scale favouring more the most important to the 

user attributes and weighing less the least important ones. 

Table 3 AHP Numerical Scales Near Here 

Due to the absence of justified criteria for selecting a particular AHP numerical 

scale, the distribution of weights and the level of consistency obtained by these scales 

were studied to compare them. These distributions of attribute weights obtainable by the 

three scales, integer, balanced and power scale, are presented for comparisons (in this 

order) in Fig. 1a, 1b and 1c, for a nine degree preference scheme between just three 

attributes, similar to Fig. 1 presented by Elliot (2010). In these figures, the x and y 

coordinates of each plotted point are the values of the weights of the two of the three 

attributes. These were obtained with a full factorial Design of Experiments (DoE) 

computer algorithm from all possible sets of linguistic preferential judgments, using the 

specific numerical scale in the AHP matrix. The third attribute’s weight is computed 

simply by subtracting the sum of weights of the two others from one, since the sum of 

their weights is always equal to unity. Thus, the three scales can be compared in terms 

of the number of distributed points and existence of sparse regions, in order to select the 

scale with the highest number of points and the least sparse regions in these 

distributions.  

Figures 1a, 1b, 1c Weights Distributions of AHP Scales Near Here 

Elliot (2010) identifies the power scale as the most preferable scale; however, in 

Fig. 1a, 1b and 1c the following are noticed: 



 The integer scale gives a high number of points in the extreme values of weights 

as expected, considering the distribution of values of the integer scale, 1, 2, 3, 4, 

5, 6, 7, 8, 9, that weighs more the most important to the stakeholder attributes and 

less the least important ones. Due to the distribution of values of the balanced and 

power scales, 1, 11/9, 4/3, 13/7, 7/3, 3, 4, 17/3, 9 and 1, 1.316, 1.732, 2.28, 3, 

3.948, 5.196, 6.84, 9, respectively, these scales are more evenly distributed than 

the integer scale. 

 Comparing the sparse regions and clustering obtained with these scales; the power 

scale fails to cover a larger area in the graph than the integer and balanced scales, 

which produce a definitely higher number of points and less clustering. This 

observation is not in agreement with Elliot (2010), who reported larger sparse 

regions and clustering of the weights in integer and balanced scales. 

Furthermore, to demonstrate this AHP deficiency, in the multi-disciplinary 

optimization using exactly the same verbal responses/preferences provided by the user 

of the UAS and converting them into numerical weights through different AHP scales, 

produced different optimal design alternatives. In the UAS conceptual design and 

identical user’s preferences with the integer scale a V-shape tail, push propeller, 

conventional fuselage with a wingspan 1.5m aircraft was identified as optimal; while 

through the power scale, an aircraft of T-shape tail, pull propeller, conventional fuselage 

with a wingspan of 1.25m was the optimal solution.  

The problem of converting verbal preference responses between abstract 

attributes to numerical values through the use of some arbitrary scales in AHP can be 

tackled, if the user is forced to compare specific value differences of these attributes. 

The theory of measurable multi-attribute value functions, presented by Dyer and Sarin 

(1979), is applied to assess the strength of preferences (value differences) between 



alternatives. In the AHP matrix as the one for the UAS conceptual design (See Table 4), 

instead of comparing abstract attributes, each cell is the ratio of relative 

importance/preference of a change from 0 to the neutral value of the row attribute to the 

change from 0 to the neutral value of the column attribute. Following the methodology 

of AHP, for n attributes (
𝑛
2
) =

𝑛∙(𝑛−1)

2
 redundant pairwise comparisons are performed, 

not only to compute the values of the weighting factors, but to assess also the 

consistency of the answers provided by the stakeholder. The values in each cell of the 

AHP matrix, given by the stakeholder/expert, do not represent the precise values but are 

mere estimates of the actual ratios; hence, the consistency ratio computed in AHP is 

used to assess their goodness.  

Table 4 AHP Weighting Factors Assessment Near Here 

In the proposed multi-attribute value model, based on the qualitative assessment 

of the stakeholder’s preferences and the quantitative assignment of neutral values of 

attributes, all design alternatives are objectively evaluated during the conceptual phase, 

independent of information, with the minimum interaction with the user. AHP is 

implemented in the weighting factors’ computation to increase the accuracy and to 

assess the consistency of the stakeholders’ responses. The deficiency of converting 

verbal preference responses between attributes to numerical values, using an arbitrary 

scale in AHP for the calculation of weighting factors, is tackled by constraining the 

decision maker to assess strength of preferences between design alternatives, instead of 

comparing abstract attributes. 

3.3 Aggregation of Individual Preferences 

For the purposes of engineering design, a group of knowledgeable experts/individuals 

involved throughout the whole lifecycle of the system designed constitutes a group of 



decision makers, whose preferences need to be incorporated into the user’s objective 

function. As already discussed, in most cases the selection of the averaging method used 

in the aggregation of the individuals’ different quantitative preferences is rather 

arbitrary. Moreover, during the conceptual engineering design the set of alternatives is 

not finalized for the group ranking to be obtained, identifying the optimal design among 

all candidates. The aggregation of individual preferences aims mostly at synthesizing 

the judgments/preferences of group members in value modelling, rather than averaging 

the individuals’ rankings of a final set of design alternatives.  

AHP comparison matrices provide not only an objective weighting to assess the 

set of alternatives, but also a measurement of consistency of the redundant answers 

provided by each individual. In the group value model, the judgments of n experts are 

synthesized to obtain the group weighting factors, satisfying the requirement that the 

synthesis of consistent judgments ought to be consistent as well. As presented by 

Dijkstra (2013), for two experts with AHP comparison matrices 𝐴 = (𝑎𝑖𝑗), 𝐵 = (𝑏𝑖𝑗), 

the synthesis matrix will be defined as 𝐶 = ∑(𝐴,𝐵) ≔ (𝜎(𝑎𝑖𝑗 , 𝑏𝑖𝑗)), while the 

synthesizing function 𝜎: ℝ+ × ℝ+ → ℝ+,with ℝ+the set of positive real numbers. If A, 

B are consistent matrices, with AHP consistency defined as: (𝑎𝑖𝑘 ∙ 𝑎𝑘𝑗 = 𝑎𝑖𝑗), then the 

synthesis matrix C should be consistent as well: 𝜎(𝑎𝑖𝑘 , 𝑏𝑖𝑘) ∙ 𝜎(𝑎𝑘𝑗 , 𝑏𝑘𝑗) = 𝜎(𝑎𝑖𝑗 , 𝑏𝑖𝑗). 

It is proven that the synthesis of the cells of the two AHP matrices of the experts 

is found as, (Dijkstra 2013): 

 𝜎(𝑎, 𝑏) = 𝑎𝜃 ∙ 𝑏1−𝜃 (3) 

With 𝜃 ∈ [0,1], set to ½ for experts of equal power, or appropriately reflecting power 

and experience/competence between them. This equation can analogously be extended 

to an arbitrary number of experts. Based on equation (3), once the AHP matrices of 



judgments between the design attributes for all group members are obtained, a new 

synthesized AHP matrix is computed, with cells equal to the geometric means of the 

corresponding cells of the judgment matrices. In this group matrix, the weighting 

factors are obtained while consistency is maintained. Finally, the individual preferences 

in terms of the attributes’ neutral points are also synthesized in the group value model 

by computing their arithmetic mean. 

3.4 Use of Game Theory in Value Modelling 

In engineering design, several stakeholders have different interests/stakes in and are 

influenced by or could influence any part of the whole lifecycle of the designed product, 

from the initial steps of the conceptual design up to its disposal. The optimal design 

should be selected as the solution giving the amount of satisfaction every rational 

stakeholder anticipates and agrees upon as fair bargain. This binding agreement, 

satisfying the rational expectations of gain of all stakeholders, would be the outcome of 

a bargaining process modelled by the Game Theory as a cooperative n players’ non-zero 

sum game. This Bargaining Problem is solved in an axiomatic way with the NBS. 

Moreover, in the pursuit of values articulated by the stakeholders’ objectives, each 

stakeholder is forced to make decisions in isolation, influencing the delivery of value to 

all others. Each stakeholder’s objectives are modelled by an objective function and the 

decisions made are considered as strategies, promoting these interests through the 

maximization of this objective function. The interaction of stakeholders’ strategic 

choices and the corresponding payoffs can be studied as an n players’ non-zero sum, 

non-cooperative game, solved through Nash equilibrium. 

Several stakeholders can be selected as players in the application of the Game 

Theory in engineering design, for brevity the manufacturer and user of the system were 

chosen as the most typical players. However, this game can be extended to include more 



stakeholders as players, such as suppliers, public/local authorities, and so on. For the 

user, the group multi-attribute value function already presented is considered as the 

objective/payoff function. Concerning the manufacturer, a cost plus fee contract type 

was assumed and the corresponding objective/payoff function is modelled as a linear 

function of the Total Program Cost for entire lifecycle of the designed product. The 

basic assumptions for these players are that they are instrumentally rational, acting 

according to their preferences, they share Common Knowledge of Rationality (CKR), 

they have Common Priors or Consistently Aligned Beliefs (CAB) and they share 

common knowledge of the game rules (Hargreaves Heap and Varoufakis 2004). For 

simplicity, they are also assumed equal in bargaining skills. 

This novel hybrid game, modelling the interactions between the stakeholders’ 

preferences and their strategic choices, is created to evaluate the alternative designs. For 

each combination of strategic choices, the corresponding cooperative game is employed 

to identify the NBS, and among all bargaining solutions, the non-cooperative game 

identifies through Nash equilibrium the design alternative along with the combination of 

strategic choices, as the overall optimal solution of the game. If indeterminacy arises 

and multiple Nash equilibria are obtained, Nash’s product of the payoff/utility 

functions, as proposed by Harsanyi (1995), is the sole criterion utilised for the selection 

of the specific Nash equilibrium solution of the non-cooperative game. Through the 

simultaneous employment of two players’ cooperative non-zero sum games and two 

players’ non-cooperative non-zero sum game, not only the optimum design is identified 

based on the user’s and manufacturer’s needs but their most significant strategic choices 

are also determined. 

Modelling the engineering design process through this hybrid game is 

considered more effective than the pure cooperative or non-cooperative game models. 



This novel simultaneous employment of the cooperative and non-cooperative games 

offers the benefits of both approaches: 

 It addresses the stakeholders’ preferences in a functional, outcome-focused way, 

resolving the high indeterminacy of design alternatives through cooperative 

games. 

 At the same time, it models the stakeholders’ interactions for some important 

strategic choices with a process-focused non-cooperative game. 

Thus, this game yields a single optimal solution, identified as both Nash 

equilibrium and NBS, capturing effectively both the conflict and cooperation between 

the stakeholders through this well-defined hybrid mathematical model. 

Cooperative non-zero sum bargaining game 

Nash’s bargaining model is used to identify the optimum design from the Pareto front of 

the design alternatives’ set. In general, a utility vector 𝑢⃗⃗⃗ ∶= (𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛), with n 

utility/payoff functions of n stakeholders, characterizes each design alternative. The 

NBS, defined as 𝑎∗, achieves a unique bargaining solution satisfying the axioms of 

Pareto optimality, independence of irrelevant alternatives, independence of linear 

transformations and symmetry. In general, the 𝑎∗ NBS is obtained by solving the 

following maximization problem: 

 (𝑢1(𝑎
∗) − 𝑢1(𝑎̅)) ∙ (𝑢2(𝑎

∗) − 𝑢(𝑎̅)) ∙ … ∙ (𝑢𝑛(𝑎
∗) − 𝑢(𝑎̅)) = 𝑚𝑎𝑥𝑎𝜖𝐴[(𝑢1(𝑎) −

𝑢1(𝑎̅)) ∙ (𝑢2(𝑎) − 𝑢2(𝑎̅)) ∙ … ∙ (𝑢𝑛(𝑎
∗) − 𝑢(𝑎̅))] (4) 

In this equation, 𝑎̅ is the disagreement point if no agreement is reached, with the 

corresponding values of payoff functions assumed for this case to be 0. In the 

conceptual stage of engineering design, the product of the user’s and manufacturer’s 



utilities was used to determine the quality of each design alternative. For presentation 

purposes and based on the specific stakeholders’ preferences, the values of the user’s 

and manufacturer’s payoff functions were plotted for the set of all available UAS 

alternatives in Fig. 2, forming a Pareto front of dominating designs. In this cooperative 

game, more players can be added of not equal relative authorities using the generalized 

Nash bargaining solution : (𝑣1(𝑎
∗) − 𝑣1(𝑎̅))

𝛾1
∙ (𝑣2(𝑎

∗) − 𝑣2(𝑎̅))
𝛾2

∙ … ∙

(𝑣𝑛(𝑎
∗) − 𝑣𝑛(𝑎̅))𝛾𝑛), (Harsanyi and Selten 1972). 

Figure 2 Payoff Functions Plot Near Here 

Non-cooperative non-zero sum game 

Concerning the user’s and manufacturer’s strategic choices, modelled by a two players’ 

non-zero sum, non-cooperative, complete information, static game, the available list is 

rather long: different performance requirements, assumed constant in the design space 

exploration, improvement of technology, different quality control processes, and so on. 

For demonstration purposes, the following strategic choices were selected to define the 

non-cooperative game to be played: 

 Application by the manufacturer of a reliability improvement program 

increasing the Mean Time to Failure (MTTF), modelled by the Weibull 

distribution parameter 𝜂, resulting to less aircraft losses and less scheduled 

replacements, but consequently higher acquisition and maintenance costs. This 

strategic choice relies on previous historic data to quantify the cost-reliability 

relationship (Alexander 1988). Although for most reliability improvement 

programs this relationship is quantified with considerable variability, significant 

reliability improvement is possible; but the greater the improvement the more 

costly the necessary investment is. 



 Selection between two different scheduled replacement/maintenance scenarios, 

one critical components replacement policy and one designed system 

replacement policy. In the first scenario, the system’s critical components 

average replacement times, system’s survival rates and lifecycle costs are 

computed through Monte Carlo simulations during the whole program duration. 

In the second scenario of a whole system replacement policy at specific intervals 

(in operating hours), the lifecycle cost due to reliability related losses and 

scheduled replacements is calculated through Monte Carlo simulations. 

The above strategic choices define the non-cooperative game to be played by the 

players, based on all possible combinations between the strategic decisions made by 

them. The selection of the specific strategic choice for any of the two stakeholders 

depends not only on the value of the payoff function but also on the expectations of the 

player concerning the other player’s most likely strategy. 

4. Multi-Stakeholder Multi-Objective Value Model Application in UAS 

Conceptual Design 

The value driven optimization process presented by Collopy and Hollingsworth (2011) 

is performed for the case of a small Unmanned Air System (UAS) conceptual design. 

The user’s objectives with their corresponding attributes were first identified and 

structured in the hierarchy presented in Fig. 3. 

Figure 3 UAS Objectives/Attributes Hierarchy Near Here 

In the conceptual value driven design framework, the design variables (such as 

wingspan, wing aspect ratio, battery capacity, fin aspect ratio, etc.) are adjusted to 

generate feasible design points in the Define phase of the cycle. The extensive system 

attributes of Fig.3 are calculated in the Analyse phase, and they are used as inputs into 



the value model during the Evaluate phase. The process carries on in the Search phase, 

through an optimization algorithm or the generation of more design points as presented 

in the value driven design cycle of Fig. 4.  

Figure 4 Value Driven Design Cycle Near Here 

Hence, the implementation process of value driven conceptual design in the 

Multi-Objective, Multi-Stakeholder engineering design framework, also presented in 

Fig. 5, was the following: 

1. Identify all stakeholders involved with the designed system during its lifecycle. 

2. For all stakeholders, identify their objectives/needs and associated attributes, 

creating their objectives/attributes hierarchy as in Fig. 3. 

3. Form the multi-attribute value models, representing the objective functions of all 

stakeholders, to be used for evaluating the alternative designs in Evaluate phase 

of the Value Driven Design cycle. The development of the value/utility models 

was consisted of the following steps, according to the guidelines described by 

Keeney and Raiffa (1976): 

 Preparing for assessment and familiarization, i.e. verifying/identifying 

the objectives/attributes of Figure 3. 

 Verifying/assuming, the validity of the appropriate independence 

conditions. 

 Identifying through interrogation appropriate qualitative characteristics 

of the utility/value functions, such as monotonicity, marginal evaluation, 

risk attitudes etc. 

 Specifying quantitative restrictions, i.e. norm value of each attribute, 

assessing weighting factors from AHP matrices (see Table 4) etc. 



 Choosing the most suitable utility functions for the multi-attribute utility 

model and checking for consistency of all selections. 

4. Select the appropriate design variables, the stakeholders’ strategic choices and 

their ranges of values, used to search the design space in the Search phase. 

5. Form appropriate models, for the product definition in the Define phase. 

6. Develop predictive Monte Carlo simulation models, for the assessment of all 

attributes in the Analysis phase. 

7. Integrate all models in the design tool for the multi-objective, multidisciplinary 

optimization. 

8. Perform multi-objective optimization (MOO) and trade studies with the user of 

the system as the only stakeholder. 

9. Form the hybrid cooperative/non-cooperative game among all 

players/stakeholders for multi-stakeholder optimization. 

10. Generate a single optimal solution. 

Figure 5 Value Driven Design Implementation Process Near Here 

In the conceptual design phase, the widest possible design space needs to be 

explored meticulously without setting any constraints, as advocated by the Value 

Driven Design philosophy (Collopy and Hollingsworth 2011). However, for 

multivariable optimization trade studies, as the number of design variables and their 

ranges increase, the workload increases exponentially. For instance, to run a full 

factorial Design of Experiments (DoE) with six design variables and three levels for 

each of them, the number of design alternatives will be 36 = 729, a number to be 

multiplied by the number of different aircraft configurations. Several design variables 

were selected to be varied along with their corresponding (continuous) ranges based on 

standard values as described in (Papageorgiou, Eres and Scanlan 2015); while the other 



design parameters were set to reasonable values. Beyond the selected design variables, 

in order to extend even further the design space, strategic choices of the stakeholders 

were also encompassed in the Game Theory application as additional, higher level 

variables that would normally be assumed constant throughout the MDO. All models 

were integrated in Isight workflow execution environment where the Designs of 

Experiments (DoE) and the MDO were performed. The DoE were full factorial with 

three levels for each variable, allowing all possible interactions to be evaluated, as well 

as Latin Hypercube for more random combinations’ generation, with varying number of 

experiments. Following the DoE, the pattern-search (not gradient) method of Hooke-

Jeeves Direct Search was selected for the optimization, since it is suitable for covering 

wide ranges of non-linear design spaces and long running simulations. Some of the DoE 

and MDO results are presented in the following sections.  

4.1 Optimizing for User’s Objectives 

The design space optimization aims at either maximizing the user’s value or utility 

index, depending on which model is used (the additive value model or the multiplicative 

utility model). The preferences/priorities of the user, as reflected in the value model, are 

critical for the identification of the optimal design and can indeed provide different 

results.  

Depending on the user’s priorities between the performance and cost related 

attributes, different optimal designs are obtained. For example, for a user with balanced 

priorities, between performance (endurance, range) and lifecycle cost (acquisition and 

through-life), and for another user, focusing mostly on maximizing survivability, 

minimizing detectability and maximizing data collection capabilities, different aircraft 

optimal designs were obtained. For the first user, it was found that the monolithic 

fuselage, V-shape tail, push propeller with a wing span of 1.5m configuration is 



dominating, while for the second user, the optimal UAS configuration was the 

monolithic fuselage, T-shape tail, push propeller with a wing span of 1.25m 

configuration. Hence, it was verified that the incorporation of the largest possible 

number of different UAS configurations is essential to the successful optimization based 

on the user’s varying preferences. 

Dominant configurations/geometries maximizing value or utility index are 

identified in the UAS design, as presented in Fig. 6. In this figure, the maximum values 

of value index achieved with all configurations along with the corresponding values of 

utility index are plotted. The differences observed in the numerical results between the 

value and utility indices are caused by the different multiplicative utility and additive 

value models used. It is noted that, apart from some minor differences, the same trends 

are observed and the value model is in close agreement with the utility model. For the 

specific user’s preferences, the monolithic fuselage, V-shape tail pusher propeller 

configuration, followed by the monolithic fuselage, Y-shape tail, pusher propeller 

configuration and monolithic fuselage, T-shape tail, pusher propeller configuration were 

dominating in terms of both value and utility indices. Moreover, to demonstrate group 

decision-making process, the preferences of the two aforementioned experts with 

different priorities were aggregated to obtain a synthesized group AHP matrix from the 

experts’ AHP matrices. The optimal design in this case was a UAV with Y-shaped tail, 

pusher propeller, wingspan of 1.5m, and wing aspect ratio of 12.  

Figure 6  Comparison of UAS Configurations Near Here 

Additionally, once the dominant UAS configuration was identified, the optimum 

range of design variables was obtained with surface plots, as in Fig. 7 and Fig. 8, 

demonstrating the effect of design variables or other parameters on the response (value 

and utility indices). In these figures, surface plots of value and utility indices versus 



wing span and wing aspect ratio are presented. All value surface plots were found to be 

in close agreement with the corresponding utility surface plots. 

Both value and utility models pointed to selecting the same ranges of design 

variables, which for the specific user’s preferences were a high wing aspect ratio 

of 11.5 − 12, a wingspan of around 1.5m, a maximum battery capacity of 9.5 − 10Ahr, 

and large scheduled components replacement intervals. The optimal ranges of some 

design variables with small influence, as the fin aspect ratio and horizontal tail aspect 

ratio, were not clear with the value model suggesting a horizontal tail aspect ratio of 

around 3.5 and the utility model an aspect ratio of around 4.5. 

Figure 7 Value Surface Plot and Figure 8 Utility Surface Plot Near Here 

The DoE provided estimates of sensitivity analyses of the design parameters and 

their effect on the response, optimised in each case. The normalised percentage effect of 

the design variables on the response, in this case the value index, is presented in Fig. 9. 

Thus the most significant parameters were identified, showing the percent effect on the 

response, with colour coding depending on whether that is positive (in blue colour) or 

negative (in red colour). It may be noticed in this figure that the battery capacity, 

followed by the wing AR and wingspan are the most significant variables. 

Figure 9 Sensitivity Analysis Near Here 

Finally, engineering design was also optimised for some critical (performance or 

cost related) attribute, such as operational surveillance time or acquisition cost for the 

UAS. It was found that the twin boom inverted V-shape tail with tractor propeller 

configuration with wing aspect ratio of 12, wingspan 1.25m, fin aspect ratio of 1.4 and 

horizontal tail aspect ratio of 3.5 was the optimal design both for maximizing 

operational surveillance time when flying at design speed and for minimizing total 

lifecycle cost. 



Based on the results obtained, the benefit and effectiveness of the multi-attribute 

value model was verified, since it provided analogous results with the more elaborate 

multi-attribute utility model, showing that this easier to apply model can address 

effectively the stakeholder/user’s preferences during the conceptual design phase. Both 

models identified the same aircraft configurations as dominant in terms of maximizing 

value or utility index while, in the surface plots, they both capture similar effects of 

design variables on the response, value or utility. 

4.2 Optimizing for User’s and Manufacturer’s Objectives 

The preferences of stakeholders other than the user were also implemented through the 

application of Game Theory. Two major stakeholders, user and manufacturer, were 

involved in a hybrid, cooperative/non-cooperative, non-zero sum, complete information, 

static game, modelling the interactions between their preferences and strategic choices, 

to accurately evaluate the alternative designs in the value driven conceptual design of 

the UAS. 

For the selected strategic choices of the user (two scheduled replacement 

maintenance policies) and the manufacturer (two levels of reliability for aircraft 

components), there were four possible combinations. For each of them, a different NBS 

was identified, as the optimal design with the maximum value of the product of payoff 

functions of the two stakeholders. The four NBS generated from the cooperative non-

zero sum, complete information games were used to form the non-cooperative, non-zero 

sum game and obtain the Nash equilibrium optimum design point. 

In Table 5, the game is presented with the payoff values shown for all 

combinations of strategies. In each cell of the table, the values of the user’s and 

manufacturer’s payoff functions are presented for each NBS, obtained from the 

corresponding two players’ cooperative (bargaining) non-zero sum game. The + and – 



signs represent the best move for each player in response to each move of the other 

player. For example, the – sign next to the value of 0.699 of the user’s payoff function 

means that the component replacement maintenance policy is the best choice for the 

user (as opposed to 0.495), if the manufacturer selects to maintain the original reliability 

levels. In a similar manner, the + sign next to the value of 0.418 of the manufacturer’s 

payoff function means that the original reliability level is the best response of the 

manufacturer (as opposed to 0.416), if the user selects the components’ scheduled 

replacement policy. The cell that includes both + and – signs is a Nash equilibrium and 

a potential solution of the game, since it represents the optimal strategic choice of both 

players. This selection does not maximize the objective function of each individual 

player (user and manufacturer), but represents the optimal strategic choice in response 

to the other player’s strategic choice, justified through successive elimination of strictly 

dominated strategies.  

Table 5 User - Manufacturer Non-cooperative Game Near Here 

In this case and based on the achieved values of payoff functions, the user will 

always choose a component scheduled replacement policy from the UAS replacement 

policy as a strictly dominating strategy, irrespectively of what the manufacturer selects. 

Hence, the manufacturer, knowing this fact, will select to maintain the components with 

the lower reliability levels. Thus, based on the specific preferences, a single Nash 

equilibrium was obtained: the Component Replacement Maintenance Policy and 

original (lower) reliability of critical components along with the corresponding values 

of design variables describing the optimum design. The optimal design obtained 

through the hybrid cooperative/non-cooperative game is a monolithic fuselage, Y-shape 

tail, pusher propeller, UAS with a wing AR of approximately 12, wingspan of 



approximately 1.5m, battery capacity of 9.5 − 10Ahr and large scheduled components 

replacement intervals. 

However, the conceptual design stage could also be modelled as a fully 

cooperative non-zero sum game solved as a pure bargaining problem. In this case, even 

the stakeholders’ strategic choices are considered as mere design variables and the 

engineering design has an optimal solution based solely on the criterion of the 

maximization of the product of payoff functions. Hence, for the case of the UAS 

conceptual design, the optimal choices of the user and the manufacturer should be the 

UAS replacement policy and improved reliability of critical components, respectively. 

The corresponding optimal design would be a monolithic fuselage, Y-shape tail, pusher 

propeller UAS, with wing AR 12, wing span of around 1.5m, battery capacity of 9.5 −

10Ahr and large scheduled components replacement intervals. 

5. Discussion and Conclusions 

The main objective of this research is to develop a value model that employs 

successfully the value driven design philosophy in the conceptual design phase through 

a multi-stakeholder and multi-criteria decision making analysis. The multi-attribute 

value model is considered more appropriate to be used during the conceptual design 

phase to define objectively the set of optimal design alternatives, while the utility model 

should be employed as a second and more thorough approach in the later stages of 

engineering design, once the list of design alternatives is finalised. The value model, 

however, could be used in all phases of engineering design to define objectively the set 

of optimal design alternatives, frame and guide engineering design, provided that the 

stakeholder’s preferences are updated based on information from simulation and 

prototyping. It is much more straightforward to apply, minimizing the interaction with 



the stakeholder/user, since ready to use value functions are automatically generated 

depending on their preferences. The evaluation process becomes more value focused, by 

identifying a priori needs and average levels of expectations of the user, than the 

alternative focused process of a classical multi-attribute utility model, with the 

stakeholder selecting the best from what is already available. AHP is also implemented 

in the weighting factors’ computation to increase the accuracy and to assess the 

consistency of the stakeholders’ responses. In addition, the deficiency of converting 

verbal preference responses between attributes to numerical values, using an arbitrary 

numerical scale in AHP for the calculation of weighting factors, was encountered and 

tackled with this value model. A synthesization averaging AHP-based method was 

introduced to deal successfully with the interpersonal preferential conflicts between 

individuals with the same objectives but different quantitative preferences, while 

maintaining the consistency.  

The objectives of other than the user stakeholders with different interests/stakes 

were also taken into account in engineering design. Previously, Game Theory has been 

applied in engineering design as an optimization tool, modelling decision interactions 

among the stakeholders as players with either cooperative or non-cooperative games. 

This novel hybrid, cooperative/non-cooperative, non-zero sum and complete 

information game is capable of modelling the stakeholders’ preferences, as well as 

capturing the interactions between their strategic choices, under the assumptions of 

players’ instrumental rationality, common knowledge of rationality (CKR), consistently 

aligned beliefs (CAB) and common knowledge of the game rules. Despite many 

objections expressed concerning the validity of these assumptions (Hargreaves Heap 

and Varoufakis 2004), Game Theory successfully employs the expected utility theory as 

the only acceptable exemplar of rational behaviour; it is used in this context to address 



the preferences of more than one stakeholder in this engineering design. This modelling 

of the optimal design alternative selection combines effectively the Nash bargaining 

solution (NBS), as the axiomatic based outcome of a hidden bargaining process, with 

the process of strategic interactions between the players of a non-cooperative game. 

Hence, the designer focuses not only on the articulation of the stakeholders’ preferences 

but also on the interactions between their strategic choices, based on the information 

and their expectations concerning the other stakeholders’ likely strategies. 

The main objective of this research has been the development of a value model 

used in the identification of the optimal designs within a value driven design 

framework, addressing major preferences and risk attitudes of all stakeholders involved. 

The implementation of multi-objective and multi-stakeholder engineering design has 

been manifested and systematized; nevertheless, the selection of the appropriate value 

model depends on the current phase of engineering design process. 

Current and future work includes the application of this methodology and 

framework in a practical case, capturing customer preferences/needs and trade-offs 

between them and assessing alternative designs, as well as exploring other applications 

with different players and strategic choices (such as performance requirements or 

manufacturing processes) within the value drive design framework. Further validation 

of the multi-attribute additive value model based on the results of the multi-attribute 

multiplicative utility model would also be beneficial. Experiments can also be carried 

out to validate the proposed non-zero sum, complete information game, based on the 

actual selections of decision makers involved in engineering design. Moreover, to 

capture the complexity of human decision making under uncertainty, biases, emotions 

and feelings of the individuals as decision makers, apart from rational behaviour, should 

be incorporated in engineering design. Thus, current work also includes the 



development of a value model, addressing the manifested deficiency of rationality 

assumption employed by classical decision making, with humans often violating the 

expected utility theory hypotheses and making irrational choices. 
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