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Abstract: A library of unsymmetrical SCN pincer palladacycles, [ClPd{2-pyr-6-(RSCH2)C6H3}], R = 
Et, Pr, Ph, p-MePh, and p-MeOPh, pyr = pyridine, has been synthesized via C–H bond activation, 
and used, along with PCN and N’CN unsymmetrical pincer palladacycles previously synthesized 
by the authors, to determine the extent to which the trans influence is exhibited in unsymmetrical 
pincer palladacycles. The trans influence is quantified by analysis of structural changes in the 
X-ray crystal and density functional theory (DFT) optimized structures and a topological analysis 
of the electron density using quantum theory of atoms in molecules (QTAIM) to determine the 
strength of the Pd-donor atom interaction. It is found that the trans influence is controlled by the 
nature of the donor atom and although the substituents on the donor-ligand affect the Pd-donor 
atom interaction through the varied electronic and steric constraints, they do not influence the 
bonding of the ligand trans to it. The data indicate that the strength of the trans influence is P > S > 
N. Furthermore, the synthetic route to the family of SCN pincer palladacycles presented 
demonstrates the potential of	late stage derivitization for the effective synthesis of ligands towards 
unsymmetrical pincer palladacycles. 
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1. Introduction 

Palladacycles have been extensively studied since their discovery in 1965 by Cope and 
Siekman [1]. They have been widely used as catalysts or pre-catalysts in organic reactions, such as 
in Heck and Suzuki–Miyaura cross-couplings [2–5]. Pincer palladacycles are an interesting type of 
palladacycle, of which there are two different types. The majority of pincer palladacycles studied 
have been of the symmetrical YCY type, such as NCN [6], SCS [7], PCP [8], and SeCSe [9,10]. There 
are limited numbers of reported unsymmetrical pincer palladacycles owing to their more difficult 
synthesis. For example, Szabó et al. synthesized unsymmetrical PCS pincer palladacycles from 
1,3-bis(bromomethyl)benzene, albeit in low overall yield (38%) [11]. However, the unsymmetrical 
PCS pincer palladacycle reported showed enhanced catalytic activity when compared to related 
symmetrical pincer palladacycles [11,12]. Recently, we reported the synthesis of an unsymmetrical 
SCN pincer palladacycle by C–H bond activation [13], and novel unsymmetrical PCN and N’CN 
analogues [14] (Figure 1).  
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Figure 1. Unsymmetrical pincer palladacylces, SCN (1a) [13], PCN (2a–2b), and N’CN (3a–3c) [14]. 

The pincer palladacycle structures are stabilized by an intramolecular coordination to the 
metal of the two donor atoms in the side arms. Their reactivity and other properties are influenced 
by the donor group around the metal [3]. The attractive feature of pincer palladacycles is the 
possibility for fine-tuning the catalytic activity by varying the two side arms to modify the 
palladium environment, by changing the donor atoms and their substituents, providing the 
opportunity to alter hard/soft acid base properties, or by changing the ring size, giving rise to 
varying steric hindrance [12]. These factors provide the potential for hemilabile coordination of the 
donor ligand arms with the metal center, an important consideration in the design of pincer 
palladacycles [15–17]. This can lead to different physical and chemical properties of the donor 
ligand arms, resulting in preferential decoordination of one of the ligand arms, providing the 
opportunity to fine tune the catalytic activity of unsymmetrical pincer palladacycles [18–21]. An 
excellent example by Wendt and co-workers reported the hemilabile nature of nitrogen and 
phosphorus donor atoms by reacting with a strong nucleophile (MeLi) [22]. The results showed that 
the nitrogen donor atom arm decoordinated from the Pd center, while the phosphorus donor atom 
arm remained coordinated to the Pd center (Scheme 1). It is clear that the different properties of the 
side arms result in hemilability due to the changing strength and/or nature of interaction between 
donor atoms and the Pd center. 

  
Scheme 1. Reaction of unsymmetrical pincer palladacycles with MeLi showing the hemilability of 
the nitrogen donor atom arm by Wendt et al. [22]. 

Pincer palladacycles exist in a square planar configuration at the Pd(II) center, and a key factor 
determining the strength of the interaction between Pd and the donor atoms is the trans influence, 
potentially affecting hemilability of donor atom arms. The trans influence is defined by Pidcock [23] 
as “the tendency of a ligand to weaken the bond trans to itself”. The “trans influence” affects the 
structure in the ground, or thermodynamic state. Therefore, sometimes, it is called the 
thermodynamic trans effect, while the “trans effect” is related to the kinetic rate of reaction, 
depending on substitution of the bond trans to itself. The trans influence has been used to explain 
the stability of square planar complexes [24], while the trans effect has been used to study reaction 
pathways [25]. There are many experimental studies into the trans influence, generally using 
spectroscopic or X-ray crystallographic methods [26–28]. Additionally, density functional theory 
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(DFT) structure optimization and molecular orbital analysis have been employed in the study of the 
trans influence and give a good explanation of the trans influence in organometallic complexes [29–
33]. 

In this study, we have investigated the trans influence in both model and 
experimentally-characterized unsymmetrical pincer palladacycles, using DFT calculations and 
quantum theory of atoms in molecules (QTAIM) analysis. Additionally, in order to determine the 
effect of varying the substituents on the donor atom, we have synthesized a library of 
unsymmetrical SCN pincer palladacycles, providing the opportunity to vary the steric and 
electronic properties on the sulfur atom. We have then used these palladacycles to further 
investigate the trans influence using DFT. 

2. Results and Discussion 

2.1. SCN Pincer Palladacycle Synthesis 

Our previous work has demonstrated a novel synthetic route to an unsymmetrical SCN pincer 
palladacycle, via a key biaryl benzyl bromide intermediate 5 (Scheme 2) [13]. By changing the sulfur 
nucleophile in step c (Scheme 2), the ability to synthesize a library of SCN pincer ligands is possible. 
This provides the opportunity to vary the thioether substituent to tune the steric and electronic 
properties of the sulfur atom, which will be bound to the palladium atom in the resulting 
palladacycle. The SCN ligands then undergo C–H bond activation with in situ-generated 
Pd(MeCN)4(BF4) [13,34] synthesizing a library of SCN pincer palladacycles 1b–1f (Scheme 2, Table 
1). 

 

Scheme 2. A synthesis of SCN pincer palladacycles 1b–1f via a key biaryl benzyl bromide 
intermediate 5, based on the previous synthesis of 1a. (Step a = Pd(PPh3)4, K3PO4, Tol/EtOH/H2O; b = 
48% HBr in H2O; c = NaSMe, EtOH; d = (i) PdCl2, AgBF4, MeCN; and (ii) NaCl, H2O/MeCN). 

Table 1. SCN pincer palladacycle synthesis yields. 

Entry Palladacycle 
Ligand Synthesis 

Conditions 
Ligand Synthesis 
Isolated Yield/% 

Palladacycle 
Synthesis Yield/% 

1 1b A 72 83 
2 1c B >99 85 
3 1d B 99 71 
4 1e C 51 89 
5 1f B 60 54 

A = NaH, DMF, MW 150 °C 15 min, B = NaH, DMF, MW 150 °C 20 min, C = NEt3, EtOH, MW 150 °C 20 min. 

The SCN ligand syntheses presented in Table 1 reveal excellent to moderate yields, followed 
by C–H bond activation, also in moderate to excellent yield. Single crystals of palladacycles 1b–d 
and 1f were obtained by slow evaporation of dichloromethane (DCM) from a saturated solution, 
and were characterized by X-ray crystallography (Figure 2). The CCDC numbers for the structures 
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are 1486787 for 1b, 1486788 for 1c, 1486789 for 1d and 1486790 for 1f. The data can be obtained free 
of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. 

  
1b 1c 

  
1d 1f 

Figure 2. X-ray crystallographic structures of 1b–d, 1f. 

2.2. Investigaing the Trans Influence 

To determine the accuracy of the Perdew–Burke–Ernzerhof exchange–correlation functional 
(PBE) for optimizing the YCY’ pincer complexes, we have analyzed the mean signed errors (MSE), 
which is the average of the deviation between calculation and experiment, and the mean unsigned 
errors (MUE), which is the average of the absolute deviation between calculated and experimental 
Pd–L bond lengths (L = Y, Y’, C and Cl). The MSE for 1a–1d, 1f is 0.001 Å, for 2a–2b is 0.012 Å and 
for 3a–3c is 0.001 Å. The MUE for 1a–1d, 1f is 0.017 Å, for 2a–2b is 0.012 Å and for 3a–3c is 0.001 Å. 

A topological analysis of the electron density was performed using QTAIM. The bond path is a 
single line of locally-maximum density linking the nuclei of any two bonded atoms in a molecule 
[36]. The minimum along this path is defined as the bond critical point (BCP) and the magnitude of 
the electron density ρ(r) at this point can be used to determine the strength of the interaction. 

Several AIM parameters determined at the Pd–Y and Pd–Y’ BCPs are provided in the 
Supplementary Information (electron density ρ(r), Laplacian of the density ∇2ρ(r), delocalization 
index, ellipticity, bond degree parameter, etc.) which can be used to determine the nature and 
strength of the interaction; the conclusions regarding the nature of the bonding are in complete 
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agreement with our previous work on the nature of the bonding in symmetrical pincer 
palladacycles and, so, are not presented again here [35]. In the present work, the focus is on the 
trans influence and, so, the magnitude of the electron density ρ(r) at the BCP is used to determine 
the increase or decrease in the strength of the Pd–Y interaction when the ligand trans to it is varied. 

2.2.1. Trans Influence in Model Palladacycles I–III 

Normally, the trans influence has been studied in systems with four monodentate ligands 
coordinated to the metal center to form a square planar complex. Furthermore, a trans Pt–Cl bond 
length, situated trans to the donor atom arm, of a square planar complex is normally used to 
consider the trans influence [37–40]. From the unsymmetrical SCN pincer palladacycle structures, 
we do not have a Cl atom for monitoring the strength of the trans influence in this way. Therefore, 
first, simple model palladacycles I–III (Figure 3) have been studied using DFT to evaluate the trans 
influence in CY palladacycles before studying the unsymmetrical YCY’ pincer palladacycles. The 
models I–III contain a Cl ligand trans to a donor atom group (NMe2, SMe2, and PMe2, respectively) 
to monitor the strength of the trans influence. A topological analysis of the electron density was 
performed using QTAIM and the magnitude of the electron density ρ(r) at the bond critical point 
(BCP), the minimum along the bond path between interacting atoms, was used to determine the 
strength of the Pd–Cl interaction. A larger ρ(r) value corresponds to a stronger interaction between 
atoms [41] and, therefore, can be used to study the trans influence in palladacycles I–III. When ρ(r) 
at the BCP of Pd–Cl bond has a high value (strong interaction), it indicates that the donor atom trans 
to Cl has a weak trans influence, whereas a low ρ(r) value (weak interaction) indicates that the 
donor atom trans to the Pd–Cl bond has a strong trans influence. A relative change in bond length is 
a physical manifestation that indicates the strength of the trans influence. When the Pd–Cl bond is 
situated trans to a donor atom that exhibits a strong trans influence, the Pd–Cl bond lengthens 
compared to when the Pd–Cl bond is situated trans to a weak trans influence donor atom. The data 
provided in Table 2 show that the ρ(r) value of the Pd–Cl bond of III is smaller than that in II, 
which is smaller than in I, indicating that the trans influence of PMe2 is greater than that of SMe 

which is greater than NMe2. The ρ(r) data is supported by the bond lengths, with I having the 
shortest Pd–Cl bond length and III a significantly longer Pd–Cl bond length than in I and II, again 
demonstrating the stronger PMe2 trans influence. Based on this analysis the ordering of the trans 
influence series is PMe2 > SMe > NMe2. 

 

Figure 3. Model palladacycles I–III studied to investigate the trans influence. 

Table 2. The electron density ρ(r) and Pd–Cl bond lengths. 

Compound ρ(r) of Pd–Cl (a.u.) Pd–Cl Bond Length (Å) 
I 0.080 2.334 
II 0.077 2.352 
III 0.070 2.395 
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2.2.2. Trans Influence in Model Unsymmetrical YCY’ Pincer Palladacycles 

In order to extend our investigation of the trans influence to unsymmetrical pincer 
palladacycles, the palladacycles IV–VI have been studied using DFT and QTAIM, and their bond 
strengths and bond lengths compared to previous results found for symmetrical pincer 
palladacycles PdNCN, PdSCS and PdPCP [35] (Figure 4). Considering the ρ(r) value at the BCP of 
the Pd–Y bond in IV–VI, the ρ(r) value of the Pd–P bond of V (0.110 a.u) and VI (0.114 a.u.) are 
greater compared to the ρ(r) values for the Pd–P bond in the PdPCP (0.101 a.u.) [35]. This is due to 
the weaker trans influence of N and S, compared to P, leading to stronger Pd–P bonds in V and VI 
(Table 3). The ρ(r) value of the Pd–S bond of IV (0.097 a.u.) increases, whereas the ρ(r) value of the 
Pd–S bond of V (0.082 a.u.) decreases, compared to the ρ(r) value of the Pd–S bond in the PdSCS 
(0.091 a.u.), therefore showing that S has a moderate trans influence. Furthermore, the ρ(r) values of 
the Pd–N bond of IV (0.083 a.u.) and VI (0.075 a.u.) decrease compared to the ρ(r) value of the Pd–
N bond in the PdNCN (0.086 a.u.) [35] indicating that P and S exhibit a stronger trans influence than 
N. 

Supporting the ρ(r) value results, the bond lengths of Pd–Y and Pd–Y’ are reported in Table 4. 
When the donor ligand Y has a trans influence the Pd–Y’ bond distance increases (and the ρ(r) value 
decreases) indicating a weakened interaction. By comparing with the symmetrical YCY pincer 
palladacycles it can be seen that the P donor ligand has a trans influence on the S donor ligand and 
the N donor ligand, and that the S donor ligand has a trans influence on the N donor ligand. For 
example, in VI, the PCN palladacycle, the P donor ligand has a strong influence on the N donor 
ligand trans to it, which manifests as an increased Pd–N (2.203 Å) bond distance compared to the 
Pd–N bond in PdNCN (2.140 Å), and a commensurate decrease in the Pd–P bond distance (2.222 Å) 
compared to the Pd–P bond length in PdPCP (2.287 Å) (Table 4). The results confirm the conclusion 
from the model systems with Cl as a reference, that P exhibits the greatest trans influence and N the 
least. 

Based on the ρ(r) values and Pd–Y bond lengths, the ordering of the trans influence series is 
PMe2 > SMe > NMe2. This is in good agreement with that of Kapoor and Kakkar’s study [40] into the 
square planar Pt complexes using DFT calculations. Their results showed a trans influence series in 
order of P > S > N. Moreover, Sajith and Suresh [42] studied the correlation between ρ(r) and trans 
influence in a square planar Pd complex, showing good linear relation between ρ(r) and trans 
influence, with a trans influence series of PMe3 > SMe2 > NH3. 

2.2.3. Trans Influence in Experimentally-Characterized Unsymmetrical YCY’ Pincer Palladacycles 

In this section DFT and the QTAIM method is used to study the trans influence in 1a (PdSCN), 
2a (PdPCN), and 3a (PdN’CN). By comparing the Pd–N bond length in the structures 1a, 2a, and 3a 
(optimized and experimental), the Pd–N bond is longest in 2a and shortest in 3a (Table 4). In 
addition, the smallest ρ(r) values for the Pd–N bond is in 2a (0.087 a.u.), while the largest is found in 
3a (0.102 a.u.) with 1a (0.098 a.u.) intermediate (Table 3). The different Pd–N bond lengths and 
strengths demonstrate the difference in trans influence due to the nature of the donor atom of the 
Pd–Y bond. These results further confirm that the P donor ligand exhibits the strongest trans 
influence, while the N donor ligand has the weakest trans influence and that the trans influence 
series for the unsymmetrical pincer palladacycles considered is P > S > N. 

The N donor ligand in the experimentally-characterized unsymmetrical SCN pincer 
palladacycle (Figure 1) is a pyridine rather than the amine considered in the previous section (IV). 
The change in electronic and steric effects when replacing NMe2 (IV) with pyridine (1a) in a SCN 
pincer palladacyle is reflected in the bond strength: ρ(r) value of the Pd–NMe2 bond is 0.083 a.u. in 
IV whereas the Pd–pyr is 0.098 a.u. in 1a, and the Pd–NMe2 bond length is 2.156 Å in IV and the 
Pd–pyr bond length is 2.074 Å in 1a, demonstrating the stronger Pd–pyridine bond (Tables 3 and 4). 
However, this does not appear to effect the trans influence exerted on the SMe ligand when trans to 
these N donor ligands. The ρ(r) value of the Pd–S bond is 0.091 a.u. in PdSCS and increases to 0.097 
a.u. in IV and 0.096 a.u. in 1a, and the bond length in PdSCS is 2.313 Å and shortens to 2.285 Å in 
IV and 2.288 Å in 1a. Thus, in both IV and 1a the Pd–S bond is strengthened relative to the 
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symmetric PdSCS analog and, thus, can only be attributed to the effect of the N-donor ligand trans 
to it. 

Furthermore, by comparing PdNCN where N = NMe2, to PdNCN’ (3a), where one of the amine 
ligands has been replaced by pyridine, we can assess the trans influence in an unsymmetrical pincer 
palladacycle where the donor atom is the same (N) for distinctly different donor ligands (NMe2 and 
pyr). In 3a the ρ(r) value of the Pd–NMe2 bond has not changed and the bond length has increased 
insignificantly (0.005 Å) from that in the symmetric PdNCN palladacycle. Therefore, we can 
conclude that, although the electronic and steric effects of the pyridine result in a considerably 
stronger bond to the Pd center, this stronger bond does not exert a trans influence on the amine 
donor ligand. Thus, it would appear the nature of the donor atom is the sole driver for the trans 
influence. 

 
Figure 4. Symmetrical NCN, SCS, and PCP pincer palladacycles (PdNCN, PdSCS and PdPCP) [35] 
and model unsymmetrical SCN (IV), PCS (V), and PCN (VI) pincer palladacycles. 

Table 3. Electron density ρ(r) in symmetrical and unsymmetrical pincer palladacycles (values are in 
atomic units). The donor atom is shown in bold for each side arm, Y and Y’. 

 

PdYCY’ Y Y’ ρ(r) of Pd–Y ρ(r) of Pd–Y’ 
PdNCN Me2NCH2 Me2NCH2 0.086 0.086 
PdSCS MeSCH2 MeSCH2 0.091 0.091 
PdPCP Me2PCH2 Me2PCH2 0.101 0.101 

IV MeSCH2 Me2NCH2 0.097 0.083 
V Me2PCH2 MeSCH2 0.110 0.082 
VI Me2PCH2 Me2NCH2 0.114 0.075 
1a MeSCH2 2-NC5H4 0.096 0.098 
1b EtSCH2 2-NC5H4 0.095 0.098 
1c PrSCH2 2-NC5H4 0.095 0.098 
1d PhSCH2 2-NC5H4 0.092 0.098 
1e (p-MeC6H4)SCH2 2-NC5H4 0.092 0.098 
1f (p-MeOC6H4)SCH2 2-NC5H4 0.092 0.098 
2a Ph2PO 2-NC5H4 0.114 0.087 
2b Ph2POCH2 2-NC5H4 0.113 0.089 
3a Me2NCH2 2-NC5H4 0.086 0.102 
3b Et2NCH2 2-NC5H4 0.085 0.102 
3c (C4H8O)NCH2 2-NC5H4 0.084 0.102 
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Table 4. Calculated and experimental Pd–Y and Pd–Y’ bond distances in symmetrical and 
unsymmetrical pincer palladacycles (bond distances are in Å). The donor atom is shown in bold for 
each side arm, Y and Y’. 

 

PdYCY’ Y Y’ 
Calculation X-ray 

Ref. X-ray 
Pd–Y Pd–Y’ Pd–Y Pd–Y’ 

PdNCN Me2NCH2 Me2NCH2 2.140 2.140 2.103(3) 2.102(3) [6] 

PdSCS MeSCH2 MeSCH2 2.313 2.313 2.2831(11) 2.2911(11) [7] 

PdPCP Me2PCH2 Me2PCH2 2.287 2.287 n/a n/a n/a 

IV MeSCH2 Me2NCH2 2.285 2.156 n/a n/a n/a 

V Me2PCH2 MeSCH2 2.240 2.364 n/a n/a n/a 

VI Me2PCH2 Me2NCH2 2.222 2.203 n/a n/a n/a 

1a MeSCH2 2-NC5H4 2.288 2.074 2.291(8) 2.09(3) [13] 

1b EtSCH2 2-NC5H4 2.290 2.076 2.2638(4) 2.0672(13) * 

1c PrSCH2 2-NC5H4 2.291 2.076 2.2705(7) 2.066(2) * 

1d PhSCH2 2-NC5H4 2.303 2.078 2.2846(17) 2.069(5) * 

1e (p-MeC6H4)SCH2 2-NC5H4 2.302 2.078 n/a n/a n/a 

1f (p-MeOC6H4)SCH2 2-NC5H4 2.303 2.078 2.2674(5) 2.0708(15) * 

2a Ph2PO 2-NC5H4 2.219 2.129 2.2028(6) 2.1216(18) [14] 

2b Ph2POCH2 2-NC5H4 2.232 2.114 2.2159(7) 2.103(2) [14] 

3a Me2NCH2 2-NC5H4 2.145 2.060 2.105(6) 2.062(5) [14] 

3b Et2NCH2 2-NC5H4 2.149 2.063 2.1145(16) 2.0639(16) [14] 

3c (C4H8O)NCH2 2-NC5H4 2.154 2.060 2.1239(19) 2.0521(19) [14] 

* The result from this work. n/a: not available  

2.2.4. Trans Influence on Unsymmetrical Pincer Palladacycles: Donor Atom Substituent Effects 

To determine whether the trans influence is induced when the substituents on the donor atom 
are varied, thereby introducing subtle electronic effects, the library of SCN pincer palladacycles 
synthesized in the present work (1b-1f), along with 1a, have been investigated computationally to 
determine the influence of the thioether group on the coordinated pyridine trans to it. The Pd–N 
bond distances (experimental and calculated) show very little change when the substituent on the S 
atom is changed (bond distance differences < 0.005 Å, with the exception of the experimental Pd–N 
bond length for 1a) (Table 4). Similarly, the ρ(r) values at the Pd–N BCP in the SCN pincer 
palladacycles are unaffected by changing substitution on donor atom. 

Furthermore, when the substituent is changed on the P (2a and 2b) (which both incorporate the 
phosphinite donor group) or the N (3a–3c), Figure 1, it does not alter the trans influence on the Pd–
pyr interaction within the PCN or N’CN pincer palladacycles. The ρ(r) values for the Pd–pyr bond 
trans to the Pd–N’ bond is independent of the nature of the N’ ligand, and although the interactions 
(ρ(r) and bond length) due to the Pd–P ligands exhibit a slight difference (0.002 a.u. and 0.015 Å) 
they are extremely small. 
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3. Experimental Section 

3.1. General Details 

Solvents and chemicals were purchased from Sigma-Aldrich (Merck KGaA, Damstadt, 
Germany), VWR International (VWR, Radnor, PA, USA), Fisher Scientific (Fisher Scientific UK Ltd., 
Loughborough, UK) and Fluorochem (Fluorochem Ltd., Hadfield, UK) and used without further 
purification, with reactions taking place open to atmosphere and moisture. 

3.2. Instrumentation 

1H and 13C spectra were recorded on either a Varian 400 or 500 MHz spectrometer (Agilent 
Technologies, Yarnton, UK). High resolution mass spectrometry (HRMS) data were obtained on an 
electrospray ionization (ESI) mass spectrometer using a Bruker Daltonics Apex III (Brucker, 
Billerica, MA, USA), with source Apollo ESI, using methanol as the spray. Flash chromatography 
was performed on an automated ISCO RF75 (Teledyne ISCO Inc., Licoln, NE, USA). Gas 
chromatography (GC) measurements were obtained using a Perkin Elmer Autosystem XL Gas 
Chromatograph (PerkinElmer Inc., Waltham, MA, USA), utilizing a flame ionization detector, and a 
Supelco MDN-5S 30 m × 0.25 mm × 0.25 µm column, with a He mobile phase. Elemental analyses 
were run by the London Metropolitan University Elemental Analysis Service (ThermoFisher 
Scientific, Waltham, MA, USA). Crystal structures were obtained by the UK National 
Crystallography Service at the University of Southampton [43]. 

3.3. Procedure 

2-3-[(Ethylsulfanyl)methyl]phenylpyridine, 6b. Under an argon atmosphere, ethanethiol (2.42 
mmol, 0.179 mL) and sodium hydride (2.41 mmol, 58 mg) were dissolved in dry DMF 
(dimethylformamide, 3 mL) and stirred at room temperature in a sealed microwave vial for 15 min. 
2-[3-(Bromomethyl)phenyl]pyridine, 5 (1.61 mmol, 400 mg) in dry DMF (3 mL) was then added, 
and stirred under microwave irradiation (maximum power 300 W, dynamic heating) at 150 °C for 
15 min. After cooling, the solvent was removed in vacuo and the crude mixture was diluted in H2O 
(25 mL) and DCM (25 mL). The product was extracted with DCM (2 × 25 mL), washed with H2O (5 
× 25 mL) and brine (25 mL). The organic layers were dried over anhydrous MgSO4, filtered, and 
concentration in vacuo. The crude product was purified using flash column chromatography (7:3 
DCM:EtOAc) yielding 263 mg of the expected product, 6c, as a yellow oil in 71% yield. 1H NMR 
(500 MHz), Chloroform-d δ (ppm): 8.70 (d, J = 4.8 Hz, 1H), 7.96 (s, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.77–
7.73 (m, 2H), 7.43 (dd, J = 7.5, 7.5 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.24 (ddd, 6.3, 4.8, 2.3 Hz, 1H), 3.81 
(s, 2H), 2.48 (q, J = 7.5 Hz, 2H), 1.25 (t, J = 7.5 Hz, 3H). 13C NMR (126 MHz), Chloroform-d δ (ppm): 
157.3, 149.7, 139.6, 139.2, 136.7, 129.4, 128.9, 127.4, 125.5, 122.1, 120.6, 36.0, 25.4, 14.4. HRMS (m/z). 
Calc. for [C14H15NS + H]+ 230.0998. Found 230.0998. 

2-3-[(Propylsulfanyl)methyl]phenylpyridine, 6c. Same methodology as 6b, using 
propane-1-thiol (1.97 mmol, 0.178 mL), and reacting for 20 min in the microwave. After workup, 
300 mg of the expected product, 6c was found, without purification in >99% yield as a yellow oil. 1H 
NMR (500 MHz), Chloroform-d δ (ppm): 8.70 (d, J = 4.8 Hz, 1H), 7.96 (s, 1H), 7.86 (d, J = 7.5 Hz, 1H), 
7.78–7.73 (m, 2H), 7.43 (dd, J = 7.5, 7.5 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.24 (ddd, J = 6.5, 4.8, 2.1 Hz, 
1H), 3.79 (s, 2H), 2.44 (t, J = 7.2 Hz, 2H), 1.64–1.57 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H). ). 13C NMR (126 
MHz), Chloroform-d δ (ppm): 157.2, 149.6, 139.6, 139.3, 136.7, 129.4, 128.8, 127.4, 125.5, 122.1, 120.6, 
36.3, 33.6, 22.6, 13.5. HRMS (m/z). Calc. for [C15H17NS + H]+ 244.1154. Found 244.1155. 

2-3-[(Phenylsulfanyl)methyl]phenylpyridine, 6d. Same methodology as 6b, using benzenethiol 
(1.86 mmol, 0.190 mL). After workup, 418 mg of the expected product, 6d as a yellow oil in 99% 
yield. 1H NMR (500 MHz), Chloroform-d δ (ppm): 8.70 (d, J = 4.8 Hz, 1H), 7.93 (s, 1H), 7.87 (d, J = 7.6 
Hz, 1H), 7.76–7.72 (m, 2H), 7.67 (d, J = 8.0 Hz, 1H), 7.39 (dd, J = 7.6, 7.6 Hz, 1H), 7.36–7.33 (m, 2H), 
7.27–7.21 (m, 3H), 7.20–7.16 (m, 1H), 4.20 (s, 2H). 13C NMR (126 MHz), Chloroform-d δ (ppm): 157.2, 
149.6, 139.6, 138.0, 136.7, 130.0 (2C), 129.3 (2C), 128.9, 128.8 (2C), 127.4, 126.4, 125.8, 122.1, 39.2. 
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2-(3-[(4-Methylphenyl)sulfanyl]methylphenyl)pyridine, 6e. Under an argon atmosphere, 
4-methylbenzenethiol (0.70 mmol, 87 mg) and trimethylamine (0.70 mmol, 0.099 mL) were 
dissolved in dry EtOH (2 mL) and stirred at room temperature in a sealed microwave vial for 15 
min. 2-[3-(Bromomethyl)phenyl]pyridine, 5 (0.44 mmol, 110 mg) in dry EtOH (2 mL) was then 
added and the mixture was stirred under microwave irradiation (maximum power, 300 W, 
dynamic heating) at 150 °C for 20 min. After cooling, the solvent was removed in vacuo and the 
crude mixture diluted with H2O (25 mL) and EtOAc (25 mL). The product was extracted with 
EtOAc (2 × 25 mL), washed with H2O (2 × 25 mL) and brine (25 mL). The organic layers were dried 
over anhydrous MgSO4, filtered and concentrated in vacuo. The crude product was purified by 
flash chromatography (8:2 hexane:Et2O) yielding 65 mg of the expected product, 6e as a yellow oil 
in 51% yield. 1H NMR (500 MHz), Chloroform-d δ (ppm): 8.70 (d, J = 4.8 Hz, 1H), 7.90 (s, 1H), 7.87 
(d, J = 7.6 Hz, 1H), 7.72 (m, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.39 (dd, J = 7.6, 7.6 Hz, 1H), 7.32 (d, J = 7.6 
Hz, 1H), 7.25 (d, J = 8.1 Hz, 2H), 7.21 (ddd, J = 7.4, 4.8, 1.2 Hz), 7.06 (d, J = 8.1 Hz, 2H), 4.15 (s, 2H), 
2.30 (s, 3H). 13C NMR (126 MHz), Chloroform-d δ (ppm): 157.2, 149.6, 139.6, 138.3, 136.6, 132.4, 131.5, 
130.9 (2C), 129.6 (2C), 129.3, 128.8, 127.4, 125.7, 122.1, 120.5, 39.9, 21.0. HRMS (m/z). Calc. for 
[C19H17NS + H]+ 292.1154. Found 292.1151. 

2-(3-[(4-Methoxyphenyl)sulfanyl]methylphenyl)pyridine, 6f. Same method as 6b, using 
4-methoxybenzenethiol (1.10 mmol, 0.136 mL). The crude product was purified using flash column 
chromatography (9:1 DCM:hexane) yielding 203 mg of the expected product, 6f as a yellow oil in 
60% yield. 1H NMR (500 MHz), Chloroform-d δ (ppm): 8.69 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.86 (d, J = 
7.7 Hz, 1H), 7.81 (s, 1H), 7.73 (ddd, J = 9.7, 7.9, 1.8 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.37 (dd, J = 7.7, 
7.7 Hz, 1H), 7.28 (d, J = 8.8 Hz, 2H), 7.25–7.21 (m, 2H), 6.79 (d, J = 8.8 Hz, 2H), 4.07 (s, 2H), 3.76 (s, 
3H). 13C NMR (126 MHz), Chloroform-d δ (ppm): 159.3, 157.2, 149.6, 139.5, 138.6, 136.6, 134.2 (2C), 
129.4, 128.8, 127.5, 126.0 (2C), 125.6, 122.1, 120.6, 114.5, 55.3, 41.3. HRMS (m/z). Calc. for [C19H17NOS 
+ H]+ 308.1104. Found 308.1109. 

2-3-[(Ethylsulfanyl)methyl]phenylpyridine chloro-palladacycle, 1b. Under an argon 
atmosphere, PdCl2 (1.17 mmol, 208 mg) was dissolved in dry MeCN (10 mL) and heated under 
reflux until a red solution had formed. AgBF4 (2.36 mmol, 460 mg) in dry MeCN (5 mL) was added 
to the PdCl2 solution and heated under reflux for 2 h, forming a white precipitate. The precipitate 
was filtered off, and 6b (1.13 mmol, 260 mg) dissolved in dry MeCN (10 mL), was added to the 
filtrate and heated under reflux for 4 h. The solution was cooled to room temperature, filtered over 
celite, and the solvent removed in vacuo. The crude solid was dissolved in MeCN (5 mL), and NaCl 
(26.0 mmol, 1.52 g) dissolved in H2O (5 mL) was added, and stirred at room temperature for 3 h. 
The solvent was removed in vacuo, and the crude mixture dissolved in DCM (25 mL) and H2O (25 
mL). The crude product was extracted with DCM (2 × 25 mL), washed with H2O (2 × 25 mL) and 
brine (25 mL), and dried over anhydrous Na2SO4. The mixture was filtered over celite, and the 
solvent removed in vacuo, yielding 347 mg of the expected product, 1b as a yellow solid in 83% 
yield. 1H NMR (500 MHz), Chloroform-d δ (ppm): 9.15 (d, J = 5.5 Hz, 1H), 7.84 (ddd, J = 7.8, 7.8 Hz, 
1H), 7.64 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.26–7.23 (m, 1H), 7.08 (dd, J = 7.7, 7.7 Hz, 1H), 
7.03 (d, J = 7.7 Hz, 1H), 4.25 (bs, 2H), 3.20 (q, J = 7.4 Hz, 2H), 1.57 (t, J = 7.4 Hz, 3H). 13C NMR (126 
MHz), Chloroform-d δ (ppm): 165.5, 165.3, 150.5, 148.1, 144.4, 139.0, 125.0, 124.7, 122.9, 122.2, 118.7, 
45.8, 33.8, 14.8. HRMS (m/z). Calc. for [C14H14NPdS]+ 333.9876. Found 333.9878. Elemental Analysis. 
Calc. (%) for C14H14NPdSCl: C 45.42, H 3.81, N 3.78; found C 45.50, H 3.75, N 3.83. 

2-3-[(Propylsulfanyl)methyl]phenylpyridine chloro-palladacycle, 1c. Same method as 1b using 
6c (0.55 mmol, 113 mg), yielding 179 mg of the expected product, 1c as a yellow solid in 85% yield. 
1H NMR (500 MHz), Chloroform-d δ (ppm): 9.11 (d, J = 5.5 Hz, 1H), 7.82 (ddd, J = 7.8, 7.8, 1.7 Hz, 
1H), 7.62 (d, J = 7.7 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.22 (ddd, J = 7.5, 5.5, 1.3 Hz, 1H), 7.05 (dd, 7.7, 
7.7 Hz, 1H), 7.00 (d, J = 7.7 Hz, 1H), 4.27 (bs, 2H), 3.15 (t, J = 7.8 Hz, 2H), 1.96 (m, 2H), 1.07 (t, J = 7.4 
Hz, 3H). 13C NMR (126 MHz), Chloroform-d δ (ppm): 165.5, 165.3, 150.5, 148.1, 144.4, 139.0, 125.0, 
124.6, 122.9, 122.1, 118.7, 46.6, 41.4, 23.3, 13.3. HRMS (m/z). Calc. for [C15H16NPdS]+ 348.0033. Found 
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348.0032. Elemental Analysis. Calc. (%) for C15H16NPdSCl: C 46.89, H 4.20, N 3.65; found: C 47.02, H 
4.08, N 3.56. 

2-3-[(Phenylsulfanyl)methyl]phenylpyridine chloro-palladacycle, 1d. Same method as 1b using 
6d (1.51 mmol, 418 mg). The crude product was purified using flash column chromatography (100% 
consisting of 98:2 DCM:MeOH) yielding 446 mg of the expected product 1d as a yellow solid in 71% 
yield. 1H NMR (500 MHz), Chloroform-d δ (ppm): 9.14 (d, J = 5.5 Hz, 1H), 7.91–7.89 (m, 2H), 7.83 
(ddd, J = 7.7, 7.7, 1.7 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.36–7.33 (m, 3H), 7.29 (d, J = 7.7 Hz, 1H), 7.20 
(ddd, J = 7.7, 5.5, 1.2 Hz, 1H), 7.06 (dd, J = 7.7, 7.7 Hz, 1H), 7.00 (d, J = 7.7 Hz, 1H), 4.63 (s, 2H). 13C 
NMR (126 MHz), Chloroform-d δ (ppm): 166.0, 165.5, 150.8, 147.8, 144.6, 139.1, 132.8, 131.9 (2C), 
129.9, 129.6 (2C), 124.9, 124.8, 122.9, 122.3, 118.8, 53.1. HRMS (m/z). Calc. for [C18H14NPdS]+ 381.9876. 
Found 381.9876. Elemental Analysis. Calc. (%) for C18H14NPdSCl: C 51.69, H 3.37, N 3.35; found C 
51.50, H 3.28, N 3.41. 

2-(3-[(4-Methylphenyl)sulfanyl]methylphenyl)pyridine, 1e. Same method as 1b, using 6e (0.54 
mmol, 158 mg). 1H NMR (500 MHz), Chloroform-d δ (ppm): 9.19 (d, J = 5.5 Hz, 1H), 7.84 (dd, J = 7.6, 
7.6 Hz, 1H), 7.79 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.23–7.21 (m, 1H), 
7.16 (d, J = 8.1 Hz, 2H), 7.08 (dd, J = 7.6, 7.6 Hz, 1H), 7.00 (d, J = 7.6 z, 1H), 4.60 (bs, 2H), 2.32 (s, 3H). 
13C NMR (126 MHz), Chloroform-d δ (ppm): 166.0, 165.5, 150.7, 147.9, 144.5, 140.4, 139.1, 132.0 (2C), 
130.3 (2C), 129.4, 124.8, 122.9, 122.2, 118.8, 53.5, 21.2. HRMS (m/z). Calc. for [C19H16NPdS]+ 396.0033. 
Found 396.0050. Elemental Analysis. Calc. (%) for C19H16NPdSCl: C 52.63, H 3.84, N 3.29; found C 
52.79, H 3.73, N 3.24. 

2-(3-[(4-Methoxyphenyl)sulfanyl]methylphenyl)pyridine, 1f. Same method as 1b, using 1e 
(0.62 mmol, 190 mg). 1H NMR (500 MHz), Chloroform-d δ (ppm): 9.18 (d, J = 5.5 Hz, 1H), 7.86–7.83 
(m, 3H), 7.65 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.23 (ddd, J = 7.6, 5.5, 1.4 Hz, 1H), 7.08 (dd, J 
= 7.6, 7.6 Hz, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.87 (d, J = 8.9 Hz, 1H), 4.58 (s, 2H), 3.77 (s, 3H). 13C NMR 
(126 MHz), Chloroform-d δ (ppm): 165.9, 165.5, 161.2, 150.8, 147.8, 144.5, 139.1, 134.0 (2C), 124.8, 
123.5, 122.9, 122.2, 118.8, 115.1 (2C), 55.5, 54.4. HRMS (m/z). Calc. for [C19H16NOPdS]+ 411.9982. 
Found 411.9991. Elemental Analysis. Calc. (%) for C19H16NOPdSCl: C 50.91, H 3.60, N 3.12; found C 
50.80, H 3.47, N 3.19. 

4. Computational Section 

Geometry optimization calculations were performed using Gaussian09 [44], in the gas-phase. 
The minimized structures were confirmed by the absence of any imaginary modes of vibration 
using frequency analysis. All structures were optimized using the generalized gradient 
approximation (GGA) PBE density functional [45,46]. The SDD ECP basis set was used for Pd, and 
the 6-31+G(d,p) basis set was used for all other atoms (PBE/6-31+G(d,p)[SDD]). This methodology 
has been validated in our previous study into the structures of symmetrical pincer palladacycles 
[35]. The topological analysis using quantum theory of atoms in molecules (QTAIM) was performed 
using the Multiwfn program [47]. The ωB97XD[48]/6-311+G(2df,2p)[DGDZVP] model chemistry 
was used for these calculations. The all-electron relativistic DGDZVP basis set was used to treat Pd 
[49] as the bond path cannot be traced when treated using ECP. 

5. Conclusions 

It has been shown that the trans influence plays a key role in the stability of unsymmetrical 
pincer palladacycles, with the bond strength, and the bond length of the Pd-donor atom interaction 
affected significantly when trans to a ligand exhibiting a strong trans influence. The topological 
analysis of the electron density at the bond critical point, and the structure determination, show that 
the strength of the trans influence is in the order P > S > N. This is in agreement with previous work 
[40,42]. 

A library of SCN pincer palladacycles were synthesized via C–H bond activation and 
characterized using X-ray crystallography, demonstrating the utility of late stage derivitization. 
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These SCN palladacycles, along with PCN and N’CN previously synthesized by the authors, were 
used to investigate the driving force for the trans influence. It was shown, by investigating the 
electron density at the bond critical point and changes in the Pd-donor ligand bond length, that it is 
the donor atom that is responsible for the trans influence. The electronic and steric factors of the 
ligand do not influence significantly the bond strength of the ligand trans to it. This demonstrates 
the important role of unsymmetrical pincer palladacycles, with different donor atoms, in the search 
for harnessing and exploiting hemilability in the design of effective new palladacycle catalysts. 

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/4/3/25/s1, Section 
S1: QTAIM key parameters (electron density ρ(r), Laplacian of the electron density ∇2ρ(r), total energy H(r), 
bond degree parameter |H(r)/ρ(r)|, ellipticity ε, delocalization index δ, at the BCP of Pd–Cl (Table S1) and at 
the BCPs of Pd–Y and Pd–Y’ (Table S2). Section S2: Cartesian coordinates and Section S3: Experimental spectral 
data. 
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