HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Non-Neural Computing on the SpiNNaker Neuromorphic Computer

by

Kier J. Dugan

Thesis for the degree of Doctor of Philosophy

July 2016

mailto:kjd1v07@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

NON-NEURAL COMPUTING ON THE SPINNAKER NEUROMORPHIC
COMPUTER

by Kier J. Dugan

Moore’s law scaling has slowed dramatically since the turn of the millennium, causing
new generations of computer hardware to include more processor cores to offer more
performance. Desktop computers, server machines, and even mobile phones are all
multi-core devices now, and this trend has shown no signs of slowing soon. Eventually,
computers will contain so many cores that they will be an abundant resource. Using this
many processors requires new ways of thinking about software. Biology leads computer
architecture here: mammalian brains contain billions of neurons embedded in a dense
fabric of synapses—the human brain contains about 10! neurons and 10'® synapses.

Each neuron is essentially a small processing element in its own right.

Neuromorphic hardware draws inspiration from this and is typically used to support
neural network simulations. SpiNNaker is one such platform, designed to support sim-
ulations containing up to 10° neurons and 10'? synapses (about 1% of a human brain)
in biological real-time. This is achieved by embedding a million ARM processors in a
bespoke interconnection fabric which is non-deterministic, modelled after spiking neural

networks, and predicated on the inherent fault-tolerance present in biological systems.

This thesis uses SpiNNaker as a test-bed for massively-parallel non-neural applications,
showing how very fine-grain parallel software can be structured to solve real-world prob-
lems. First, we address the inherent non-determinism of the underlying platform, by
designing a set of algorithms that discover the topology of an arbitrary SpiNNaker-like
machine so that fine-grain parallel software can be mapped onto it. These algorithms
are verified against various fault conditions, and remove a shortcoming present in the
existing system. Secondly, we demonstrate a fine-grain parallel application, by solving
two-dimensional heat-diffusion where each point of the problem grid is essentially a self-
contained program. This software architecture is subject to various fault conditions to

demonstrate the resilience of the approach.

mailto:kjd1v07@ecs.soton.ac.uk

Contents

Declaration of Authorship Xix
Acknowledgements xxi
Acronyms and Abbreviations xxiii
1 Introduction 1
1.1 Performance Obstacles oo 3
1.1.1 Memory Bottlenecks Lo 3

1.1.2 Imstruction-level Parallelism 4

1.1.3 Power e 7

1.1.4 Reliability 9

1.1.5 When Taken Collectively 9

1.2 Parallel Software Structure, 9
1.2.1 Scalability 10

1.2.2 Modelling 12

1.3 A New Perspective on Software 12
1.3.1 SpiNNaker—A Neuromorphic Computing Platform 13

1.4 Contributions 14
1.5 Organisation L 15

2 State of the Art 17
2.1 Conventional Parallel Computing 17
2.1.1 Hardware Taxonomies 17

2.1.1.1 Single-Instruction Single-Data 18

2.1.1.2 Single-Instruction Multiple-Data 19

2.1.1.3 Multiple-Instruction Single-Data 20

2.1.1.4 Multiple-Instruction Multiple-Data 20

2.1.1.5 Single-Program Multiple-Data 22

2.1.1.6 Multiple-Program Multiple-Data 23

2.1.1.7 Non-uniform Memory Access 24

2.1.1.8 General-Purpose GPU (GPGPU) 26

2.1.2 Difficulties.o 27

2.1.2.1 Resource Contention 27

2.1.22 Deadlock 28

2.1.2.3 Synchronisation 29

2.1.2.4 Cache Coherency 30

2.1.2.5 Inter-Process Communication (IPC) 30

A

vi CONTENTS
2.1.2.6 Load Imbalance 31

2.1.3 Communication 31
2.1.3.1 Chip Multi-core Systems 31

2.1.3.2 Networkso 32

2.1.3.3 Imtra-chip Networks 35

2.1.3.4 Imter-chip Networks 35

2.1.3.5 Cluster Computer Backbone Networks 37

2.1.4 Software and Frameworks 38
2.1.4.1 Asynchronous I/O 38

2.1.4.2 Multiple Threads 39

2.1.4.3 Multiple Processes 43

2.2 Neuromorphic Computing, 44
2.2.1 Biology 44
222 Hardware e 45
2.221 BrainScaleS. 45

2.2.2.2 TrueNorth, 45

2.2.2.3 BlueHive 46

2.2.2.4 SpiNNaker o 47

223 Software 48
2231 NEURON. 49

2232 NEST 49

2233 Brian 50

2234 PCSIM 50

224 Languages oot e e e 51
2.2.4.1 Procedural ol

2.2.4.2 Declarativeo oo 52

2.3 SpiNNaker in Context 53
3 SpiNNaker 55
3.1 Hardware Composition 55
3.1.1 The SpiNNaker Chip 55
3.1.2 Network Infrastructure 59
3.1.2.1 Communications NoC 59

3.1.2.2 Routing 61

3.1.2.3 Packet Types 62

3.1.3 Multi-chip systems o o 65

3.2 Loading Software 69
3.2.1 Boot Processo 70
3.2.2 Uploading Applications 72

3.3 Neural Simulation 74
3.3.1 Neural Systems 74
3.3.2 Modelling with an Event-based Architecture. 75
3.3.3 Abstract Time vs. Real-Time 77

3.4 Non-neural Simulations o 0oL 79
4 System Configuration 81
4.1 User Applications L 83

CONTENTS vii
4.1.1 Definition L Lo 83
4.1.2 Compilation 84
4.1.3 Execution 87

4.2 Contributions 88
5 Auto-discovery Algorithms 91
5.1 Problem Statement 91
5.2 Definitionso 93
5.3 Simulation 93
5.3.1 Machine Model 94
5.3.2 Simulator Architecture L 96
5.3.3 Fault Map Generation 98
534 Test Case o o o 98

5.4 TImplementation 104
5.4.1 SCAMP Modifications 105
5.4.2 Port Survey—The a-ping oo 106
5.4.3 Test Case e 108

5.5 Labelling Nodes and Building the Control Tree 112
5.5.1 Depth-first Labelling 113
5.5.1.1 Simulation 115

5.5.1.2 Implementation 119

5.5.2 Lock-step Breadth-first Labelling 123
5.5.2.1 Simulationo oo 124

5.5.2.2 Implementation 128

5.5.3 Parallel Breadth-first Labelling 131
5.5.3.1 Simulation 132

5.5.3.2 Implementation 135

5.6 Concluding Remarks L oo 139
5.6.1 Demonstration o 139
5.6.2 Run-time Fault Detection 140
5.6.3 Review 145

6 Non-neural Application 147
6.1 Design L 147
6.2 Simulation 151
6.3 Implementation 154
6.3.1 P2P Table Construction 155
6.3.2 Completing the Connectivity Model 158
6.3.3 Reducing Packet Flux—The “Ping-pong” buffer. 160
6.3.4 Downloading Data 162
6.3.5 Results 162

6.4 Concluding Remarks L L 166
7 Reliability 167
7.1 Hardware e 167
711 Cores . . . oo e 167
7.1.2 Interrupts Lo 168

viii

CONTENTS

7.1.3 Routing Subsystem
7.1.4 Packet Parity
7.1.5 Network Time Phase
7.1.6 Emergency Routing
7.1.7 Dropped Packet Re-injection

7.2 Software
7.2.1 Problem Device Placement
7.2.2 Inherently Robust Applications
7.2.2.1 Recovery

7.2.3 Real-time Fault Detection

8 Concluding Observations

8.1 Contributing Back to SpiNNaker
8.1.1 Non-neural Infrastructure

8.1.2 Simplifying Application Development

8.2 Fault Tolerance Techniques
8.2.1 Real-time Fault Discovery
8.2.2 Orthogonal Encoding Schemes

8.3 Parallel Software Synthesis
8.3.1 Functional Decomposition

8.3.2 Massively Reconfigurable Computing

8.4 Closing Comments

A Published Papers

B Booting Software on SpiNNaker

B.1 Scatter Load Files
B.1.1 Defining Sections in Code
B.1.2 Linker symbols

B.2 ROM Boot-loader

B.3 APLX Images

B.4 Self-extracting APLX images

B.5 SpiNNaker System Software

Bibliography

List of Figures

1.1

1.2

1.3
1.4
1.5

1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

2.11

2.12
2.13

2.14

2.15

2.16

2.17

40 years of microprocessor trend data (collated and plotted by Rupp [13])
showing the steady continuation of transistor scaling, but a levelling of

clock frequency and single-threaded performance. 2
Data cache latencies for various memory access patterns on various amounts

of data (figure produced by Sutter [20]). 4
Two simple equations and the corresponding data-dependency graphs. . . 5
Intel Itanium instruction bundle format [21]. 5
Three stages of an out-of-order execution pipeline, based on Figure 4.72

of Patterson and Hennessy [23]. 7
High-level view of the tool-chain developed in the thesis, identifying how

each chapter inter-relates. o o oL 15
Single-Instruction Single-Data (SISD) architecture. 18
Single-Instruction Multiple-Data (SIMD) architecture. 19
Multiple-Instruction Single-Data (MISD) architecture. 20
Multiple-Instruction Multiple-Data (MIMD) architecture. 21
Single-Program Multiple-Data (SPMD) architecture. 22
Multiple-Program Multiple-Data (MPMD) job-based architecture. 23
Multiple-Program Multiple-Data (MPMD) distributed architecture. . . . 24
Uniform Memory Access (UMA). 25
Non-uniform Memory Access (NUMA). 25

Simplified block-diagram for a generic GPU (adapted from Figure 1 of
Tarditi, Puri, and Oglesby [48]) with 1 vertex processors and p pixel

PTOCESSOTS. . v v v v v e e e e e e e e e e e e e e e 26
Example architecture containing a single processor, running two pro-

cesses, connected to a bus hosting two system-level resources. 27
Two processors using a single lock, M4, to protect a single resource. . . . 28

Two processors using a pair of locks, M4 and Mp, to protect the two
resources of Figure 2.11.o o o 29
ARM CoreLink™ CCN-502 system diagram showing an asymmetric multi-
core system (comprised of Cortex-A57 and Cortex-A53 processors) shar-
ing a cache-coherent system bus (taken from ARM Ltd. [56]). 32
An n x m crossbar switch with n input ports and m output ports. 33
Example of a network of crossbar switches with buffered I/O ports con-
necting a set of processors.o 34
A typical QPT use-case produced from Figure 6 of Intel Corporation [60].
Memory connections are shown in blue and QPI connections are shown
inpurple.o 36

ix

LIST OF FIGURES

2.18

2.19
2.20

2.21

2.22

2.23

3.1

3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14

3.15
3.16

3.17

3.18

3.19

3.20
3.21

3.22

An inter-processor use-case for HyperTransport showing how processors

connect to each other and to system peripherals (Figure 11 of [61]). . .. 37
A small neural network. 44
Logical structure of the BrainScaleS off-wafer hierarchical communication
network (taken from [86]). oL 46
Structural diagrams of the TrueNorth platform (taken from Akopyan,
Sawada, Cassidy, et al. [88]). 46
BlueHive system-level diagram (taken from Moore, Fox, Marsh, et al.
[89]). o o 47
SpiNNaker chip block diagram (taken from Plana, Furber, Temple, et al.
[90]). .« o 48
Detailed block diagram of the SpiNNaker chip (taken from the datasheet
[115]). « o o 55
Structure of the System NoC [117]. 56
Detailed block diagram of a SpiNNaker core subsystem [117]. 58

Structure of the Communications NoC showing merge trees, bandwidth
aggregators (BA), serial-to-parallel converters (S->P), and parallel-to-

serial converters (P->S) [90].o Lo 59
SpiNNaker chip-to-chip communications [91]. 61
SpiNNaker router implementation [121]. 62
SpiNNaker general packet format. 63
Nearest-neighbour (NN) packet. 63
Point-to-point (P2P) packet. Lo Lo 64
Multicast (MC) packet. 64
Mutlicast router content-addressable memory (CAM) [35]. 65
Fixed-route (FR) packet. 65
Connection diagram for a complete multi-chip SpiNNaker system showing

external host connections. o o oL 66
Schematic view of a SpiNNaker-103 board showing inter-board connec-

tions [2]. 66
A SpiNNaker-103 system, containing 48 chips and 864 processors. 67
A SpiNNaker-104 system comprised of 24 SpiNNaker-103 boards for a

total of 1,152 chips and 20,736 processors. 68
Connection pattern for a SpiNN-104 machine composed from 24 SpiNN-

103 boards [124]. 68

Five SpiNNaker-105 cabinets forming the largest SpiNNaker system as-
sembled to date. Each SpiNNaker-105 is built from five SpiNNaker-104
systems for a total of 5,760 chips and 103,680 processors. The system in

this picture therefore contains 28,800 chips and 518,400 processors. . . . 69
Complete SpiNNaker boot sequence from power-up to starting an appli-

cation [6]. 69
Example P2P routes on a 3 x 3 SpiNNaker grid. 71

Example P2P configuration for the system of Figure 3.20. The red and
blue shading highlights entries relevant to the red and blue routes respec-
tively. The yellow shading highlights node-local delivery. 72
Visual representation of how a biological network is mapped into a neural
network on SpiNNaker [35]. L 75

LIST OF FIGURES xi

3.23 Per-core interrupt handling process [6]. 76

4.1 Complete revised SpiNNaker tool-flow factoring the contributions of this

thesis. o 82
4.2 Example problem graph [6]. 84
4.3 Example SpiNNaker machine configuration [6]. 85
4.4 Mapping the example problem graph (Figure 4.2) to the example machine

topology (Figure 4.3a) [6]. 85
4.5 Data-structures for the mapping in Figure 4.4 [6]. 86
4.6 Tools and stages of the tool-flow that have been directly created or mod-

ified by the work in this thesis. 88
5.1 Stages of the toolflow shown in Figure 4.1 required to design and simulate

the behaviour of the auto-discovery algorithms. 94
5.2 Constructing a machine model from an abstract connectivity graph. . . . 95

5.3 Abstract graph representing the connectivity of a SpiNN-103 system (Fig-
ure 3.15), showing the effect of the connectivity pattern of Figure 3.17.

.. 96
5.4 Message delivery system in the simulator. 97
5.5 Visualisation produced by the Runner infrastructure of the machine model

resulting from the graph shown in Figure 5.3. 98
5.6 Machine model state after P2P algorithm has been executed on various

fault maps limiting the number of discoverable nodes. 100
5.7 Machine model state with all 48 nodes enabled clearly showing the correct

allocation of identifiers. L 101
5.8 Simulated time and event queue size as a function of wall-clock time for

the 48 node simulation run (Figure 5.7). 102
5.9 Event queue size for each simulated time-step for the 48 node simulation

run (Figure 5.7). L 103
5.10 Simulator wall-clock time and total number of events for increasing num-

bers of enabled nodes. L 103
5.11 Stages of the toolflow shown in Figure 4.1 required to implement and

verify the auto-discovery algorithms on SpiNNaker. 104
5.12 Distribution of packets across a SpiNN-103 machine for the a-ping. . . . 108
5.13 Machine state downloaded from a SpiNN-103 machine after being subject

to various fault-maps as with the simulator in Figure 5.6. 110
5.14 Distribution of packets across a SpiNN-103 machine for the P2P identifier

assignment algorithm (Algorithm 5.1). 111

5.15 Simulation result demonstrating the potential issue with Algorithm 5.1. . 113
5.16 Result from SpiNNaker implementation demonstrating the same potential

issue with Algorithm 5.1 shown in Figure 5.15. 114
5.17 State transition diagram for the depth-first discovery algorithm. 115
5.18 Scaling of the depth-first discovery algorithm with machine size under

simulation. oL 116
5.19 Simulated time advancement and event queue density as a function of

wall-clock time for the 48 node depth-first simulation run. 117
5.20 Distribution of event types (i.e., tokens) throughout the 48 node depth-

first simulation run. oL L o 117

xii LIST OF FIGURES

5.21 Discovered machine model state after the 48 node simulation run, showing
the embedded tree and the assigned node labels. 118

5.22 Resilience of the depth-first discovery simulation run against the same
fault pattern as in Figures 5.15 and 5.16. 119

5.23 Comparison of the running time predicted by the simulator and the mea-
sured wall-clock time of 10 consecutive runs on SpiNN-103 hardware. . . 120

5.24 Packet distribution across the SpiNN-103 hardware for the 48 node run
of the depth-first discovery run. 121

5.25 Discovered machine topology from the 48 node run on SpiNN-103 hard-
WATE. o v v e 122

5.26 Resilience against the fault pattern of a 48 node run on SpiNN-103 hard-
WATE. © v v e 122

5.27 State transition diagram for the lock-step breadth-first discovery algo-
rithm. . .. o 124

5.28 Scaling of the breadth-first discovery algorithm with machine size under
simulation. oL Lo 125

5.29 Simulated time advancement and event queue density as a function of
wall-clock time for the 48 node breadth-first simulation run. 126

5.30 Distribution of event types (i.e., tokens) throughout the 48 node breadth-
first simulation run.o oo 126

5.31 Discovered machine model state after the 48 node breadth-first simulation
run, showing the embedded tree and the assigned node labels. 127

5.32 Resilience of the breadth-first discovery simulation run against the same
fault pattern as in Figures 5.15 and 5.16. 127

5.33 Comparison of the running times predicted by the simulator and the mea-

sured wall-clock time of 10 consecutive runs on SpiNN-103 hardware for
the breadth-first discovery algorithm. 128

5.34 Packet distribution across the SpiNN-103 hardware for the 48 node run
of the breadth-first discovery run. 129

5.35 Discovered machine topology from the 48 node breadth-first run on SpiNN-
103 hardware. e e 130

5.36 Resilience against the fault pattern of a 48 node breadth-first run on
SpiNN-103 hardware. i 130
5.37 State transition diagram for the parallel breadth-first discovery algorithm. 132

5.38 Scaling of the parallel breadth-first discovery algorithm with machine size
under simulation. 133

5.39 Simulated time advancement and event queue density as a function of
wall-clock time for the 48 node parallel breadth-first simulation run. . . . 134

5.40 Distribution of event types (i.e., tokens) throughout the 48 node parallel
breadth-first simulation run. 134

5.41 Discovered machine model state after the 48 node parallel breadth-first
simulation run, showing the embedded tree and the assigned node labels. 135

5.42 Resilience of the parallel breadth-first discovery simulation run against
the fault pattern. L 136

5.43 Comparison of the running time predicted by the simulator and the mea-

sured wall-clock time of 10 consecutive runs on SpiNN-103 hardware for
the parallel breadth-first discovery algorithm. 136

LIST OF FIGURES xiii

5.44 Packet distribution across the SpiNN-103 hardware for the 48 node run
of the parallel breadth-first discovery run. 137

5.45 Discovered machine topology from the 48 node parallel breadth-first run
on SpiNN-103 hardware. 138

5.46 Resilience against the fault pattern of a 48 node parallel breadth-first run
on SpiNN-103 hardware. 139

5.47 Complete survey of the SpiNN-104 hardware shown in Figure 3.16 using
the lock-step breadth-first algorithm. 141

5.48 Survey of the same SpiNN-104 hardware but with a single inter-board
connection unplugged. L Lo Lo 142

5.49 Depth-first algorithm designed in section 5.5.1 subject to an omega token
injected at 4ms simulated time. oo oo 143

5.50 Breadth-first algorithm designed in section 5.5.2 subject to an omega
token injection at 3ms simulated time. L. 144

5.51 Parallel breadth-first algorithm designed in section 5.5.3 subject to an
omega token injection after about 1ms simulated time. 144

6.1 Discretised problem grid showing problem nodes in blue and clamp nodes
Inorange. 148

6.2 Problem graph fragment based on the discrete mesh shown in Figure 6.1,
highlighting the edge types for storing neighbouring temperature values. 150

6.3 Stages of the toolflow shown in Figure 4.1 used to verify the function of
the heat diffusion application. 152
6.4 Answer simulation result from a 20 x 20 grid. 152

6.5 Answer simulation result from a 90 x 90 grid with 5% of the simulated
cores disabled. 154

6.6 Stages of the toolflow shown in Figure 4.1 used to execute the heat diffu-
sion application on SpiNNaker and collect the results. 155
6.7 State transition diagram for the P2P table construction algorithm. . 157

6.8 Select slices through the P2P tables of all nodes in the SpiNN-103 sys-

tem. Each node shows the port it uses to communicate with the node
highlighted with the thick blue circle. 157

6.9 A 3 x 3 SpiNNaker mesh labelled by the parallel breadth-first discovery
algorithm showing which neighbour identifiers are known. 158
6.10 State transition diagram for the continuity algorithm. 159
6.11 Visual representation of a 12-element “ping-pong” buffer. 161
6.12 SpiNNaker implementation results without any faults introduced. . 163
6.13 SpiNNaker implementation results with 5% of problem devices disabled. 163
6.14 SpiNNaker implementation results with 5% of cores disabled. 164
6.15 SpiNNaker implementation results with 5% of nodes disabled. 165

6.16 Comparison of application run-times with various timer tick periods on a
SpiNN-103 against a conventional serial desktop machine. 165

7.1 Packet phase prevents packets from flowing around the network indefi-
nitely. . . .o 170
7.2 Emergency routing around a heavily congested link. 170

List of Tables

1.1

2.1
2.2

2.3

3.1

B.1
B.2
B.3
B4

First eight template instruction-mapping codes for the Intel Itanium ar-
chitecture [21]. M-units primarily handle memory operations, I-units han-
dle integer operations, and X-units handle extended length instructions
of the form L+X.

Flynn’s computer organisation taxonomies.
Cache contents for two processors demonstrating the need for cache co-
herence (reproduced from Figure 5.35 of Patterson and Hennessy [23]).

System memory map for each SpiNNaker chip [35]. Rows that are shaded
indicate core-local resources, while the reset are node-local.

Description of the linker symbol attribute parts.
Boot commands and their operands as used by the Ethernet boot.

APLX commands and associated operands for the APLX table.
Description of the APLX commands.

XV

List of Listings

2.1
2.2
2.3
2.4
3.1
B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8
B.9

Reading a file using the asynchronous API provided by Node.js. . . .
Computing the sum of a set of numbers using a C++ worker thread.
Computing the sum of a set of numbers using a C++ packaged task.
Using OpenMP to unroll a sequential loop into multiple threads. . . .
Pseudo-code for a neuron update [129].
Sample scatter load file placing some_object.o in SECTION1.

Specifying a memory region to hold the heap memory.

Mapping ‘C’ functions and variables to specific scatter load regions.

Dividing source code into sections using the #pragma directive.
Accessing the linker symbols from within ‘C’ and C+4.
Accessing the linker symbols from within ARM Assembly.
APLX table construction in ARM Assembly.
Scatter load file to appropriately construct an APLX image.
Scatter load file for applications linking against SARK.

xvii

Declaration of Authorship

I, Kier J. Dugan , declare that the thesis entitled Non-Neural Computing on the SpiN-

Naker Neuromorphic Computer and the work presented in the thesis are both my own,

and have been generated by me as the result of my own original research. I confirm

that:

this work was done wholly or mainly while in candidature for a research degree at

this University;

where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

where I have consulted the published work of others, this is always clearly at-
tributed;

where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;
I have acknowledged all main sources of help;

where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

parts of this work have been published as: Brown, Mills, Reeve, et al. (2013
Dugan, Brown, Reeve, et al. (2013) [2], Dugan, Reeve, and Brown (2013)
Dugan, Reeve, Brown, et al. (2014) [4], Brown, Mills, Dugan, et al. (2014)
Brown, Furber, Reeve, et al. (2014) [6], and Brown, Mills, Dugan, et al. (2015

~—

~—

Xix

mailto:kjd1v07@ecs.soton.ac.uk

Acknowledgements

This thesis is the result of many years of hard work, strange emotions, good times (when
things worked), bad times (when they did not), and varied avenues of enquiry that I

could not have predicted I would wander down.

My foremost thanks are extended to my supervisor, Dr. Jeff Reeve, who first convinced
me to embark on the Ph.D. journey after a particularly successful final-year MEng group
project, and has since tolerated my ‘impeccable’ time-planning. Although he is not
responsible for the supervision of my work, I would also like to thank to Prof. Andrew
Brown for his advice, input, and ability to always identify the elephant in the room.
Dr. Rob Mills and I collaborated on several papers on work included in this thesis, and
his advice and impromptu mini-lectures on complexity theory helped me get to grips
with the massive scale of a machine as large as SpiNNaker. Prof. John Chad helped me
appreciate just how similar neural systems and digital systems are, compelling me to

ask, perhaps, a few too many questions.

Being a collaborative project, SpiNNaker presented many opportunities to discuss ideas
with members of the teams based at the University of Manchester and at the University
of Cambridge. I would like to thank Prof. Steve Furber, Dr. Steve Temple, and Dr. Luis
Plana from the University of Manchester for their help with and advice on using the
SpNNaker platform. I must also thank Prof. Simon Moore, Dr. Theo Markettos, Dr. Paul
Fox, and Steve Marsh from the University of Cambridge, whose conversations led down

interesting roads, improving my understanding of wherever it was we ended up.

Finally, I would like to thank my parents for putting up with me for the past mumble
years, and my friends for also putting up with me. Especially whilst I have been working

on my Ph.D.; they were amongst the unfortunate few who asked me how I was feeling.

xxi

Acronyms and Abbreviations

AER Address-Event Representation
AHB Advanced High-performance Bus
API Application Programming Interface
CAM Content-Addressable Memory
CMP Chip Multi-Processor

CpPU Central Processing Unit

DDR Double Data-Rate

DI Delay Insensitive

DLT Device Look-up Table

EOP End-of-Packet

FPGA Field Programmable Gate Array
FPU Floating-Point Unit

FR Fixed Route

GPGPU General-Purpose GPU

GPU Graphical Processing Unit

HDL Hardware Description Language
P Internet Protocol

IPC Inter-Process Communication
IRQ Interrupt Request

ITRS International Technology Roadmap for Semiconductors
LEMS Low-Entropy Model Specification
LIF Leaky Integrate-and-Fire

MC Multicast

MCT Multicast Table

MIMD Multiple-Instruction Multiple-Data
MISD Multiple-Instruction Single-Data
MPI Message-Passing Interface
MPMD Multiple-Program Multiple-Data
NEST Neural Simulation Tool

NN Nearest Neighbour

NoC Network-on-Chip

NRZ Non-Return-to-Zero

xxiii

ACRONYMS AND ABBREVIATIONS

xXxiv
NUMA Non-Uniform Memory Architecture
OOP Object-Oriented Programming
P2P Point-to-Point
POR Power-On Reset
POST Power-On Self-Test
RAID Redundant Array of Independent Disks
RAM Random-Access Memory
ROM Read-Only Memory
RTL Register Transfer Language
RTOS Real-Time Operating System
RTZ Return-To-Zero
SARK SpiNNaker Application Run-time Kernel
SCAMP SpiNNaker Command And Monitoring Program
SCP SpiNNaker Command Protocol
SDP SpiNNaker Datagram Protocol
SDRAM Synchronous Dynamic Random Access Memory
SIMD Single-Instruction Multiple-Data
SISD Single-Instruction Single-Data
SpiNNaker Spiking Neural-Network Architecture
SPMD Single-Program Multiple-Data
SRAM Static Random Access Memory
STDP Spike Timing-Dependent Plasticity
TCDM / DTCM Tightly-Coupled Data Memory
TCIM / ITCM Tightly-Coupled Instruction Memory
TCM Tightly-Coupled Memory
TCP Transmission Control Protocol
UDP User Datagram Protocol
UMA Uniform Memory Architecture
VLIW Very Long Instruction Word
WFI Wait For Interrupt
XML eXtensible Mark-up Language

Chapter 1

Introduction

For the past 50 years, Gordon Moore’s 1965 prediction [8] has driven a rapid advance
in electronic integrated circuit fabrication technology. Computers have seen a similarly
rapid increase in capability because smaller transistors directly lead to an increase in
clock speed. With greater clock speed and the ability to fit larger and larger numbers of
transistors into a single die, processors were not only able to perform more operations

per second, but also able to perform more complex operations.

Despite progress initially slowing ten years after the original prediction [9], planar tran-
sistor scaling remains in effect and has led to truly amazing feats of integration such
as the Xilinx Virtex7 Ultrascale containing over 20bn transistors [10] and the Oracle
SPARC M7 containing over 10bn transistors [11]. Continuing the trend further by
scaling transistor gate lengths below 20nm will probably require advances in non-planar
fabrication technology to compensate for worsening device parasitics and increased leak-

age currents [12].

The direct correlation between smaller transistors and increased clock speed was a boon
to the software industry and led to great advancements. However, as Figure 1.1 clearly
shows, more recent transistor scaling has not brought with it a consequential increase
in single-threaded performance. Chip manufacturers have begun to include multiple
processor cores in a single package to compensate for the levelling of clock frequency.
Observe from Figure 1.1 that frequency scaling slowed around the turn of the millennium,
and that the number of cores began increasing around five years afterwards. This shift
in system architecture requires new ways of thinking about software which focus on

concurrent execution rather than conventional single-threaded programs [14].

Whilst modern desktop processors may contain 4-8 cores, some special-purpose archi-

tectures have gone further:

o Tilera’s TILE64 [15] includes 64 32bit VLIW processors embedded in an 8 x 8

mesh network that supports a range of static and dynamic routing functions. Each

1

Chapter 1 Introduction

40 Years of Microprocessor Trend Data

Transistors

77 (thousands)
_ ____________________________ _________ Lamta __________________________ J Single-Thread
: ‘ ; ; Performance
I e = (SpecINT x 10%)
as :Ai‘ Frequency (MHz)
° : a _
1 : Typical Power
" : (Watts)
v
v Number of

Logical Cores

v i vy : IR St
------------ B e

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Figure 1.1: 40 years of microprocessor trend data (collated and plotted by
Rupp [13]) showing the steady continuation of transistor scaling, but a levelling
of clock frequency and single-threaded performance.

processor is resident on a ‘tile’ which connects to this mesh with a 5-port crossbar-
switch-based wormhole router. The caches of each processor tile are connected
both to each other and to the system memory to provide overall system cache-
coherence. Additionally, high-performance I/O devices allow the mesh to use
DDR2 memories, and to be connected to 10-gigabit Ethernet and PCI-Express
networks. Combined, these features make the TILE64 architecture particularly
well-suited to processing high-speed sources of streaming data such as data-centre

network routing.

Centip3De designed by Fick, Dreslinski, Giridhar, et al. [16] at the University
of Michigan combines 64 ARM Cortex-M3 processors into a 130nm stacked-3D
package. Internally, the chip utilises through-silicon vias (TSVs) to communi-
cate vertically between layers comprised solely of Cortex-M3 processors and layers
comprised of ‘cache-clusters’ shared by up to four processors. A complete system
may consist of four processor/cache layers (for up to 128) processors and up to
three SDRAM layers (to a total of 256MB) Using near-threshold voltages (650mV—
1.15V) and comparatively slow clock frequencies (10-80MHz) allow the devices to
achieve 3,930 Dhrystone MIPS/W [17].

Intel produced a prototype ‘data-center-on-a-die’ as a response to the trend of
increasing core counts [18]. The chip embeds 24 pairs Pentium-class IA-32 proces-

sors in a 2D 6 x 4 grid network. Each pair of processors share a ‘message-passing

Chapter 1 Introduction 3

buffer’ which works with the grid network to realise of a message-passing proto-
col that is primarily realised by hardware. A specific ‘message-passing memory
type’ presents this protocol at the software-level, whilst the caches implement the
communication at the hardware-level. Coherency between all the processors in the
chip is maintained using the same system. Linux can be booted on each core as

they each implement the IA-32 instruction set.

o Orcale’s SPARC M7 [19] is similarly designed for the data-centre and includes 32
S4 cores capable of supporting 256 threads simultaneously. Each core has exclusive
L1 instruction and data caches, but L2 caches are shared by four processors in a
SPARC cache cluster (SCC). Within this cluster, a single instruction cache serves
all four cores, and two data caches serve two pairs of cores. The SCC tiles are then
embedded in the on-chip network which connects to various coherency systems,
four memory controllers, and eight ‘database analytic accelerator’ engines. Overall,
the chip contains 64MB of L3 cache partitioned eight ways to give each SCC an
equal share, and has a total off-chip bandwidth of 1TB/s for memory, multi-socket

coherency, and I/0O interfaces.

1.1 Performance Obstacles

1.1.1 Memory Bottlenecks

Clock frequency is not the sole driving force behind increases in single-threaded per-
formance. The persistent requirement for higher density memory chips typically drives
advances in fabrication technology because the number of transistors on a memory chip
is directly proportional to the amount of data it can store. However, such heavily pop-
ulated chips often suffer from poor parasitic traits which cause the operating frequency
of memory devices to lag behind that of same-generation processors. Additionally, high-
density memories usually employ dynamic logic which further increases data density at

the cost of increased read and write latency.

Modern processors use a multi-layered approach to mitigate this introduced latency.
Processors normally access dynamic system memories through at least one layer of cache.
Modern desktop processors have have two or three levels of cache of increasing size and
latency, and decreasing bandwidth. L1 caches are physically closest to the processor,
usually operate on the same clock frequency, and are capable of presenting the processor
with data one-byte-at-a-time if requested, thus shielding the processor from the ‘bursty’
nature of system memory. Caches farther away from the processor and closer to system
memory become more tolerant of bursts of data, effectively shielding the latency of

subsequent reads from the processor.

4 Chapter 1 Introduction

As a final defence against the comparatively high latencies of system memories, most
systems use a prefetcher to perform speculative loads of addresses based on memory
access patterns. If memory is being accessed in a predictable manner, system prefetchers
will read additional data from the system memory so that it is already present in an
appropriate level of cache before theprocessor requests it. Predictable accesses grant the
prefetcher a sustainable lead on the processor and significantly reduce memory access
times. Figure 1.2 shows how effective prefetchers can be when memory access patterns
are predictable. Sutter [20] measured the data cache latencies for forward linear, reverse
linear, pseudo-random, and random memory access patterns and clearly demonstrates

that predictable accesses yield enormous performance increases over random accesses.

ycles

176.0 cycles

154.0 cycles — Pseudo-random

132.0 cycles

110.0 cycles

16.50 ns

32M

Figure 1.2: Data cache latencies for various memory access patterns on various
amounts of data (figure produced by Sutter [20]).

Despite all of these techniques, Figure 1.2 still clearly shows that modern processors can
consume data at a higher rate than it can be delivered. L1 caches and tightly-coupled
memories are capable of delivering data in a small number of cycles, but large amounts
of data causes high latency even when playing to the strengths of this multi-layered

defence.

1.1.2 Instruction-level Parallelism

Many modern processors are capable of issuing several instructions simultaneously if
they are independent and there is sufficient hardware to support them. As an example,

consider equation (a) of Figure 1.3. Clearly the sum of A and B+ C cannot be computed

Chapter 1 Introduction 5

until B + C' is known. However, the value of A can be read into the register file whilst
B + C is being computed. A multiple-issue processor would be capable of performing
these parallel tasks to gain a performance boost. Some processors take this concept
further and include multiple functional blocks of the same type. Such a processor would
be capable of computing (b) in two cycles by computing A+ B and C'+ D simultaneously,

and then computing the sum of the results on the following cycle.

(a) Q=A+B+C (b)Q=A+B+C+D

(@) Q
= —

‘D‘.QHI A B) (C D
& ©

Figure 1.3: Two simple equations and the corresponding data-dependency
graphs.

Static multiple issue is the simplest form of this technique, requiring that the com-
piler determines these potential optimisations a priori. The compiler constructs data-
dependency graphs, such as in Figure 1.3, to determine exactly which instructions can
be executed in parallel. Several instructions are then combined into a ‘bundle’ or an
‘issue packet’, more commonly known as a Very Long Instruction Word (VLIW), which
is guaranteed by hardware to be dispatched simultaneously. Obviously, bundled in-
structions are subject to the constraints of the processor and two integer operations may

only be executed in parallel if there are two integer arithmetic units present.

127 87 86 46 45 5 4 0

Instruction Slot 2 Instruction Slot 1 Instruction Slot 0 Template

41 41 41 5

Figure 1.4: Intel Itanium instruction bundle format [21].

The Intel Itanium [21] is a mainstream VLIW processor which serves as a good demon-
strator of how a VLIW architecture can dispatch instructions. Figure 1.4 shows that its
VLIW format (called an instruction bundle in the Itanium nomenclature) is comprised
of three instructions to be executed in parallel and then a template field providing some
context for these instructions. Table 1.1 gives a small subset of the template codes used
by the Itanium architecture, which map the instructions onto the various units within

the processor. In addition to this mapping, the Itanium can enforce ‘architectural stops’

6 Chapter 1 Introduction

Template Slot 0 Slot 0 Slot 2
0x00 M-unit IT-unit IT-unit

0x01 M-unit I-unit I-unit
0x02 M-unit I-unit I-unit
0x03 M-unit I-unit I-unit
0x04 M-unit L-unit X-unit
0x05 M-unit L-unit X-unit
0x08 M-unit M-unit IT-unit
0x09 M-unit M-unit I-unit

Table 1.1: First eight template instruction-mapping codes for the Intel Itanium
architecture [21]. M-units primarily handle memory operations, I-units handle
integer operations, and X-units handle extended length instructions of the form
L+X.

(indicated by underlines in the table) if there are resource dependencies between subse-

quent instructions.

Dynamic multiple issue (more commonly known as superscalar) processors perform these
optimisations at run-time rather than at compile-time. Clearly this requires more com-
plex hardware as data-dependency must be detected as the instructions are presented
for issue, but it carries a significant advantage over the VLIW approach: the hardware
guarantees the correctness of the execution. VLIW processors will blindly execute the
instructions as demanded by the compiler, so small architectural changes between hard-
ware revisions can lead to performance degradations that can only be fixed by recom-
piling the software. Superscalar processors detect parallelism opportunities at run-time

and are hence guaranteed to be correct.

Intel Hyper-Threading extends the superscalar concept by sharing function blocks be-
tween two copies of the architectural state [22]. This has the effect of each processor
appearing as two ‘logical processors’ which both dispatch micro-operations to the shared
compute resources. In addition to having a complete set of registers (including general-
purpose) and a programmable interrupt controller, each copy of state also includes a
‘return stack predictor’ and an instruction translation look-aside buffer. KEssentially,

each copy appears as a complete processor from the software perspective.

Dynamic multiple-issue techniques are often further improved by allowing the processor
to execute instructions in an order of its choosing. Out-of-order execution is common
on larger processors and makes use of the data-dependency graphs already established
by the multiple-issue hardware. As long as the processor can commit the results in the
correct order—i.e., that of the input instruction stream—the end-result of the program
is still correct. Consider again equation (a) of Figure 1.3, the overall sum cannot be
computed until the result of B 4+ C' is known, but another instruction disjoint to this

equation can be executed in parallel.

Chapter 1 Introduction 7

Instruction Fetch
and Decode Unit

. ! .
| ! ! |

In-order Issue

Reservation Reservation . Reservation Reservation
Station Station Station Station
Functional Functional Functional Functional Out-of-order Execute
e ~01-0r1 Xec >
Unit Unit Unit Unit

| ! .

Commit Unit In-order Commit

Figure 1.5: Three stages of an out-of-order execution pipeline, based on Fig-
ure 4.72 of Patterson and Hennessy [23].

Figure 1.5 shows the three stages of an out-of-order execution pipeline. Instructions
flow into the fetch and decode unit in the order generated by the synthesis stage of the
compiler. Operands and instructions are then dispatched to multiple functional units via
their corresponding reservation stations which are queues that wait until all operands
for an operation are available. Results from the functional units are then collated by
the commit unit which both ensures the results are committed to the register file in the
correct order, and distributes the results to the reservation stations waiting for operands.
Continuing the earlier example: the commit unit would feed the result of B + C back

to whichever reservation station has A + (B + C') queued.

1.1.3 Power

Larger transistor counts naturally lead to an increased power requirement for modern
processors. Austin, Blaauw, Mudge, et al. [24] present equations (1.1)—(1.5) to illustrate
how processor design parameters affect the overall power dissipation. Of particular in-

terest is equation (1.1) which shows two factors contributing to overall power dissipation:

P = ACV?f 4V Dear (1.1)
— =
dynamic static

Dynamic power dissipation occurs while transistors are switching and is caused by the
charging and discharging of the capacitive loads in the design. A is the proportion
of gates actively switching and C is the total capacitive load of all gates. Clearly C is
proportional to the number of transistors in the design, which is increasing with each new

fabrication technology as explained earlier. Frequency, f, has largely plateaued in the

8 Chapter 1 Introduction

low-GHz range (i.e., O(10%)). This leaves voltage, V, and A as two of the parameters that
can be exploited to reduce dynamic power. However, the voltage cannot be scaled too

low otherwise the clock frequency will drop correspondingly, as shown by equation (1.2)*.

(V = Vin)®

= (1.2)

Jmax
Static power is primarily described by the leakage current, Ije.x, in equations (1.3)—
(1.5). There are two contributions here: the sub-threshold leakage current, Iy, and the
gate-oxide leakage current, Iox. Across both of these equations, the parameters Ky, Ko,
n, S must be determined experimentally for each fabrication technology level, W is the
transistor gate width, Vj is the thermal voltage, and Ty is the gate oxide thickness. Vj

is typically 25mV at room temperature, but increases linearly as temperature increases.

Ileak = Isub + on (1-3)
Vin Vv
I = K — - |1-= - 14
k() ()]s
2
Tox
Iox = KoW (;ﬂ;) - exp (ﬁV > (1.5)

Austin, Blaauw, Mudge, et al. [24] note that equation (1.4) suggests two ways to reduce
static power: firstly, to turn off the supply voltage, V', as often as possible, and secondly
to increase the threshold voltage, V;. However, the latter would cause lower operating
frequencies due to equation (1.2) just as reducing the supply voltage would. Austin
et. al also note that while increasing the oxide thickness, Tox, in equation (1.5) is the
obvious way to reduce the leakage current contribution, it is also not viable because

oxide thickness must decrease with device scaling.

Increased power dissipation naturally requires improved cooling, which itself becomes
complicated by the shrinking die-size of modern chips. The heat densities involved are
high enough to make efficient cooling a difficult problem. Power must therefore be
reduced inside the device by dynamically scaling the voltage and frequencies at run-
time, or by power-gating large parts of the chips so that unused resources are simply

not drawing any power.

Esmaeilzadeh, Blem, St. Amant, et al. [25] constructed a model of power dissipation for
CPU-like multi-core architectures (in contrast to GPU-like) and analysed the effects of
the aggressive scaling given by ITRS? projections. The authors determined that Snm
fabrication technologies would lead to over 50% of a chip being underutilised due to

power constraints.

'a € [1,2] and is usually around 1.3, but specific values must be determined experimentally.
*International Technology Roadmap for Semiconductors (http://www.itrs.net).

http://www.itrs.net

Chapter 1 Introduction 9

1.1.4 Reliability

As devices become smaller and their numbers increase, reliability becomes a significant
issue. Chien and Karamcheti [26] look at the trends in flash memory chips (notori-
ously focused towards high-density integration) and note that while the density has
been steadily increasing over the past decade, the durability of the devices has not. Ad-
ditionally, read and write times have actually been increasing whilst the endurance of
the devices has been decreasing. They consider this to be the “‘first ending” of Moore’s

law’ and that flash memory is merely the first victim.

Flash memories are typically not subject to the same high frequencies (and hence high
dynamic power dissipation) of processing logic. The previous section showed how smaller
and faster devices are now leading to higher power dissipation. Kish [27] analyses run-
time reliability by studying how thermal noise can cause spurious bit-flips. However,
these can be eliminated by keeping the threshold voltage above a certain minimum gov-
erned by the fabrication technology. Clearly this compounds with issues presented pre-
viously on power, and strengthens the case for an increased threshold voltage. However,

this imposes restrictions on maximum clock frequency in accordance with equation (1.2).

1.1.5 When Taken Collectively

Looking at the entire single-threaded computing picture, the issues discussed in this
section show that it is clearly reaching its limit. Single-threaded performance increases
have been brought about by embracing parallelism within the architecture itself (e.g.,
superscalars, hyper-threading, and out-of-order execution). Conventional performance
increases from merely increasing the clock frequency and/or shrinking the component

sizes are simply not as effective with modern fabrication technologies.

Power dissipation and device fabrication reliability favours larger devices being clocked
more slowly, but this is not conducive to an improvement in single-threaded performance.
With modern processors including greater numbers of cores, and technologies like hyper-
threading presenting the software layer with logical cores, the clearest path forward is

to investigate parallel computation at the program level.

1.2 Parallel Software Structure

Many programs are typically single-threaded, which clearly does not make good use of
modern computing hardware. Despite this, some software (such as video games and
scientific software) will make use of graphics cards as stream processors to significantly
improve the performance of calculations. Other systems employ varying levels of hetero-

geneity so that code can be executed on the most power-efficient compute resource that

10 Chapter 1 Introduction

can achieve the desired outcome [28]. ARM’s big. LITTLE [29] technology serves as a
good example that combines a small but highly power efficient processor (e.g., Cortex-
AT) with a high-performance processor (e.g., Cortex-A15). For simple applications, the
higher-power processor can be entirely disabled, only needing to be powered up when

the application requires greater capability.

Traditional multi-threaded programs that make use of multiple homogeneous processors
employ synchronisation primitives such as atomic memory accesses, and locks/mutex-
es/semaphores to protect resources. Programming with these primitives is notoriously
difficult, with limited debugging capability and increased opportunities to introduce
deadlock. Incorrectly ordered locking or poorly written locking code can cause programs
to stall in an entirely unrecoverable manner. To compound matters, these synchronisa-
tion primitives are also used for inter-thread communication as well as access to physical

resources.

On the other end of the computing spectrum, micro-controllers afford programmers the
freedom to carefully choreograph the program flow to prevent ill effects. With direct ac-
cess to registers and memory-mapped system resources, programmers are free to perform
cycle-level optimisations and interleave expensive tasks with cheaper on-going ones. A
good example of this is the V-USB? library for use on Atmel AVR micro-controllers.
The library implements the USB standard, and uses carefully written assembly code
to interleave signal synchronisation and decoding code with USB waveform generation.
However, the increased complexity and capability of more sophisticated systems drasti-
cally complicates this to the point of making it impractical outside of micro-controller

systems.

1.2.1 Scalability

Software scalability is central to taking advantage of an increasing number of readily
available processors. If workloads cannot be effectively distributed over these many

cores, then there can be little observable speed increase.

Early parallel machines were considered vector machines because they would apply a sin-
gle operation to multiple pieces of data simultaneously. This technique became known
as Single Instruction Multiple Data (SIMD) and will be explained in Chapter 2. How-
ever, parallelism may take many guises such as the now common symmetric multi-core
approach in modern desktop computers, where identical cores are replicated several

times.

In 1967, Gene Amdahl compared three systems of varying levels of parallelism and

concluded that processors with greater sequential performance than parallel performance

3https 1/ /www.obdev.at/products/vusb/index.html

https://www.obdev.at/products/vusb/index.html

Chapter 1 Introduction 11

lead to an overall performance increase when applied to parallel workloads [30]. This
seems rather counter-intuitive, as the most parallel architecture that Amdahl considered
was a SIMD machine containing 32 arithmetic units, and the least parallel architecture
was a modified vector processor capable of issuing individual operations at the same

rate as vector operations.

These results imply that parallel performance increases are limited by the ability to
process sequential parts quickly. Consider the SIMD machine performing house-keeping
tasks between computation tasks; in the worst case, the house-keeping tasks might
require iteration whereby most of the SIMD machine remains idle. This observation is

known as Amdahl’s Law as in equation (1.6),

, (1.6)

where s is the fraction of sequential tasks in a workload, p is the fraction of parallelisable
tasks, N is the number of processors performing parallel work, and .S is the total speed-
up ratio achieved. A clear, and concerning, result of equation (1.6) is that even with
an infinite amount of parallel processing capacity, the maximum achievable performance

increase is limited to 1/s.

However, this presumes that the workload in question was originally sequential and a
performance increase is sought by splitting parts of it out over multiple cores in parallel.
An alternative viewpoint is to look at how long a parallel task would take to complete if it
was made sequential. Gustafson [31] states that ‘when given a more powerful processor,
the problem generally expands to make use of the increased facilities.” Thereby implying
that looking at performance increases obtained from making a sequential task parallel
is not the correct perspective. Gustafson’s alternative speed-up equation (often called

the Gustafson-Barsis law) is given as equation (1.7).

g STPN (1.7)
s+p
—N+(1-N)-s (1.9)

Amdahl’s analysis assumed that a workload of of s + p = 1 on a sequential computer
would become s+p/N on a parallel computer, whereas Gustafson’s began with a parallel
compute workload of s + p = 1 and converted it into a sequential workload of s + pN.
The key result here is that workloads should be designed to be parallel right from the

start.

12 Chapter 1 Introduction

Hill and Marty [32] extend these insights further and find that for small core-counts,
simple elements with high sequential performance are more favourable for highly parallel
workloads. For workloads with a roughly equal share between sequential and parallel
fractions, techniques such as hyper-threading are more favourable. Asymmetric systems

tended to perform well with high numbers of highly-capable cores.

1.2.2 Modelling

Concurrent systems are notoriously difficult to model as well as program. Various model-
checking techniques and languages exist to verify that the desired behaviour is itself

correct before any production code is written to implement the behaviour.

The actor model was originally proposed as a method of writing programs that are
correct by treating each requirement of a program as a disjoint unit [33]. These units
may only interact by sending messages to each other. Actor-based programs are there-
fore simple to parallelise, in principle, because the data-dependency has been explicitly

expressed in the way that messages are sent.

Interestingly, with the actor model, the sequential work performed by each actor is the
processing of its inbound message queue and the transmission of consequent messages,
thus minimising the sequential fraction of work and playing to the strength of Amdahl’s

law.

An alternative approach is to consider concurrency from the outset. Communicating
Sequential Processes (CSP) treats concurrency, input, and output as primitive operations
and supports the idea of composable software [34]. CSP structures software based on
the flow of data between multiple stages until the desired result is achieved. CSP is a
language as much as a software architecture, and is capable of describing problems that
may cause processes to enter and leave existence as required. Despite being a general
technique, Hoare acknowledges that ‘it would be unjustified to conclude that all these

primitives can wholly replace the other concepts in a programming language.

Both of these techniques are capable of expressing the more commonly known synchro-
nisation primitives (such as mutexes and semaphores), but this makes them susceptible
to issues such as deadlock. Ultimately, these techniques (as with many others) do not
completely remove the difficulty of writing parallel software, but instead limit the areas

of a program that many contain these obstacles and errors.

1.3 A New Perspective on Software

To properly leverage parallelism will require changes in how both hardware and software

are constructed. This chapter has given examples of how power dissipation, memory

Chapter 1 Introduction 13

latency, material characteristics, and reliability are negatively effecting further improve-
ments to single-threaded performance. Unfortunately, these issues also impact current

approaches used for parallel hardware.

Unconventional architectures are likely to bring increased parallel performance, but will
require a new perspective on how to craft software. To address the issues presented in

this chapter, these architectures (both hardware and software) will need to:

1. Employ methods to further minimise memory latency to ensure that sequential

performance is not slowed by processors being starved of data.

2. Minimise the sequential fraction of programs, ideally limiting it entirely to handling
communication. By focusing on work that can be performed in parallel, software

will be less constrained by the limit of Amdahl’s equation.

3. Minimise the cost of sharing resources. This point also meshes with the previous
when some of the shared resources are those used for communication. Reducing
the costs introduced by synchronisation primitives used to protect these resources

has far-reaching benefits.

4. Fundamentally support parallelism rather than treating it as a feature to provide.
Parallelism must be approached from a Gustafson perspective, where an equiv-
alent sequential approach is clearly much slower, rather than from an Amdahl

perspective where the parallel approach is an afterthought.

1.3.1 SpiNNaker—A Neuromorphic Computing Platform

SpiNNaker is a neuromorphic computing engine designed to rapidly accelerate neural
simulations [35]. A key design intent of the machine is to support neural simulations
containing up to around 10° neurons in biological real-time. It achieves this by embedding
a total of 105 conventional ARM processors in a novel biologically-inspired routing fabric
optimised for sending very small packets of data with very small latencies. Crucially, it
addresses the requirements listed in the previous section despite occupying a different

domain:

1. Each of the cores have small tightly-coupled memories (TCMs) for instructions and
data, which inherently minimise access times. Whilst a system SDRAM is also
present, it may not contain instructions and the data resident within it should
be—ideally—Iless-frequently required. To mitigate the much higher latency of the
system SDRAM when compared to the TCMs, each core is equipped with a DMA

controller which can be used to mask the delay.

14 Chapter 1 Introduction

2. Communication between the cores is brokered entirely by hardware, and uses in-
terrupts to finally deliver the messages to the target cores [6]. This drastically
minimises the communication cost on the cores themselves, leading to low sequen-

tial workload contribution.

3. The hardware-brokering of messages extends to the other shared hardware re-
sources of the system too. All hardware resources are arbitrated by hardware,
and all low-level synchronisation primitives are implemented in hardware. Despite
this, the system software must still determine by a sequential search which neuron
models must be updated by message arrivals. However, this contribution is small

in comparison to the processor time allotted to neuron model execution.

4. Finally, SpiNNaker and the software simulation model that it employs have been
co-designed from the ground up to be parallel. The target application is the
parallel simulation of neural networks, and the hardware has been designed to

support that.

In addition to these remarks, even a small SpiNNaker machine consisting of a single
board contains almost one thousand processors, which facilitates investigations into

massively-parallel computing in an extremely convenient environment.

1.4 Contributions

SpiNNaker provides massive parallelism to a very specific domain where it performs very
well. However, the primary building-blocks are conventional ARM processors with high
sequential performance. The neuromorphic design criteria restrict the problem-sets for
which SpiNNaker is suited, but they do not preclude non-neural problems from being
attacked.

This is the specific problem that this work addresses—to run non-neural applications on
this neuromorphic platform to exploit its massive parallelism for other problem domains.

The key contributions resulting from this work are as follows:

Firstly, SpiNNaker was designed with the resilience of neural systems in mind, which
allows relaxed reliability constraints in certain circumstances. Transient (or permanent)
hardware faults that limit network traffic can be largely ignored by neural applica-
tions because significant loss of communication can be inherently tolerated. Biological
systems are intrinsically noisy and lossy, so provided that any inaccuracies caused by
shortcomings of the simulation platform are less than the biologically realistic losses,
any effects can be ignored because they do not significantly affect the overall accuracy

of the simulation.

Chapter 1 Introduction 15

The first contribution addresses this reliability requirement by presenting a set of
algorithms that can discover any faults in the system, accurately configure the network-
ing resources in a decentralised manner, establish a control tree that can be used for
more traditional parallel- processing behaviours where appropriate, and present all of
this information for download so that external tools can accurately map problems onto
the discovered machine topology. This work has been published as Dugan, Reeve, and

Brown [3] and Dugan, Reeve, Brown, et al. [4].

Secondly, a simple demonstrator application is developed to show how non-
neural simulation software can be structured to take advantage of the machine architec-
ture, thus showing that simple processors with small memories are highly scalable with
appropriately structured software. This work as been published as Brown, Mills, Reeve,
et al. [1], Brown, Mills, Dugan, et al. [5], and Brown, Mills, Dugan, et al. [7].

1.5 Organisation

Figure 1.6 shows the tool-chain that is built up over the course of the thesis.

Machine Discovery

Chapter 5
SpiNNaker
Software Infrastructure . User—‘deﬁned L
Domain-specific Application
Chapter 3 Chapter 4
apter Chapter 6

Figure 1.6: High-level view of the tool-chain developed in the thesis, identifying
how each chapter inter-relates.

The thesis is structured as follows: Chapter 2 introduces the general concepts of parallel
computing and provides a survey of the neuromorphic computing landscape. A detailed
description of SpiNNaker is given in Chapter 3. Chapter 4 introduces the tool-chain
and system configuration process that supports the subsequent chapters. Chapter 5
presents a set of decentralised algorithms that discover the structure of an unknown
SpiNNaker machine, configure the routing hardware, and packages this data for down-
load. Chapter 6 presents an application that both demonstrates the tool-chain from
a user perspective and illustrates how to structure non-neural applications for use on
SpiNNaker. The reliability of the hardware and software presented in the prior chap-
ters is discussed in detail in Chapter 7. Chapter 8 reviews the work presented in this
thesis, discusses potential directions for future work, and closes by reflecting on the

contributions made.

Chapter 2

State of the Art

The goal of this chapter is to familiarise the reader with the techniques employed in
conventional parallel architectures, before re-framing them in a neuromorphic context.
We begin by looking at the structure of conventional parallel software and the inherent
difficulties and challenges associated with it. This naturally leads onto a discussion
of communication techniques, which address perhaps the most significant difficulties in
parallel implementations. Finally, a survey of various software libraries and frameworks

is presented to provide examples of real-world parallel programming.

In this instance, neuromorphic systems are a special case of parallel systems. A brief
survey of the current neuromorphic hardware landscape is presented to illustrate the
differences between them and the conventional systems previously discussed. Next, a
survey of the software landscape is given, finally leading onto a discussion of neuromor-

phic description languages.

In the final section, SpiNNaker, as the chosen platform for the work presented in this
thesis, is introduced as a machine capable of bridging the gap between the conventional

and neuromorphic parallel computing domains.

2.1 Conventional Parallel Computing

2.1.1 Hardware Taxonomies

Software (and hardware) can be broadly categorised by how the streams of instructions
and data flow through the processors. Table 2.1 shows what is commonly known as
Flynn’s Taxonomy [36]. Low-level architectural features that enable instruction-level
parallelism (such as superscalar and out-of-order execution) do not affect the classifi-
cation because they cannot be sensibly reasoned about in a globally parallel setting
[37].

17

18 Chapter 2 State of the Art

Single Multiple
Data-stream Data-streams

Single

Instruction- SISD SIMD
stream

Multiple

Instruction- MISD MIMD

stream

Table 2.1: Flynn’s computer organisation taxonomies.

In addition to the classifications in Table 2.1, Single-Program Multiple-Data (SPMD)
and Multiple-Program Multiple-Data (MPMD) are commonly used to characterise the
nature of the instruction stream as well as the architecture. As explained later, MIMD
implies synchrony between individual instructions even though they may contain dif-
ferent op-codes. However, SPMD and MPMD permit instruction streams to operate at

different rates across the machine.

2.1.1.1 Single-Instruction Single-Data

Data Memory

Instruction Memory

Figure 2.1: Single-Instruction Single-Data (SISD) architecture.

Of all of these taxonomies, SISD is the most common because it represents a conventional
single-threaded computer. Instructions and data are both drawn from dedicated stores
as shown in Figure 2.1. Most applications ranging from desktop applications down to

small embedded micro-controller applications fall into this category.

Chapter 2 State of the Art 19

2.1.1.2 Single-Instruction Multiple-Data

Data Memory

Instruction Memory

Figure 2.2: Single-Instruction Multiple-Data (SIMD) architecture.

In a SIMD architecture, instructions are shared between all processors but the data
each is acting upon is specific as shown in Figure 2.2. These are often called wvector
processors or vector operations because each instruction leads to a set of results rather
than just a single one. It is important to note that vector operations cannot reduce a
set of operands into a single result, such as computing the sum of all elements, x;, of a
vector, X. However, consider instead Z+X+Y being expressed as z; = x; + y;, in this

case, a SIMD computer with k cores can compute up to k of these sums in parallel.

SIMD instructions are particularly well-suited to applications such as geometric calcu-
lations where the input and output data-structures are well-formed and regular. Com-
puter graphics is an obvious and common problem that desktop computers face that
is amenable to this sort of performance boost. Google have recently added SIMD sup-
port to their Dart language—designed for use in modern web-browsers—to benefit 3D

graphics and other multimedia implementations [38].

In most architectures, SIMD instructions are used to complement an otherwise SISD
workload. Even highly-parallel supercomputers such as the IBM Blue Gene/Q [39]
and highly domain-specific computing engines such as the Anton Molecular Dynamics
machine [40] take this approach. Despite the ratio being heavily skewed in favour of
non-vector instructions, SIMD leads to drastic performance increases by performing
particularly costly instructions in parallel. A suitable example of this is the vector

square-root instruction, SQRTPS, in Intel’s SSE instruction set extensions [41, pg. 4-379).

It should come as no surprise that careful use of SIMD instructions can yield significant

performance increases in regular data-sets [Cohen2003|. However, irregular data-sets

20 Chapter 2 State of the Art

can reportedly see speed-ups of up to 9 times that of a serial implementation if they can
be mapped into an appropriate form [42]. Similarly, highly-relational database workloads
can see large performance increases by using SIMD instructions in common operations

such as selection scans and hash-key generation [43].

2.1.1.3 Multiple-Instruction Single-Data

Data Memory
P | P | P
——]
>
S
5
= P |« P [P
g T
B
=)
<
= P |« P | P
——]

Figure 2.3: Multiple-Instruction Single-Data (MISD) architecture.

MISD is a seldom used architecture and tends to be focused on a specific problem when it
is. The control flow of MISD allows for multiple different results for a single computation
to be obtained simultaneously without a performance penalty when compared to an
equivalent SISD approach. Effectively it enables the speculative computation of many
results, but requires an arbitration step afterwards to choose the correct result. Halaas,
Svingen, Nedland, et al. [44] show that this approach can be used for matching patterns
in a data-stream; multiple processing elements search for patterns in the data-stream
simultaneously, and the results of this are fed into a tree of result-selection nodes which

selects the most appropriate result.

Alternatively, a problem that requires several disjoint computations before a final result
can be determined can benefit. The M-Buffer architecture [45] uses MISD for Z-buffer

computation when composing a graphics frame for final display to the user.

2.1.1.4 Multiple-Instruction Multiple-Data

MIMD is a particularly broad classification that loosely follows the architecture shown

in Figure 2.4. An architecture with data and instruction memories distributed across

Chapter 2 State of the Art 21

Data Memory

P P P
I, T
o
o
g
= P < P < P [
- — i
E P P p
I, T

Figure 2.4: Multiple-Instruction Multiple-Data (MIMD) architecture.

many physical machines may still be considered MIMD. For example, desktop multi-core
processors fall into this classification. However, the term is often specifically reserved for
architectures that maintain cache-coherence with more specific classifications (described

next) for multi-machine behaviours.

Cache-coherency is of particular importance in MIMD architectures and will be ex-
plained in more detail in the next section. Briefly, it refers to ensuring that all proces-
sors sharing a memory have the same value stored in their caches. Consider the case
of two processors, Py and P;, both performing a calculation involving some variable,
A. Both processors have A loaded into their data-caches, but Py has just performed
an operation that alters A. When Py commits this new value to its own cache, it must
also be committed to the cache of P; to ensure that all calculations thereafter remain

correct.

Strategies employed to maintain cache-coherency vary between architectures. TILE64
[15] uses an L2 cache shared between several neighbouring tiles to unify the contents
of the processor-local L1 caches. Centip3De [17] places caches that are shared locally
between four processors on the system network, which support specific coherence traffic.
Intel’s prototype array processor [18] includes a hardware-supported message-passing
protocol to maintain cache-coherency. The SPARC M7 [19] uses a specific network to
maintain coherency both within a single chip and within a multi-chip cluster. As a final
example, the IBM Blue Gene/Q chip [39] uses L2 caches to maintain coherency similarly
to TILEG64, but also extends this capability off-chip in a similar manner to the SPARC
M7.

22 Chapter 2 State of the Art

2.1.1.5 Single-Program Multiple-Data

P
___________________ Machine 1
Py
Problem Data-set
1 P Machine N — 1
P Machine N

Figure 2.5: Single-Program Multiple-Data (SPMD) architecture.

SPMD is a subset of MIMD where there is no implication of instruction-level synchrony;
each program is allowed to execute at its own pace. Cluster computers are the most com-
mon example of this, where they are essentially a large number of networked processors
that make no attempt to maintain cache-coherency. Sequence points may be introduced
into the control flow at regular points to enforce a level of global synchrony if required.
For example, if an application is comprised of a sequence of steps that each depend on

the result of the previous.

A barrier is a common way of introducing sequence points. Consider the set-up shown in
Figure 2.5. Suppose a workload is uniformly distributed over processors {P;;i € [1, k|} in
a roughly uniform manner, but, for the sake of argument, P, and P» are slower than the
others. All processors begin working on their specific task and then enter a barrier state
once they are complete. A processor may not then leave the barrier until released, which
is usually issued once all the processors have entered the barrier state. The behaviour
resulting from this is that all processors advance at their own rate towards a specific
goal, and may not begin working towards the subsequent goal until all processors have
finished.

Typically, an SPMD approach is used to solve problems at a high level of granularity

with each section assigned to a dedicated processor as shown in Figure 2.5. However,

Chapter 2 State of the Art 23

Intel created an experimental compiler, ispc, which can take a conventional C+-+ pro-
gram as input and synthesise a binary that can be distributed over many processors [46].
Homogeneous core sets are assumed to take advantage of any SIMD features available
locally. Sequence points are automatically inserted to ensure the correctness of the re-
sults, which opens this technique up to fine-grain parallelism. Additionally, the compiler
introduces the concept of ‘coherent control flow’ and ‘uniform data-types’ which increase

performance, in certain cases, through near lock-step instruction execution.

2.1.1.6 Multiple-Program Multiple-Data

Job List

Dispatcher

P P, l Py_1

Collator

Py

Result Database

Figure 2.6: Multiple-Program Multiple-Data (MPMD) job-based architecture.

MPMD architectures are not as rigidly constrained as the others presented up to this
point. Multiple instruction and data streams afford a high degree of flexibility to tai-
lor the approach to the particular problem at hand. A typical architecture given in
Figure 2.6 processes a unit of work called a job as they arrive. This is appropriate for
workloads with a high degree of variance in the data or the processing of each job. In the

example in Figure 2.6, the Dispatcher node is responsible for issuing a job to the most

24 Chapter 2 State of the Art

appropriate Worker. There is no requirement for the workers to be homogeneous, so the
“most appropriate” worker might be the one running the correct program to process the
data of the job.

Proximity Sensor Control Plan
Collision Control Plan
Avoidance Executor
P1 P2
Propulsion
Control

"]

Propulsion System
Figure 2.7: Multiple-Program Multiple-Data (MPMD) distributed architecture.

An example of an MPMD application can be seen in the robotic control application of
Figure 2.7. In this case, each component of the robot has a program associated with it
to perform specific processing. These programs may be running on a single processor
or distributed across various processors in the robot, each potentially using a different
operating system [47]. ROS! is an example of an open-source platform designed to

support these kinds of architectures.

2.1.1.7 Non-uniform Memory Access

Shared memory computers, regardless of any other classification, fall into one of two
categories. Systems in which each processor has a direct connection to the system
memory have Uniform Memory Access (UMA) as shown by Figure 2.8 [23]. In these
systems, each processor pays the same latency cost to access any part of the shared
memory; all memory access times are uniform. Previously mentioned examples of this
are TILE64 [15] and Centip3De [17].

'Robot Operating System—http: //www.ros.org/

http://www.ros.org/

Chapter 2 State of the Art 25

A N N N A A N N

[R e A A ____l [R e A A ____l
1 \ 4 Y A 4 A 4 1 1 \ 4 \ 4 Y A 4 1
! 1 i 1
! 1 ! 1
' Po || Po || Pu||P2| v | P || PP || P | o
: Lo :
| |

Figure 2.8: Uniform Memory Access (UMA).

However, memory devices will typically have insufficient ports to service a large number
of processors at maximum efficiency. A Non-uniform Memory Access (NUMA) archi-
tecture, as shown in Figure 2.9, reduces the number of processors connected to a single

memory, thus improving the memory bandwidth per processor.

Figure 2.9: Non-uniform Memory Access (NUMA).

This technique is well suited to problems where each processor operates on a disjoint
piece of the overall problem, because long-range memory accesses must now pass through

the system bus which will typically be slower than the memory interface.

26 Chapter 2 State of the Art

2.1.1.8 General-Purpose GPU (GPGPU)

Modern Graphics Processing Units (GPUs) are highly optimised SPMD architectures
targeted and rendering advanced 3D graphics in as little wall-clock time as possible.
They are fundamentally streaming devices with several processing stages capable of

operating on many pixels in parallel, as shown in Figure 2.10.

Vertices and Properties

|

Vertex Scheduler

Vi Vo oo |Vt v,

Rasteriser GPU Memory

GPU Memory

Figure 2.10: Simplified block-diagram for a generic GPU (adapted from Fig-
ure 1 of Tarditi, Puri, and Oglesby [48]) with 1 vertex processors and p pixel
Processors.

The vertex- and pixel-shader processor stages each implement highly-parallel floating-
point instructions to support the huge number of vector and matrix manipulations re-
quired in 3D graphics. By mapping non-graphical data-sets into the appropriate graph-
ics memories, this enormous compute resource can be used to accelerate many other

computations without requiring a large-scale MIMD machine [48].

An unfortunate weakness of this approach is the large overhead of setting up a GPU.
Compiling shaders is usually performed at run-time so that the GPU hardware can be

correctly targeted, and the input data-set must be appropriately organised to fit into

Chapter 2 State of the Art 27

the GPU texture memory. GPGPU computation is therefore not universally applicable

and has a set-up cost that must be mitigated before a performance gain is noticeable.

2.1.2 Difficulties
2.1.2.1 Resource Contention

It is rare that a program, of any sort, does not need to access some system resource in or-
der to complete its task. These resources include particular in-memory data-structures,
data-files on storage media, and specific hardware resources such as sensors or specific
accelerators. Parallel computing complicates this issue because several concurrent pro-
cessors may require access to a resource being shared between all processors on the host

machine, and perhaps even across the whole network of a cluster machine.

Dijkstra [49] identified the parts of a program that access these resources as ‘critical
sections’ and presents an algorithm to protect them, introducing the concept of “locks.”
The algorithm is predicated on the notion that no processor may enter its critical section
until all processors are sure which one has been granted access. Once the work inside the
critical section is complete, the processor releases the lock and the arbitration process
begins again. These locks are commonly called mutezes which is a contraction of “mutual

exclusion.”

Process 1 | | Process 2

System Bus

Resource A Resource B

Figure 2.11: Example architecture containing a single processor, running two
processes, connected to a bus hosting two system-level resources.

Consider the hardware architecture given in Figure 2.11. In this example, both software
processes are executing on a single processor (though this is not required to maintain the
correctness of the approach) and are planning to make use of Resource A. Associated
with the resource is a mutex, M4, to protect against contention. Figure 2.12 shows a
flow of events that could occur during the execution of these processes. It is important
to note here that (a) there is no guarantee that Process 1 would be granted access first

on physical hardware, and (b) Process 2 stalls until Process 1 relinquishes the lock.

28 Chapter 2 State of the Art

Enforcement of this software protocol ensures that mutually exclusive access is granted

to Resource A.

t Process 1 Process 2
lock M4 lock M4
blocks

unlock M4
do work with A

3 do work with A 3

unlock M4

Figure 2.12: Two processors using a single lock, M 4, to protect a single resource.

Dijkstra’s original formulation required that a single memory location served, essentially,
as an arbiter, and that any write race-conditions were appropriately resolved by the
memory hardware. Also assumed is that all processors in the system have uniform
memory access privilege, which is likely to be true on an architecture such as that in
Figure 2.8. Consider instead a NUMA architecture (Figure 2.9) where only chip-local
processors have write-access, and all others are only granted read access: clearly, the

algorithm will no longer work.

An advancement is to use the “bakery algorithm™ [50] in which all processors assign
themselves a unique number locally, the lowest of which (not necessarily the processor
that attempts to lock the mutex first) is granted access to their critical section. It is
assumed that all processors have read access to all distributed memories. Processors
mark their interest in the mutex before embarking on a hardware-mediated controlled
race condition to assign the unique identifiers. Once all identifiers have been assigned,
locks are granted in a distributed manner until all have been granted exclusive access

once.

2.1.2.2 Deadlock

The example in Figure 2.12 is somewhat contrived because both processes are vying for
a single resource. Consider instead the example in Figure 2.13 where both processes are
vying for both resources. Process 1 locks M4 at the same time Process 2 locks Mp, next
both processes attempt to acquire mutexes already held by the other process. The two
processes are now in an mutually-assured deadlock from which neither can escape [51,
pgs. 151-152].

Deadlock avoidance is a notoriously difficult parallel programming problem because of

the issue shown in Figure 2.13, which is astonishingly simple to produce. A potential

2The arbitration method is similar to a bakery where each customer draws a ticket with a unique
number which is called in order.

Chapter 2 State of the Art 29

t i Process 1 i Process 2
i lock My |} lock Mp
 lock Mg+ lock My
| \ blocks | " blocks
{ v v

Figure 2.13: Two processors using a pair of locks, M 4 and Mp, to protect the
two resources of Figure 2.11.

workaround here would be to simply not use any locks at all. Software Transactional
Memory (STM) replaces the notion of locks with a transaction log, local to each thread,
containing all variable changes to be committed to main memory at the conclusion of
a block of execution. By introducing constructs that guarantee a block only contains
memory operations (i.e., none that are irreversible, such as commands issued to some
peripheral device), transactions can be checked against the system memory, atomically,
before being committed. If the target memory has been modified by an existing thread,
the block of code can be executed again based on this new data and a new transaction
log constructed. Embracing this technique allows parallel code to be written without

resorting to locks, hence removing the potential for deadlock [52].

2.1.2.3 Synchronisation

Synchronisation between multiple threads of execution spanning multiple processors is of
particular interest on SPMD and MPMD architectures. The problem to be solved will be
divided into smaller parts, on which each concurrent program can work independently.
Perhaps the most obvious case for synchronisation is merely detecting when all the
parallel threads of execution have completed their task. Computations involving several
independent stages, where each subsequent stage builds on the results of the previous,

serves as another example.

A commonly employed technique to achieve this is barrier synchronisation. Each pro-
cessor may enter the barrier whenever the implementation deems it appropriate (e.g.,
after a result has been computed), but may not leave the barrier state until it has been
released. Typically the release is triggered by all processors having entered the barrier,

thus allowing advancement into the next stage of processing.

Barriers may be implemented using shared or distributed memory, and often take advan-
tage of the mutual exclusion locks previously described [53]. Alternatively, the barrier
can be achieved by specialist hardware as in the IBM Blue Gene/Q [54]. In this partic-

ular implementation, the barrier is implemented in the network hardware itself.

30 Chapter 2 State of the Art

CPU A Data CPU B Data Location X in

t .
Event Cache Cache Main
Memory
0
CPU A reads X 0 0
CPU B reads X 0 0 0
CPU A writes 1
to X 1 0 1

Table 2.2: Cache contents for two processors demonstrating the need for cache
coherence (reproduced from Figure 5.35 of Patterson and Hennessy [23]).

2.1.2.4 Cache Coherency

Caches are common in all types of modern computer. In a multi-core setting, this causes
a problem because each processor could have a different view of the same memory
location. This is even true of a shared memory UMA system like that of Figure 2.8
(assuming the processors here had caches). Consider the flow of events for a two-core
system given in Table 2.2. Both CPUs read the same memory location, but the change
in value performed by CPU A is not propagated to CPU B.

Maintaining cache coherence avoids the problem illustrated in Table 2.2 by ensuring that
all caches have the same view of a particular location. One of the most popular cache
coherence protocol is “snooping”, where each cache maintains a record of the sharing
state of a cache-line along in addition to the usual state [23, pg. 536]. A shared bus
connects all of the caches together so that writes are propagated to all caches in the

system that contain the same cache-line.

2.1.2.5 Inter-Process Communication (IPC)

A heavy emphasis has been placed on inter-processor communication in much of what
has been described so far, but in real workloads the communication takes place between
the processes and not the processors themselves. In a real system, inter-process com-
munication will almost never carry a uniform cost. A processor with multiple cores will
be able to used shared memory for IPC, but a system bus or a network protocol will be
required for processes running on another physical chip. Consider the NUMA architec-
ture presented earlier (Figure 2.9), here processes running on P; and P, will be able to

communicate far more efficiently than processes on P, and Ps.

Communication is also a sequential task. Preparing the data for transmission (and

subsequently decoding it on the receiving processor) may benefit from the use of SIMD

Chapter 2 State of the Art 31

instructions, for example; however, the transmission itself contributes heavily to the s
term in equation (1.6). A mutex- protected resource on a NUMA system could lead to

a large s contribution and hence suffer a large performance degradation.

2.1.2.6 Load Imbalance

Improperly balanced workloads can lead to some processors being idle whilst others are
busy completing their task [55, pgs. 135-136]. Recall the architecture of Figure 2.5.
When it was first introduced, an example was given where a workload was uniformly
distributed over all processors, but that P, and P, offered less performance than the
rest. In this situation, the other processors would finish their work before P; and P, and
thus be idle. The total idle time incurred contributes to an overall drop in processor

utilisation.

SPMD architectures are particularly sensitive to workload imbalance if the individual
computers that comprise the machine are of varying ages and technology levels. Regular
sequence points can make this worse as it can skew the ratio of idle time to processing

time for the worse on the faster cores.

Kumar, Grama, Gupta, et al. [55] also identify a special case that can cause significant
performance degradation: parts of a program that cannot be parallelised at all might
require that a single processor picks up the task, leading to all other processors in the

system being idle simultaneously.

2.1.3 Communication
2.1.3.1 Chip Multi-core Systems

Processors in single-core systems have full access to the entire system memory-map.
In addition to the system memory, this memory-map will include the registers of any
devices the processor is expected to control. Some peripheral devices may include small
sets of memory of their own (such as the transmit/receive buffers of a communications

controller).

Moving data between these smaller memories and the system memory is an unnecessary
burden for the system processor. Typically a Dynamic Memory Access (DMA) engine
will be present to perform the copying of data instead of the processor. Once the copy
has been completed, the DMA engine will raise an interrupt request on the processor
so that the freshly copied data can be processed. This is often called latency hiding
because the processor can pause the task that requires the data until the DMA issues
the interrupt, and perform other useful work whilst the copy is taking place. From the

perspective of the paused task, it appears as if the operation has taken zero time.

32 Chapter 2 State of the Art

Corelink™ CCN- 502 Cache Coherent Network

0-8MB L3 cache Snoop Filter

Menory Menory N7 h
Controller Cortroller N etwork Interconnect
DMC-520 DMC-520 a) NIC-400

ey Iy .
[Dolgrzazoo] [Dor)z(fazoo L\ DORE 200) L\ DDF)Z(47~232004,\‘ G=D G @)D

Figure 2.14: ARM CoreLink™ CCN-502 system diagram showing an asymmet-
ric multi-core system (comprised of Cortex-A57 and Cortex-A53 processors)
sharing a cache-coherent system bus (taken from ARM Ltd. [56]).

Chip multi-core processor (CMP) systems are essentially the same but with multiple
processors sharing the bus. Figure 2.14 shows an asymmetric multi-core system with
ARM Cortex-A57 and Cortex-A53 processors sharing the system bus. With many pro-
cessors in the system, cache coherency (described earlier) becomes an important issue to
mitigate. This system enforces cache coherency by embedding the L3 cache (fitted with
a snooping filter) into the network itself. Memory accesses performed by all processors
(including peripheral register accesses) are therefore guaranteed to be coherent between

all other processors.

2.1.3.2 Networks

Large computer systems are built from multiple chips and, often, multiple smaller com-
puters. In these cases, the “System Bus” of Figure 2.9 is replaced by a network. The
bandwidth and latency of these networks varies depending on their intended purpose,
however the overhead of the network will always degrade performance below that of a
system bus. Chip-level networks are often preferred over dedicated wiring, despite the
loss in performance, because they can simplify the design overall by providing a common
interface to all blocks [57].

Inter-processor networks in the case of systems containing two physical processor chips,
such as a desktop workstation or a headless server (i.e., without video output), will have
a large bandwidth and a low latency. On the other hand, a cluster consisting of multiple
discrete servers will be connected by a network that, while still high-performance, will

be slower overall than the inter-processor network.

Networks are constructed from endpoints, routers, and switches. Endpoints are the

components that the network is to connect together—the sources and sinks of data.

Chapter 2 State of the Art 33

Routers and switches work closely to control how this data flows from the source endpoint
to the sink. A router will inspect part of the packet for routing information (e.g.,
a destination address) and set the switches to control the flow of data. This close
relationship means that it could be argued that switches are a sub-component of a

router.

A crossbar switch, shown in Figure 2.15, is commonly used in both intra- and inter-chip
networks. A crossbar switch is capable of connecting any of its n inputs to any one of its

m outputs at a time [58]. For this reason, the shorthand n x m crossbar is often used.

Figure 2.15: An n x m crossbar switch with n input ports and m output ports.

Network traffic consists of a flow of packets that are themselves a float of flits. A packet
is a complete package of data that a source wishes delivered to the appropriate source. A
flit is the smallest unit of data router can process, which is usually equal to its word-size.
Consider that a source processor constructs a packet of N, bits and issues it to network
with an flit-size of N bits: each router will take N, /N clock cycles to fully handle the
packet.

Routers typically employ one of the following switching methods:

Circuit switching reserves the complete route from the source endpoint to the sink
and allows a packet to flow through it uncontested, similar to a telephone exchange.
Any other route requiring the same switches will be blocked until this wvirtual
channel has been closed. For example, consider that a virtual channel is established
between nodes P; and Ps of Figure 2.16 (shown in blue), and then P; wishes to
send a message to P3 as well. The only route it can take is via Pg (shown in green)
because P, is reserved as part of the first virtual channel. The red route shows the

failed first routing attempt.

Packet switching does not require that a virtual channel is established and instead
allows the data to take whichever route is most appropriate at the time it is needed.
For example, consider again the previous example transmission between P; and
P3, but in this case a large amount of data is being sent. In a circuit-switched
system, the virtual channel would remain present for the entire time that data is

being sent. However, in a packet-switching setting, the large transmission would

34 Chapter 2 State of the Art

be broken up into network packets that each hold a portion of the data and would
be routed individually. Ps’s message could be interleaved with the flow between
P, and P5 through P, under this regime. This is a more complicated approach
because it requires that the router in the sink endpoint correctly re-assembles the

full message before delivering it to the processor.

° S & 2
= aa)] —~ M
___ I || | .
Buffer Buffer Buffer
Buffer Buffer Buffer
gj 5] g’" 5}
Py & =N B[Sl B
© M < M
[] [] []
‘ Buffer Buffer Buffer
Y v
‘ Buffer Buffer Buffer
[] [] []
2 S & <
= aa)] ~ M

Figure 2.16: Example of a network of crossbar switches with buffered I/O ports
connecting a set of processors.

In addition to these two switching strategies, there are also three commonly-used buffer-
ing (or flow control) strategies. Each tile in the example system of Figure 2.16 contains
a processor, an N X N crossbar switch represented by the thick grey lines, and a buffer
on each I/O port. The size of these buffers (which are seperate for the input and output
ports) governs which strategy can be applied.

Cut-through flow control (also wormhole routing) [58] only requires that a single flit
is buffered at each switching stage, effectively acting as a distributed pipeline for the
message. The channel does not need to be reserved ahead of time, making it compatible
with both circuit- and packet-switched networks. The key drawback with this approach
is that multiple packets in transit can collide, at which point one must cease its progress
to allow the other to complete. Once the collision has been resolved, the second packet

can continue its journey. This drawback is similar to that of circuit switching.

Chapter 2 State of the Art 35

Virtual cut-through resolves this issue by increasing the buffer size to hold a complete
packet. When there is no contention on the network, it behaves identically to cut-through
routing by only buffering a few flits at a time (i.e., forming a pipeline). However, if a
packet encounters congestion on the network, the routers have sufficiently large buffers
such that the last one in the chain can receive the packet entirely, thereby removing
it from the network and preventing the congestion that would otherwise be present in

cut-through routing.

Finally, store and forward is the simplest case for routing if the buffers are large enough
to store a complete packet. A route will receive a packet in its entirety and then forward
it onto the next router once the routing information has been analysed. Essentially, this

is the same as a virtual cut-through system with large amounts of congestion.

2.1.3.3 Intra-chip Networks

Intra-chip networks tend to be the fastest of all networks and essentially serve as an
alternative to a system bus [57]. ARM’s CoreLink network shown in Figure 2.14 provides
an example of the typical features of an on-chip network. Processors are connected to
various on-chip peripherals and to the system main memory. From the perspective of
each processor, this network will appear as a linear memory-map, similar to a standard
system bus. Due to their close proximity to processors and memories, intra-chip networks

usually either support or provide cache-coherency.

These networks commonly use crossbar switches and virtual cut-through routing to
maximise bandwidth and minimise latency [15, 17, 18]. However, alternative approaches
are also viable. The SPARC M7, for example, uses a custom ‘multi-stage data network’
which consists of separate request and response stages [19]. The request network uses a
4-ring topology, while the response network is point-to-point. The combination affords
this on-chip network a bandwidth of about 4Tbps.

Another multi-stage design is the swizzle-switch network [59] which divides network
access into arbitration, data, and release stages, allowing it to support various quality-
of-service (QoS) levels. Higher QoS traffic will always win the arbitration stage over
lower levels, but a second arbitration stage uses least-recently-granted to ensure fairness
in each QoS level. Essentially, this network functions as an advanced crossbar capable

of providing a bandwidth of up to 4.5Tbps.

2.1.3.4 Inter-chip Networks

Networks for connecting multiple chips in a single machine (e.g., multiple processors
fitted to a single server motherboard) are usually point-to-point, with crossbar-switch-

backed routing stages in each endpoint. Networks at this level will usually serve as the

36 Chapter 2 State of the Art

off-chip peripheral bus for the processor and are therefore not guaranteed to provide
cache-coherency. Additionally, despite contributing to the system memory-map, it is

highly unlikely that they will offer a path to main memory.

Intel QuickPath Interconnect (QPI) is used to create a network of processors capable
of sharing memories and devices to which they are connected in modern desktop and
server computers [60]. Figure 2.17 provides a typical use-case for QPI. All processors
are allowed to access the memories and chipsets attached to any other processor, thus
creating a NUMA architecture. Each endpoint of the network contains a cross-bar switch

to support this.

QPI is specifically designed for multi-chip systems, hence cache-coherency is built into
the protocol stack. This applies to both memories and peripherals hosted by any of
the chipsets. That is, P; is permitted the use of a peripheral hosted by the chipset
connected to P3 in addition to the local memory of P3, with coherency mediated by the
QPI hardware itself.

I II/O Links

Chipset
A S— >
: Py Py
> >
Merhory Merﬁory
> >
P Py
> >
Chipset

I II/O Links

Figure 2.17: A typical QPI use-case produced from Figure 6 of Intel Corporation
[60]. Memory connections are shown in blue and QPI connections are shown in
purple.

HyperTransport serves a similar purpose as QPI for AMD processors, but is more general
as it has been used in Cisco routers, and IBM and Sun Microsystems severs as well [61]. A

similar multi-processor use-case for HyperTransport is show in Figure 2.18. This network

Chapter 2 State of the Art 37

also uses point-to-point connections but operates slightly slower at 22.4GB/s (in contrast
to 25.6GB/s for QPI) and does not provide hardware cache-coherency support. As can
be seen from Figure 2.18, HyperTransport can serve as a high-speed system network
hosting multiple bridges into other communications protocols. Whilst this is possible
with QPI, peripheral management and communications protocol bridging is delegated

to the chipset.

Processor Processor
One Two
i Memo 3HT |¢ »>| 3HT Memo
Memoryl— Poﬂw Ports Ports Poﬂw —| Memory
HyperTransport 1
Links
v
Memo 3HT [3HT |Memory

m Memory I* Port | Ports Ports | Port Memory

Processor Processor

Three Four

| Bl 1 ———————————————————————————————— 1
I |
| HT Ports H T ‘ HyperTransport [|

* *| HyperTransport |* »
| Additional HT Link | to PCIBridge | HT Link to InfiniBand [— |
| Bridge |
| Processor |

Clusters .] to high-speed

I I
| HT Link | /O devices |
I I
| PC| Bus HyperTransport — I
I to GbE — I
| Bridge I |
I I
| Legacy Legacy |
I PCI IfO eee PCIl/O |
: Optional Device Device :

Figure 2.18: An inter-processor use-case for HyperTransport showing how pro-
cessors connect to each other and to system peripherals (Figure 11 of [61]).

2.1.3.5 Cluster Computer Backbone Networks

Most distant from individual processor cores are the inter-computer networks which serve
as backbones. These networks are present in a wide range of computing systems, from
supercomputers and cluster computers to office networks. They incur greater latency
and offer low bandwidth than the networks previously introduced, and for this reason

provide no guarantee of cache-coherency.

Backbone networks usually offer a great degree of flexibility in their connection topology
due to their scale. Careful selection of a topology is important to minimise the number

of hops (i.e., routing stages) traffic must take to traverse the network [58].

Blue Gene/Q is permeated by a 5D torus network of processing and I/O nodes (for
storage) [62]. Each link on this network has a transfer rate of 2GB/s and are controlled
by messaging units which are integrated into the same die as the processors. Despite
this high-locality, there is no attempt to maintain cache-coherency globally across the

machine.

38 Chapter 2 State of the Art

Myrinet [63] has been specifically designed with cluster computing in mind and focuses
on reducing the cost of communication at each stage, aiming to reduce the s contribution
of equation (1.6) as much as possible. A large focus has been placed on reducing the
number of buffers through which processes wishing to transmit and receive data must
copy it. On platforms that support it, Myrinet drivers are capable of copying data
from user-space memory directly into the transmit buffer on the network-interface-card
(NIC). Additionally, Myrinet traffic is source-routed which means the complete path that
a packet must take is determined at the source. Each receiving node strips the top word
from the header and uses this to route the packet to the next node. Once all routing
information has been removed, the packet has arrived at its destination. This heavy
focus on minimising serial overhead and simplistic routing has made Myrinet viable as

a host for peripheral devices [64].

Many cluster computers (and networks of computers in general) use Ethernet rather than
a special-purpose network. It was originally designed as a general-purpose network, and
this ubiquity has driven efforts to improve the performance. Recent advancements have
increased the effective bandwidth close to that of Myrinet, making it a suitable (and
often cheap) alternative in cluster computers [65, 66]. Despite these advancements,
Ethernet still has a comparatively high latency when compared to Myrinet, however

continual efforts are reducing this difference further [67].

2.1.4 Software and Frameworks
2.1.4.1 Asynchronous I/O

Asynchronous I/0 is a software system that implements latency hiding described earlier.
It is usually implemented using an event loop and hence does not provide a parallel
programming interface to the programmer. Instead, parts of the program will request
that an I/O operation is started, leaving the framework to issue an event once it has
completed. Often this will be implemented by the framework spawning one or more
threads to handle the I/O operations in a blocking manner, reporting the results to the
main thread once complete. This is an implementation detail that is hidden from the

main program.

Node.js [68] is an implementation of the JavaScript language commonly used to drive
the back-end of modern websites, and is heavily rooted in this approach. The event
loop is spawned automatically when the interpreter starts, allowing Node.js programs to
schedule and respond to events immediately. Listing 2.1 shows an example of how one
might read a file using the FileSystem API [69] that forms part of the standard library
of Node.js. Line 4 contains the call to fs.open which accepts an anonymous function
(i.e., a function defined in-place) that will be called when the operation has completed.

fs.open then returns immediately allowing the program flow to continue. In this case,

Chapter 2 State of the Art 39

there is no more code to execute, so Node.js idles until there is an event to dispatch.
Once the file has been opened, the anonymous function is called with the handle of the
file that has been opened.

1 var fs = require("fs");
2 var buf = new Buffer(1024);

4+ fs.open('input.txt', 'r', function (err, fd) {

5 if (err) {

6 return console.error(err);

7 }

8

9 fs.read(fd, buf, 9, buf.length, 0, function (err, bytes) {
10 if (err) {

11 return console.log(err);

12 }

13

14 console.log(bytes + " bytes read");
15 1)

6 });

Listing 2.1: Reading a file using the asynchronous API provided by Node.js.

Python 3.4 offers a similar capability in the asyncio module of the standard library [70].
Instead of invoking callbacks as with the Node.js, asyncio switches between various co-
routines assigned to each I/O resource. When a co-routine would perform a blocking
operation, such as reading from a file, it instead implicitly de-schedules itself. The main
event-loop flags this co-routine as blocking on an I/O stream and schedules another

co-routine that is not waiting on any resources.

It is important to note that in both of these APIs, there is only a single thread of
execution in the program. If an anonymous function (in the case of Node.js) or a co-
routine (in the case of Python) performs another form of blocking operation, such as
iterating over a very large number of items, the handling of any I/O tasks that complete

in the meantime will be equally delayed.

2.1.4.2 Multiple Threads

A process will always have at least one thread associated with it. On small embedded
systems built around microcontrollers, this is explicit because the process has exclusive
access to the hardware, which is only capable of hosting a single thread. On larger
systems capable of hosting a modern operating system, this fact is usually not obvious

to the programmer.

Spawning multiple threads inside a processes is typically only achievable on larger op-

erating systems, but is not limited to systems with multiple process cores. Real-time

40 Chapter 2 State of the Art

Operating Systems (RTOS’) will provide some level of thread support to aid with latency
hiding from slow I/O resources and to simplify authoring of the software by providing
some encapsulation. The same is true of desktop and server operating systems running

on systems with only a single core, but this is becoming exceedingly uncommon.

Regardless of the architecture of the host system, threads allow various parallel program-
ming techniques to be used, from latency hiding in the simplest case, to true parallel
speed-ups in the most complex. Synchronisation, as mentioned earlier, plays an impor-
tant role here to eliminate race conditions on shared resources. Consider a thread that
has been spawned to handle blocking I/O operations to hide their latency. There must
exist a mechanism for it to communicate with the main thread, else they may access

shared resources simultaneously and cause an irrecoverable fault.

pthreads is the POSIX threads library forming part of the Linux operating system [71].
It is written in ‘C’ and has been also been ported to other operating systems, making
it a widely available threading library. For synchronisation between threads, it relies
primarily on mutex locks and related variants.

1 #Include <vector>

2 #include <thread>

3 #include <future>

4 #include <numeric>
5 #include <iostream»

7 void accumulate(std::vector<int>::iterator first,

8 std: :vector<int>::iterator last,

9 std: :promise<int> accumulate_promise)
10 {

11 int sum = std::accumulate(first, last, 0);

12 accumulate_promise.set_value(sum); // Notify future
13}

14

15 int main()

16 {

17 std: :vector<int> numbers = { 1, 2, 3, 4, 5, 6 };

18

19 std: :promise<int> accumulate_promise;

20 std:: future<int> accumulate_future =

21 accumulate_promise.get_future();

22 std: :thread work_thread(

23 accumulate, numbers.begin(), numbers.end(),

24 std: :move(accumulate_promise));

25 //...do some other useful work. ..

26 std::cout << "result=" << accumulate_future.get() << '\n';
27 work_thread. join(); // wait for thread completion
28}

Listing 2.2: Computing the sum of a set of numbers using a C++ worker thread.

Chapter 2 State of the Art 41

A more recent cross-platform multi-threading tool is std: :thread in the C++11 stan-
dard library [72]. Mutex locks are also available with this approach. However, a
promise/future interface is also provided which can make latency-hiding and synchroni-
sation with long-running computations simpler. A std::promise [73] encapsulates an
agreement (of sorts) that a value will be available for, or from, a thread at some point.

A std: : future [74] provides the read access component of a promise.

Listing 2.2 provides an example of a promise/future relationship being used. Lines 17-21
allocate the promise that will wrap the result, the future that will be used to retrieve
it, and then create the thread that will perform the work. The accumulate function
(lines 7-11) then performs the sum and sets the result in the promise. Line 25 prints the
result of this sum using the future obtained on line 21 and prints it to the terminal. It
is important to note that in this example, accumulate_future.get() blocks until the
worker thread has completed its task. In a real-world situation, additional useful work
would be performed between starting the thread and waiting for the result.

1 #include <vector>

2 #include <thread>

3 #include <future>

4 #include <numeric>
5 #Iinclude <iostream»

7 int accumulate(std::vector<int>::iterator first,

8 std: :vector<int>::iterator last)

o |

10 return std::accumulate(first, last, 0);

1}

12

13 int main()

u |

15 std: :vector<int> numbers = { 1, 2, 3, 4, 5, 6 };

16

17 std: :packaged_task<int(std: :vector<int>: :iterator,

18 std: :vector<int>::iterator)>

19 accumulator(accumulate);

20 std: : future<int> accumulator_future =

21 accumulator.get_future();

22 std: :thread work_thread(

23 std: :move(accumulator), numbers.begin(), numbers.end());
24 //...do some other useful work. ..

25 std::cout << "result=" << accumulator_future.get() << '\n';
26 work_thread. join();

27}

Listing 2.3: Computing the sum of a set of numbers using a C++ packaged
task.

42 Chapter 2 State of the Art

Promises and futures are a useful technique, but as Listing 2.2 illustrates, code must
be explicitly written to support them. However, C++411 introduces another class,
std: :packaged_task [75], which can wrap a function and provide a promise/future
relationship automatically. Listing 2.3 shows the same program as Listing 2.2 but refor-
mulated to used a std: :packaged_task. The most important distinction between the
two is that the accumulate function (lines 7-11) does not need to accept the promise
as a parameter. This allows worker functions like accumulate to be re-used more often
in the program, perhaps in a synchronous setting for small data-sets and in a separate

thread when large.

A similar feature is integrated into the C# language. The async and await keywords [76]
provide an interface similar the std: : packaged_task but without the need to explicitly
allocate a thread. async methods return a promise that can be interrogated in a non-
blocking manner to allow useful work to be completed until the result is ready. The await
keyword then functions equivalently to the std: : future: :get method, by blocking until

the result is ready.

The threading approaches mentioned up to this point have focused on latency-hiding
and coarse-grained parallelism. OpenMP provides an alternative approach by introduc-
ing commands into the compiler to achieve finer-grain parallelism [77]. Listing 2.4 shows
an example (based on Figure 3.10 from Chapman, Jost, and Pas [77]) where a for-loop
that implements a matrix-vector product is explicitly marked for unrolling. The #pragma
command on line 6 requests that the compiler generates multi-threaded code, and iden-
tifies which variables will be shared across all threads (i.e., require synchronisation) and
which are thread-local. This approach is less general than the previously mentioned

methods, but can yield significant performance increases in structured computations.

1 void mxv(int m, int n, double x restrict a,

2 double * restrict b, double % restrict c)
s {
4 int i, j;

6 #pragma omp parallel for default(none) \

7 shared(m, n, a, b, c) private(i, j)
8 for (i = 0; 1 <m; i++) {

o ali] = 0.0;

10

11 for (j = 9; j < n; j++)

12 ali] += b[i * n + j] * c[j];

13 }

14 }

Listing 2.4: Using OpenMP to unroll a sequential loop into multiple threads.

Chapter 2 State of the Art 43

2.1.4.3 Multiple Processes

Multi-process applications provide similar performance benefits to those described in the
previous section, with the added benefit that the computation can be distributed across
many physical computers using an SPMD or MPMD architecture. Individually, the
processes may be multi-threaded to boost the performance of the part of the problem.
Multi-process applications can also be executed on a single machine where they function
similarly to a multi-threaded application. Typically, the overhead of multi-process com-
putation is more significant than spawning multiple threads, but provides the potential
for increased fault tolerance; if a single process crashes or halts, the overall application

can (potentially) continue to function.

The Message-Passing Interface (MPI) is a multi-process library that is commonly used
for scientific computation [78]. It has been standardised and has implementations avail-
able for many operating systems. The original use-case was similar to that shown in
Listing 2.4, with the two-sided send/receive communications of MPI-1 taking the place
of the shared variables in the #pragma directive. Since then, MPI-2 has added parallel
file I/O routines and one-sided put/get communications, which allows MPI applications
to take on an MPMD structure when more appropriate. Dynamic process management
in MPI-3 takes this further still, allowing ad-hoc MPMD structures.

Part of the reason for the wide-scale adoption of MPI is the process manager, mpich,
which allows software binaries to be distributed over all of the individual computers
forming a cluster machine. Submitting a job to the cluster machine therefore reduces to
an invocation of mpich with the appropriate binary and arguments. mpich then takes

care of synchronously starting the programs on the various machines.

An alternative to MPI that is more common in production systems and less common
in simulation systems is ZeroMQ [79]. Unlike MPI, ZeroM(Q does not aim to provide a
complete system capable of supporting multi-process applications. Instead, it is a library
that provides a set of communication topologies that can be used together throughout
an application. One-to-one, one-to-many, many-to-one, and many-to-many topologies
are provided, allowing applications to have heterogeneous communications throughout,

using the most appropriate for each set of components.

ZeroM@Q does not provide a process manage equivalent to MPI and relies on the system
architects to design a solution to start the processes. A key advantage over MPI is
that ZeroMQ@Q allows for code to start small using shared memory communications in
a single process, but permits it to grow into special-purpose multi-process applications
optionally spread over multiple machines (using TCP-backed communications) without

requiring significant changes to the code.

44 Chapter 2 State of the Art

2.2 Neuromorphic Computing

2.2.1 Biology

Neuromorphic systems are inspired by the resilience, power-efficiency, and massive par-
allelism of mammalian central nervous systems. Using the human brain as an example:
it contains an extraordinary number of neurons (about 10'!) embedded in a highly con-
nected network (about 10 synapses), yet only consumes around 25W and is composed

from elements that operate relatively slowly (around 10Hz) [35].

@Syn\api:;»'\’

Neuron
W S

Figure 2.19: A small neural network.

Axon

Figure 2.19 shows an annotated visual representation of a small neural network. Neu-
rons are the fundamental processing elements of the network. They can accept many
thousands of inputs from other neurons, and can connect to many thousands of other
neurons. Synapses serve as the inputs to a neuron and can be either inhibitory or
excitatory, which can roughly be considered as ‘active-low’ and ‘active-high’ in digital
electronics. Azons are the wires through which the neural signals flow, and behave

similarly to transmission lines.

There are a range of methods through which neurons communicate, but only spiking
neural networks are considered here. In these systems, neurons fire when their particular
conditions are met, and emit very small voltage spikes through their axons. These
spikes eventually reach the synapses, and cause an emission of neurotransmitter, which
is a chemical process that excites (or inhibits) the target neuron. Neurotransmitter is
a finite resource that must be recouped after use. This delay is called the refractory
period and places a natural limit on the number of effective spikes that can be discretely
identified by the receiving neuron. Typically, a single spike causes only a small release

of neurotransmitter, thus neurons tend to produce chains of several spikes.

Neurons are usually modelled by differential equations that relate their inputs to their
outputs. Two commonly used models are the leaky integrate-and-fire (LIF) [80] and
Izhikevich [81] models. Both compute the weighted sum of all incident spikes to de-

termine the membrane potential, which is a voltage that decays over time; excitatory

Chapter 2 State of the Art 45

synapses increase this potential whereas inhibitory synapses decrease it. If the mem-
brane potential exceeds a specific threshold, the neuron fires a spike of its own, which
costs energy and hence decreases the membrane potential back to below the threshold.
The Izhikevich model differs from the LIF model here by introducing a “recovery term”
into the differential equation to model the refractory period. Over time, the membrane

potential naturally decays in both models without a sufficient volume of spikes.

Adjusting the weights applied to the sum of incident spikes allows neurons (both mod-
elled and biological) to alter their behaviour over time. This learning process is called
plasticity. Spike-timing-dependent plasticity (STDP) is a method commonly used to
achieve this [82]. The synaptic weights mentioned above are tuned according to the
difference in firing rates between the pre-synaptic neuron (i.e., the source) and the post-
synaptic neuron (i.e., the neuron receiving the spike). Weights are increased if the spikes

arrive before the post-synaptic neuron fires, and decrease if they arrive after [83].

2.2.2 Hardware
2.2.2.1 BrainScaleS

Of the hardware platforms mentioned in this section, the FACETS system developed
for the BrainScaleS project [84] is the farthest from any parallel hardware previously
described. The core architecture consists of a full wafer-scale system where each neuron
is a physical transistor circuit [85]. For this reason, the architecture is very power-

efficient at the cost of being inflexible.

The system employs a multi-tier communication system, shown in Figure 2.20, to connect
the neuron models together both locally and between wafers. Top-level communication
between wafers and host computers are mediated by FPGAs. An application-specific
‘digital network chip’ (DNC) connects multiple high input-count analogue neural net-
work (HICANN) modules together and to the FPGA network. The traffic flowing gen-
erated by the HICANN modules uses address-event representation (AER) to represent
neural spikes [86]. AER will be explained in Chapter 3.

This system has been designed to simulate neuron models 10* times faster than biological
real time. Additionally, the wafer-scale approach allows a very high connection-density,

as each wafer holds 180k physical neuron models embedded in 40M synapses [86].

2.2.2.2 TrueNorth

IBM’s TrueNorth platform uses a highly-specialised core, shown in Figure 2.21a, which
hosts a set of 256 neuron units (i.e., outputs) connected to 256 axon units (i.e., inputs)

via a ‘synaptic crossbar.” Each neuron unit is configurable and hosts a “a wide variety of

46 Chapter 2 State of the Art

host PC | host PC
PCS
R Lt
[B
g%sx FPGA _|—>I FPGA
1 2 |
§F5) TT 1T) TT .
UOC 4x l DNC 4x
© |
o \ |
|

HICANNs

on-wafer
routing grid

wafer module 1 ! wafer module 2

Figure 2.20: Logical structure of the BrainScaleS off-wafer hierarchical commu-
nication network (taken from [86]).

computational functions and biologically relevant spiking behaviours” [87]. The neuron
models are updated using a 1kHz clock which permeates the entire fabric to enforce
global synchronisation at this rate. Between the clock pulses, each core is allowed to

operate in parallel, executing event-driven behaviours.

TrueNorth Chips

neurosynaptic core Chip Periphery Chip Periphery
dendrites synaptic = Flﬁ:
crossbar e, o> =
* 2 2j g
axons _— b g —
. e = L ok
i = a oo
. =l o - e,
. z 2 IR
: = AdA Ahk-d |2 © Al
PRNG|- zlx‘élex---zlx}neumns e 3
Off-chip wires
(a) TrueNorth core showing the axon/neu- (b) Network of TrueNorth cores both inside
ron connection fabric. a chip and at the boundary.

Figure 2.21: Structural diagrams of the TrueNorth platform (taken from
Akopyan, Sawada, Cassidy, et al. [88]).

Each TrueNorth chip contains a 64 x 64 matrix of the cores shown in Figure 2.21a,
resulting in one million neurons and 256 million non-plastic synapses per chip [88]. The
core matrix can cross chip-boundaries as shown in Figure 2.21b allowing larger neural
networks to be constructed from multiple chips. TrueNorth uses spiking neural models,
as with the BrainScaleS system. To date, the largest TrueNorth system constructed

comprised 16 chips for a total of 16 million neurons.

2.2.2.3 BlueHive

BlueHive is constructed from readily available Terasic DE4 development boards, built
around an Altera Stratix IV 230 FPGA [89]. The architecture shown in Figure 2.22

Chapter 2 State of the Art 47

implements the Izhikevich model with a 1ms integration time-step used to solve the
differential equations. Each FPGA is capable of hosting 64k neurons with 64M synapses,
leading to a fan-in of around 1k synapses per neuron. Several boards can be connected
by a 6GB/s network, enabling the simulation of larger neural networks. The largest
BlueHive system to date consists of 4 FPGAs, thereby supporting 256k neurons and
256M synapses. Synapse data is stored in an FPGA-local SDRAM affording the system

a level of run-time configurability despite being constructed from FPGAs.

,,,,,,,,,,,,,,,,,,,,,,,,,,,, High Speed Serial Links

o { [i o Processing Processing|..........
Lo i Engine Engine
P Processing Processing

Node Node

‘ ‘ Router

Processing Processing
Node Node

oo b Processing Processing|
‘ ’ b Engine Engine

\ [——— |Off—Chip Memory Interface } { E———

‘ Router Interface |

Spike
Auditor

—<«— Equation

i Spike

i |oft-Chip Memory Inler'acel

Figure 2.22: BlueHive system-level diagram (taken from Moore, Fox, Marsh, et
al. [89]).

The original design of BlueHive delegated the neural processing to an Altera NIOS soft-
processor before replacing this with a special-purpose processing pipeline. All FPGA
boards in the BlueHive system are connected to a secondary FPGA board and a Mini-
ITX computer which work together to program the ‘worker” FPGAs in parallel. This
allows BlueHive to use a neuron model other than Izhikevich, or even to replace the
neuron pipeline with a NIOS processor as before. Of the three architectures discussed
so far, BlueHive is the only system capable of executing simulations with non-neural

behaviour.

2.2.2.4 SpiNNaker

SpiNNaker is a custom ASIC designed to support neural network simulation using
readily-available ARM968 processors [35]. A full sized SpiNNaker machine will con-

tain over a million processors distributed over approximately 57k chips, or nodes. A

48 Chapter 2 State of the Art

block-diagram of a SpiNNaker node is given in Figure 2.23. Each processor is capable
of hosting 10 neuron models with a fan-in of, nominally, 10? synapses each. Overall, a

SpiNNaker machine can support 10° neurons with 10'? synapses operating in biological

real-time.
200 MHz
Y
e o
Link Link
—l»D-» Multicast >
Inputs D router Outputs
’ Communications ’
._D_> ; NoC Ouput .
o) atio communications
/
200 MHz

» CPU 1 CPU2| [CPU3 | |CPU4... CPU 20

System NoC

133 MHZ|

SDRAM interface

Y

A
SDRAM

Figure 2.23: SpiNNaker chip block diagram (taken from Plana, Furber, Temple,
et al. [90]).

Each node has a local 128MB SDRAM wire-bonded in the same package as the node
die and uses a self-timed network to communicate to its six immediate neighbours [91].
The self-timed nature of this network means that the communication rate naturally
falls as the processors apply back-pressure, helping to self-regulate the flow of traffic
through the system. The SpiNNaker nodes are embedded in a 2D torus network leading
to a bisection bandwidth of 4.8Gpackets/s [6]. SpiNNaker serves as the underpinning

technology for the thesis, and is explained in much more detail in Chapter 3.

2.2.3 Software

Neural simulations are the flagship applications for neuromorphic software. Each simu-
lator provides a range of models for neurons and neuron-synapse interactions, and aims
for a specific level of biological detail. As with the previous section, here we do not

aim to give a detailed description of neural simulation, but provide some insight into

Chapter 2 State of the Art 49

how current neural simulations enhance their performance using the parallel computing

techniques described earlier.

The selection of simulators described here is widely used in computational neuroscience.
Where appropriate, performance figures are given, but as each simulator targets a dif-
ferent level of biological accuracy and scale, a like-for-like comparison is not necessarily

achievable.

2.2.3.1 NEURON

NEURON [92] is a well-established simulator designed for a high level of biological
fidelity. Simulations may range from parts of single neurons up to circuits containing a
small number of cells. A particular emphasis has been placed on the dynamics of nerves,
where very detailed models based on electrical transmission lines have been derived [93].
Neuron models consist of multiple compartments into which cell membrane potentials are
bundled. An extra node with zero area is added to the transmission line model to serve
as the endpoint incident with the target neuron (i.e., the synaptic connection itself).
This approach slightly degrades the overall computation efficiency, but is justified by
the biological detail it provides.

NEURON itself is written in ‘C’ and ships with several pre-defined models for neurons
and synapses which treat cell membrane potentials as sets of simultaneous differential
equations. Additional models can be defined using the NMODL language, which is
somewhat ‘C’-like [94]. An interpreter in NEURON translates the NMODL code into a
‘C’ program which is linked against appropriate NEURON libraries.

Whilst parallel execution is not a key design intent for NEURON, parallel simulations
with it have been achieved using a Blue Gene/L. The Blue Brain project [95] ran NEU-
RON with automated fitting algorithms that inserted ion channels? into existing neuron
models, and then tunes the various parameters accordingly. On standard computing
hardware, fitting a single neuron with this improved functionality can take up most of a
day. Each neuron in this case is ‘morphologically and electrically unique’ [95] meaning
that fitting parameters for one neuron cannot be used or another. However, the paral-
lelism provided by the Blue Gene/L allowed around 10k unique neurons to be fitted in

just one day.

2.2.3.2 NEST

The NEural Simulation Tool (NEST) focuses on the size and structure of spiking neural
networks rather than offering precise biological detail for individual neurons [96]. Net-

works are constructed from nodes which are the fundamental units in NEST. Nodes may

3 A physical part of a synapse that controls the flow of neurotransmitters into a neuron.

50 Chapter 2 State of the Art

be a neuron model or a sub-network, and communicate with other nodes by transmit-
ting specific types of event through inter-node connection objects which model synapse
behaviours. In the simplest case, this model is simply a weight and a delay, but spike-

timing dependent plasticity (STDP) is also available.

Networks in NEST are not limited to a single neuron or synapse model thus enabling
heterogeneous simulations [97]. Additionally, events may take one of two types: discrete

for spiking neuron traffic, or analogue for AC/DC currents or membrane potentials.

NEST does not include a global event queue, instead constructing a full simulation from
a set of wvirtual processes which each have control of a number of network nodes and
connections. Both pthreads and MPI are used to manage these virtual processors, thus
enabling NEST to trivially expand across a cluster machine [98]. All virtual processes
perform neuron updates in parallel and then wait for a global synchronisation step (sim-
ilar to a barrier). After this step, new events are allowed to be exchanged between
the virtual processes. Due to the high number of events being passed around, a mini-
mal event description is transmitted that requires reconstruction from local data in the

receiver.

2.2.3.3 Brian

Brian [99] takes a slightly different approach from NEURON and NEST, by focusing on
being simple to use so that time taken to develop new models is minimal [100]. Brian
is written entirely in Python which has become popular for computational neuroscience
(and scientific work in general). Any Python shell environment provides the user with
the means to explore neural networks in an interactive manner. Neuron descriptions
have therefore been designed to be as concise as possible. Despite their brevity, they are

able to support short-term plasticity and STDP.

Neuron models are described using sets of differential equations which are written as
string-literals in Python code. Brian parses these strings to construct a mathematical
model of the desired behaviour which is then executed using the discrete event engine.
Internally, the update computation makes use of vector operations to offset any perfor-
mance impact that may be incurred by using Python. At present, there is no support
for distributed simulations, but the developers are planning to add GPGPU support

because graphics cards are more readily available [100].

2.2.3.4 PCSIM

Parallel Circuit SIMulator (PCSIM) follows design criteria that are a mixture of the three
tools previously mentioned [101]. Similarly to NEST, PCSIM aims to allow exploration
of large neural networks with models of less complexity than NEURON. As with Brian,

Chapter 2 State of the Art 51

the Python front-end of PCSIM allows circuits to be explored interactively using a
Python shell.

The PCSIM core is written in C++ for performance reasons and includes support for
multi-threaded execution as well as distributed parallelism with MPI [102]. This has
been demonstrated to support around 10° neurons, each with 10% synapses, on a cluster

of 20 machines.

A set of neuron models is included in the C++ core, and users are able to add new
models using either C++ or Python. Networks may be heterogeneous and may include
‘abstract processing elements’ which can accept discrete spiking signals, or analogue
firing rates and membrane voltages. The abstract processing elements are a particularly
powerful feature of PCSIM because the behaviour of a population of neurons can be

delegated to another simulator (e.g., Brian) [102].

2.2.4 Languages

Neural description languages exist to simplify the specification of neural circuits and to
aid collaboration by providing standardised file formats that can be shared via services
such as Open Source Brain [103]. The landscape is rapidly changing but two key ap-
proaches have emerged: procedural formats that resemble code and declarative formats
based on XML.

These description formats are not bound to any particular back-end or simulator, al-
lowing models to be ported between them. These descriptions can be made graphically
using tools such as neuroConstruct [104] that, whilst probably too cumbersome for ex-

perienced users, allows beginners to begin simulating networks quickly.

2.2.4.1 Procedural

PyNN [105] is the dominant procedural description language. It can target NEURON,
NEST, PCSIM, and Brian but has also been extended to support the neuromorphic
hardware platforms BrainScaleS [106] and SpiNNaker [107].

Whilst PyNN is often considered a language in its own right, it is in fact a Python
library that provides the same interface regardless of the chosen back-end simulator
[108]. It has been designed to provide a high level of abstraction which allows users to
define (a) populations of neurons with statistical connection characteristics rather than
requiring individual connections to be considered, and (b) projections which apply a

similar concept to connections between populations.

As PyNN can target a range of simulators, consistency between them is extremely im-

portant. This is achieved by including a set of models in PyNN that perform identically,

52 Chapter 2 State of the Art

whilst also providing an object-oriented means of defining custom models that will be-
have consistently between simulators. Internally, PyNN uses the most appropriate in-
terface for the selected simulator to prevent any potential performance deterioration
that may occur. To ensure the repeatability of experiments which may require the pres-
ence of random noise, PyNN includes a set of random number generators with means to
explicitly, and easily, define a fixed seed. Where a simulator interface is not available
for direct control, PyNN can generate NeuroML—a declarative format described in the

next section.

2.2.4.2 Declarative

NeuroML is an XML-based language capable of describing neural systems at various
levels of abstraction [109]. Level 1 includes MorphML which is used to describe the
structure of individual cells (i.e., their morphology). Level 2 brings ChannelML which
enables the description of synapse properties. Finally, Level 3 supports connections
between populations, external electrical inputs, and geometric positions of components
using NetworkML. Each level includes its own capabilities and also that of all levels below
it, so a Level 3 NeuroML file is capable of describing a complete network of individually-
defined cells. Descriptions are modular, allowing large descriptions to re-use smaller

components where possible.

As with PyNN, NeuroML is not bound to a particular simulator and can therefore
be used as a collaboration format. Unlike PyNN, however, NeuroML does not aim
to wrap any simulators directly, but certain tools (like NEURON) can load NeuroML
descriptions natively. The format is not completely general and only supports features

that are widely available to maximise the number of simulators it can be used with.

NineML [110] emerged to address limitations in both PyNN and NeuroML. First, neither
of these languages allow models to be expressed mathematically (i.e., like the input
stage of Brian). Second, NeuroML does not include any connection algorithms that can
generate complex layouts. Whilst PyNN does not explicitly support this either, it can
be achieved using standard Python code because PyNN is simply a library. The key
goal of NineML is to ultimately provide “a harmonized standard for representing most

type of models, including large-scale networks” [111].

Low-Entropy Model Specification (LEMS) [112] provides a language to describe the
low-level dynamics of biological system components, with a level of detail similar to
Brian. LEMS defines both an XML standard for declarative descriptions and a reference
implementation, PyLEMS, which supports an equivalent procedural description (similar
to PyNN) and also includes a small simulator that can be used to verify the behaviour
of individual models [113].

Chapter 2 State of the Art 53

The most recent addition to the set of declarative languages is NeuroML 2, which aims
to unify the capabilities of all these languages [114]. NeuroML is being used to form
the basis, with a LEMS-compatible layer being added to support the description of
individual devices. Overall, NeuroML 2 aims to increase the number of neural systems
that it can describe to take a step towards being a single standard. Similarly, the
device-level description syntax of NineML is compatible with LEMS to provide maximal

collaborative potential [110].

2.3 SpiNNaker in Context

Table 2.3 provides a very brief comparison of the hardware architectures introduced in
section 2.2.2. The table clearly shows that SpiNNaker offers the most scalability. It offers
massive-scale parallelism in general-purpose cores, which makes it a viable platform for

exploring how massively-parallel software can be structured.

Simulation

Platform Flexibility Scale Rate

180k neurons,

104 1-ti
40M synapses 0* X real-time

BrainScaleS ASIC—Low

256k neurons,

BlueHive FPGA—High 956M synapses real-time
SpiNNaker CPU—High 10? neurons, real-time
P & 10'2 synapses
TrueNorth ASIC—Low 16M neurons, real-time

4bn synapses

Table 2.3: Comparison of selected neuromorphic hardware platforms.

Data is distributed with very high-granularity across SpiNNaker, which means that
traditional parallel synchronisation techniques are not necessarily required. All resources
that are shared between multiple processors are already hardware-arbitrated in the chip

which inherently resolves any potential race conditions.

For SpiNNaker to be able to support non-neural computation, problems must be slightly
reformulated to fit within the biologically-inspired design parameters. Perhaps more
importantly, the tolerance that neural systems have against faults must somehow be

migrated into the non-neural domain.

The rest of this thesis addresses these two points, by first presenting a set of algorithms
that can detect faults and configure the networks to ignore them in Chapter 5, and then
by presenting an example non-neural application in Chapter 6. However, before diving

into descriptions of this work, it must be clear how the SpiNNaker system itself works

54 Chapter 2 State of the Art

and how neural applications are structured to take advantage of it. This is presented

next in Chapter 3.

Chapter 3

SpiNNaker

3.1 Hardware Composition

3.1.1 The SpiNNaker Chip

Comms

— -»
Dec

—

Input

— -»
Links =
Of

— 2o |y

—
20f7

— o =

NoC (Input)

—

Comms NoC

RtrClk j

Packet ‘ Routing ‘ Output
Decode | Engine ! Select

Packet Router

Router
control

(Output)

20f7

Enc

n || m
gl|= ¢
:‘E.

m

nc

5
=5

m
3
3

20f7

Enc

5
83

Bl

Link;

It

[AHB Master | AHB Slave
I
[T
[[[JTAG
ProcO [—— Proc1 [—— Proc2 [Proc3... Proci5 —— Proc16 —— Proc17 (—f—> Debug
AXI Master ’—>AXI Master AXI Master ’—>AXI Master ’—>AXI Master ’—>AXI Master
EvenClk H 0ddClk EvenClk H 0ddClk H EvenClk ﬁ 0ddClk H
System NoC
S OddClk =
System AHB ﬁg:g::
AXISlave | ['APB Slave AHB Slave | AHB Slave | AHB Slave | AHB Slave | AHB Slave RtrClk
[SysClk =—
PL340 SDRAM I/F System | System Ethernet Watch- | System
MemClk ,_| RAM ROM dog Ctir [~ Clock
U 0 I % |
Ether Ml 1/O Port | POR 10MHz
) Reset Test
1Gbit DDR SDRAM

Figure 3.1: Detailed block diagram of the SpiNNaker chip (taken from the
datasheet [115]).

55

56 Chapter 3 SpiNNaker

The SpiNNaker chip architecture [6, 35, 116], shown in Figure 3.1, contains 18 ARM968
processors embedded in two separate network-on-chip (NoC) structures. One, the system
NoC, connects the processors to the various on-chip peripherals, and the second, the
communications NoC, connects the processors to each other and to six bidirectional ports
used for inter-chip communications [117]. The communications system in SpiNNaker is

central to its operation is will be explained in section 3.1.2.

A system NoC is used in place of a more conventional system bus architecture because
there are many processors sharing many resources. In typical bus-based systems with
multiple masters, an arbiter decides which master to grant access to the bus. Once access
has been granted, this master has exclusive access, thereby prohibiting any other master
from accessing any part of it, even if the simultaneous operations would not collide.
For small systems with relatively few masters, this is an acceptable cost. However, for

systems such as SpiNNaker with a large number of masters, this is not acceptable [118].

Instead, SpiNNaker chips use a Silistix CHAIN packet-switched NoC [119] as shown in
Figure 3.2 [117]. Multiple masters can access devices simultaneously through this NoC
without requiring exclusive access. Operations that would conflict (for example, two
processors attempting to write to the same SDRAM address) are naturally arbitrated
by the NoC itself without either processor needing to act. From the perspective of each
processor, the system NoC is indistinguishable from a conventional bus and forms the

node-local part of the memory map shown in Table 3.1.

proc_node_clk_A proc_node_clk_B router_clk
proc_node_clk_A| |proc_node_clk_B ‘

Router
M €
CPUO CPU1 CPU2-17
AHB 32 I AHB 32

AXII64 AXII64 AX1)64 I
AXIM I AXIM I AXIM AHB M H AHB S I

H APB3 S ‘

AHB 32
AXI 64 APB3 32 AHB S->M

PL340

AHB 32

I I I I |
—# SysRAM H SysROM H Ethernet H SysCtl HWatchdog ‘

memory_clk system_clk

Figure 3.2: Structure of the System NoC [117].

Each processor block in Figures 3.1 and 3.2 is a small sub-system that includes additional
core-local resources, as shown in Figure 3.3, which form the remainder of the memory
map in Table 3.1. Within this block, the processor has uncontested control of the AHB1

bus that connects it to the core-local peripherals.

Access to node-local resources is achieved through the DMA controller and the associated

‘CHAIN gateway. Both this and the communications controller convert the synchronous

Chapter 3 SpiNNaker 57
Offset Usage Buffered
0x00000000 ITCM n/a
0x00008000 Not used n/a
0x00400000 DTCM n/a
0x00410000 Not used n/a
0x1 0000000 Local peripherals - comms, counter, mixture
VIC, DMA
0x50000000 Bus error n/a
0x60000000 SDRAM yes
0x 7000V SDRAM no
0x80000000 Bus error n/a
0xc0000000 NoC peripherals - router, controller, yes
watchdog, ethernet
0xe5000000 System RAM yes
0xe6000000 System ROM yes
0xe7000000 Bus error n/a
0x 00000 NoC peripherals no
0x 5000000 System RAM no
0x 6000000 System ROM no
0x £7000000 Bus error n/a
0x £ 000000 Boot area o

Table 3.1: System memory map for each SpiNNaker chip [35]. Rows that are
shaded indicate core-local resources, while the reset are node-local.

bus into the self-timed packet-switched traffic for the two NoCs. Essentially, each pro-
cessor, each node-local peripheral, and the router are ‘islands’ of synchronous sequential
logic embedded in an asynchronous connection fabric provided by CHAIN. Details on

the router and how the NoCs work are provided in section 3.1.2.

Whilst CHAIN is capable of having multiple transactions occurring simultaneously, it
clearly cannot allow multiple masters simultaneous access to the same physical resource.
The resources most likely to cause this contention are the system RAM and the SDRAM.
As mentioned earlier, SDRAMs already carry a high latency compared to modern pro-
cessors, and with so many masters contesting for this resource, access times could be
further slowed. However, this is one of the reasons the DMA controller is connected to

the CHAIN gateway: to allow it to be used for latency-hiding when accessing shared

58 Chapter 3 SpiNNaker

JTAG Comms NoC

T @
| T ¢

ITCM Communications

ARMCIk CCClk
32KB Controller ~

ARMO968E-S

AHB S
DTCM n

64KB
T [] AHBCIK

‘ AHB S ‘ ‘ AHB-Lite M

ARM IRQFIQ

TClk

Timer / Counter

AHBClk AHBCIk AHB1

AHB2
AHBCIlk
ARMCIk r l
| AR
CCClk
| AHB M ‘ ‘ AHB S Ly
AHBCIk
CpuClk » Clock HBC! » Interrupt
(~200MHz) Buf/Gen %’;l:(':"lk Controller
e DMA
Controller

— AXI Master

CHAIN Gateway

System NoC IRQ

Figure 3.3: Detailed block diagram of a SpiNNaker core subsystem [117].

resources [35]. Once the data has been written into the DTCM (data tightly-coupled
memory), the DMA controller can raise an interrupt in the processor, allowing it to

resume the operation that requested the data.

The primary purpose the SDRAM serves is for essentially increasing the accessible mem-
ory of each processor in the chip. Parameters and data specific to the problem being
solved at hand (e.g., synapse parameters) are stored in the SDRAM, but will typically
only be accessed by the individual processor hosting that part of the problem (similar to
the SPMD model). These reasons combine to rule the SDRAM out for shared memory
communications. In fact, SpiNNaker differs from most platforms in this instance because
sending a communications packet between cores (even on the same die) is faster. How-
ever, for initial configuration, debug, and low-priority message traffic, shared-memory
communications using the system RAM (not the SDRAM) are used for the final delivery

stage.

Before moving on to describe the networking infrastructure of the chip, it is worth noting
that each core has its own counter /timer. The importance of this will become apparent in
section 3.3 when the structure of neural software is introduced. Two separate counters
are included, each with separate interrupt request (IRQ) lines connected to the core

interrupt controller.

Chapter 3 SpiNNaker 59

3.1.2 Network Infrastructure
3.1.2.1 Communications NoC

The system NoC has multiple devices to route between, whereas the communications
NoC essentially serves as a multi-layered input tree for gathering packets and an output
stage for transmitting them [90]. Figure 3.4 shows this topology for the NoC with the
router placed between them. Merge trees placed throughout the input stage collect
narrow bit-streams operating at high effective clock-rates into wider ones operating at
slow clocks. At the lowest stage incident upon the router, the bit-streams are 72 bits

wide, as large as the largest possible SpiNNaker packet.

Off-chip links Processors

|
- [esples I
|

2 Gbps [

4 Gbps

8 Gbps

200 MHz

Sync

Router

1 Gbps 100 MHz

Off-chip links Processors

Figure 3.4: Structure of the Communications NoC showing merge trees, band-
width aggregators (BA), serial-to-parallel converters (S->P), and parallel-to-
serial converters (P->8S) [90].

60 Chapter 3 SpiNNaker

Both the system and communications NoC use CHAIN 1-of-5 return-to-zero signalling
[119]. CHAIN is a self-timed system requiring no clock signal to drive the traffic forward.
This allows the network to degrade performance naturally depending on how quickly
packets are being removed from it. If a device becomes overwhelmed, the network
automatically adjusts to this back-pressure without needing any active control. Devices
transmitting data into the network will almost certainly be synchronous systems, hence

they will need to make active decisions about whether to transmit or not.

The signalling used by these NoCs is therefore delay insensitive (DI) and conforms to the
more general family of m-of-n DI codes, meaning that each symbol has exactly m bits of
an n bit data-line set for each symbol. In the general case, an m-of-n code can transmit
»Cm bits per symbol [120]. CHAIN’s 1-of-5 encoding therefore includes 5 discrete states
that a symbol may take: @b@0-0b11, and end-of-packet (EOP); i.e., each CHAIN symbol

carries 2 bits of data using five data-wires.

A sixth acknowledgement wire feeds from the receiver to the transmitter to accept the
symbol with which it has been presented. A complete CHAIN symbol transmission

consists of the following four phases [119]:

1. One of the five data-wires is driven high to represent the appropriate symbol.
2. The receiver drives the acknowledgement wire high to accept the symbol.
3. All data wires are driven low to restore the bus to its idle state.

4. The acknowledgement wire is driven low by the receiver to indicate to the trans-

mitter that the next symbol can be accepted.

The procedure is therefore self-timed, because the transmission cannot continue without
both the transmitter and receiver agreeing, and return-to-zero (RTZ), because both
the data and acknowledgement wires are reset after the transmission completes. These
four phases lead to simple synchronisation logic between multiple CHAIN components

operating in parallel to increase the number of bits transmitted simultaneously.

This delay-insensitive principle also continues across the boundary between chips. How-
ever, pins on a package are a strictly limited resource and have electrical properties
that bound their switching frequency compared to wires in the metal layers of the chip.
Inter-chip communications must therefore carry more bits-per-symbol and, ideally, at a

lower symbol rate.

Inter-chip communications use a 2-of-7 non-return-to-zero (NRZ) DI scheme instead and
have 7Cy = 21 states for each symbol. Sixteen of these states are used for the binary
values 0b0ROR-0b1111 and one is used for EOP. NRZ means that fewer phases are

required to convey a symbol. Data is presented by a transmitter toggling any two of the

Chapter 3 SpiNNaker 61

seven data lines, and data is accepted by the receiver by toggling the acknowledgement
line. At any single point in time, the logic values of the bus do not necessarily convey
the symbol being transmitted. Despite this complication, the block diagrams given in
Figure 3.5 operate at a bandwidth of (nominally) 250Mbps [91]. As not all of the 21
available symbols are used, it is considered an incomplete 2-of-7 code, which is usually
denoted by 2-of-7*.

Link Transmitter ('Tx i/f’) Link Receiver ('Rx i/f’)

a-channel

a-channel CHAIN
DATA

CHAIN
DATA

2-of-7* NRZ DAT.

DEMUX
ENCODER
DECODER

b-channel b-channel

ack_0

Select
ack_1 | Controler

ENCODER DECODER
3 - -
DATA "Zé Ng Ng Eg DATA
- @ €2 k2 2 g
D s s s P e
23 g 23 238 2 b
zZ g £ Neg 22 & T
§'g X g Z 53
o © i i & o
ACK ACK

(b) Encoding/decoding pipeliens to convert between CHAIN 1-o0f-4 and inter-
chip 2-of-7.

Figure 3.5: SpiNNaker chip-to-chip communications [91].

3.1.2.2 Routing

Figure 3.6a shows an exploded view of the ‘Router’ block in Figure 3.4. The router block
is a synchronous system unlike the two NoCs to which it is connected. Back-pressure
can be applied to it just like it can apply back-pressure to other systems. To tolerate
this, each stage is pipelined with specific feedback connections to pause the earlier stages

accordingly (see Figure 3.6b) [121].

A forward-stage of the router checks that the parity of the incident packet is correct,
and if this check fails, the packet is simply dropped. Once past this gate, packets enter
one of three specific routing stages depending on the packet type, the specifics of which

will be explained in the next section.

62 Chapter 3 SpiNNaker

AHB

AHB Slave iff

Master i/f Multicast Router .

Valid
Vald_| Emergency

Ready Point-to-Point Router [" Routing
f——|

Buffer
ARBITER

Controller

Packet

Packet Checking

-
Nearest Neighbour Router|

Pipeline Control

(a) Block diagram of the SpiNNaker router.

Packet In Packet Out
Pipeline Pipeline Pipeline

stage 1 Stage 2 Stage 3 Buffer Full

[t= =

Flag3
Clock — Clock — —
Pipeline pisable| Pipeline Pipeline
Control Control Control
1

Back Pressure

Clock
Disable

Clock
Disable

Stage3 Full

Stage1 Full
Stage2 Full

(b) Global stall control implementation.

Figure 3.6: SpiNNaker router implementation [121].

The final stage before output into the communications NoC is to perform emergency
routing if required. SpiNNaker chips are connected together in a triangular pattern
that will be described in section 3.1.3. This allows the router to divert traffic around
a congested link by sending them through a triangular neighbour instead. Traffic sent
this way is marked as having been emergency-routed so that the neighbour can forward

the packet onto its original target.

3.1.2.3 Packet Types

Each SpiNNaker node is assigned a unique 16 bit identifier (hard-limiting the system size
to 216 nodes), and each core within a node has as a 5 bit index; the details of how both
of these are assigned are given in section 3.2.1. Index zero is reserved for the monitor
core which performs all node-level functions, leaving the indices 1-17 for the remaining

worker cores which host application code.

SpiNNaker packets take the form shown in Figure 3.7 and may be 40 or 72 bits in size.
The first 8 bits comprise the header which the router uses to select the appropriate pro-
cessing path (and to resolve diversions introduced by emergency routing) in Figure 3.6a

[35].

Chapter 3 SpiNNaker 63

7 6 5 4 3 2 1 0
Type Type-dependent flags Payload Parity
Header Routing Key/Data Payload
8 32 32

,,,,,,,,,,,,,,,,,,,,,, »

Optional

40
72

e — = — — e - >

Figure 3.7: SpiNNaker general packet format.

Header Operation Payload
8 32 32
,,,,,,,,,,,,,,,,,,,,,, >
Optional
40
72
e e e >

Figure 3.8: Nearest-neighbour (NN) packet.

Packets may take one of four types: nearest-neighbour (NN), point-to-point (P2P),
multicast (MC), or fixed-route (FR). NN packets (Figure 3.8) are the simplest of this
taxonomy by only supporting transmission between immediately neighbouring nodes.
However, this also means that they require no routing information and are hence always
usable. The opcode field permits inter-chip operations such as the peek and poke (i.e.,
read and write) of the memory spaces of neighbouring nodes. NN packets are essential
for machine initialisation, and come in two sub-types: normal for the general exchange
of data, and peek/poke to allow nodes to access the system NoC resources of their

neighbours.

P2P packets (Figure 3.9) allow any two nodes to communicate without requiring software
intervention. Once the P2P tables in the router of each node have been appropriately
configured, their transmission is entirely brokered by the router of each node. P2P tables
effectively form a map of target node ID to router output port, so, locally, the only piece
of information each node needs is the identity of the port through which to forward a
P2P for it to (eventually) reach its destination. They are an entirely decentralised form
of communication that obviously need careful configuration (explained in Section 3.2).
These packets form the basis of targeted system-level traffic such as debug outputs and

data downloads from SpiNNaker, or targeted commands and uploads to SpiNNaker.

MC packets (Figure 3.10) form the basis of application-level traffic and are the only
packet type capable of targeting specific cores within a node. NN and P2P packets
incident to a router raise an interrupt that any core in that node may service, whereas

MC packets will raise an interrupt in the desired target core. MC packets also require

64 Chapter 3 SpiNNaker

Header Source Node Target Node Payload
8 16 6+ 2 R
Optional
40
72
et >

Figure 3.9: Point-to-point (P2P) packet.

Header Node Core| Neuron Payload
8 16 5 mwoos 2)
Optional
40
72
M — m >

Figure 3.10: Multicast (MC) packet.

that specific information is written into the router, but into a special content-addressable
memory (CAM) called the MC table [121].

This CAM (see Figure 3.11) includes a mask and a value for each of the 1,024 entries it
contains which can be compared against the source address of the inbound MC packet.
This is effectively a tri-state bitwise OR between the address and all entries in the
CAM simultaneously. Each of these comparisons produces a result that is stored in an
output register, the highest valued of which is selected. The index of the bit is decoded
into an address in an output RAM which contains two n-hot data fields where each bit
represents a valid output on the communications NoC; i.e., any of the 18 cores and/or
any of the 6 neighbours. MC packets can therefore be duplicated very efficiently and

entirely by hardware once the routers have been appropriately configured.

As MC packets are routed by their source address rather than to a particular destination
as would be the case in more typical architectures, the addresses follow the address-event
representation (AER) [122]. This allows neural spikes (i.e., the communication between
elements of a neural simulation) to be routed extremely efficiently despite potentially

having very large fan-outs.

FR packets Figure 3.12) are the fourth and final type and can be thought of as a special
case of an MC packet with a CAM with only a single entry (i.e., all packets match). This
“CAM?” is actually just a single register in the router of the same format as the entries
in the output RAM of the MC router. This allows FR packets to be routed to a single
destination efficiently, which is useful for supporting debug print-statement outputs to

a host computer.

Chapter 3 SpiNNaker 65

MS hit detected
source node.. |.core| ..neuron | by hardware, all
76 bits 5bits 11 bits others gated out
— _
tput RAM
linput CAM OZ P 18
MSB >

1024
entries

32 bit 3 state CAM l
6 bit (0..5) n-hot
1-bit hit register external link indicator
address encode

18 bit (0..17) n-hot
internal core indicator

Figure 3.11: Mutlicast router content-addressable memory (CAM) [35].

Header Compulsory Payload Payload
8 32 32
,,,,,,,,,,,,,,,,,,,,,, >
Optional
40
72
e et i >

Figure 3.12: Fixed-route (FR) packet.

3.1.3 Multi-chip systems

Chips in SpiNNaker form a 2D torus, shown in Figure 3.13, which is homogeneous and
isotropic. Clearly the chips must be mounted on printed circuit-boards to construct
a system that is useful. Inter-board traffic is brokered by FPGAs on each board as
shown in Figure 3.14 [2]. Additional details about the inter-board connections, including
extensions to support plug'n’play peripheral I/O devices, can be found in Dugan, Brown,

Reeve, et al. [2] and Dugan, Brown, and Reeve [123].

Chapter 3 SpiNNaker

Asynchronous
Interconnect

@ SpiNNaker CMP

Host System

Figure 3.13: Connection diagram for a complete multi-chip SpiNNaker system
showing external host connections.

Network Links High-speed I/O Links
5 A0 R T R \‘,] 10.A0
S Al ! ¥ ¥ v -] I0_Al ?g
é B0 : Spartan-6 Spartan-6 Spartan-6 1= 10_BO é'
z Bl | FPGA (A) FPGA (B) FPGA (Q) =7 I0B1 Z
2 I l>]10.C0 §
C1 ! I t _1 ________ I_ v I, 10_C1 i

_______ {._f_I_._._I
<

16x 250Mbps
SpiNNaker
Links

48-node
SpiNNaker
Array

Figure 3.14: Schematic view of a SpiNNaker-103 board showing inter-board
connections [2].

Chapter 3 SpiNNaker 67

1
B

Figure 3.15: A SpiNNaker-103 system, containing 48 chips and 864 processors.

To date, several SpiNNaker systems have been built of varying sizes:

o Figure 3.15 shows a SpiNNaker-103 (shown schematically in Figure 3.14) contain-
ing 864 processors distributed over 48 nodes.

o Figure 3.16 shows a SpiNNaker-104 containing 20,736 processors over 1,152 nodes,
forming the network pattern shown in Figure 3.17. Each large hexagon labelled

Sn represents a SpiNNaker-103 system, with the hexagonal pattern shown in Fig-
ure 3.14.

e Figure 3.18 shows five SpiNNaker-105 machines containing 103,680 processors each,
or 518,400 when combined.

68

Chapter 3 SpiNNaker

ORr N WA UON®

Figure 3.16: A SpiNNaker-104 system comprised of 24 SpiNNaker-103 boards
for a total of 1,152 chips and 20,736 processors.

OH N W-BUO N ®

Figure 3.17: Connection pattern for a SpiNN-104 machine composed from 24
SpiNN-103 boards [124].

Chapter 3 SpiNNaker 69

Figure 3.18: Five SpiNNaker-105 cabinets forming the largest SpiNNaker sys-
tem assembled to date. Each SpiNNaker-105 is built from five SpiNNaker-104

systems for a total of 5,760 chips and 103,680 processors. The system in this
picture therefore contains 28,800 chips and 518,400 processors.

3.2 Loading Software

| |
come [SpiNNaker
SCAMP.c II X

< :
= fupk----- Inject
compile SCAMP).|.

Loader——P»UP[F - ~-~--~ pzp

Node
topolo
A priori
fault map

config |.

Ping

Problem
graph >

P> Load
MCT,

1] Load TCDM
T |sprA
'.‘ 3

Load
SRAM

.h files derived
from modified
RAM images

\ A 4

User.c

‘M Load
> =Sl o oD - - PN handler
compile ~2 secs >I< <~—1 se ~1 se <~—1 se binary

i i timed ping timed
> out t terminate
SARKo out u ou i

out

ary.

Figure 3.19: Complete SpiNNaker boot sequence from power-up to starting an
application [6].

SpiNNaker has no persistent memory and hence must perform a complete reinitialisation

after every power cycle. Figure 3.19 shows the boot sequence as both a tool and a

70 Chapter 3 SpiNNaker

temporal flow [6]. The process is clearly non-trivial, but can be broken into two distinct
procedures. First the machine must be taken from a cold boot to a point where it can
accept commands: the boot process described in section 3.2.1 (and in greater detailed
in Appendix B). Secondly, user applications can be uploaded so that a simulation can

take place, as described in section 3.2.2.

SpiNNaker differs from conventional parallel machines in that applications are decom-
posed into a fine-grained graphical description called a problem graph. Each node of
this graph (a problem device) describes a very specific part of the overall problem as a
set of event handlers, which react to the reception of messages that follow the problem
graph edges and the firing of a periodic timer tick. Mapping the problem graph to the
physical hardware (see Figure 4.4) is a non-trivial problem which is briefly explained in
Chapter 4.

3.2.1 Boot Process

Immediately following power-up, every core and hardware resource is reset by the node-
local Power-On Reset (POR) controller, which causes every core in SpiNNaker to execute
the boot code stored in the system ROM (memory mapped, see Figure 3.1 and Table 3.1).
This boot program performs a brief Power-On Self-Test (POST) of the core-local pe-
ripherals in Figure 3.3, and then moves on to assign the virtual core identifiers. This is
achieved by each processor accessing special registers in the node-local system controller
which serve as arbiters for each assignable ID. These registers also fully encapsulate the
virtual-to-physical core map local to the node, and it follows that, as this process is

non-deterministic, that physical core IV is not necessarily virtual core V.

Once virtual core IDs have been assigned (the only IDs of any use from this point
forward), a natural hierarchy of processors has been established. Core zero is always
the monitor core which assumes the role of the master core in the node. Cores 1-16 are
available as worker cores to the application software that will be uploaded later, and
core 17 serves as a spare in case one of the workers faults. The monitor of each node
now begins listening for boot commands being carried over NN traffic. At least one node
in the system will have a working Ethernet connection, and the monitor in this node
also begins listening for UDP packets (over Ethernet) carrying boot commands. This
includes the ‘boot code’ block in Figure 3.19.

The next phase is to program the machine with system software which provides a com-
mand interface and handles the execution of applications. A conventional computer
serving as the host begins the boot process by uploading a cross-compiled SCAMP
(SpiNNaker Control and Monitoring Program) binary using a boot protocol carried by
UDP packets. For the sake of simplicity, it will be assumed that this will be sent to a

Chapter 3 SpiNNaker 71

single Ethernet-connected node even if there are several with this capability. This node

will be considered the ‘root’ of the system.

Once the SCAMP image has been completed received by the root node, the boot program
will cede control of the hardware [125]. SCAMP then immediately copies itself to all
other cores on the node, and then begins copying itself to all immediate neighbours using
NN packets. These nodes then perform the same sequence of events, causing SCAMP
to flood-fill to every core in the system [126]. Completion of this process cannot be
detected because the size of the machine is not yet known (the same is true for the boot

processor), hence a timeout is used as shown in Figure 3.19.

To conclude this phase, the root-node monitor begins listening for SpiNNaker Command
Protocol (SCP) command messages being carried in UDP packets. All other nodes in
the system also listen for SCP messages being transmitted over the P2P infrastructure
instead. However, at this point in the sequence, the P2P tables are not configured, hence

the third and final phase of the boot sequence.

Figure 3.20: Example P2P routes on a 3 x 3 SpiNNaker grid.

Figure 3.20 shows an example of a 9 node SpiNNaker fragment connected as a 3 x 3 grid.
The P2P tables present in each node form a map showing which port a node must send
traffic through to eventually get to the destination. A node does not know (or need to
know) the exact route that this message will take, just that if a message is forwarded

through a particular port it will eventually reach its destination.

Figure 3.21 shows an example of how all the tables of the Figure 3.20 system might
be configured. Each column is the complete P2P table of node N, and each row is the

port required to reach a particularly destination. In both figures L represents the local

72 Chapter 3 SpiNNaker

virtual port which will arrive at the monitor of that node. Several entries in Figure 3.21
are shaded either red or blue, and these entries completely describe the red and blue

example paths in Figure 3.20.

Node

1 2 3 45 6 7 8 9
1|L W W S SWSW S SWSW
2/E L WE SSWE S SW
3IEELES S S W S
T 4N WWILWW S SWW
§5NENWELWSSSW
EGNENENEELSSS
7N WWNWWLE W
8N NWNENWE L W
9/E N NNENEN E E L

Figure 3.21: Example P2P configuration for the system of Figure 3.20. The
red and blue shading highlights entries relevant to the red and blue routes
respectively. The yellow shading highlights node-local delivery.

Building the P2P tables is a two-step process initiated by the external host machine
issuing the p2pc command with the system dimensions. The first step is for each node
to assign itself a unique identifier; the system dimensions are used here to correctly
calculate an identifier. Each node (starting from the root) propagates its ID along with
the machine dimensions to its north, north-eastern, and eastern neighbours. This is
another flood-fill process and completion cannot be detected. After a suitable timeout
of a about 10ms, each node then broadcasts its ID to all neighbours which allows each
core to populate its P2P table. The timeout in Figure 3.19 treats both of these steps
as a single operation. This is the existing approach which is well-suited for use on
a SpiNNaker toroid, but it cannot configure machines of arbitrary topology, which is

addressed by the contributions given in Chapter 5.

Once this is complete, all nodes in the system will: be running SCAMP on every core,
have a unique 16 bit identifier, have a valid P2P table, and be awaiting further instruc-

tions from SCP commands.

3.2.2 Uploading Applications

There are three software tools in Figure 3.19 which each run on the host machine:

Chapter 3 SpiNNaker 73

1. The Loader takes a problem graph (introduced in section 3.3) and produces from it
sets of MC routing tables for the CAM of Figure 3.11 and node-local and core-local
data.

2. The commercial cross-compiler (X compile) produces binaries for the ARM968

processors from ‘C’ code and various support libraries.

3. The Uploader which handles all physical interactions with the SpiNNaker machine
(including the boot and P2P configuration described previously) and was specifi-
cally written as part of the work in this thesis. A description of this tool is given

in reference [127].

An application in SpiNNaker is composed of three types of data: 1) programs (usually
homogeneous) for each core, 2) data for each program to process, and 3) MC routing
information providing means for each program (or component thereof) to communicate.
The Uploader supports two mechanisms: a flood-fill (as described earlier) which can be
used for homogeneous programs, and a directed load which can be used for node- and

core-specific data, MC routing information, and heterogeneous programs.

Before any core-specific information can be uploaded, the Uploader performs a core
liveness survey (the ‘Ping’ block in Figure 3.19) to determine which worker cores are
capable of accepting programs and data. This is required because a core may pass the
POST and obtain a low-order ID and then fail after this point. Despite the rarity of
this actually happening, it must still be dealt with appropriately for applications to
function correctly. Node-specific data (the ‘Load SDRAM’ and ‘Load SRAM’ blocks of
Figure 3.19) can be uploaded whilst this is taking place.

Much of the application logic of a SpiNNaker program is contained within the MC
routing tables because it directs traffic to the appropriate worker cores. This information
is generated off-line before the upload has even started (the process is a complex task
that can take many hours for large problems [128]), and it is vital that the offline model of
the system conforms exactly to the hardware state of the target machine. The Uploader
can use the results of the core-liveness survey to dynamically remap the MC destinations
to account for faulty cores. Clearly remaps can only occur if the following conditions
hold true:

Ny > N, and Ny — N, > 0, (3.1)

where V; is total number of workers in the node, IV, is the number of worker cores that
are functioning, and N, is the number of works required by an application. Typically
N; — Ny, = 1 but to increase manufacturing yield, cores with a single processor fault are

also accepted, hence Ny — N,, = 0 for these nodes. Additionally, core-local data must

74 Chapter 3 SpiNNaker

be migrated according to the remaps. The ‘Load MCT, TCDM’ block of Figure 3.19

represents this behaviour and shows that this occurs after the survey.

The Uploader generates a set of ‘C’ header files as it is processing the data for upload.
These files contain various memory offsets and base-addresses, as well as constants that
refer back to the original problem specification that was given to the Loader. An off-line
cross-compilation builds a (usually homogeneous) application binary from these headers,
a support library to correctly unpack the uploaded data structures, and the application
code itself. Once this binary exists, the Uploader performs either a flood-fill (for SPMD
applications) or a directed load (for MPMD applications) taking into account any core

remaps.

At this point, the machine is ready to begin the simulation by issuing the appropriate
SCP command. The Uploader can issue this automatically, or can stop after this point

to allow the user to interrogate the state of the machine before it starts.

3.3 Neural Simulation

3.3.1 Neural Systems

Neural systems exhibit massive parallelism and incredible fault-tolerance when it comes
to solving problems, and, perhaps more impressively, they consume much less power
(about 25W for a human brain [35]) than even a desktop computer system (several
hundred watts). The fundamental components of a neural system are shown in Fig-
ure 3.22a. The neural simulators described in section 2.2 (including SpiNNaker) make
use of the point neuron model where the particulars of the dendritic tree are lumped in
with that of the soma, and the synapse models the physical interconnection. NEURON
is an exception to this generalisation because axon (or cable) properties are modelled

very accurately [94].

Axons behave similarly to transmission lines in electrical systems and carry signals be-
tween connected somata. Synapses serve as gates or junctions that perturb the incoming
signal before it reaches the target soma. In real biological systems, most of these signals
are short pulses known as action potentials which are easily modelled as a narrow volt-
age spike [35]. SpiNNaker makes use of this approximation, which is one of the design
reasons that the payload on MC packets is optional; the presence of a packet s the data,
much like the presence of a spike is the signal in biological systems, because it conveys

the wall-clock arrival time.

A SpiNNaker application, therefore can be viewed as a graph, G = (V, E), where the
vertices are code fragments that implement a specific neuron model, and the edges are

fragments of code that implement synapse models. Figure 3.22b shows this structure;

Chapter 3 SpiNNaker 75

All of these structures have non-
negligible prop agation delays and
non-linear behaviour

\ J
Dendritric tree Perikaryon Axon Telodendria Synapse
(soma)

(a) Schematic view of a biological neuron.

Unordered State (scalar):
synapse vector time of
emission
! =3 ! A Instantaneous
TR ot — | unidirectional
E : E lossless
| | interconnect
a. ___________ 1
All processing (logical and7 w
temporal) is performed in State (vector): includes 1 scalar
the point neuron model weight for each incident synapse

(b) A network of modelled neurons as they appear in a SpiNNaker application.

Figure 3.22: Visual representation of how a biological network is mapped into
a neural network on SpiNNaker [35].

the ‘unordered synapse vector’ is an array of all post-synaptic signals, and the shaded
grey box is the neuron model itself, which may produce spikes. A core can host between
one and approximately 10° neuron models, and up to about 10% synapse models, of

varying levels of biological detail.

3.3.2 Modelling with an Event-based Architecture

SpiNNaker is an interrupt-driven system, so it follows that programs are structured as a
set of handlers. Figure 3.23 shows the process that the SpiNNaker Application Run-time
Kernel (SARK) uses to invoke handlers in response to interrupt-events triggered by either
a packet arrival or the timer tick. SARK is shown on Figure 3.19 as one of the libraries
that is linked into application code. In addition to implementing the interrupt delivery

behaviour, it overwrites SCAMP on the worker cores (Appendix B), thus allowing SCP

76 Chapter 3 SpiNNaker

commands to be handled as before, whilst also supporting the user-defined application

code.

Application code can implement specific commands to help with the simulation, the
most common example of this being to provide a means of extracting results. Once
an application has finished, SARK handles upload and execution commands identically
to SCAMP so that another simulation can be performed without requiring a reboot of
SpiNNaker.

Interrupt request arrives

Queueal:’e I Non-queueable
requests requests

| |

(Un)mask Y

interrupt !
instruction : l
! Stack
: I&I‘_ controller
y v
||||I||||IIIII% |
|

—

Priority request |
queue (resides in
local memory) | |

Interrupt
handler
executing

Queueable requests
pulled off the top of
the priority queue in
order unless......... ... a non-queueable request
Jjumps in and pushes the stack

Stack (resides in
local memory)

Figure 3.23: Per-core interrupt handling process [6].

All neuron models on the core are updated whenever the timer tick fires, but individual
synapse models are updated upon packet arrival (i.e., spike arrival) [129]. Listing 3.1
provides an example of a packet arrival event handler. Synapses may connect to multiple
neurons in the receiving core which is the purpose of the loop in lines 12-22. Typically
synapse models prepare data for the neuron model to process when the next timer tick
fires. While this system has been designed around spiking networks, it can also be

applied to non-spiking networks with appropriate synapse models [130].

The leaky integrate-and-fire (LIF) [131] and Izhikevich [132] models are often used within
SpiNNaker because they are computationally efficient whilst still retaining sufficient
biological accuracy. Both neuron model coefficients and synapse weights are specified as
parameters stored in the DTCM and SDRAM respectively. These parameters are run-
time mutable which allows models to exhibit plasticity [82]. A numerical integration

step is required to solve the differential equations, and as SpiNNaker does not feature

Chapter 3 SpiNNaker 77

1 void updateActivationLevels() {

2 receiveSpike(p); //received packet p with source address
3 SDRAMB_lockBaseAddres = lookupTable.read(p.SourcelD);

4 //DMA operation to read a block of memory

5 //from SDRAM to DTCM memory

6 requestDMAOperation(

7 SDRAMB_lockBaseAddres, &LocalSynapseBlock,

8 SynapticBlockSize, READ);

9 wait(DMACompletionInterrupt);

10 //For all neurons, update projected activation

11 //level as per the synaptic and delay information

12 for (int i=0; i<SynapticBlockSize; i++) {

13 //the real-time delay

14 int delay = LocalSynapseBlock[i].Delay;

15 //nheuron index

16 int neuronIndex = LocalSynapseBlock[i].NeuronIndex;
17 //synaptic weight

18 int weight = LocalSynapseBlock[i].SynapseWeight;
19

20 neuronsState [NeuronIndex]

21 .ActivationLevel [currentTime + delay] += weight;
22 }

23}

Listing 3.1: Pseudo-code for a neuron update [129].

any cores with a floating-point unit (FPU), fixed-point arithmetic is used throughout
without significant loss of biological fidelity [133].

3.3.3 Abstract Time vs. Real-Time

At the core of a conventional discrete simulator is a queue of events which is used to
advance the simulation. The head of this event queue is dequeued (popped) by a process
called the event pump, implemented as a loop that terminates when the event queue
becomes empty [134]. Dequeuing and dispatching an event to the parts of the simulator
responsible for implementing the desired behaviour may generate more events, thus
refilling the event queue. Eventually, the simulated behaviour should ideally converge
and no new events will be generated. Clearly behaviours that fail to converge will cause

infinite simulation times, and should therefore either be prevented or, at least, detected.

Events have a time associated with them when pushed into the queue. The queue
is sorted by time to ensure that temporal causality is maintained; i.e., an event may
never cause a new event to happen in the past or zero time in the future because
that cannot happen in physical reality. Potentially, allowing events to have effects in
zero time can lead to irrecoverable oscillations which prevent the simulation from ever

finishing. However, certain simulation domains relax this constraint by merely limiting

78 Chapter 3 SpiNNaker

the category of events that can be queued with zero time delay. Digital hardware
simulators, for example, permit combinatorial logic events to be scheduled in this manner
to allow equations containing feedback terms to be resolved. Clearly this can trivially
lead to oscillations, hence these simulators place a limit of the number of event pump

cycles that can take place in a single time-step and terminate with error if it is exceeded.

When the event pump pops an event from the queue, the timestamp is checked against
the current value of simulated time (or abstract time). If they are equal, the event is
processed as normal. If the new timestamp is greater than the current, simulation time

is advanced to that point before the event is processed [135].

SpiNNaker performs simulations in real-time. Time therefore “models itself” because
simulated time 4s wall-clock time. In a biological system, neurons take time to produce
spikes, axons take time to transmit them, and synapses take time to accept them. By
contrast SpiNNaker is infinitely fast; MC packets (spikes) propagate at a rate of a few
hundred nanoseconds per inter-node hop and a neuron can be updated in a few mi-
croseconds, whereas biological systems tend to operate on a scale of 10’s of milliseconds.
Essentially, this means that new events can arrive in zero time, thus potentially violating

causality.

SpiNNaker overcomes this potential difficulty by using a regular timer tick to schedule
updates to the numerical parts of the code. The processing and delivery of spikes may
happen in “zero time,” but new events are not (potentially) created until the next firing
of the timer tick. Axon delays are modelled in a similar way: all synapses have associated
with them a delay parameter which is a multiple of the timer tick (usually about 1ms),
and are only delivered (locally) when this delay is met. For example, if a spike arrives
at a processor and a delay of 3ms is expected to model the axon delay, it will be placed
in a queue of pending spikes with its delay noted against it. On each timer tick, every
spike in this queue has its outstanding delay decremented by the timer interval, and are

delivered once this reaches zero.

Axon delays are therefore modelled at the destination rather than at the source. This also
highlights another difference between SpiNNaker and a conventional simulator: there is
no global event queue—SpiNNaker offers parallelism at the event level. Each processor
handles events that relate to the neurons it hosts locally. Clearly maintaining global
synchrony on a machine of this scale is not sensibly achievable, but the skew between

timer ticks is not sufficient to affect biological simulations [136].

Finally, it is worth noting that the timer tick must be set so that the numerical stability
of the equations being integrated is maintained [6]. Provided that the timer tick is
fast enough to ensure this is true and but also slow enough to give the processors
sufficient time to be infinitely fast with respect to biology, simulations can function
correctly without running into oscillatory issues caused by zero-delay events or numerical

instability of the integration scheme.

Chapter 3 SpiNNaker 79

These assumptions have allowed SpiNNaker to successfully and accurately simulate sys-

tems of LIF neurons [131] and multi-layer perceptron networks [130].

3.4 Non-neural Simulations

SpiNNaker makes several assumptions to ensure that the biological simulations are stable
and accurate. To apply this machine to a broader range of problems requires that they
are reformulated within these constraints. In the most general case, an application on
SpiNNaker is a graph where the nodes represent a fragment of functionality and the
edges identify a communication path. These may have additional processing associated

with them if required (as is the case in neural simulation with the synapse models).

Any problem that can be discretised in the manner described here can be formed into
a SpiNNaker application. Consider the case of a digital circuit simulation: the problem
graph is clearly the circuit itself, and the problem devices (i.e., graph nodes) are the
digital components of the circuit. Every computation that results in a state change
causes an MC packet to be sent to all appropriate circuit nodes, containing the new
state and a suitable timestamp in the future representing the propagation delay of the
gate. Maintaining causality without a central event pump (as is the case in SpiNNaker)
requires careful algorithmic design [137], which is beyond the scope of this thesis (see
Bai [138]).

Consider also any situation that involves large matrix and vector operations such as
image processing. Each matrix cell is be a problem device, and the problem graph
describes the association each cell has with its neighbours. Many matrix operations then
become O(n) because the sum and multiplications for each new cell can be performed
in parallel. Massive arrays of pixels can be streamed into applications structured this
way to achieve real-time video processing. Here, the timer tick serves the same purpose
as with neural simulation, both to maintain causality and the numerical stability of the

algorithms.

Spatial problems can be discretised in such a way that a problem device represents a
fragment of the space, and updates according to the space-fragments around it. This
idea serves as the basis for Chapter 6 where an application is introduced to solve heat
diffusion equations. The problem itself is not novel, but the structure of the appli-
cation demonstrates that non-neural problems mapped into the biologically-imposed
constraints of SpiNNaker produce correct results and scale well. Parts of this work have

been published as Brown, Mills, Dugan, et al. [7].

Chapter 4
System Configuration

The first goal of this work (outlined in section 1.4) is to produce a set of algorithms that
can accurately survey a target SpiNNaker system to determine any and all faults that
may have occurred. Recall the tool-flow shown in Figure 3.19. Here both the topology
and a fault-map of the target machine must be known a priori. Without means to
reliably detect these faults, other than manual inspection, these files are usually a best

estimate based on what the structure of the machine should be.

Figure 4.1 shows the same tool-flow but modified for the purposes of the work in this
thesis. There are no longer any hardware maps that must be known ahead of time.
Instead the machine topology and the fault map are discovered from the live machine

being targeted.

Referring to Figure 4.1:

Loader is introduced in the previous chapter as the tool that takes an application
description (a problem graph) and produces a set of data structures and MC routing

table entries to be written into the machine.

Uploader is introduced in the previous chapter as the tool responsible for writing
these data-structures, along with compiled binaries, into the machine. Uploader
also produces a set of ‘C’ header files that user code can use to reference named
parts of the problem graph. It is also capable of dynamically adjusting the routing
to bypass cores that may have failed after the POST.

Cross-compiler is a commercially-available ARM compiler [139] used to target the
SpiNNaker processors. In this case, the armcc compiler from the RealView Devel-

opment Suite v4.0 is used.

IntHand is the Interrupt Handler support library which responds to packet and timer
interrupts and converts them into problem device, edge, and simulation update

events for applications to handle.

81

82 Chapter 4 System Configuration

i Problem i_ _____________)
i Graph |
b
Diagnostics
SDRAM
®---» Runner SRAM A
Loader | oo SpiNNaker
S - Topology
imRunner—-> Simulator MC Routes
SpinRunner SpiNNaker
Topology Uploader
@- - % SpinDiscover
|
Topology CoTTTTTTTTTTTTTTTTTTT
Answer E E
oo ' i Domain-specific !
i User Code — ! Post-processing E
[i :}i)
:C! Headers oo :
IntHand r-------- > X-compile
Program
SARK Image
SCAMP f-------- > X-compile
—Legend
®---» Started By User —— Binary File ‘ Tool ‘ ‘ Simulation Component ‘
== Provides Data For ----> Text File ‘ Auto-discovery Tool ‘ Library ‘
—> Uses Module From e > Text or Binary File Ethernet Connection i User Problem E
L —

Figure 4.1: Complete revised SpiNNaker tool-flow factoring the contributions
of this thesis.

SARK is the SpiNNaker Application Run-time Kernel introduced in the previous chap-
ter which provides the event pump, an API to access the SpiNNaker hardware,

and provides a harness for applications to fit into.

User Code defines the behaviours of the individual components of the application.

For neural simulations, these are the neuron and synapse models. For non-neural

Chapter 4 System Configuration 83

applications, these are the problem device and edge behaviours. User code must
be linked against both SARK and IntHand to form a valid SpiNNaker application.

Answer is a conventional single-threaded discrete stand-alone simulator that can exe-
cute user code in a SpiNNaker-like environment, allowing behaviours and models

to be verified before being uploaded to SpiNNaker.

SpinDiscover serves as the host-machine interface to the topological discovery algo-
rithms presented in Chapter 5. It uses the API provided by the Uploader to
send and receive special-purpose SCP commands to start discovery processes and
receive the resulting data. From this, a binary topology file is produced that accu-
rately describes the current hardware state of SpiNNaker (including faults) that

the Loader can use to map applications correctly.

SpinRunner is a tool for measuring the performance of these algorithms on the SpiN-
Naker hardware. It uses an API provided by SpinDiscover to achieve this, and is
capable of generating charts showing the performance results as well as graphics

describing the discovered machine state.

Simulator is a module for SpinRunner that simulates just the communications of a
real SpiNNaker machine. This tool is used to construct models of the algorithms
to ensure the behaviours were correct, before the SpiNNaker implementations are

created.

SimRunner provides a front-end for SpinRunner when the Simulator is used as the
back-end instead of SpiNNaker. It shares the core of SpinRunner to maximise

code-reuse.

SCAMP is introduced in the previous chapter as the SpiNNaker Control and Mon-
itoring Program and provides the external command interface for controlling a

SpiNNaker platform. Essentially this is the “system software” for SpiNNaker.

4.1 User Applications

4.1.1 Definition

Applications are described in two parts: firstly, the problem graph is a textual repre-
sentation of the connectivity of the problem devices of a problem. An example problem

graph is shown in Figure 4.2.

D1-D8 are problem devices that perform some computation on the data that they are
given, resulting in more data flowing to the other problem devices (or perhaps back
onto themselves if that makes sense in the context of the problem at hand). The edges

represent a unidirectional flow of data from one problem device to another, optionally

84 Chapter 4 System Configuration

Figure 4.2: Example problem graph [6].

with pins at end serving as a generalisation of a synapse. Fan-ins and -outs can range
from just a single connection up to about 10, and are limited by the amount of available
SDRAM space.

Each problem device and edge can have associated parameters and a memory require-
ment for state. These are both assembled into data structures that will ultimately be
written into the node-local SDRAM and SRAM, and the core-local DTCMs. Parameters
are nominally immutable and state is nominally mutable with definable initial values,
but this is essentially just a convention as no attempts to enforce this are made at

run-time for performance reasons.

The second part of an application is the set of handlers that implement the behaviour
of the problem devices and edges. These are written as conventional ‘C’ functions which
are registered as callbacks in SARK and IntHand. SARK implements the timer tick
handler and the packet arrival handler, and then IntHand automatically registers itself
against these to provide specific callbacks for individual device updates, edge updates
following a packet arrival, and a simulation step update after everything else in the timer
tick has been serviced. Typically, only the device and edge updates are used, but the
simulation step update could be used to take a snapshot of the current state of a core

for later inspection.

4.1.2 Compilation

Problem graphs must be mapped to a particular machine topology for the resulting data-
structures to make any sense. Figure 4.3 shows an example simple machine configuration
that is used in this section. Specifically, Figure 4.3a shows the hardware connectivity of

the example machine, and Figure 4.3b shows the P2P table configuration for each node.

The Loader accepts both the problem graph and the machine topology as either ASCII

text or binary files. A model of the machine topology is constructed in memory onto

Chapter 4 System Configuration 85

Node

1 2 3 23 72 94
1|/L 2 2 2 3 2
e 210 L 2 2 0 1
g
Z 3/0 0 L 1 0 0
© 23/0 3 3 L 0 0
fav}
B 7211 2 2 1 L 2
9410 3 2 2 0 L

(a) Example SpiNNaker machine topology. (b) P2P configuration for the example ma-
chine topology.

Figure 4.3: Example SpiNNaker machine configuration [6].

which the problem graph is mapped as shown in Figure 4.4. In many ways, this is
similar to the place-and-route stage present in many FPGA design tools. Many of those

algorithms are also applicable to this process.

Problem devices are assigned to physical SpiNNaker cores that have sufficient memory
to hold the parameters and state. A user can constrain particular problem devices to
be resident on specific cores if require. For example, perhaps the model is particularly

complex and requires the compute resource of a dedicated core.

td

core 10

“node 23

Figure 4.4: Mapping the example problem graph (Figure 4.2) to the example
machine topology (Figure 4.3a) [6].

86 Chapter 4 System Configuration

Once this mapping has been performed, the Loader then computes the MC routing tables
as shown in Figure 4.5. MC routes typically follow P2P routes over long distances, which
can be seen by the problem edges flowing through Node 2 despite it housing no problem
devices itself. Each node has a Device Lookup Table (DLT) which maps inbound packets
onto the correct problem edge/device. Recall that AER stores the source address in the
packet and not the destination. The DLT provides a mechanism for the receiving core
to perform the required cross-reference from the source to all receiving problem devices.

IntHand automatically performs this translation for all applications that link against it.

node 72 node 2

/~ core 14 core 15 \ﬁpOI‘t 0 port 2 MC:
N

72114:{3},{}

. @ : _72115:0310
ORNC!! '

MC:
72|14:{0},{15}
72|15:{0},{15}

node 3

D1
DLT: D1|D: / . \
D2|D3
\ D2[D5 / += D3| D6
p1|D7 § | DLT: -D31D2
D5[D7 :
DLT: P ; D2|D6
)3)7 ER HET)E)6
D2(D8 % core2 core 6 core 10
MC: I 10 MC:
node 1 7214:0.42) R @ /o @ 72/15:{0},{10}
72|15:{0},{2,6} 94/06:{},{10}
94/06:{0},{} “14. . 9 23]10:{2},{2,6,7}
23]10:{},{2}
node 94 node 23

Figure 4.5: Data-structures for the mapping in Figure 4.4 [6].

This translation is non-trivial and is perhaps best illustrated by example. Consider the
routing required for D1 in Figure 4.2. D1 requires edges to both D2 and D7 which are
all mapped to different cores as shown in Figure 4.5. The simplest of these routes is the
D1 — D2 edge which is completely resident in Node 72. Whenever Core 15 receives a
message from problem device D1, it must search the DLT for all connections originating
from D1 and deliver the message to all appropriate local problem devices. The DLT for
Node 72 contains only a single mapping for D1, (D1: D2), and hence only device D2 will
be issued with the message. To implement the D1 — D7 problem edge, the Node 72
router delivers messages to Port 0 which leads to Node 2. Node 2 forwards these out of
its Port 3, causing them to arrive at Node 94, where its router will deliver the messages
to Core 2. The DLT here also contains only a single mapping for D1, (D1: D7), and

hence Core 2 will issue messages to only device D7.

It is acceptable for a DLT to include multiple mappings. Consider the routing where
device D2 is connected to D3, D6, and D8. Both D3 and D6 are resident in Core 10 of
Node 23, therefore requiring two entries in the DLT of Node 23: (D2: D3) and (D2: D6).
When receiving messages from D2, Core 10 necessarily delivers them to both D3 and

D6, thereby implementing the desired behaviour of the original problem specification.

Chapter 4 System Configuration 87

The outputs from the Loader are a set of record-oriented binary files containing:

1. Edge/pin parameters and state destined for node SDRAMs (which are arranged
as a tree) that forms part of the DLT.

2. A format mapping table for each SRAM which IntHand uses to unpack data cor-

rectly before issuing it to event handlers in the application.

3. A problem device state table for each DTCM to store state and parameters for the
problem devices themselves. This forms the other part of the DLT for IntHand.

4. MC routing tables for each node, even if there are no problem devices mapped

onto it (e.g., node 2 in Figure 4.4).

From these output files, the Uploader generates a pair of header files. One contains
base addresses of the locations of the above data-structures so that IntHand knows from
where to acquire the data it needs. The other defines constants based on the types of
problem device the application uses. For example, if the problem graph defines a device
type NEU, the header file would contain a constant, TYPE_NEU.

User code can now be compiled against these header files, IntHand, and SARK to
produce a binary that can be uploaded. Typically the same binary is used in every
core (i.e., SPMD), but this is just a matter of convenience; the tool-chain supports an

MPMD model if this is more appropriate.

4.1.3 Execution

The Uploader begins by writing the node-local data into the SDRAM and SRAM of
the various SpiNNaker nodes. Whilst this is happening, the header files (previous sec-
tion) are generated to reduce the time it takes to upload an application. This is par-
ticularly useful for very large data-structures where performing multiple passes is too
time-consuming. If the header files are produced in this step rather than the previous,
invocation of the cross- compilers must be delayed until after the data has been up-
loaded. Typically, compiling the ‘C’ code takes an insignificant amount of time relative

to the processing of the problem graph.

As mentioned in the previous chapter, the Uploader performs a “core liveness” survey
while the node-local data is being written into memory. Single core failures are dynam-
ically mapped around by the Uploader re-writing parts of the MC tables as they are
being uploaded. DTCM data is written into the memories at the same time and is also
subject to any remaps. However, multiple core failures must be known a priori so they

can be mapped around by Loader.

88 Chapter 4 System Configuration

Application binaries are then flood-filled (SPMD) or directly loaded (MPMD) into the
instruction tightly-coupled memories (ITCM) of the appropriate cores, again subject
to any remaps. Once the entire machine has been prepared with data, routing, and
application binary images, a start SCP command is flood-propagated across the machine

and the application begins executing.

4.2 Contributions

~% 5%

Problem
Graph

SDRAM
Loader DTCM
simtor =
>

SimRunner Simulator

SpiNNaker

SpiNNaker

Uploader

Topology
~%

20%

Answer

Domain-specific
Post-processing

30% User Code

s
-------- ra—

Program
Image

SARK

30% SCAMP f-------- > X-compile

Figure 4.6: Tools and stages of the tool-flow that have been directly created or
modified by the work in this thesis.

Figure 4.6 shows a shaded variant of Figure 4.1 which highlights the contributions of
this thesis:

Chapter 4 System Configuration 89

o Uploader and IntHand [127] were written specifically to support SpiNNaker ap-
plications. Uploader additionally provides an API that many other tools use to

communicate with SpiNNaker.

o SimRunner and the corresponding simulator were created to verify the behaviour

of the algorithms in Chapter 5.

o SpinRunner allows the SpiNNaker implementations of these algorithms to be ap-

propriately benchmarked and tested.

e SpinDiscover wraps this functionality into a tool that can inter-operate with Loader.

In addition to the above, the following aspects were achieved in collaboration with

colleagues, shown by the blue boxes and percentage contribution estimates in Figure 4.6:

e SCAMP was initially written entirely by researchers at the University of Manch-
ester to serve as the system software. The algorithms of Chapter 5 target the
system-level of SpiNNaker, hence SCAMP is the most logical vehicle to use to
test the implementation of these algorithms. A benefit of this approach is that the
work of this thesis is already integrated and can be used by any users of SpiNNaker

with only minor modification.

e The heat diffusion application described in Chapter 6 is a collaborative effort.
This work contributed (in addition to IntHand) a worker library that served as a
high-performance buffer for inbound packet traffic to improve the run-time of the

application.

¢ General-purpose data download and collation tools were produced to aid with the
heat diffusion application, but are also transferable to other applications. A spe-
cialised system, SpiNNterceptor, is described in reference [123] which generalises
data download to include plug’n’play peripherals that can be accessed from within

SpiNNaker applications.

e Finally, various technical discussions and small contributions were made to the

Loader, Answer, and the problem description for the heat diffusion application.

Chapter 5

Auto-discovery Algorithms

5.1 Problem Statement

Unlike more traditional parallel computers, SpiNNaker cores do not have a record of any
other cores in the system, meaning the entire structure of the machine is an unknown.
Boot-time discovery of the machine is essential to initialise the P2P routing tables so
that arbitrary core-to-core communication can be achieved. As a consequence, core-
level synchronisation is difficult to achieve, as is completion detection and the notion
of pausing an application after it has started. In the neural domain, these issues are
unimportant because the simulations are performed in real-time so the duration for

which a simulation executes is itself a parameter of the experiment.

SpiNNaker is essentially an enormous number of ARM processors that can be applied to
problems outside of the neural domain. However, this requires that certain biologically-

inspired assumptions are slightly altered to be more general.

Firstly, any hardware faults in the machine must be known so that applications can be
accurately mapped onto specific machines. It is currently assumed (by Loader) that all
nodes have 16 worker cores, but the existing constraints capability allows any number of
cores per node to the specified. The physical hardware has 17 worker cores, leaving one
as a spare that can be brought into service automatically by Uploader if a single core
fault is detected. It is also assumed that all ports of a node are always functional, and
that if a port were to fail, this would be entirely mitigated by the toroidal network and
emergency routing. These assumptions have not prevented any applications from being
mapped to (and subsequently running successfully on) a specific SpiNNaker machine.
However, it would be naive to assume that a machine of this scale will not develop faults

as the components age.

Solving this problem is straightforward: a survey of the system before any problem-

mapping (i.e., the Loader run on Figure 3.19) can determine any port failures and

91

92 Chapter 5 Auto-discovery Algorithms

detect exactly how many usable workers each node has. The latter is already recorded
in each node as a consequence of the master arbitration step in the boot. The former is
more difficult because it requires a de-centralised survey (recall that at this point, P2P

communications might not be available).

Secondly, for the mapping stage to be successful in light of this newly discovered in-
formation, it must be possible to assemble this information into a data-structure that
describes the exact machine topology. It must not be possible to over-allocate problem
devices to a node just because it is assumed that a core should be there. This is shown

as the “topology” arrow between the SpinDiscover and Loader blocks in Figure 4.1.

This issue is compounded by the non-deterministic nature of the P2P building process
(section 3.2.1). P2P discovery messages are sent out of the northern, north-eastern,
and eastern ports to flood over the machine, and wrap when the machine limits (which
must be known a priori) are reached. Each message arrival is therefore a race condition,
making the exact composition of the P2P tables non-deterministic. Loader makes use
of the P2P tables to determine multi-hop MC routes. An exact mapping between an
idealised model and a fault-free system is required to yield optimal MC routes, and a
port failure automatically causes a discrepancy that could lead to application binaries
that will not function on SpiNNaker. As mapping can take many hours on a conventional
for large problems, this is clearly unacceptable. Packaging complete and accurate P2P

tables into the topological information allows this to be avoided entirely.

Finally, embedding a control tree in the system establishes a parent/child hierarchy that
can be used to provide familiar synchronisation and completion-detection functionality.
Perhaps the most obvious function this can serve is a barrier implementation, described
in Chapter 2, where cores enter the barrier once they have finished their assigned task
and all their child cores have also entered the barrier. Once the root core is in the
barrier state, clearly so is the entire machine [140]. The control tree can also be used
to implement other parallel programming concepts that a particular application may

require.
In summary, broadening the scope of SpiNNaker to include select non-neural applications
requires that:

1. Any hardware faults are discovered before any mapping takes place,

2. A complete model of the current state of the hardware can be assembled outside

of SpiNNaker based on data obtained from any discovery algorithms, and
3. A control tree can be embedded in any SpiNNaker machine to support common

parallel programming constructs.

This chapter provides solutions to these problems that have been verified both in simu-

lation and on SpiNNaker hardware.

Chapter 5 Auto-discovery Algorithms 93

5.2 Definitions

All of the algorithms in this chapter use the following notation and are implemented

under the following assumptions:

o The algorithms are system-level and hence execute on the monitor core (see sec-
tion 3.2) of a node. Any packet traffic arriving at a node is forwarded directly to

the monitor to progress the algorithm.

e Figure 3.20 shows a SpiNNaker network fragment, where each node has six discrete
ports represented by circles containing compass directions, and the local virtual
port, L, that leads to the monitor. Ports are bidirectional but faults may cause

them to function in only a single direction or not at all.

o Algorithm implementations (both in simulation and on SpiNNaker) use a numerical
scheme to index ports instead of the compass directions. This begins at 0 for the

eastern port and continues anti-clockwise; i.e., 1 for north-eastern, 2 for north, etc.

o Each algorithm is implemented as a state-machine that each node is running si-

multaneously. States are shown in this style.

e Nodes communicate using tokens which are written in this style. A token may op-
tionally carry parameters between nodes and are shown as token(A, B, C'), where

A, B, and C are the parameters.
o Ports also have states shown in this style.

o All nodes have a unique identifier as explained in Chapter 3; ports may also have

a node identifier assigned against them to note which node they connect to.

5.3 Simulation

SpiNNaker does not have an interactive debugging capability, which makes designing
entirely new applications difficult. In the neural domain, applications are assembled
from individually tested models by automated tools. Most of the uniqueness of an

application is in the connectivity of these models rather than the code itself.

Figure 5.1 shows the part of the tool-flow designed in this section. The focus of the
Simulator block is to allow system-level algorithms to be designed in a conventional
environment before being moved to SpiNNaker. Conventional debugging and testing
approaches are used to check that the algorithm performs the required behaviour, thus

minimising the scope for error when creating the SpiNNaker implementation.

94 Chapter 5 Auto-discovery Algorithms

AR AR AR AR AR AR AR AR AR AR AR AR AR A AR AR AR A AR AR
00000000 0000000000000020000077
v oy 700000077 000000000 0000000000770
Y U A A A
P A A A A
7 Y A A A A A
7 A A A A A s
1007000 7 A A
7927 A A A A
Zare A A A A
A A A A
A A A A
7 A A A A
A A A A
Y A A A
LN 00 000000000000000000000000007
A A A o e
A A A A
A A A P e
D A A s s s
g U A A A s
A A A A
A A A 7
A AR A - 8 A A A A AA AAAAARRRRAaAAAAAAA A
A V0000000000000 00000000000000000007
100000 U000000007 0000000000000 0000 0000000 00007000007000027000707
A A A A A
A A A A A A
A AR I8\ A s i
2000000000070 A A A
-¥ Runner 2050200020222577 V0000000000070 000000000790 777777777 777224 77707
A A A I
227720407 R s poov
700000007 77 0000000000000 000000700700705% SNy
100050000507 707700 1) Y Y A Y
N V0000000000000 0005555555 0000077225 0N
Py A A A A ax 2%
SimRunner Slmul&() LIILLIIINII 7777277720777 727 777777777 7777777770777707708877709777772V7
’/””””/”””ﬁdCyf&ﬁﬁ’é”””””””’ A A aaaan
R . RSl 2727272727277 72727772720 22727272 727777777770 7
1000000000000007 A Az
A A A A A Ay
A A I 7
R A OO A RO Aaariii aaaadaasrsrsiiiiisssss sasssapaaaaaaaaaaaaaao
A A A A A A A A
A A A e A e A A s
1000000805025007 A A A A A 7007007 7007
r12777 pn@ 99§;//// 7 8pi (/7777727702000 027272702722|1/77777277722(000727702727270727270 7777777777777 70707727777770777777
700007 ARE A
A A A . A A A
A A A A A A A A A
700007 A R A P A e e 70077
700707 707 A A A A
A A A A A A 70077
A A A A A
A A A A A A
A A A A A A A A i
7000000000007000007 A A A 5 00000000000000000000000000000077
LILLLIIIIIIIII P77 //////////////17 }:ﬂo (V72 L7 77770/ 777777777(077 LIIYIIIIIIII IS 77 LILIIIIII7
A ey A A A
A A A A A
A A A A A A A
QL LLlllllllttSSL. /%gpﬁggw/ 7777 172272777700 272727777772777Y 7777777777777 7777777777777 4
AU o A R A A
70000000000070077 1702707707 Y Y A
A B3 0000000000000000000050000002050000002050207057
7007007007 A A A A A A s
27000077 270007 7277 27007 777 20000007007
7000007 7007 757 70277 ey
vr777 (; v 777 77777 41122777702
7007 257 25277 220077
7007 7707 s 77077
7007 2277 7007
7007 7000000 7707
7007 A A
7007
7007 R aAAAA0 0
7007 70000 7507
2757 2777 2777
7007 70000 2507
7007 Wz 7707
7007 2257 2707
7007 ez
7007 2247
7007 70000
7007 2277
7007 Wz
7757 777
7007
7707
7007
7007
7007
7007
7007
7007
7007
7007
2757
7007
7707
7007
7007
7007
7007
7007
7007
7007
7007
2757
7007
7507
7
0000000

Figure 5.1: Stages of the toolflow shown in Figure 4.1 required to design and
simulate the behaviour of the auto-discovery algorithms.

As Figure 5.1 shows, the Simulator block is used by SimRunner which is itself a front-end
for Runner. The system has been designed to present the user with roughly the same
command-line interface regardless of which back-end is used. However, the Simulator
can be parametrised in more ways than SpiNNaker and has additional instrumentation

that is either not possible and/or not applicable to the SpiNNaker implementation.

Runner encapsulates the shared experimentation framework that measures the run-time
of a particular algorithm and produces appropriate graphs of results. The simulator
(and SimRunner) are used to test and validate the rest of the Runner framework and

verify that the simulator can perform workload-realistic simulations.

5.3.1 Machine Model

For the simulation to make accurate predictions, it must hold a model of a physical
SpiNNaker machine internally. The simulator is written in Python 2.7 and uses object-
oriented programming (OOP) techniques where appropriate. Each SpiNNaker node

is represented by a MachineNode object. Recall from earlier that all algorithms are

Chapter 5 Auto-discovery Algorithms 95

addressing system-level issues that arise during the boot procedure. Therefore only the

monitor core is required and only NN communication is available.

Connectivity is critically important in the model just as in a physical SpiNNaker ma-
chine. Each MachineNode holds a set of MachinePort objects which each contain a
reference to their parent node and the target node, thus providing unidirectional com-
munication to immediate neighbours. Port objects have a physical and a virtual state
which signify their availability to the algorithms. Physical state refers to the connec-
tivity of the port, whereas virtual state is used to apply constraints to the algorithms
in some way. For example, a port could be physically connected but virtually disabled,
which would be seen as disabled from the perspective of any algorithm. Port objects

also have arbitrary parameters that are used to hold algorithm-specific information.

A C
5] Tig
= [/]
@ s]
/ B [&] w| D [Ef——=w| E
Abstract Connectivity Graph Machine Graph

Figure 5.2: Constructing a machine model from an abstract connectivity graph.

MachineNodes and MachinePorts form a machine graph which is assembled from an
input abstract connectivity graph as shown in Figure 5.2. This mapping requires care
because the compass direction of a port is determined from its index (and wvice versa).
This is achieved by forcing all nodes in the abstract connectivity graph to use (X,Y)
co-ordinate pairs as their unique identifier. A stencil function is applied to all nodes of
the graph to determine the set of ‘SpiNNaker neighbours’ for the node, which directly
leads to the MachinePort objects being instantiated with the correct source and target

nodes.

Square and rectangular lattice topologies can be generated in the simulator with the
appropriate SpiNNaker connectivity pattern if required. Alternatively, a topology file,
specified using the widely used GraphML' format, can be used. Figure 5.3 shows a
visualisation of the topology file that describes an ideal SpiNN-103 (Figure 3.15) system,

which is used for all simulations in this chapter unless stated otherwise.

1Ir‘nttp ://graphml.graphdrawing.org/

http://graphml.graphdrawing.org/

96 Chapter 5 Auto-discovery Algorithms

Figure 5.3: Abstract graph representing the connectivity of a SpiNN-103 system
(Figure 3.15), showing the effect of the connectivity pattern of Figure 3.17.

5.3.2 Simulator Architecture

Each MachineNode can hold one or more Behaviour objects which implement a specific
piece of the algorithm under test. Packets that arrive at a node are passed to any active
Behaviours, which in turn delegate to a specific handler function in a similar manner to
SpiNNaker. Multiple Behaviours can be active simultaneously, but typically only one

is required.

Inter-node communications are handled by the MessageBroker object shown in Fig-
ure 5.4. It is responsible for queueing simulation events with the correct timing to sim-
ulate a combined transmission and computation delay. All MachinePort objects hold a
reference to the MessageBroker to ensure the correct timing is always observed. If this
were not the case, events can be created for the current time-step which, as mentioned

in Chapter 3, can cause oscillations as causality has been violated.

The MessageBroker converts messages into time-stamped events which the event pump
uses to progress the simulation. Events may have arbitrarily many parameters associated
with them, and are divided into categories that can each have a number of receivers
associated with them. Whenever the event pump pops an event from the queue (which
is ordered by event timestamp), the event and all parameters are sent to all handlers
registered against the event category. In most cases in this chapter, the MessageBroker

is the only receiver and comms_event is the only event category used. Figure 5.4 shows

Chapter 5 Auto-discovery Algorithms

97

Source Node

Message Broker

Destination Node

3
E(T,S,D,M(--+))

) |
(S,D,M(--+))

Event Pump

1 = 2 A C 5 6
Behaviour —O*E ® L E|—O-> Behaviour
] M) 171 (S, M())= [
B = D= E
M(---) (p, M(---))

Figure 5.4: Message delivery system in the simulator.

this architecture, identifying key points of a node-to-node message transmission, detailed

as follows:

1. A Behaviour in the source node emits a message, M(---), with some parameters

through the appropriate port, which also determines the name of the destination

node in the topology.

. The MachinePort passes M (---) to the message broker, along with the source and

desired destination node names.

. An event, E(T,S,D,M(---)), is issued to the event pump where T is the times-
tamp of the message delivery event, and S and D are the source and destination
node addresses. T is calculated by the MessageBroker adding a suitable delay
onto the current simulated time to model the lumped transmission and computa-

tion delay.

. Once simulated time has advanced sufficiently to allow E to be popped from
the queue, the event pump issues the message broker (a receiver) with the tuple

(S,D,M(---)); i.e., the arguments stored against the event.

. The message broker looks up the destination node, D, in the machine model and
issues it with a tuple of (S, M (---)).

. S is used to find the port object, p, in the destination node that can be used to
reply to S. The behaviour is then issued with p and M(---), potentially leading

to state transitions and further messages being generated.

98 Chapter 5 Auto-discovery Algorithms

5.3.3 Fault Map Generation

To determine how the algorithm under test scales with the number of discoverable
nodes, the simulator generates a fault-map before each run which selectively disables
MachinePorts to lock certain nodes out of the simulation. Figure 5.5 shows a visuali-
sation, produced by the simulator, of the machine graph generated from the topology
shown in Figure 5.3. Each node is shown by a large square containing six ports shown as
smaller colour-coded squares. In this diagram, red ports have malfunctioned (consider

that there are no corresponding edges in Figure 5.3), and green ports are fully functional.

Figure 5.5: Visualisation produced by the Runner infrastructure of the machine
model resulting from the graph shown in Figure 5.3.

Figure 5.5 shows only the physical state of the ports, but altering the virtual state allows
the machine topology to appear smaller. The simulator generates fault maps by first
setting the virtual state of all ports to disabled, and then N nodes are enabled row-by-
row from the lower-left (root) node. This technique is used to measure how algorithms

scale both in simulation and on SpiNNaker.

5.3.4 Test Case

To verify that the blocks highlighted in Figure 5.1 correctly interoperate, the simple case
of the default P2P configuration algorithm detailed in section 3.2.1 is used. Only the

node identifier assignment stage is implemented because, as discussed in section 5.3.1,

Chapter 5 Auto-discovery Algorithms 99

the MachineNode object does not contain a P2P router model (though adding this would
require only minor modification). The outcome of this procedure is already known: all
nodes will be assigned (X, Y") identifiers starting from (0, 0)—the root—in the lower-left
corner of the model (Figure 5.5), and increasing in both X and Y up to the upper-right

corner.

Algorithm 5.1 shows the algorithm implemented in each node, where W and H are
the dimensions of the target machine which must be known a priori. These values are
determined as if the topology traced a rectangular lattice that may be incomplete; e.g.,

Figure 5.3 is an incomplete 8 x 8 square lattice, therefore W = H = 8.

Algorithm 5.1 (X,Y) node identifier assignment algorithm.

Require: W and H to be extents in X and Y known a priori.

1: procedure NNHANDLER(ps, X, Y, W, H)
2: Az + Ay <0

if p; =W then
Ax 1

else if p;, = SW then
Ax + 1
Ay + 1

else if p, =S then
Ay + 1

10: end if

11: X'+ (X + Az) mod W
12: Y+ (Y + Ay) mod H

13: node.identifier «+ (X', Y’)

14: for p, € {E,NE,N} do

15: SENDNN (pg, (X', Y/, W, H))
16: end for

17: end procedure

Figure 5.6 shows a range of machine model states after Algorithm 5.1 has finished
executing. The trajectory of the fault-map described previously can clearly be seen
progressing through the figures. As there are 48 nodes in the topology used to create the
model, there are consequently 48 individual runs subject to 48 individual fault-maps.
Port states are shown by the diagonal shading, in this case the green shading in the
upper-left shows that the connectivity physically exists, and the red in the lower-right
indicates that the port has been disabled. As expected, no node with all ports disabled
has received an identifier because no messages have been received by the behaviour in
the node.

100 Chapter 5 Auto-discovery Algorithms

(a) Single node enabled.

romooRomoRORO

TomomoRomono

(e) 33 nodes enabled. (f) 41 nodes enabled.

Figure 5.6: Machine model state after P2P algorithm has been executed on
various fault maps limiting the number of discoverable nodes.

Chapter 5 Auto-discovery Algorithms 101

Figure 5.7 shows the final experiment run with a fault-map that enables all ports in
the model. It is worth noting that the virtual state of a port can never upgrade the
apparently capabilities of a port. Virtual states naturally degrade to the physical state
if this does occur; for example, if a port is physically disconnected and the virtual state
is set to enable it, all subsequent reads of the virtual state will still state that the port
is disabled.

Algorithms are therefore always constrained to the safest possible case and will never
expect responses from ports that can never produce responses. This is simple to achieve
in the simulator because the topology is known. In SpiNNaker, the topology is clearly
not known (as discovery is the purpose of the algorithms), so a port survey process called
the a-ping is run first to determine the physical port states. This is described in the

next section.

S3ILTR:

it
Lo

ST,
ST
AT,

iEi i,

Figure 5.7: Machine model state with all 48 nodes enabled clearly showing the
correct allocation of identifiers.

Figures 5.8 and 5.9 show two of the diagnostic plots generated specifically from the 48
node run (Figure 5.7). Figure 5.8 shows how the simulator advances simulated time as
events are popped from the event queue. These simulations were performed on a desktop
machine with a 3.0GHz Intel i7-950 processor and 24GB of RAM.

The widths of the bars of Figure 5.8 change with height to show how much extra pro-

cessing time is required to dispatch and handle the events. From Algorithm 5.1 it is

102 Chapter 5 Auto-discovery Algorithms

0.0008 45

0.0007 | 140

{35
0.0006

w
=3

0.0005

N
e}

Event Queue density

0.0004

Simulated Time (s)
N
o

0.0003

—
v

{10

0
0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
Wall-clock Time (s)

Figure 5.8: Simulated time and event queue size as a function of wall-clock time
for the 48 node simulation run (Figure 5.7).

clear that messages are multiplied as greater numbers of nodes receive messages them-
selves. This expectation is proved by the increasing number of events in the queue as

the simulation progresses.

Figure 5.9 shows the same information as Figure 5.8 but instead plots the event queue
size against simulated time instead of the wall-clock. The initial delay of 600us is
parametrisable to simulate the communication lag between the target SpiNNaker system
and the host computer. After this point, events can be seen multiplying in the same
pattern. The widths of the bars here are uniform because all messages are assumed
to require the same transmission and processing time. This is acceptable as only NN

communication is used and the propagation delay between nodes is uniform.

Figure 5.10 shows how the simulation scales as the fault-map increases the number of
discoverable nodes in the machine model. It is clearly linear in the number of events that
are generated hence it follows that the wall-clock time also increases linearly. Usually, it
is more important to show how the simulated time changes as the problem size increases,

but this is only appropriate for algorithms whose completion can be detected.

This is not achievable with Algorithm 5.1 because there is no obvious method for report-
ing that all nodes have been assigned identifiers—long-range (i.e., P2P) communications
have not yet been initialised. Furthermore, the total number of nodes in the system can-
not be accurately known. Multiplying the extents W and H is only sensible if the lattice

Chapter 5 Auto-discovery Algorithms 103

45

40 |

35F

30+

N
&)

Event Queue Density
N
S

15t

10}

0
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
Simulated Time (s)

Figure 5.9: Event queue size for each simulated time-step for the 48 node sim-
ulation run (Figure 5.7).

0.0035 . ‘ : r 250
0.0030
200
0.0025 |
0
_ {150 £
2 0.0020} g
[w
£ =
< 5
%] Q
3 £
Q =1
§ 0.0015} =
100 £
°
0.0010]-
50
0.0005 |-
0.0000 w w w 0
10 20 30 20 50

Total Number of Discoverable Nodes

Figure 5.10: Simulator wall-clock time and total number of events for increasing
numbers of enabled nodes.

104 Chapter 5 Auto-discovery Algorithms

AR AR AR AR AR AR AR AR AR AR AR AR AR A AR AR AR A AR AR
00000000 0000000000000020000077
Dttt ttb 7 0000000 700000077 000000000 0000000000770
Y U A A A
P A A A A
W Y A A A
o A A A A A s
1007000 7 A A
7 A A A A
7 00 00000000000000000000077
A A A A
A A A A
7 A A A A
A A A A
Y A A A
LN 00 000000000000000000000000007
A A A o e
A A A A
A A A P e
Di ti A A s s s
lagnostics U A A A s
A A A A
A A A 7
A AR A - 8 A A A A AA AAAAARRRRAaAAAAAAA A
A V0000000000000 00000000000000000007
100000 U000000007 0000000000000 0000 0000000 00007000007000027000707
A A A A A
A A A A A A
A AR I8\ A s i
2000000000070 A A A
Runner 2050200020222577 V0000000000070 000000000790 777777777 777224 77707
A A A I
227720407 A A A AR poov
TA77777777747777777 7707777770000 000 A0 77 0000000000000 0000000000705 SNy
000N N0 0000000000000007007707 0, Y Y A Y
7 o 7707 V0000000000000 0005555555 0000077225 0N
7 277 Y A A Az A
7’ LILLIN I 22727727072 7277777777777Y 7777777770777 7728887770F777777
7 A A A A AR AP AR
7 22277 . RSl 2727272727277 72727772720 22727272 727777777770 7
7 70000007 77 2l 000000000000000000
7 200000000 0000000000000 0000 00000000000005000000007
70000070 A e 7
25205770 A i s
70000000 000 0000000000000000000007007
2920577 A A
X 20000000 S0 0000000000000000000077 7007007 7007
SpinRunner| SpiNNaker R AR AR A oy
L 0000 0000000000000000000000000007
5 Y R
A A A A
A A A 70077
A A A A
A A A e 70077
A A A A
A A A A
A A A A A A i
7000000000007000007 A A A 5 00000000000000000000000000000077
LILLLIIIIIIIII P77 //////////////17 o (V72 L7 77770/ 777777777(077 LIIYIIIIIIII IS 77 LILIIIIII7
A ey A A A
A A A A A
A A A A A A A
QL LLlllllllttSSL. /%p §gw/ 7777 172272777700 272727777772777Y 7777777777777 7777777777777 4
AU o A R A A
700000057 77 17027027077 A A A
A B3 0000000000000000000050000002050000002050207057
7007007007 A A A A A A s
27000077 270007 7277 27007 777 20000007007
7000007 77 7007 757 70277 ey
vr777 4 (; v 777 77777 41122777702
7007 257 25277 220077
7007 7707 s 77077
7007 2277 7007
7007 i 7707
7007 A A
7007
7007 R aAAAA0 0
7007 70000 7507
2757 2777 2777
7007 70000 2507
7007 Wz 7707
7007 2257 2707
7007 ez
7007 2247
7007 70000
7007 2277
7007 Wz
7757 777
7007
7707
7007
7007
7007
7007
7007
7007
7007
7007
2757
7007
7707
7007
7007
7007
7007
7007
7007
7007
7007
2757
7007
7507
7
0000000

Figure 5.11: Stages of the toolflow shown in Figure 4.1 required to implement
and verify the auto-discovery algorithms on SpiNNaker.

is complete, which is not the case for the SpiNN-103 topology. In physical SpiNNaker
hardware, termination is achieved through means of a time-out calculated as the worst-
case time required to complete the process. Comparing the total simulated time against
the measured wall-clock time of SpiNNaker is therefore meaningless as it will be roughly

equal to the time-out in every case.

5.4 Implementation

Figure 5.11 highlights the part of the tool-flow developed in this section, which targets
SpiNNaker instead of the Simulator block. Much of the infrastructure is the same be-
cause Runner defers the running of experiments an Executive object which handles the
specifics of the target platform. In the previous section, the Executive used, SimExecu-
tive, targets the Simulator block instead of SpiNNaker. In this section, SpinExecutive
is used to target a physical SpiNNaker machine running a modified version of SCAMP
(see section 3.2). From the perspective of Runner, the experimental procedure (including

fault-map generation) remains the same.

Chapter 5 Auto-discovery Algorithms 105

5.4.1 SCAMP Modifications

For the SpiNNaker experiments in this chapter, SCAMP is modified to understand
an extended set of SCP commands which enable and disable other hooks that have
also been introduced. SpinExecutive makes use of the Uploader API (the relationship
shown in Figure 4.1) to transmit this range of SCP commands to SCAMP and receive
responses containing any appropriate experimental results (such as discovered topologies

and packet flow statistics).

The flood-fill process described in section 3.2.1 still applies to the modified image because
any extensions that would affect the transmission of NN or P2P messages are initially
disabled. The extended set of SCP commands are always available, which allows the

SpinExecutive object to enable the modifications as required.

Several hooks are installed into the standard SCAMP executable:

SCP handler Extended commands to support SpinExecutive as mentioned above.

NN handler When enabled, all NN interrupts are processed by the extension code
instead of the default SCAMP implementation. All SCAMP features that require
NN messages cease to work in this state, which is why this hook is initially disabled.
Once enabled by an SCP command over Ethernet, it is flood-filled to the rest of
the system using the standard NN flood-fill technique built into SCAMP. It can
be disabled again using a similar system built into the extension code, meaning
that after the algorithms in this chapter have configured a SpiNNaker system, it

can be restored to a state that can support applications.

100Hz tick handler SCAMP uses a handler called at a rate of approximately 100Hz
to action system-level activities such as time-outs (e.g., for the standard P2P
initialisation described in Chapter 3) and to spread out network traffic temporally
in operations such as the standard P2P table construction implementation. With
NN handling disabled, this handler can cause additional traffic to be injected
into the network that could negatively impact any experiments being performed.
Therefore, this handler is overridden when the NN handler is overridden, and

restored when it is restored.

As with the hardware model used by the simulator, ports can have state and parameters
assigned against them, and node behaviours are implemented as state-machines. Most
of the discovery algorithms assign nodes with identifiers that are used to eventually build
the P2P routing tables. This state is deliberately isolated from the state of SCAMP so
that algorithms (implemented as behaviours) can be tested without affecting the general
operation of SCAMP.

106 Chapter 5 Auto-discovery Algorithms

Isolated state can be copied into hardware registers and the SCAMP core afterwards
if required. The algorithms designed in this chapter form the revised boot-sequence
orchestrated by SpinDiscover (see Figure 4.1) which will be described in the following
chapter. Once the topology has been discovered, SpinDiscover issues an SCP command
that performs the state copy, allowing the node to function as expected but using the

configuration constructed by the algorithms in this chapter.

5.4.2 Port Survey—The a-ping

When the simulator constructs a machine model from the input topology, port faults
are determined by edges that are missing after a SpiNNaker stencil function is applied.
In hardware, these faults are not (and cannot be) known a priori and must therefore be
discovered before any algorithm experiment runs can be performed. This is a require-
ment of the hardware model established earlier where algorithms should not individually

be expected to detect faulty ports.

Faulty ports are discovered by the a-ping which uses the tokens request, response, and
timeout. All nodes begin in the idle state and all ports begin in the unknown state.
The external host initiates the process by passing an initial request over the Ethernet
connection, which causes this node to consider itself the root. As it is the root, it starts
a timer that will lead to a timeout token being emitted from all ports that have been
found to be functional. Each node implements the state machine shown as Algorithm 5.2.
When the timer on the root node expires, the behaviour will be as if a timeout token
has been issued to itself. However, in the implementation itself this is unnecessary and

replaced instead by a function call.

In Algorithm 5.2, all state(p) assignments are assumed to act on the physical state of

the port. All other algorithms may only adjust the virtual state of a port.

As with the P2P identifier assignment (Algorithm 5.1), completion cannot be detected
and hence measuring the time taken to complete the process is not useful. The traffic
flowing through the SpiNN-103 machine is shown in Figure 5.12. FEach node contains a
small pie-chart showing the ratio of local, non-local, and dropped packets as reported by
the diagnostics registers in the router. The bar chart below the matrix shows the exact
values for each node. Additionally, the results of the port survey are shown clearly on

the visualisation into which the pie-charts are embedded.

Local and non-local refer to the sources of packets as they enter the router. Therefore
local packets are those produced by a core within the node and non-local packets are
those from outside the node. Dropped packets are caused by back-pressure being too
great in the communications NoC. As expected, all non-edge nodes have equal amounts

of local and non-local traffic because every request is met with a corresponding response.

Chapter 5 Auto-discovery Algorithms 107

Algorithm 5.2 a-ping port survey.

Require: All ports to be assigned the unknown state.
Require: Node state set to idle.

1: procedure NNHANDLER(ps, type)

2: if node.state = terminal then
3: return
4: end if

5: if type = request then
if node.state = idle then
node.state < active

for p € node.ports;p # ps do

9: SENDNN(p, request)

10: end for

11: end if

12: state(ps) < inbound

13: SENDNN(ps, response)

14: else if type = response then

15: state(ps) < bidirectional

16: else if type = timeout then

17: node.state < terminal

18: for p € node.ports do

19: if state(p) = unknown then
20: state(p) < disabled

21: else if state(p) = bidirectional then
22: SENDNN(p, timeout)

23: end if

24: end for

25: end if

26: end procedure

Edge nodes have dropped packets or unequal numbers of local and non-local packets.
The obvious expectation would be that all edge nodes would have dropped packets equal
to the number of disconnected ports, which is clearly not the case. This is because the
communications NoC includes a number of buffer stages to help reduce back-pressure.
As this space is finite, the router is capable of issuing some packets to these ports
without needing to drop them. However, it is not (nor can it be) obvious when packets
are dropped because traffic prior to the SCP override command could still be resident

in these queues.

The important results shown in Figure 5.12 are that all expected faults are correctly
detected, and that the router diagnostics register data is successfully obtained from the

machine.

108 Chapter 5 Auto-discovery Algorithms

W Local
I Non-local
I Dropped
18
16 B
14 i
€
312 E
(W]
E 10 B
g 8]
g 6 1
o
°
4 |
2 4
0
(0, 0) 1,0) (1, 4) (2,3) (3,1) (3,5) 4,2) (4, 6) (5, 3) (5,7) (6, 5) (7, 4)

Node

Figure 5.12: Distribution of packets across a SpiNN-103 machine for the a-ping.

5.4.3 Test Case

The results of the port survey essentially serve the same purpose as the machine model

construction step required by the simulator. Now that the physical states of all ports

Chapter 5 Auto-discovery Algorithms 109

are known, the SpiNNaker implementation of Algorithm 5.1 can execute in the same

manner as the behavioural implementation under the simulator.

Fault maps are generated in the same manner as before, but Runner applies them
to the target SpiNN-103 hardware via the SpinExecutive which sends the required
port states directly to each node using SCP commands. Clearly this requires that all
nodes are addressable already. The default SCAMP P2P configuration step explained
in section 3.2.1 is executed first to assign the node identifiers and construct the P2P
tables.

Whilst it may seem counter-productive to use the original implementation of the Al-
gorithm 5.1 to configure the machine, consider that a) Figure 5.12 has shown there to
be no port faults on the SpiNN-103 system being used, and b) the purpose of the im-
plementation of Algorithm 5.1 is to validate the experimentation environment shown
in Figures 5.1 and 5.11 so that it can be used to prove the algorithms designed in this
chapter. These are then assembled into a single tool, SpinDiscover, that has no reliance

on p2pc at all.

Figure 5.13 shows the same range of fault-maps shown in Figure 5.6 but instead applied
to the SpiNN-103. The same stepping is used for ease of comparison, which clearly
shows the same results between simulation and SpiNNaker implementation—the figures

are identical.

SpiNNaker diagnostics do not permit the same event-level plots that were shown for the
simulation run. However, the router diagnostic registers allow for Figure 5.14 to show
the traffic distribution over the course of the experiment run. The pattern is indicative
of Algorithm 5.1 as packets are only ever emitted from the eastern, north-eastern, and

northern ports.

Non-edge nodes have equal numbers of local and non-local packets because all six ports
are functional; i.e., messages are received on the western, south-western, and southern
ports, and new messages are transmitted through the others. Edge nodes vary slightly
based on the number of ports that are capable of transmitting and receiving messages,
but this proportion is correct in all nodes. Node (0,0) cannot receive any messages
and has 100% local messages as expected. Similarly node (7,7) cannot transmit, and
therefore has 100% non-local messages as expected. No messages have been dropped
because only known-good ports have been used and the traffic density at all points has

not been high enough to apply sufficient back-pressure to induce drops.

Inspection of the bar chart in Figure 5.14 indicates that double the number of packets
implied by Algorithm 5.1 have been sent. This is due to a terminal state being introduced
which allows the nodes to reset after the time-out has expired so that further experiments

can be performed. After the time-out expires on the root node, a timeout token is sent

110 Chapter 5 Auto-discovery Algorithms

(a) Single node enabled.

ST

(e) 33 nodes enabled. (f) 41 nodes enabled.

Figure 5.13: Machine state downloaded from a SpiNN-103 machine after being
subject to various fault-maps as with the simulator in Figure 5.6.

Chapter 5 Auto-discovery Algorithms

111

W Local
I Non-local
I Dropped

Total Packet Count
w

1

[30, 0) (1, 0) (1, 4) (2, 3) (3, 1) (3, 5) 4, 2) (4, 6) (5, 3) (5,7)
Node

Figure 5.14: Distribution of packets across a SpiNN-103 machine for the P2P

identifier assignment algorithm (Algorithm 5.1).

(6, 5) (7, 4)

in the same pattern as the identifier tokens. This has the effect of doubling the number

of messages without affecting the overall pattern of transmission.

Both test cases demonstrate the validity of the experimentation environment by showing

that data can be collected and that fault-maps can be used to constrain the number

112 Chapter 5 Auto-discovery Algorithms

of discoverable nodes in both environments. The analysis code shared between both
front-ends produces the correct plots, and both algorithms yield the same results. Time
predictions from the simulator and time measurements from SpiNNaker are both equally
meaningless for Algorithms 5.1 and 5.2 and hence have not been compared. However,
this is not true of the algorithms designed in the following section and hence times can

be compared.

5.5 Labelling Nodes and Building the Control Tree

Section 5.1 highlighted three key issues that must be addressed to support non-neural
applications on SpiNNaker. The first of these issues, discovering hardware faults of
the target system, is addressed by the a-ping introduced in the previous section. A
suitable experimentation environment has been designed and validated in the previous
few sections that allows this section to develop algorithms that address the two remaining

issues.

Depth- and breadth-first searches are algorithms commonly used to visit all nodes of an
arbitrary graph. The approaches developed in this section are all fundamentally based
on either of these algorithms, but the visitation function establishes both a parent/child
hierarchy to embed the control tree, and assigns contiguous (thus, unique) labels to each

node.

Whilst it is not essential to perform a labelling step to discover the topology of the
system, it does address an outstanding issue in Algorithm 5.1 that can lead to functional

nodes being excluded under the fault conditions shown in Figure 5.15.

Figure 5.15 shows the machine model state after Algorithm 5.1 is run under the simula-
tor. The topology is appropriately adjusted to remove the eastern (0) and northern (2)
links from the root node. Despite only two port malfunctions existing, seven functional
nodes have not been visited correctly. Clearly if this topology was toroidal, this issue
could not arise. Indeed this issue has not arisen on any SpiNNaker hardware to date,
but it would be naive to assume that it will never happen over the life-span of a machine

of this scale.

Figure 5.16 shows the same fault conditions being applied to a SpiNNaker run of Algo-
rithm 5.1, but instead making use of virtual port state instead of removing the topolog-
ical links as this is not feasible on physical hardware. By inspection, it is clear that the

problem is reproducible both under simulation and on hardware.

The topological discovery algorithms designed in this chapter necessarily visit each node
in the system anyway so that a full picture of the connectivity can be created. Introduc-

ing label assignment into this is a trivial extension that completely removes the above

Chapter 5 Auto-discovery Algorithms 113

I
il
Lo
sEiniininioh
MR

Figure 5.15: Simulation result demonstrating the potential issue with Algo-
rithm 5.1.

fault condition for all applications, not just those in the non-neural domain. There-
fore, the algorithms that follow should be considered a replacement for Algorithm 5.1 in

addition to discovering the topology of a target SpiNNaker machine.

5.5.1 Depth-first Labelling

Back-pressure presents an unknown problem because of the non-deterministic nature
of the distributed buffers of the communications NoC. This can be trivially ignored by
limiting to the number of packets being transmitted at any instant to just one. Clearly
this makes poor use of massively-parallel hardware, but it is guaranteed to lead to the
correct result. The a-ping has already determined the physical state of the hardware,

which removes any potential stalls due to faulty hardware.

A depth-first search naturally limits the packet traffic because the traversal attempts to
find the longest possible path through the graph. Multiple searches cannot be performed

in parallel as packets could collide. The algorithm requires the following tokens:

o label(k): Sent to an unknown topological sibling node in an effort to claim it as a
child node, and assign it the label, k.

114 Chapter 5 Auto-discovery Algorithms

IR
1iLdList:
R
!ﬁ#ﬁ#ﬂ

Figure 5.16: Result from SpiNNaker implementation demonstrating the same
potential issue with Algorithm 5.1 shown in Figure 5.15.

o ack(k’): Response to a label(k) indicating that the child request has been accepted
and that the topological siblings of this node have also been visited. &’ is the
highest identifier assigned to any child of the chain; for leaf nodes, k = k'

o nack: Response to a label(k) indicating that the child request has been refused

because the node already has a parent.

o term(N): Terminal message requiring that the nodes enter their barrier immedi-
ately to prepare for any subsequent behaviours. N is the total number of nodes

discovered in the system.
Additionally, the following states are required:

o idle: node is waiting for messages from other nodes. Upon receiving a label(k),

the node enters /abelling and marks the inbound port as its parent.

e labelling: node has been claimed as a child by a sibling and is attempting to claim
other siblings as its children. Upon entering this state, the node assigns itself the
label k and initialises a counter, ¢ = 0. All ports that are bidirectional are then set

to unvisited.

The first unvisited port starting from east (i.e., port 0) is visited and is used to send
label(k + ¢ + 1) token to a potential child. If the sibling responds with ack(k’), ¢

Chapter 5 Auto-discovery Algorithms 115

labelling

After all neighbours
visited and parent
sent ack(k’)

Visit each neighbour,
waiting for either
ack(k’) or nack
before proceeding

start

Figure 5.17: State transition diagram for the depth-first discovery algorithm.

is incremented to generate a new label and the port is marked as child. After a
response of either ack(k’) or nack, the process is repeated with the next unvisited

port.

After all ports have been visited, the node advances to the labelled state.

o labelled: node has finished labelling itself and all possible children. Upon entering
this state, the node sends ack(k + ¢) using the parent port.

e terminal: node is in the terminal state and may be used for other purposes. A
node enters this state then receiving a term(N) token from its parent and then
propagates the tokens to all of its children. N is stored locally as the total number
of nodes in the system. Child nodes respond to their parents with a corresponding
term(0) token to acknowledge the terminal state. Leaf nodes respond immediately

because they have no children.

Nodes may only advance state as a response to a packet arrival (shown by Figure 5.17)
with the single exception of the root node, which automatically advances into the terminal
state once all of its siblings have either responded with ack(k’) or nack. Once the
terminal acknowledgements propagate back up to the root node, the process is complete.
In simulation, this simply terminates the process, whereas on SpiNNaker an SCP message

is emitted reporting the discovered size of the machine.

5.5.1.1 Simulation

Before implementing this behaviour on SpiNNaker, it is verified under simulation. As
before, the algorithm is subject to the same fault-map trajectory to gain an estimation of
how the algorithm scales with the number of discoverable nodes. Figure 5.18 shows that
the simulated running time scales linearly with machine size, which is to be expected

because only a single node is active at a time and all nodes must be visited.

116 Chapter 5 Auto-discovery Algorithms

0.008

0.007

0.006 -

0.005 |-

0.004 |-

Running Time (s)

0.003

0.002 |-

0.001}

0.000

0 10 20 30 40 50
Number of Discoverable Nodes

Figure 5.18: Scaling of the depth-first discovery algorithm with machine size
under simulation.

Figure 5.19 provides an indication of the simulator performance for the 48 node sim-
ulation run. In this circumstance, the simulated time is a roughly linear function of
wall-clock time, indicating that the simulator is running at approximately the same rate
as the SpiNN-103 hardware. This is to be expected as only a single node of the SpiNN-
103 is allowed to proceed at any instant, essentially reducing it to the performance of a

single-threaded process.

Comparing Figures 5.19 and 5.20 shows that only a single message is in flight at a time,
with the exception at around 7ms simulated time where it increases to two for a short
period. This is caused by the terminal state barrier explained earlier. This is clearest in
Figure 5.20 which colour-codes the events in the queue according to the type of message
being carried. label(k), ack(k’), and nack tokens are all interleaved until about 6.5ms
simulated time where the barrier transmission begins. Observe also that the first block
of tokens are all label(k), which implies that a string of nodes are being claimed without

any contention until around 1ms simulated time.

Both of these observations are confirmed by Figure 5.21. Firstly, nodes 0-18 form a
long string without causing contention. Node 18 then attempts to claim 10, 11, and 12
before finally being able to claim what becomes node 19, leading to the first group of

nack tokens in Figure 5.20. Secondly, there are exactly two leaf nodes, meaning there

Chapter 5 Auto-discovery Algorithms 117

0.008

0.007 |

0.006 | {15

0.005

0.004 {1.0

Simulated Time (s)
Event Queue density

0.003

0.002 0.5

0.001

0.000 0.0
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Wall-clock Time (s)

Figure 5.19: Simulated time advancement and event queue density as a function
of wall-clock time for the 48 node depth-first simulation run.

2.0 T T T T T
B NACK
N ACK

B Label
W Barrier

15+

Event Queue Density
oy
o

0.5F

0.0
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Simulated Time (s)

Figure 5.20: Distribution of event types (i.e., tokens) throughout the 48 node
depth-first simulation run.

118 Chapter 5 Auto-discovery Algorithms

is a single branch which can be seen at node 39. This causes the the message count to

increase to two because the barrier messages follow the embedded tree structure.

Figure 5.21: Discovered machine model state after the 48 node simulation run,
showing the embedded tree and the assigned node labels.

Figure 5.21 illustrates that the labelling and tree construction stages have completed
successfully (the leaf nodes are highlighted). Node labels form a contiguous set and,
more importantly, are unique which will permit P2P table construction later on. Fig-
ure 5.22 subjects the depth-first approach to the same fault conditions described in
section 5.3.3, and demonstrates that they can be overcome by this technique. This is
expected because the search is designed for an arbitrary graph, so provided that at least
one port is functioning (as is the case for node 0 in Figure 5.22), the complete graph

will be discovered.

Both Figures 5.21 and 5.22 feature branches because transmission through ports is at-
tempted in increasing index order. This also explains the zig-zag pattern exhibited in
both figures. In Figure 5.21, the first branch appears at node 39 because it is the first
node which comes into contact with an obstruction according to this rule. This happens
much sooner in Figure 5.22 because the fault conditions imposed upon node 0 cause
exploration to being on the second row of the grid instead of the first. Therefore, two
branches develop at node 5 because of the grid boundary; the branch from port 1 forms a
similar pattern to that of Figure 5.21, whilst the branch from port 4 is simply discovering
the nodes that were originally obstructed by the fault.

Chapter 5 Auto-discovery Algorithms 119

Figure 5.22: Resilience of the depth-first discovery simulation run against the
same fault pattern as in Figures 5.15 and 5.16.

5.5.1.2 Implementation

Simulation results confirm that the depth-first labelling and discovery approach behaves
as expected. Figure 5.23 shows the performance of the same approach implemented on
SpiNNaker. The blue line shows the wall-clock measurements taken of the SpiNNaker
implementation, whereas the red line shows the simulated time as predicted by the
simulator after tuning the processing time parameter. They scale and perform almost

identically, further validating the tool-chain and the approach itself.

The blue plot for SpiNNaker represents the average results from ten experimentation
runs: the solid blue line is the median time measured for the various machine sizes, and
the shaded light-blue region surrounding it represents the span between the upper and
lower quartiles. Not only does the SpiNNaker implementation perform well and scale
linearly, but the small shaded area shows that it performs consistently well. Extrapolat-
ing from Figure 5.23, the expected wall-clock time required to discover the SpiNN-105.5

system shown in Figure 3.18 is approximately 4.2s.

Figure 5.24 shows the traffic distribution across the SpiNN-103 hardware for the 48 node
run. As expected, the packet flux is equal parts local and non-local traffic because only a
single message is ever being sent at a time, and each request is met with a corresponding

response. Coupled with faulty ports being naturally skipped by the behaviour described

120 Chapter 5 Auto-discovery Algorithms

0.008 0.008

— SpiNNaker

— Simulator

0.007 40.007

0.006

40.006

0.005

40.005

0.004 40.004

Wall-clock Time (s}
Simulated Time (s)

0.003 | 40.003

0.002

40.002

0.001 | 40.001

0.000
0

: ; L ; 0.000
10 20 30 40 50
Number of Discoverable Nodes

Figure 5.23: Comparison of the running time predicted by the simulator and
the measured wall-clock time of 10 consecutive runs on SpiNN-103 hardware.

earlier, this eliminates any opportunities for back-pressure to occur, so no packets are

ever dropped by the router.

The embedded tree structure is difficult to see in Figure 5.24 and is more clearly shown
by Figure 5.25. This is identical to the simulation result shown in Figure 5.21 which
is expected because the traffic pattern is entirely deterministic. As before, the leaf
nodes have been highlighted to ease visual inspection of the structure. Additionally, the
tolerance of the connectivity fault can be seen clearly in Figure 5.26, also resulting in

the same structure observed earlier in simulation (Figure 5.22).

Chapter 5 Auto-discovery Algorithms 121

0
0 4 8 12 16 20 24 28 32 36 40 44
Node

Figure 5.24: Packet distribution across the SpiNN-103 hardware for the 48 node
run of the depth-first discovery run.

122 Chapter 5 Auto-discovery Algorithms

Figure 5.25: Discovered machine topology from the 48 node run on SpiNN-103
hardware.

Figure 5.26: Resilience against the fault pattern of a 48 node run on SpiNN-103

Chapter 5 Auto-discovery Algorithms 123

5.5.2 Lock-step Breadth-first Labelling

Whilst the depth-first search approach tolerates faults and visits every node in an arbi-
trary topology, it produces heavily skewed trees (Figures 5.21 and 5.25). Barrier releases
following these trees will not be optimal (balanced trees require the shortest time) and
could introduce significant delay in applications that make frequent use of this synchro-
nisation technique. With a few additional tokens and states, the depth-first discovery
algorithm presented in the previous section can be converted into a breadth-first algo-

rithm whilst still requiring on a single packet in transit at a time.

The labelling state must be broken into two discrete operations: firstly, a node must
choose to either accept or reject a label request from a neighbour node; secondly it must
attempt to claim siblings as its own children. To support this, the following additional

tokens are introduced:

o label-children(k): Sent to a node to start it claiming siblings as child nodes, or to

allow previously claimed child nodes to do the same.

o ack-children(n): Response to a label-children(k) token reporting that n additional
child nodes have been labelled by this request. This is the total number of new
child nodes, not merely the siblings that have been converted into children by the

request.

These tokens are used in addition to those introduced in the previous section for the
depth-first algorithm. The following state changes are also made to alter the visitation

pattern:

o child: a node receiving a label(k) token will enter this state from idle instead of
entering labelling directly. The identifier in the token has accept, and a ack token

is issued as the response. No siblings are visited at this point.

o labelling: is entered after a node in the child state receives a label-children(k) token.
All unvisited ports are visited and issued with a label(k) token. k is calculated in
the same manner as with depth first, and ports are visited in the same sequential

manner.

Once all ports have been visited and siblings claimed as children where appropriate,
the state advances to labelled and a ack is issued to the parent reporting the number

of siblings converted into children.

o descendants: a node enters this state from /abelled upon receiving a label-children(k)
token. A counter is reset, ¢ = 0, and then each child node is issued with label-

children(k + ¢) in sequence starting with the child port with the lowest index. c is

124 Chapter 5 Auto-discovery Algorithms

Visit each neighbour,
waiting for either
ack or nack
before proceeding

label(k) label-children(k)

labelling

After all neighbours
visited and parent
sent ack

Visit each child
with label-children(k + ¢);
¢ is initialised to 0
and is incremented by n
for each ack-children(n) received

label- chlldren(k)

labelled descendants

ack-children(c)

Figure 5.27: State transition diagram for the lock-step breadth-first discovery
algorithm.

incremented by the n returned by each ack-children(n) token, causing new nodes
to be allocated contiguous identifiers. Once all child nodes have been visited in
this manner, the node responds to its own parent with ack-children(c), where ¢
represents the total number of child nodes that have been claimed, which may be

many levels lower in the hierarchy than the immediate child nodes.

Figure 5.27 shows the extended state transition diagram. As before, the root node
advances through the states automatically to progress the algorithm. Once it has labelled
its immediate children, it repeatedly oscillates between the labelled and descendants
states until the sum of all ack-children(n) responses is zero, implying that no new child
nodes have been added. Once this happens, the root will issue a term(V) to all children
as before, flooding the system with total number of discovered nodes and stopping the

algorithm to allow for new behaviours.

5.5.2.1 Simulation

Figure 5.28 shows how the simulation of the lock-step breadth first algorithm scales with
the number of nodes. The estimated running time grows slightly sublinearly, which is
expected because some nodes are visited multiple times. term(N) tokens can propagate
with increased parallelism as the embedded tree is more balanced, which most likely

accounts for the sublinear scaling.

Figure 5.29 shows how much more balanced the embedded control tree is because the
significant gradient change in the simulated time against wall-clock time. Up until this
point, the algorithm is running in a highly sequential manner, hence the roughly linear
relationship between simulated and wall-clock time. When the event queue density
increases because multiple nodes are emitting tokens in the same time-step, the amount

of wall-clock time required to compute the updates necessarily increases.

Chapter 5 Auto-discovery Algorithms 125

Figure 5.30 shows a large spike after about 5ms simulated time, indicating the increased
parallelism of the termination barrier. Prior to this point, the event queue only ever has
a single event in it at a time, which is expected. The pattern of event types shows an
increasing number of ack-children(n) tokens being passed around whilst the other types
decrease. This is indicative of the oscillatory state changes of the root node described

earlier.

Figure 5.31 confirms the increased balance of the tree compared to Figure 5.21. Nodes
are not uniformly distributed between all branches because tokens are emitted from
ports using a monotonically increasing index. This artificially assigns priority to lower
numbered ports, causing an increase branch density on these ports. However, the balance
is a significant improvement overall whilst still maintaining a low in-transit message

count. The balance would be enhanced by visiting ports in a random order.

As expected, the breadth-first approach is tolerant of the fault condition demonstrated
in Figure 5.32. The artificial priority bestowed by the port indices has the effect of
increasing the number of leaf nodes as the label(k) tokens expand from the root node

in a radial pattern.

0.006

0.005 |-

0.004 |

0.003 |-

Running Time (s)

0.002

0.001 |

0.000 L . v
0 10 20 30 40 50
Number of Discoverable Nodes

Figure 5.28: Scaling of the breadth-first discovery algorithm with machine size
under simulation.

126 Chapter 5 Auto-discovery Algorithms

0.006 T T T T T T 12

0.005 |

0.004 -
— 2
) G
2 z
£ <
= [
- 0.003f 2
2 S
S o
=3 =
E £
& Z

0.002 -

0.001 |

0.000

0
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Wall-clock Time (s)

Figure 5.29: Simulated time advancement and event queue density as a function
of wall-clock time for the 48 node breadth-first simulation run.

12 T T T T
NACK

Label

ACK

Label Children
Children Labelled
Barrier

10}

Event Queue Density

0
0.000 0.001 0.002 0.003 0.004 0.005 0.006
Simulated Time (s)

Figure 5.30: Distribution of event types (i.e., tokens) throughout the 48 node
breadth-first simulation run.

SEEIEIaIE:
eriaiatE
ext s

o

L5

i
N

20

128 Chapter 5 Auto-discovery Algorithms

5.5.2.2 Implementation

Figure 5.33 compares the predicted running time from the simulator after parameter
tuning against the measured wall-clock time from the SpiNNaker implementation. The
sublinear scaling is more pronounced on the SpiNNaker curve, but the variance is suitably
low as with the depth-first result (Figure 5.23).

0.006 0.006

— SpiNNaker
— Simulator
0.005 | 10.005
0.004 | 10.004
) =
@ @
E E
= [
s 0.003 10.003 ©
9 i
(=] o
- o
= S
= E
= @
0.002 | 10.002
0.001} 40.001
0.000 - - . - 0.000
0 10 20 30 40 50

Number of Discoverable Nodes

Figure 5.33: Comparison of the running times predicted by the simulator and
the measured wall-clock time of 10 consecutive runs on SpiNN-103 hardware for
the breadth-first discovery algorithm.

The traffic distribution pattern shown in Figure 5.34 steadily decreases for nodes farther
away from the root. The oscillatory state changes described earlier cause a wavefront
of tokens to expand from and subsequently collapse back to the root node each time
new nodes are claimed as children. It follows that nodes with low indices will have to
propagate greater numbers of tokens. As before, the ratio of local to non-local traffic is
equal because every request is met with a corresponding response, and with the exception
of the term(V) token propagation at the end of the algorithm, only a single message is

being transmitted at a time.

Figures 5.35 and 5.36 show identical results to Figures 5.31 and 5.32 obtained from
simulation, demonstrating that a (more) balanced tree can be reliably constructed and
the fault conditions can be tolerated. As the sibling nodes are claimed one at a time, the

pattern is entirely deterministic, so the simulation and SpiNNaker results are identical.

Chapter 5 Auto-discovery Algorithms 129

35

30

25

20

Total Packet Count
=
w

=
o

o w

0 4 8 12 16 20 24 28 32 36 40 44
Node

Figure 5.34: Packet distribution across the SpiNN-103 hardware for the 48 node
run of the breadth-first discovery run.

525232853,
SR
SRR,

Feiet

12t

.

HiE

Chapter 5 Auto-discovery Algorithms 131

5.5.3 Parallel Breadth-first Labelling

The two approaches introduced previously build the control tree and label all the nodes
simultaneously, but they achieve this by limiting the volume of network traffic to just a
single message in transit at a time. SpiNNaker is a massively parallel computing engine
designed to support highly connected problems—making best use of the hardware means

doing as much work in parallel as possible.

A parallel breadth-first discovery algorithm visits all the siblings of a node at the same
time and relies on the network fabric to act as an arbiter. However, there is no reliable
method of allocating node labels at the same time. Instead, the algorithm is divided into
two stages: first, the control tree is established, then the control tree is walked to assign
the labels. Whilst these stages must be performed in sequence, each stage is inherently

parallel.

Four tokens are required:

e claim: Sent from a node to a sibling to claim it as a child. No payload is required

because the purpose is purely to establish the hierarchy.
e nack: Response to a claim token to refuse the request.

o ack(n): Serves as the response to claim to accept the child claiming request,
and to label(N, ki, k,) to mark that the labelling process (i.e., second phase) has

completed.

o label(N, k;, k,,): Begins the labelling phase on a portion of the established tree. As
the tree is constructed, each branch is assigned to a specific port, and the number
of nodes in that branch is stored against that port. k; and k, define the range
of identifiers required by that particular branch. N is the total number of nodes

discovered in the system.

The state machine uses the following states:

e idle: Default state for all nodes; upon receiving a claim token, the inbound port is

marked as the parent and the state machine advances to the claimed state.

e claimed: Upon entering this state, a subsequent claim token is issued to all unvisited
ports which are immediately marked as visited. All ports that respond with an
ack(n) token are marked as child and 7 is stored as the total number of children
accessible via that port. Once all requests have been matched by appropriate
responses, an ack(1 4+ n') token is sent via the parent port, where n’ is the sum of

all child nodes claimed. For leaf nodes, n’ = 0.

132 Chapter 5 Auto-discovery Algorithms
Send claim to all
claim neighbours, and compute n’
start idle claimed as the sum of all n from
K ack(n) replies; reply to
parent with ack(1 + n’)

label(N, k;, k)

After all child nodes

are labelled, and ack(0)
sent to parent ﬁ Issue each child with
labelling

label(N, k7, k;,) tokens to
assign labels

terminal

Figure 5.37: State transition diagram for the parallel breadth-first discovery
algorithm.

o labelling: Nodes other than the root enter this state when receiving a label(N, k;, k,,)

token; the root node automatically enters this state after all of its siblings have
returned an ack(n). [k, k,] defines the range of identifiers to use to label this
branch of the tree. The current node accepts k; as its identifier, then the rest
of the interval is divided into appropriate sub-intervals issued to each child port.
Once all child nodes have been labelled, the node automatically advances into the

terminal. For leaf nodes, k; = k,,.

terminal: Upon entering this state, ack(0) is sent via the parent port to signal that
all child nodes have been appropriately labelled. Leaf nodes do not have children
and hence report to their parent immediately. Once the root node enters this state,
it reports the total machine size (the sum of all its child port branch sizes) to the

external host machine.

Figure 5.37 shows the state transition diagram for this algorithm. The root node au-

tomatically advances into claimed to begin the process, after which tokens propagate

across the machine in parallel.

5.5.3.1 Simulation

As this approach embraces the parallelism of the platform, it scales non-linearly as shown

in Figure 5.38. The multiple plateaus shown in this plot are particularly indicative of the

fault-map generation pattern and directly correspond to the number of “rows” that have

been enabled. The width of each “row” is irrelevant, meaning that maximum efficiency

Chapter 5 Auto-discovery Algorithms 133

is achieved with wide rows, making this approach particularly useful for large SpiNNaker

machines.

The two phases of this algorithm can be clearly seen in Figures 5.39 and 5.40 as two
discrete masses. The first of these expands in a heavily multiplicative manner and
consists of a mixture of ack(n) and nack tokens as shown in Figure 5.40. Once the
tree has been built, the ack(n) tokens traverse back up the t¢ree rather than arbitrarily
across the machine. This is why there is a gradual build-up of events followed by a steep

drop-off; Figure 5.39 shows this most clearly.

The second phase requires far fewer messages because label(N, k;, k,,) tokens are passed
down the tree and ack(0) propagate back up, leading to the two smaller masses on
Figures 5.39 and 5.40. A significant performance decrease in the simulator is clearly
evident in Figure 5.39 resulting from the large increase in parallle traffic compared to

the previous approaches.

Figures 5.41 and 5.42 show identical tree structure to that observed with the lock-step
breadth-first discovery, but with different node labels. This is expected because large
blocks of labels are assigned to each branch. However, the structure of the tree is the
same because the simulator itself is single-threaded. Parallel tokens make the exact

outcome non-deterministic in practice, but simulation enforces an artificial ordering on

0.0035

0.0030 |

0.0025 |

0.0020

Running Time (s)

0.0015

0.0010

0.0005
0

10 20 30 40 50
Number of Discoverable Nodes

Figure 5.38: Scaling of the parallel breadth-first discovery algorithm with ma-
chine size under simulation.

134 Chapter 5 Auto-discovery Algorithms

0.0035 : ‘ ‘ ‘ . ‘ ‘ ‘ 70
0.0030 | 160
0.0025 | {50

— 2

- Z

2 00020} 40 2

£ s

E ¥

el

£ 8

< 2

2 0.0015] 130 &

a fir
0.0010 | 20
0.0005 10
0.0000

0
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
Wall-clock Time (s)

Figure 5.39: Simulated time advancement and event queue density as a function
of wall-clock time for the 48 node parallel breadth-first simulation run.

70 T T T T T
mm NACK
. ACK
B Claim
60| mmm Label
50 -
2
2 401
[
o
o
>
o
3
&
€ 30l
o
>
w 1
20t
10}
0
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

Simulated Time (s)

Figure 5.40: Distribution of event types (i.e., tokens) throughout the 48 node
parallel breadth-first simulation run.

Chapter 5 Auto-discovery Algorithms 135

the events, leading to the same structure as seen before. Figure 5.42 confirms that the

fault condition is tolerated, as expected.

Figure 5.41: Discovered machine model state after the 48 node parallel breadth-
first simulation run, showing the embedded tree and the assigned node labels.

5.5.3.2 Implementation

Figure 5.43 shows that the timings of the SpiNNaker implementation follow roughly the
same stepped shape as the predicted timings, but with steeper transitions between them.
The simulator is tuned to match the hardware result as closely as possible, but the single
tunable delay parameter prevents the match being as close as for the previously designed

algorithms. Despite this, the simulation and SpiNNaker implementation match well.

Traffic distribution across the SpiNN-103 hardware is roughly uniform, which is to be
expected on a purely parallel algorithm. Unlike the other algorithms, some packets are
dropped by the router due to the bursty nature of the claim token emission. The bar
chart shows two rough bins of packet counts which correspond with the number of usable
ports; edge nodes have fewer and transmit correspondingly fewer packets compared to

nodes in the centre of the board.

Figures 5.45 and 5.46 show a different structure from simulation that is, overall, more
balanced. SpiNNaker hardware introduces non-determinism in the network which leads

to these more fairly arbitrated structures despite the token emission pattern being the

136 Chapter 5 Auto-discovery Algorithms

Figure 5.42: Resilience of the parallel breadth-first discovery simulation run
against the fault pattern.

0.0035 : ; . ; 0.0035
— SpiNNaker
— Simulator
0.0030 | J0.0030
0.0025 | H0.0025
< 0.0020 | J0.0020 <
L) [
£ £
= =
3 B
S =
= 00015 | lo.0015 2
= [
0.0010 | Jo.0010
0.0005 - J0.0005
0.0000 0.0000
0 10 20 30 40 50

Number of Discoverable Nodes

Figure 5.43: Comparison of the running time predicted by the simulator and
the measured wall-clock time of 10 consecutive runs on SpiNN-103 hardware for
the parallel breadth-first discovery algorithm.

Chapter 5 Auto-discovery Algorithms 137

B Local
I Non-local
I Dropped

Total Packet Count

0 4 8 12 16 20 24 28 32 36 40 44
Node

Figure 5.44: Packet distribution across the SpiNN-103 hardware for the 48 node
run of the parallel breadth-first discovery run.

138 Chapter 5 Auto-discovery Algorithms

same as in simulation (i.e., ports with lower indices are visited first). However, the
SpiNNaker hardware is not forced to deal with tokens emitted simultaneously in any
particular order, unlike the simulator where multiple events for the same tick are de-
queued in the order in which they were enqueued. As expected, Figure 5.46 shows that
the fault pattern has again been tolerated but with a structure entirely different from

simulation (Figure 5.42) because of the non-determinism of the hardware.

Figure 5.45: Discovered machine topology from the 48 node parallel breadth-
first run on SpiNN-103 hardware.

Chapter 5 Auto-discovery Algorithms 139

Figure 5.46: Resilience against the fault pattern of a 48 node parallel breadth-
first run on SpiNN-103 hardware.

5.6 Concluding Remarks

This chapter describes a set of algorithms that survey target SpiNNaker hardware to
determine the liveness of ports, uniquely label each node, and establish a control-tree
that can be used to support high-level parallel programming functions. Each algorithm
finishes with a barrier-like termination stage to demonstrate the usefulness of the control-
tree; without it, detecting the successful completion of the algorithms would not be
feasible. The algorithms have also been shown to discover faults without them preventing
completion of the survey, which a addresses a potential issue that may arise on smaller

SpiNNaker machines.

5.6.1 Demonstration

A SpiNN-103 board (see Figure 3.15) serves as the platform for all testing and validation
of the algorithms before this point, but a real-world example would require larger and
more capable SpiNNaker platforms. Figure 5.47 shows the result of lock-step breadth-
first discovery of the SpiNN-104 hardware shown in Figure 3.16. Unlike the SpiNN-103
hardware, the SpiNN-104 does follow a completed torus pattern, which is indicated by

the arrows bordering the visualisation.

140 Chapter 5 Auto-discovery Algorithms

The wavefront pattern is prominent in this figure because the root node is able to claim
all six of its siblings as children, rather than just three on the SpiNN-103. Leaf nodes
are again highlighted with thick blue circles which embed a jagged pattern in the figure
which illuminates the two radii of the torus. The diagonal parts of the pattern highlight
leaves that are on the major radius, and the straight part bisecting the figure highlights

the minor radius.

Perhaps the most important observation from this figure is that there are no port mal-
functions despite the scale of the SpiNN-104. Port faults were simulated whilst the
algorithms were being designed over the course of this chapter, but the SpiNN-104
hardware presents the opportunity to validate against real faults by simply unplugging
one of the inter-FPGA links shown in Figure 3.16.

Figure 5.48 shows the lock-step breadth-first survey results performed on the same
SpiNN-104 hardware but with the S3-North FPGA link disconnected. The L-shaped
red ‘scar’ in the image shows that the fault has been detected, and that the algorithm
has completed successfully in spite of it. Three of the nodes failed to boot correctly, and
one of them has failed to report its state despite forming part of the tree. The exact

reasons for this are not clear because of the non-deterministic nature of the hardware.

5.6.2 Run-time Fault Detection

Detecting faults before the mapping is an important first step to ensuring applications
function on the platform. Chapter 6 assembles the algorithms designed in this chapter
into the SpinDiscover tool which uses these algorithms to build an accurate topological
picture of the target machine for Loader to use for mapping purposes. However, this
clearly does not detect faults that occur after an application has started running. Solving

this problem falls outside the scope of the thesis, but an approach is outlined here.

SpiNNaker can be thought of as a platform capable of running multiple overlaid dis-
joint state-machines which change state based on packets received, and produce further
packets as a consequence of state changes. The algorithms in this chapter are all imple-
mented as state-machines of this form, but are wholly resident in each node making use

of all available resources.

Without loss of generality or functionality, each node can support multiple state-machines
that are updated simultaneously by events without necessarily directly affecting each
other. As long as traffic collisions are either tolerated or avoided, these multiple state-
machines can effectively behave as independent applications that are inherently time-

sliced by the communications fabric.

This capability can be demonstrated using a second state machine resident in each

node which consists of two states, o_idle and o_halted. Whilst in the o_idle state, this

141

Chapter 5 Auto-discovery Algorithms

‘wyIo8e 1s1g-yipeaiq dojs-yoo1 oy} Suisn 91 ¢ 2InsI Ul umoys aremprey F0T-NNIAS 973 jo Loains ojordwon) :2°¢ 9IS

T

T

T

T

1

T

T

T

T

T

13

T

rl.m.ln.w.ll.w.-n.@m i et 't et et : \n/ WIIMIIm..m-Mllmllmlnmllm-m-w.-mllmllm-mllnllw-mllm-mllMIIMIIMIl -IMIINI-W.I
e L LeRSn L S S L S T L
: m at et e M i m-% m-m-m- m-m-n-m-m-m-w-m-n-m-m-n-w-m-m-m-m-m-m-:-%-W-mv-
e s L o LR L L A S S T T s b D
B Lt Ea T s, L L L s L s b e
L T T o L L L L i
Spininiiifiniiinidsnsionitntniatl T e S L e bR e
SR IRSTinin LIRSt SRR LI iainid SLnaT Rt
AN Lt LS, SLImiL Rttt A e et et
cHeRoROnO omom: .m=w=m=m=m SR e o 5 o o oo o ol o o o
20 O Otls G & S 5 .m=m=m=m=m s S = o Gl o 1 ol o © o o ol o 5 o o
RO @ & i o & ol o e 3 .m=m=m=m=m=n 0 SLIL LY N=m=m=m=m=m=m=m=w=m=w @.w.
-%-%-%-%-W-w-%-% -mm-m-m-m-m-n-m -m- m-m-m-m-m m 2 -m W-W-%-%-mw-%-mw-%-@-W-@-@-@-
8GO GO G o m oG m G o S m=m=m=m=w=w=w=&=m=m=m=m=m.
-%-%-W-%-W-.W-W-%-m-m-m-m-m-m-n-m-m- m-m-m-w-w-m-n- £ W-%-.W-W-W-W-@-.@-%-W-W-mm,-m-
.m=m=m=m=m=w=m=m=n=m=m=m=m=m=n=m=m. LT L e wo @=m=w=w=@=w=w=m=m=m=w=m=m.
.m=w=m=m=m=m=m=m=m=m=m=m=m=m=m=m=m. o mom o w=w=@=@=m=m=m=m=m=w=m=w=m.
.w=%=m=m=%=m=m=m=m=m=m=m=m=m=n=m=m. m=m=m=m=m=m=m=m O Q) i 1 1 s o o o) o
.m=m=w=m=:=m=m=m=m=m=m=n=m=m=m=m=m. m=m=m=e=w=m=w=m 91t o 5 > o o o 1 9 o ol oo ook
LY e g g s e oo =m=w om0 e & o o o 3 1 ol o o oo W s O
somon o e m=,=m m 0 omo € & 1 e e 3 o o o)) o O O
T S m=w=m=@=m Gme L R R e
JocTecTs 7/ ol o ol e o ol o w=w=w=m=w w=w w=w=w=w=w=w=w=w=m=w=m=m=w.

Chapter 5 Auto-discovery Algorithms

142

“possn[dun uooeuuod pIeoq-Idjul S[SUIS ® M JNq dIempley (T

NNIAS oures oy} Jo AoAIng :Qf G oIn3L g

rl.m.l'm.ll.w.-.@m i 't S e et : . \“J WIIMIIMIIEIIMIlmllmlImllmIImll» hllmllmIIWIIHIIWIIWIIWIIWIIMII WINI-W.I
Tt A LA R S AT LRy
B B 8 o B B B B ot B Bt B o B o ot B o B A E A A A et e e e S IiEe]
TR bt b bl ot ot B f o Bt o du d B BB B B R It
BB B Bl B B B b B B B o f B A A m.!..mm..mv..mv..mm..mi
L A T RN RO A T A
Tt kA 7 SRR LA LR T
e AL L8 L R AR A LA TRIA A TR R L A
LA I T . MR S Cigntasatararasetes
cHeRoROnO wEW WEWEWEWEWEm o mEmEmEWEWEW. RGR R mEm:meEmE%im:wEm:%.
G WEmE@.m.WEW WEWEWEWEmEm i m=m=m=w=w=®...m=m=m=m me:mEmEmE%Ew:mE%:%.
.@E%EmEm m.mim mimimHWHmEm Johg S w w o m=m=m=m=m=%=m=w=w=w.
.wEme:m W.WE% w=%=m=m=m=m i o .m WEWEWEWEWEWEWE@=w=@.
.WEWEWEW W.WEW m=m=n=m=m=m ok S .m m=w=w=w=&=%=m=m=m=m.
-%-%-W-% W -W-W m-m-.w-m-m-m I . m-w-.m-m-w-m-n-. L -W W-W-W-@-.@-mm-W-W-mm-m-
.WEWEWEW m.w=%=n=n=m=m=m=m=m o .w. .w WE@:@E%E&E%E%:&E%:&.
.m .m:m m.%. e o Ll .m. .w @Em:mEmEmEme:mE&:m.
.m .WE% % T SLIL L .w. =9 mimeimimE&imeim:m.
.w .w:m S S .w. .m mEm:mEmEmE%Em:mEm:m.
.w .m.s LRI mEmEHEW. a O .w mEm:mEmEmE%im:mE%:m.
.m@ SIS, m..,.:m W .mv. .m m..mw..mm..mw..mm..mmi.w..w..w..w.
.m S m=w=m=$. .%. .m %Em:mEmEmEmiw:mEm:m.
X i ol o WEWEWEW. .w. .w w=w=w=w=w=m=w=m=m=w.

T

T

T

T

1

T

T

T

T

T

13

T

Chapter 5 Auto-discovery Algorithms 143

additional state machine has no effect, but when entering the o_halted state it prevents
all network messages from getting through to other applications, effectively prematurely
terminating them. The omega token serves as the harbinger for this behaviour, causing
the secondary state machine to enter the o_halted state upon receiving the token, and
propagating the omega token out of all functional ports. This demonstration also shows
that the state machines need not be completely isolated entities because (in this example)
the secondary has an overall negative effect on the primary. Deploying disjoint state
machines (or disjoint sets of interdependent state machines) permits running multiple

applications in parallel without them interfering.

50

HEE NACK
B ACK
B Label
I Omega

40 -

w
S

Event Queue Density

N
=]

10

Q
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030° « 0035 0.0040," 0.0045
S
-~ .,

Simulated Time (s)
~ -

Figure 5.49: Depth-first algorithm designed in section 5.5.1 subject to an omega
token injected at 4ms simulated time.

Figures 5.49-5.51 show omega being injected into the depth-first, breadth-first, and
parallel breadth-first algorithms designed over the course of this chapter. In all cases,
the primary algorithm continues to function whilst the omega is propagating through
the machine model demonstrating that both state-machines can coexist. Eventually
the omega tokens stop all activity, irrespective of the state of the primary behaviour.

Figure 5.51 shows this most clearly because of the parallel nature of the simulation.

This demonstrates the concept of multiple disjoint state-machines coexisting on the
same physical machine without having an effect (until the o_halted state takes control).
Consider a state-machine embedded into SCAMP with the goal of periodically re-running
the discovery algorithms, not to rebuild the control tree at run-time, but to confirm that

its structure has not changed. If walking the tree determines that new faults have arisen,

144

Chapter 5 Auto-discovery Algorithms

50

40 -

Event Queue Density

10}

Q
0.0

W
S

N
=)

NACK

Label

ACK

Label Children
Children Labelled
Omega

025

~
N
~
~
~
~

000 0.0005 0.0010 0.0015 0.0020

Simulated Time (s)

0.0030 R

:

\
\J
7 \‘

’ A

\

~ 0.0025 0.0030 / 0.0035
\ 7

Figure 5.50: Breadth-first algorithm designed in section 5.5.2 subject to an
omega token injection at 3ms simulated time.

70

mmm NACK
. ACK
B Claim
60| W= Omega
50
2
2 401
[
o
o
>
o
3
&
IS
S 30}
>
w
20}
10}
0 . |
0.0000 0.0005 0.0010

Simulated Time (s)

Figure 5.51: Parallel breadth-first algorithm designed in section 5.5.3 subject to
an omega token injection after about 1ms simulated time.

Chapter 5 Auto-discovery Algorithms 145

then appropriate measures can be taken to deal with them. In the simplest case, this
would be reporting the error to the outside world so that applications can be remapped
and rerun, but the ideal case (and an interesting avenue of further work) would be for
the application to be migrated around the fault without any significant impact on the

overall behaviour.

5.6.3 Review

To conclude, this chapter began with the problem statement identifying three issues that

must be addressed:

1. Hardware faults must be discovered before any problem mapping takes place,

2. A complete model of the current state of the hardware must be assembled from

the discovered structure of the machine, and

3. A control tree must be embedded to support common parallel programming con-

structs.

These points have been addressed and the solutions verified both in simulation and on
physical SpiNNaker hardware. Port faults are discovered on the physical hardware using
the o — ping designed in section 5.4.2; section 5.5 then presented a set of algorithms
that can discover the structure of a machine whilst simultaneously constructing a control
tree. All of the visualisations show that a model of the machine can be reconstructed

based on the discovery information.

In the next chapter, these results are augmented with configuration algorithms to form
a complete pre-mapping tool-flow that ultimately leads to a demonstrative non-neural

application being built and tested.

Chapter 6

Non-neural Application

6.1 Design

Solving complex equations numerically is a common use-case for parallel computation.
The problem-space is typically discretised into some kind of mesh where the partitions
are handled individually as shown earlier in Figure 2.5. Care must be taken at the

boundaries of these sub-spaces to ensure numerical accuracy.

Discretisation of problem spaces in this manner naturally forms a sparsely connected
graph representing how each of the discrete points affect one another; usually, but not
always, these connections are nearest-neighbour. Recall from Chapter 3 that problem
graphs are already of this form, therefore SpiNNaker allows problem spaces to be dis-
cretised to the point were (potentially) each element of the discrete problem space can

be assigned to an individual processor [1].

This chapter demonstrates this concept by designing an application to determine the

steady-state result for the canonical heat diffusion equation,

oT 9

— —aV T =0, 6.1

T (6.1)
in two dimensions. Specific material properties are not considered because the intention
is for this application to demonstrate a capability, rather than to compute a physically
significant result. Therefore, a of equation (6.1) can be tuned to a value appropriate

for the simulation even if this would require material characteristics that would be

impossible in nature.

147

148 Chapter 6 Non-neural Application

0° (z,y)=(X,Y),
T(0,z,y) ={255° z=y=0, (6.2)

127° otherwise.

The width and height of the plane upon which equation (6.1) is to be solved are given as
X and Y, respectively, where X =Y = 1m. Equation (6.2) states the initial conditions
that will be applied to equation (6.1), and equations (6.3) and (6.4) state the boundary
conditions. The simulation contains exactly one heat source at (0,0) which holds a

constant temperature of 255°, and one heat sink at (X,Y’) which is fixed at 0°.

0 0
0 0

Figure 6.1 shows the discrete representation of the plane over which equation (6.1)
will be solved. The blue vertices form the problem graph that ultimately describes
the application, and the orange vertices represent constant-values (clamp vertices) that
ensure the mathematics remain valid. Two grid sizes of 20 x 20 and 90 x 90 are used for

the simulations, where the o parameter is tuned appropriately in each case.

)

0 1 n
0 o @ @ @
1 o @ @ @ =S
J IAy
® @ @ @ -
m o @ [@
Azx

Figure 6.1: Discretised problem grid showing problem nodes in blue and clamp
nodes in orange.

Each blue vertex in Figure 6.1 must compute its temperature using the discrete form
of equation (6.1). Spatial separation between the vertices is given as Az and Ay which
are uniform in their respective dimensions. The exact value at any point on this grid is

given by equation (6.5).

Chapter 6 Non-neural Application 149

2 2

0 0 0
aT(tkﬁL’i,yj) =a @T(tkawivyj) + @T(tk7$iayj) , (6.5)

where z; = - Az, y; = j- Ay, and ¢, = k- At. Careful manipulation of the Taylor Series

expansions around tj, x;, and y; show that [141]:

or _ T(tgsr, i y;) — T(tk, i, y5)

a5~ Y (6.6)
82T ~ T(tk‘a Ti—1, y]) - 2T(tk> Ly y]) + T(tka Tit+1, y]) (6 7)
Ox? (Az)? '
OQT ~ T(tka T, yjfl) B 2T(tkv Ly y]) + T(tka T, yj+1) (6 8)
dy? (Ay)? '

Equations (6.6)—(6.8) can be substituted into equation (6.5) to yield the complete dis-

crete form. The notation Tfj = T'(tg, xi, y;) is used here for brevity and clarity:

k k
_ o | B R N R VR A (6.9)
At (Az)? (Ay)?

T - T Tk, — 2T + Th Tt

Equation (6.9) is the difference equation equivalent of Equation (6.1) which clearly de-
pends on the temperature (i.e., state) of the current vertex and its neighbours. Solving
the equation iteratively requires that each vertex computes a new value for lej'H and

transmits it to its neighbours. Each vertex must therefore compute:

k k k k
TRk o ag | i T 2T TRy T
2,J 2¥) (A.’I})2 (Ay)Q

— 9Tk + Tk
Mo LELL (6.10)

Using equal spacing in both dimensions of the plane (i.e., Ax = Ay) allows this equation

to be written as:

T = BTy + Thay + T + T + T -48), B=a

It can be shown that for equation (6.11) to be numerically stable and converge, the

following criterion must hold [141]:

(6.12)

>~ =

150 Chapter 6 Non-neural Application

Recall from Chapter 4 that an application contains handlers that respond to packet
arrivals and the regular timer tick. The IntHand APT (introduced in Figure 4.1) installs
both of these handlers so that it can search for the appropriate edge and device (vertex)
parameters, before invoking callbacks (registered by the application) to handle the spe-
cific behaviours. FEdge handlers are invoked after this look-up is triggered by a packet

arrival, and device handlers are invoked for each device after the timer tick fires.

Problem graph specifications include parameters (which are immutable) and state vari-
ables which are mutable. The discrete plane upon which equation (6.11) is solved has
uniform thermal impedance (Figure 6.1), hence there are no edge parameters required.
Inspection of equation (6.11) shows that the device handler must know the temperature
values for its neighbours and . Therefore, the device specification must include 5 as
a parameter, and state variables to hold the neighbour temperatures (known as ghosts)

and the current temperature of the device itself.

Figure 6.2: Problem graph fragment based on the discrete mesh shown in Fig-
ure 6.1, highlighting the edge types for storing neighbouring temperature values.

Ghosts must only be updated using values from the appropriate neighbour device for the
simulation to have any physical meaning. Both devices and edges have a type defined
against them in the problem graph specification, which are used to address this issue.
In equation (6.11), the exact identifiers of the neighbouring devices are not important,
only their relative location is. Figure 6.2 shows a fragment of the problem graph that
describes Figure 6.1, with four edge types shown as compass directions. These are used
to ensure that updates from (for example) the northern neighbour are only ever written

to the northern ghost; illustrated by the EDGEHANDLER procedure of Algorithm 6.1.

In the DEVICEHANDLER procedure of Algorithm 6.1, Tip,esp is introduced as the small-
est upper bound on AT once it falls below Tijresn, the device has converged. Local
convergence implies nothing of the global convergence of the problem, but it is used to

inhibit the MC emission of new temperature values; thus when all problem devices have

Chapter 6 Non-neural Application 151

Algorithm 6.1 Heat diffusion implementation.

Require: edge.type € {N,E,S,W}

1. procedure EDGEHANDLER(T)
vertex.ghost|edge.type] < T > edge.type set in problem graph.
: end procedure

W N

4: procedure DEVICEHANDLER
5: T" < B> revertexgnost I + (1 —4p) -vertex.value > Solve equation (6.11).

6: if |vertex.value — T"| < Typresn then

7 EMIT(T") > MC broadcast to all neighbours.
8: end if

9: vertex.value < T’

10: end procedure

converged locally, the problem has globally converged. The floor function on line 6 is

implicit because of the unsigned 8 bit integer arithmetic used to solve the equation.

As devices are updated when the timer tick fires, tuning the timer period is essential
to maintaining biological fidelity in neural applications. This application, however, is
obviously not real-time, and the timer tick is re-purposed to throttle the number of
packets being injected into the communications network. If all problem devices emitted
new values without a rate-limit, the network would be overwhelmed and there would no

longer be any guarantee that the application would converge at all.

The timer tick also implies that the application will solve the equations at each vertex
using the Jacobi update method [141, pg. 237], where the new value, Tf;rl, is computed
once the values from the current time-step are available. However, the non-determinism
of the SpiNNaker network suggests that some update messages will be lost, causing the
computation to be performed on old data. This is akin to the Gauss-Seidel update
method [141, pg. 238] which permits the use of the most up-to-date value. Usually
this justifies the usage of values calculated in the current time-step to be used in the
current time-step, but in this case it permits the use of older data without preventing

convergence.

6.2 Simulation

As with the algorithms in Chapter 5, the application is first validated using a simulator
before moving it to SpiNNaker. Figure 6.3 highlights the part of the tool-flow used for
this. Answer was introduced in Chapter 4 as a single-threaded event-driven simulator

which provides a SpiNNaker-like environment. Code written for this environment is

152 Chapter 6 Non-neural Application

AR AR
D s i e 000000000 000007000077
Y Y A rry, 700000077 1000000000000000000000000000007
A o A A A A A
A A A A A A A
A Y o A A A A
70000020000025020500527% A A A A A s
A i 7 0 000000000000000000000007
00000000000000000000000 A A A A A
700000000000000000000007 00 00000000000000000000077
A A A A A A
A A A A A A
000000000000205277 A A A A
A A A A A A A s
0 00 000000000000000000700000000
A A A A
U 000000 0000000000000700000707
700007 A A A A
A A A 00 0000000000000007000007
70005005255055 A A A A A
70000000070077 A A A A A
A A A A A A
700007 A A A s 7
AR, AR AR A) 3 A AR AR ARARRaaAAAAAAAAA
A A A s A A A
A A o 2l N0 00000000000000000007
A A A A A A i
700057 W A A A iz
A AR o appaasaa i aas s ppaaiiiaasss s e
PR paaaans apaaasa s A A e
7’ 7770/ SN 22722777 SILIIIIIIIIL LN L7777 V7222772722772 22P002P0PPPP7FY 7777778077770 8477777
A A A A A A A Ay I
700707 A N0 000500000500500000002000007 poov
A A A s 0000000000000 000000700700705% SNy
A A A A A " Y Y A Y
7000000002005507077 022227277 A A A A IR oA
1000500052222522477 277 Y A A A N x A
700707 of A A A A A A
700007 2 R AR oA AR A A A A A
1772777422272 72772 07777 4222722227 1270222272727 . RSl 2727272727277 72727772720 22727272 727777777770 7
e 100000000 0000007007 2l 000000000000000000
A A A A A A A A
700000 707 A A A o 7
A A A R A A A A A
A A A A A A A A A s
A A A A A A A oy
A A o A A A A A o
20007 R Ranners 27 47 R R i i
700007 42044278 A A A
AR A A AR v R AR AR s A
A A A A A A A oy
7007009007 A A A A e o
700707 707 I I A I
A R A A A o
A A A A sy
A Ay A A L
A A A A i
SILLIIIILIIIIIIIII LIILIINI LI I2 2720777777777 7\077 g 2 sl
LILILIIIIIII ISP /NI LIPS 7 Wog—y//////////////////////// LAAAA 2
A ey A A sy
o ey I 0000000000000 7
A A A A A A A A oy
QL LLlLlllllltdSSLL. /%9 §qu’ 7777 lvrrrr77777 07277777777 7277707
AU R A A sy
700000000700 7 27077007 A A i
A $500000000002000007
A A A A A o
7000000500000500007 A A s
A A A A o
IIIIIIIII 7777777777777 777777777777 " RARAKAI 2770720777777 70 7227777727 727707
00000000000000000000000000007
707 7007
757 7507
7007
7977
Domain-specific
Post-processing
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

Figure 6.3: Stages of the toolflow shown in Figure 4.1 used to verify the function
of the heat diffusion application.

10 15

(a) Numerically important but physically (b) Steady-state solution.
unimportant intermediate result.

Figure 6.4: Answer simulation result from a 20 x 20 grid.

already of the correct form to be compiled for SpiNNaker, unlike the SimRunner block

which is purely behavioural.

Chapter 6 Non-neural Application 153

Figure 6.4 shows the problem device temperatures for a problem graph composed of the
fragments shown in Figure 6.2. Each sub-figure shows the temperatures for different
values of k: Figure 6.4a shows an intermediate step which is numerically significant
because it forms part of the trajectory of the computation but has no physical meaning
yet; Figure 6.4b shows the steady-state solution which is both numerically significant

and physically correct.

The complete problem graph is not a homogeneous composition of Figure 6.2 fragments;
if it were, the simulation would ultimately converge to constant value without showing
a gradient. In general, a device solves equation (6.11), but devices Ty and 15, ,, (in
Figure 6.4) are the source and sink devices respectively. Instead of computing an updated
value for their temperature, they emit the constant value assigned to them in the problem
graph. Tpo = 255 and T),,, = 0, thus leading to the gradients shown in Figure 6.4.
SpiNNaker does not have any cores containing floating-point units, so the simulation

instead uses 8 bit unsigned integer arithmetic.

It is clear from Figure 6.4b that the problem graph method of solving equation (6.11)
converges for sufficiently large values of k. However, Answer does not simulate the
non-determinism of the SpiNNaker network. Disabling a pseudo-random assortment
of cores hosting the devices emulates this condition, because there is essentially no
difference (discernible by the receiving problem device) between temperatures being lost

and temperatures having never been sent.

Figure 6.5 shows the trajectory of an Answer simulation on a 90 x 90 problem device
grid with the same constant value devices as before (i.e., Tpp = 255 and T}, ,,, = 0),
but with 5% of the worker cores disabled. The cores that have been disabled are most
clearly seen on Figure 6.5a as the darker problem devices in the grid. Figures 6.5a—6.5¢
are each numerically significant but, as before, are not yet physically valid. Figure 6.5d
shows the steady-state solution which is globally correct despite the significant number

of faults introduced.

Specific initial conditions are not important, but it is clear from equation (6.11) that 7T} ;
cannot be uniformly zero across the entire grid. Algorithm 6.1 reacts purely to updates
from neighbours, so there must exist at least one initial message. A useful property
of both Algorithm 6.1 and equation (6.11) is that any update that will cause a change
in temperature will begin the simulation. The problem devices of both Figure 6.4 and
Figure 6.5 are given random initial temperatures, with the clamp devices, Ty o and 75, 1,

emitting their temperatures immediately to begin the packet storm.

154

Chapter 6 Non-neural Application

(a) k = 1: first time-step after initial condi-
tions. Devices mapped onto disabled cores
are clearly visible.

0 20 40 60 80
0

20

40

60

80

(¢) k = 200: gradient more pronounced de-
spite the significant number of faults intro-
duced.

(b) k = 100: devices near the source and
sink devices are beginning to take the cor-
rect trajectory.

0 20 40 60 80
0

20

40

60

80

(d) Steady-state solution which is globally
correct, despite the faults introduced.

Figure 6.5: Answer simulation result from a 90x90 grid with 5% of the simulated

cores disabled.

6.3 Implementation

Figure 6.6 shows the complete tool-flow for running the heat diffusion application (and
indeed any appropriate application) on SpiNNaker. The function of the user code has
been proved by Answer, and the capability of the machine discovery algorithms has been
shown in Chapter 5. To complete the flow, SpinDiscover must provide Loader with an
accurate model of the physical hardware so that the problem graph and user code can

mapped correctly.

SpinDiscover packages the algorithms described in Chapter 5 with the two described in

this section that configure the P2P router and ensure that nodes have a record of all

Chapter 6 Non-neural Application 155

JU— X
I |
: }
i
i Problem
777777 >
i
v
i Graph |
} 1
I |
[—
770707070707072727727277772777
77 Y
Ry
10000 i assaansn 000007
22422222277 rajgnesm 37777777477
1030000000007057575535005250077
N0 00000070050505050000077
e iah AN A
AR Ry SDRAM
A s
A R
A s v
77 I
R g SRAM
o-l” SN 0005000080000007
7 R 3
R s
.7 Loader SpiNNaker
R A DTCM
Ry Wy y
1 040000500000000077 Z
0 0420002500001000 082722277220 Thpology
77 -
7 ISHRRUBASEIS 2255 Sinndl - i
A A MC Routes
103000050505002007 7
J04050000000007
1030000005050
77 o7
040200200000107
1040505050000
04020000000017
R A Y
77 7 SpiNNaker
77 ;/'P///////////
103000000000007 ,
103000050505007
J04050500000007
77 7
L i,
220505050505057
Uploader
[Topology
L e T T SpinDiscover
opalog: :—_—_-_-_-_-_-_-_-_-_-_-l
AR : |
105050282000057 | 1
77 77 1 I
NI i A, 3 i
100050000000 |]
7 Answer” | i
2350500 i i
20202225277 i ; :
e : 770707707095 i Domain-specific !
i ! 705000000007 i . |
i User Code i Post-processing 1
B] |)
----------- e i
i i
i
' 1
[1
L 1
Wall } 1
‘C’ Headers| e
v Headers)
IntHand F-------- > X-compile
Program
SARK Image
SCAMP f-------- -—'X—Compllc

Figure 6.6: Stages of the toolflow shown in Figure 4.1 used to execute the heat
diffusion application on SpiNNaker and collect the results.

of their neighbours to complete the topological description of the system. Once they
have been executed on the target SpiNNaker machine, a complete topological map is

downloaded by SpinDiscover and written into a set of files for the Loader.

6.3.1 P2P Table Construction

P2P routing via the P2P routing tables has been described in Chapters 3 and 4 and
shown visually in Figures 3.20, 3.21 and 4.3. The Loader uses established P2P routes
to route edges between problem devices that have been allocated to nodes separated by
more than a single hop. The Uploader uses P2P messages to perform directed loads of
heterogeneous software and (far more commonly) the data-structures produced by the

Loader.

Establishing the P2P tables can only occur after a discovery algorithm from Chapter 5
has traversed the machine, labelling the nodes and establishing a control tree. The tree
provides a simple method of completion detection, allowing the algorithm to operate in

a highly parallel manner using the following tokens:

156 Chapter 6 Non-neural Application

o label(/): Sent to a node to apprise it of a route.

e ack: Reported to a parent node from a child node when the P2P table is complete
populated. This is determined by simple comparing the length of the table to the

total number of nodes discovered in the system.

Like the discovery algorithms, it is implemented as a state-machine:

o idle: node is waiting for the process to be started. Upon receiving the first label(l),
the node broadcasts its own label from all bidirectional ports and then enters the

building state.

o building: all label(l) tokens received (including the one mentioned above that
causes the state transition) are used to populate the P2P table. Entry [in the
P2P table is looked up If it has not yet been set, the receiving port is stored against
it, a local counter, ¢, is incremented, and [is rebroadcast out of all bidirectional
ports except the one through which it arrived. Conversely, if the entry was already

set, then no further action is taken for this token.

o terminal: when ¢ = N (N being the total number of nodes discovered, set by any
one of the algorithms in Chapter 5) and a ack has been received from all child
nodes, the node automatically enters this state to inhibit the processing of any
further tokens and issues a ack to its parent. Leaf nodes will report immediately

when ¢ = N because there are no child nodes to report.

Figure 6.7 shows the state transition diagram. Once the root node enters the termi-
nal state, it issues an SCP message to the host computer running SpinDiscover which
prompts it to do a directed download of the P2P tables. Contiguous labels reduce the
size of the data-structure because the index of an entry implies its location in the ta-
ble. Contrast Figures 3.20 and 3.21 with Figure 4.3. The former requires only a byte
per entry in the downloaded state because the labels form a contiguous and complete
sequence. In the latter, there is no sequence, hence each entry must be a tuple of target

identifier and the appropriate port.

Figure 6.8 shows four P2P entries for every node on the SpiNN-103 system configured
using this algorithm. The process itself is non-deterministic because the the volume of
traffic, which is reflected in the routes that have emerged. Each node in Figure 6.8 is
highlighting the port used to route P2P messages to the node highlighted by the thick
blue circle. Using Figure 6.8b as an example: node 27 sends all P2P traffic destined for
node 15 out of its southern (5) port; it does not (nor needs to) know to complete route

because that is handled by node 20, the recipient of the initial message.

Chapter 6 Non-neural Application 157

Multiple label(l) update the
local P2P table and are forwarded
on to neighbouring nodes

After local P2P table is
complete and ack
label(l) o sent to parent
start idle @ terminal

Figure 6.7: State transition diagram for the P2P table construction algorithm.

LG me e o me e B
g momeTe e n

(a) All routes to node 0.

CRTmCmemo ROk O

(c) All routes to node 31. (d) All routes to node 47.

Figure 6.8: Select slices through the P2P tables of all nodes in the SpiNN-
103 system. Each node shows the port it uses to communicate with the node
highlighted with the thick blue circle.

158 Chapter 6 Non-neural Application

Figure 6.9: A 3 x 3 SpiNNaker mesh labelled by the parallel breadth-first dis-
covery algorithm showing which neighbour identifiers are known.

6.3.2 Completing the Connectivity Model

Figure 6.9 shows the state of a small SpiNNaker system after parallel breadth-first
discovery (section 5.5.3). The blue arrows show the control tree hierarchy and the
blue circles highlight the leaf nodes. As the algorithm (or indeed any of the discovery
algorithms designed in Chapter 5) progresses, nodes label their ports locally according
to the labels their children will assign themselves. However, as can be seen in Figure 6.9,
this leaves a large number of ports unlabelled, including that of the parent. Leaf nodes

have no knowledge of any neighbouring node.

Loader assumes the description of the machine is purely topological. In principle, it
could applied to a system that merely behaves like SpiNNaker. For Loader (or any other
topology-oriented tool) to construct an accurate model of the specific SpiNNaker system,
the blanks shown by Figure 6.9 must be filled.

The “continuity algorithm” uses the following tokens:

o visit(/): Passed to child nodes to inform them of the identifier of their parent, [,

and also to enter the mapping state.

Chapter 6 Non-neural Application 159

o apprise(l): Carries the label, [, of a node in the mapping state to all neighbours

connected by bidirectional ports.

e terminal: Sent from child to parent nodes when all ports have been labelled.

And the following states:

e idle: Node is waiting to be visited by its parent.

o mapping: Entered after receiving a visit(l) token from its parent node. [is stored
against the parent port, and the local identifier, I, is broadcast to all bidirectional
ports that are neither children nor the parent via an apprise(l’) token. A corre-
sponding visit(!) is sent to all child ports. Once all ports have been labelled and
terminal tokens have been received from all child ports, the node automatically

enters the terminal state and issues its parent with terminal.

o terminal: All ports have been labelled and all children also have labelled ports.
Leaf nodes enter this state immediately when ports are labelled because they have

no child nodes.

visit(l') sent to all child nodes,
apprise(l’) sent to all other bidirectional nodes

visit(l)]
start idle mapping terminal

After all ports are
labelled, all child nodes
have reported with terminal, and
terminal sent to parent

Figure 6.10: State transition diagram for the continuity algorithm.

Figure 6.10 shows the state transition diagram. Similarly to the P2P configuration
algorithm explained in the previous section, the root node issues an SCP message to
the host once it enters the terminal state. This signals SpinDiscover to query each
node for the port labels and the number of functioning worker cores using specific SCP
commands. Once complete, the information is assembled into file which is passed to the
Loader (shown by the “Topology” arrow pointing from SpinDiscover to the Loader in
Figure 6.6).

160 Chapter 6 Non-neural Application

6.3.3 Reducing Packet Flux—The “Ping-pong” buffer

Biological neurons fire at a rate of roughly 10Hz (sometimes as high as 100Hz in spe-
cialised sub-systems), and the SpiNNaker connection fabric has been designed to support
large fan-outs operating at this rate [35]. The timer tick period is usually set to about
1ms for most neural applications, to achieve biological real-time updates without the
models becoming numerically unstable. A consequence of this is that devices (neurons)

may be updated 10’s or 100’s of times before a message is emitted (i.e., a spike is fired).

In this application, every problem device (vertex) can emit a new temperature message
on every timer tick (see Algorithm 6.1), which produces a traffic pattern that falls
outside of the original design intent. Increasing the timer tick period does not counteract
the issue because the instantaneous volume of packets being emitted remains the same
irrespective of the device update frequency. To make matters worse, the packet arrival
handler is essentially a blocking operation as the core-local communications controller
cannot accept new packets until the receipt of the current one is acknowledged by clearing
the interrupt flag. There are small buffers between the router and the cores that absorb
some of the back-pressure that this applies, but they are not sufficient to tolerate the

volume of traffic in this application. Therefore, the packet arrival handler must be fast.

As mentioned in section 6.1, IntHand uses the packet arrival handler to search the
data-structures generated by Loader for the appropriate parameters corresponding to
the incoming edge. Recall that applications use MC messages to communicate between
problem devices (Chapter 4), and that MC packets carry both a source address (the
key) and an optional payload. The keys exist in a 32 bit space, hence the parameter
look-up cannot simply be an index. A key-tree forms part of the Loader-generated
data-structures, enabling the look-up to be a binary search which completes fast enough
(despite the SDRAM latency) for applications with biological packet emission rates.
However, the traffic volume in this application falls outside of anything that resembles

a biologically-realistic traffic volume, and even this binary search is too slow.

The solution is to defer the parameter look-up to the timer tick handler, and reduce
the packet arrival handler to simply buffering all packets that arrive. Care is required
here because the interrupts in SpiNNaker have associated priority levels such that lower
priority handlers can be interrupted by those with a higher priority. The timer tick is
typically a slow operation because it is used to update all of the problem devices on a
node, which can be as many as 103, and hence is assigned a low priority. For the reasons
described earlier, the packet arrival interrupt must be handled quickly and hence has
a high priority. This bears resemblance to two threads sharing a common resource.
Section 2.1.2 described the difficulties associated with this situation, showing how easily
these mutual exclusion locks can cause deadlock if care is not taken. Even if this is
appropriately handled, the packet arrival interrupt could (potentially) push packets to

the buffer at the same (or a greater) rate than the timer handler is popping them,

Chapter 6 Non-neural Application 161

Ping
—>
From packet Each element is
handler a (key, payload) tuple.

Ping” buffer Pong” buffer To tick

handler

Ping

Figure 6.11: Visual representation of a 12-element “ping-pong” buffer.

which both inhibits all device updates on that core and prevents the timer tick handler
from ever returning. The workload issued to the timer tick handler must therefore be

appropriately bounded and free from contention.

Figure 6.11 shows the software architecture used to address these issues. There are two
identically-sized circular buffers, named “ping” and “pong,” which are exclusively written
to or read from at any one time; i.e., if the “ping” buffer is currently being populated
by the packet arrival handler, then the “pong” buffer is currently being emptied by the
timer tick handler. Essentially, each buffer is an exclusive resource in the context of

whichever handler is currently using it.

Each element of the buffer is a tuple containing the key (i.e., source address) and payload
of the MC packet that triggered the packet arrival handler. The sole operation of the
handler is simply to push this tuple into the active write buffer, which is fast enough
to reduce the back-pressure applied to the network sufficiently far for the application to

behave correctly.

The timer tick handler first swaps the active read and write buffers, disabling interrupts
before the swap and re-enabling them afterwards. This the only part of the implementa-
tion that has the potential for contention. However, if a packet arrives before the timer
tick handler has disabled interrupts, it is pre-empted and current write buffer grows,
and if a packet arrives after the interrupts have been disabled, it is queued until the
interrupts are enabled again; in both cases, the behaviour is correct. As interrupts are
disabled for such a short time, any back-pressure that builds up has an insignificant

effect overall.

162 Chapter 6 Non-neural Application

Once the swap has completed and interrupts are enabled again, the timer tick handler
enumerates the newly activated read buffer (thus bounding the workload), and invokes
the IntHand function call that would usually be registered against the packet arrival
interrupt for each key/payload pair. These virtual packet arrivals are all performed
before any of the device updates are issued, and are thus indistinguishable from conven-
tional packet arrivals from the perspective of the device handlers. Clearly this requires
a slightly larger timer tick period than would otherwise be required, but it brings the
important benefit of significantly improved handling of high volumes of packet traffic

without perturbing the application model.

6.3.4 Downloading Data

Downloading results from SpiNNaker applications is complicated by them being split
between many cores. Core-local address spaces may, obviously, only be accessed by that
particular core. Querying this space for current problem device values forces the worker
cores to handle SCP commands while the application is running, which will degrade
simulation performance in the best case. In the worst case, the commands will simply

be ignored as the SCP interrupt priority is lower than the timer tick.

Instead, each problem device writes its state into an area of the node-local SDRAM
designated by both core and problem device index. A “domain-specific post-processing”
tool (Figure 6.6) tool waits for the application to terminate, after which it reads these
blocks of data and assembles them into a contiguous file for analysis on the host machine.

Reading arbitrary memory locations is included in the standard set of SCP commands.

6.3.5 Results

Figure 6.12 shows the steady-state solution computed by the SpiNNaker implementation
of Figure 6.2 and Algorithm 6.1 without any faults introduced. Figure 6.12b shows the
convergence trajectory of the diagonal of Figure 6.12a. Darker lines show results from
a lower value of k. It is clear from this plot that even when subject to uniform initial
conditions (the darkest line) that the two constant value devices at Tpo and T;, ,, are

sufficient to start the simulation.

Figure 6.13 shows the steady-state solution when 5% of the problem devices have been
inhibited, which can be seen as the scattering of contrasting red cells Figure 6.13a.
Despite the significant number of problem devices that refuse to update, the overall
solution is still qualitatively correct. The numerical trajectory shown in Figure 6.13b is
expectedly noisy, but still begins to settle down as k increases. Large spikes can be seen
as the curve approaches the steady state. These are artefacts introduced by the disabled

problem devices as their values have (deliberately) not changed over the course of the

Chapter 6 Non-neural Application 163

200

Temperature
=
G
S
/

100

40 60
Distance along diagonal

(a) Steady-state solution. (b) Gradient along the the diagonal for in-
creasing values of k; the lighter the grey,
the larger the value.

Figure 6.12: SpiNNaker implementation results without any faults introduced.

o

20 40 60 80

300

Temperature
— N
o]
S S

-
1S}
s}

50

Distance along diagonal

(a) Steady-state solution. (b) Gradient along the the diagonal for in-
creasing values of k; the lighter the grey,
the larger the value.

Figure 6.13: SpiNNaker implementation results with 5% of problem devices
disabled.

simulation. However, the shape of the curve converges to the expected value regardless

of these spikes.

Figure 6.14 shows the steady-state solution where 5% of the cores have been artificially
disabled. Each core has around 15 problem devices mapped onto it, which creates the
bar pattern as a consequence of the mapping algorithm in Loader. Despite the fault
conditions being significantly more severe than in Figure 6.13, the qualitative validity
of the overall solution is still clear—the effect of disabling 5% of the cores is simply to

cut holes in the discrete model of the underlying physical system.

164 Chapter 6 Non-neural Application

300

250

Temperature
= N
9]]
o S

.
153
=3

501

0

0 20 40 60 80 100
Distance along diagonal

(a) Steady-state solution. (b) Gradient along the the diagonal for in-
creasing values of k; the lighter the grey,
the larger the value.

Figure 6.14: SpiNNaker implementation results with 5% of cores disabled.

Figure 6.15 shows the steady-state solution with 5% of the nodes disabled (i.e., 2 on
a SpiNN-103 machine). This has created a fault condition from which the application
cannot recover. Disabling a node creates such a large group of disabled problem de-
vices that the problem grid is partitioned twice. Within each partition, the solution
is still correct according to the update rules, but it is clearly not qualitatively correct
overall. The trajectory plot in Figure 6.15b shows that a steady-state solution is found

(individually) in the three partitions despite the faults.

Constant value devices only exist in two of the three partitions: the sink device in
the lowermost partition has drained all of the heat away as expected, and the source
device in the uppermost partition has introduced sufficient heat to cause a gradient to
appear. Without a sink device present, the entire partition should homogenise to the
To,0 value (255°), which has clearly not happened here; there reasons for this are not
clear, but it could be that the node failure has not completely separated the upper and
central partitions, allowing some heat to flow around the edge. The central partition
has homogenised because there are neither sources nor sinks in this area. This is to be
expected because there is no notion of thermal reactance in the application, hence heat
is never passively lost. Instead, the devices have computed the average of their initial

conditions, which is a constant value.

Figure 6.16 shows how the wall-clock time changes as problem size increases on a SpiNN-
103 machine with varying timer tick periods. For each period, scaling is largely indepen-
dent of problem size which is expected, but still impressive. In comparison to a serial
desktop machine, the compute time necessarily increases with problem size. This graph
is a realistic illustration of the Amdahl vs. Gustafson argument posed in section 1.2;

the serial computer fails to scale where SpiNNaker succeeds.

Chapter 6 Non-neural Application 165

300

2504

N
s}
s}

Temperature
=
9]
o

e

501

0 20 40 60 80 100
Distance along diagonal

(a) Steady-state solution. (b) Gradient along the the diagonal for in-
creasing values of k; the lighter the grey,
the larger the value.

Figure 6.15: SpiNNaker implementation results with 5% of nodes disabled.

Heat diffusion convergence time, for 768 cores
convergence criterion: dI'<3 ¥ {z,y)

2500 1 [TT=150]
£
g 2000
.4: -
Y -
c \ el
@ 15001 / \ 1 e
o / \ [TT=100] .-
g :‘" o .-
E /—"' -~ . 2.2GHz sequential machine
0 10001 .-
B
2 s frr=s0]
% 500 1 - -~ [TT=30]
; X—W [Tr=20]

ce e ® Lad
0 piese®e ® e
0 5000 10000 15000 20000 25000

#cells

Figure 6.16: Comparison of application run-times with various timer tick peri-
ods on a SpiNN-103 against a conventional serial desktop machine.

Choosing an appropriate value for the timer tick is a non-trivial task because it depends
on the expected computational requirement of the application. Recall that the purpose of
the timer tick in this case is to help spread out the number of packets being emitted at any
one time to prevent saturation of the network. Applications with lower communication
loads may be able to function with smaller timer ticks, whereas applications with greater
emphasis on communication will need to employ additional methods to help spread the

load; tuning the timer tick is an empirical procedure.

166 Chapter 6 Non-neural Application

6.4 Concluding Remarks

This chapter has shown how a non-neural application can function correctly within the
neuromorphic framework provided of SpiNNaker. Converting the application into a form
appropriate for SpiNNaker requires care, but it can also be viewed as taking the SPMD
approach to the extreme, where each problem device forms an “atom” of the application
[1]. Many numerical problems can be mapped onto this principle, so while SpiNNaker
is not a general-purpose supercomputer, it can be used for applications outside of the

neural domain.

However, the key point here is not that SpiNNaker, specifically, can be used for non-
neural applications. It is that a computer with enough processors to make them a
trivially available resource is indeed useful for solving real-world problems. Extreme-
scale parallelism is inevitable, and applications structured in the way described in this

chapter provide a way to effectively utilise them.

Along the way, reliability of computation has been considered at various levels. The
SpinDiscover tool provides means to map applications around faults that are discoverable
before the application even starts, and a correct formulation of the problem allows faults
that develop at run-time to be tolerated in a similar manner to the neural applications
for which SpiNNaker was designed [5, 7].

Clearly embracing massive parallelism is not a trivial task, but it is definitely tractable,

and is indeed essential as machines continue to increase in size.

Chapter 7

Reliability

Modern computing systems place heavy emphasis on being reliable, and coping with
failure gracefully becomes increasingly import as systems grow in size. IBM show a
failure rate of around 0.08 faults/month/teraFLOP on their Blue Gene/L system [142].
Whilst this sounds perfectly reasonable, scaling this up to the exaFLOP regime leads to

almost 2 faults/minute, which is not.

Some types of fault carry more severe consequences than others, and it is impossible to
account for every conceivable failure mode in advance. Fault correction systems greatly
aid the resilience in memory systems, but meaningful recovery from a serious fault is
usually impossible for a computer architecture during software execution, even for high-
reliability architectures such as the LEON-FT [143]. Nonetheless, SpiNNaker hardware
has fault-tolerance built in at various levels, and the software designed to be run on the

machine can be configured to make use of this capability.

7.1 Hardware

The complete SpiNN-106 machine contains around 57k nodes (i.e., 57k routers), 350k
inter-node communication links, over 1M ARM968 processor cores, and approximately
7TB of distributed memory [35]. This section briefly outlines the broad categories of
failure and then describes specific measures built into the system that ameliorate the

fault consequences.

7.1.1 Cores

The first processor past the POST becomes the monitor core which is responsible for all

node-level activities (described in section 3.2.1). This initial asynchronous race condition

167

168 Chapter 7 Reliability

naturally excludes cores that exhibit faults because they will not acquire an identifier—
recall from section 7.2 that cores are labelled monotonically increasing from 0 (the

monitor).

Any core can be disabled by the monitor core writing to the appropriate register in the
system controller (shown on Figure 3.1). The watchdog timer (also shown on Figure 3.1)
protects against the monitor core stalling by requiring periodic writes to indicate liveness.
This is implemented as a decrementing counter that raises an interrupt on first counter
expiry (allowing the monitor to execute recovery behaviours), and asserts the reset

output on the second expiry (hard-restarting the entire node).

Detecting stalled worker cores requires a software protocol initiated by the monitor core.
Each worker has a self-test interrupt that can be used to report liveness back to the
monitor. Failed liveness reports cause the monitor to reset the specific core. Recovery
from this type of fault is extremely difficult because both the software and state are lost;

the most viable approach is to write applications that can tolerate core loss.

7.1.2 Interrupts

It is theoretically impossible to detect the erroneous invocation of an interrupt [7]. It is
also infeasible to detect that an interrupt has failed to complete its task correctly, even
if it has been invoked appropriately. As SpiNNaker is an interrupt-centric design, these
faults can have severe consequences. Regular checkpoints can be used to detect that
the application is not converging as expected, but identifying the core/node causing the

issue is not sufficient to recover from it.

7.1.3 Routing Subsystem

Worker cores that have stalled will consequentially burden the communications network
NoC because the router will continue to send packets to them. As the monitor core is
capable of detecting and disabling faulty cores, it can also adjust the MC routing tables

to prevent routing to them from even being attempted.

Nodes are particularly sensitive to failures in the router and/or the monitor core, and
it is difficult to see how any meaningful recovery could be achieved here. Faults of this
nature require a complete rediscovery of the machine (Chapter 5) and a re-mapping of

the application (Chapter 4), which is not really a viable recovery mechanism.

Chapter 7 Reliability 169

7.1.4 Packet Parity

The lowest level of defence against faults protects against corrupted data. All packets
feature a parity bit in the control byte (Figure 3.7) which is set by the core-local com-
munications controller such that the packet has odd parity. If this bit is wrong at any

stage of transmission, the router will drop the packet to prevent further propagation.

This drop is recorded in the router statistics registers [115, pgs. 50-51], and software
interrogation of them ultimately cannot tell the difference between a packet being dis-
carded in this manner and a packet being discarded due to back-pressure. The goal of
the parity bit is simply to prevent any bad data from being propagated to the application

software.

One bit of parity does not offer perfect protection, but the network itself is usually
reliable enough for a single bit to be sufficient. Inspection of the SCAMP source reveals
that system packets (existing NN and P2P traffic, not any added in the thesis) include
a 4 bit 1’s complement checksum in the payload of the transmitted packets to further

protect against erroneous bit-flips.

7.1.5 Network Time Phase

Each router in a SpiNNaker system maintains the current time phase [115, pg. 42] which
is a 2 bit field that regularly updates. Every multicast packet introduced by the core-
local communications controllers has the T field of the header (see Figure 3.7) set to the
current phase of the router in the node. Packets that are two or more phases old are
discarded. The use-case for this behaviour is to protect against bad MC routing tables

by preventing MC packets from flowing around the SpiNNaker torus indefinitely.

Figure 7.1 shows the time phase concept visually. T}, refers to some arbitrary time phase
in which the packet is emitted, and 7}, 1 refers to the subsequent phase. The green route
represents the first orbit of the torus and the red route represents the second. Packets

are subject to the router time phase at the following points identified on the figure:

1. Packet is emitted with T' = T;, and is routed east.
2. Some time later, the system time phase, T, asynchronously advances to T,1.

3. The packet re-enters the source node and is routed according to the same routing

entry as before, thereby creating a cycle.
4. As before the system time phase advances to Ty = T),12.

5. The packet enters the source node again, but is now discarded because Ts —T' > 2.

170 Chapter 7 Reliability

Tn—i—l:

Figure 7.1: Packet phase prevents packets from flowing around the network
indefinitely.

Figure 7.2: Emergency routing around a heavily congested link.

Ideally, the time phase update rate should be tuned according to the major radius of

the torus. Without this tuning, smaller machines permit larger numbers of cycles.

7.1.6 Emergency Routing

Emergency routing was first mentioned in Chapter 3 as a method of dealing with partic-
ularly congested links. If the router cannot transmit an MC packet out of the required
link because the back-pressure is too severe, it will attempt to emergency route via a

neighbour. If the back-pressure on that link is also severe, the packet will be dropped.

Chapter 7 Reliability 171

Figure 7.2 illustrates this point. Node 0 wishes to send node 1 an MC packet using the
blue route, but the back-pressure on the western port of node 1 prevents the transmission

from completing. Instead, node 0 routes the packet via green route through node 2.

MC packets contain an emergency routing field in the header. Node 0 will set this field
to indicate that the packet being sent out of the north-eastern port is being emergency
routed and is therefore not actually destined for node 2. The router of node 2 reads
the emergency routing field and redirects the packet to the original location, but alters
the emergency routing field to reflect that the packet has been emergency routed. This
allows node 1 to treat the packet as if it were received from the eastern port instead of

the northern port.

Emergency routing is always performed in the clockwise direction. Thus restoring a
packet to its original destination is simply a case of rotating anti-clockwise. A node
receiving a packet that has been emergency routed (node 2 in this case) therefore does

not need to inspect the contents of the packet beyond the emergency routing field.

This approach to fault-tolerance is predicated on the geometry of the system (SpiN-
Naker) and cannot be applied to an arbitrary topology. Whilst emergency routing
affords some tolerance of congested links, it does not extend to faulty links unless the

traffic density is sufficiently low.

7.1.7 Dropped Packet Re-injection

When any router decides to drop a packet (for whatever reason), it is stored in a set
of registers that completely describe the situation, and the ‘router dump’ interrupt is
raised. These registers describe not only the full content of the packet, but also store

the direction in which routing was attempted.

Any processor that listens for the interrupt can read these registers and push the data
into a software queue for later re-injection. Typically, a worker core is dedicated to this
task in applications that may have bursts of high packet flux because the interrupt must
be handled quickly as a second dropped packet will overwrite the register contents. The
timer tick of this worker core is used to clear the queue by re-injecting all of the packets

that were dropped.

172 Chapter 7 Reliability

7.2 Software

7.2.1 Problem Device Placement

With accurate machine topology information obtained by the algorithms designed in
Chapter 5, applications can be placed by Loader in a manner that reduces the num-
ber of problem edges that are mapped onto physical edges, thus reducing the volume
of inter-node packets. Applications based on a uniform grid (such as the heat diffu-
sion application in Chapter 6) are still conducive to this approach. The problem grid
can be broken into multiple sub-grids of arbitrary size, which reduces the inter-node

communication requirement to the boundaries of these sub-grids.

In the general case, packet flux can be kept minimal by simply grouping highly-connected
portions of the problem graph into as few nodes as possible. Long-range routes are
subject to more routers and hence have a greater chance of encountering emergency
routing or being dropped and re-injected at a later time. Run-time efficiency (and,

hence, reliability) are improved by better decisions made in the mapping stage.

7.2.2 Inherently Robust Applications

The most obvious approach to reliability is ensuring that the applications themselves
tolerate a range of fault conditions, as with Chapter 6. This plays to the original design
specification of SpiNNaker where applications are assumed to be resilient against packets
not arriving. Numerical applications can be made tolerant to these sorts of faults through

careful formulation.

An important aspect of the fault resilience of SpiNNaker is the nature and consequence
of failures. In a generic electronic system, faults manifest in different ways: stuck-at,
bridging, crosstalk, or some combination. In a conventional supercomputer, the effects
of a core or communication hard fault are usually catastrophic. Checkpoint, rollback
and recovery protocols [140] are a recovery mechanism of last resort, but are expensive
and make assumptions about the nature of a failure. At almost every level (apart from
the cores themselves) SpiNNaker is asynchronous, and a consequence of this is that a
core or node can only realistically fail silently. This, in turn, means that the affected
problem devices (those mapped to the failed core/node) effectively simply disappear,

rather than continually inject incorrect data into the system.

This does not mean that the failed problem device ceases to have an effect on the numeric
solution. Prior to the failure, copies of the problem device state are stored in the local
state-space of its immediate neighbours (see Algorithm 6.1). Post site failure, these
values will never change (EDGEHANDLER is never again executed with that particular

edge . type—Algorithm 6.1).

Chapter 7 Reliability 173

In the context of a relazation based simulation (of which the heat diffusion application
in Chapter 6 is a canonical example), a fault represents the replacement of a passive
component (model) in the system under simulation with an energy source. This takes
the form of a potential source of whatever value the problem device state held at the
point of failure (and may be positive or negative). This state perturbation—of a single
problem device—may or may not have a negligible effect upon the numeric configuration
of the solution (depending upon its position). This notwithstanding, the fault does not

compromise the stability or speed of the overall solution process [7].

On a conventional architecture, physical failure compromises (usually fatally) the so-
lution algorithm. On SpiNNaker, physical failure locally perturbs the model, not the
solution technique. Refer back to section 6.3.5 where the solution remained qualita-
tively correct overall despite introducing quite severe faults (Figures 6.13 and 6.14).
Sufficiently severe faults can perturb the model to the point where it no longer describes
the original problem specification, but problem device computations remain locally cor-
rect even if the overall result has become meaningless (Figure 6.15). It is difficult to see

how applications could be engineered to tolerate hardware failures of this severity.

7.2.2.1 Recovery

SpiNNaker can detect core/communication failures on the fly by use of the the ‘main-
tenance ping’ introduced in section 7.2.3. On detection of a fault, the simulation may
be modulated by informing the problem devices logically adjacent to the silent area
that their local state copies (described above) should be disregarded. This strategy is
superior to a conventional (and expensive) checkpoint/rollback recovery regime [140],
because the SpiNNaker solution trajectory is intrinsically self-healing—processing can
continue from the point at which the fault was detected (not necessarily occurred) and

will nevertheless re-converge to the correct solution.

Neural networks are inherently tolerant of data loss, which implies there exists a family of
more general applications that rely on statistical packet arrival characteristics instead of
absolute arrival. The difference between this and numerical applications is subtle. With
numerical applications, missing packets may cause a delay in convergence, and any
delay in convergence naturally eliminates the problem caused by the missing packet.
An application that makes use of statistical packet properties would send potentially
redundant data between problem devices to amortise the effect of any dropped packets.
This is closer to neural applications where a spike in isolation is usually meaningless (or

spurious), but a chain of spikes convey a signal.

174 Chapter 7 Reliability

7.2.3 Real-time Fault Detection

Detecting faults at run-time can be achieved by re-running any of the algorithms de-
signed in Chapter 5 multiple times. Subsequent surveys take the form of a distributed
‘ping’ orchestrated by a traversal of the control tree in a similar manner to the “conti-
nuity algorithm” (section 6.3.2). Any changes detected are be reported to an external

host machine tasked with monitoring the system.

Reacting to any faults detected in this manner is a non-trivial problem and requires
re-distribution of problem data in the simplest case, and distributed recompilation of
both problem device data and handlers in the most complex. Applications reacting

dynamically to run-time faults is a “holy grail” of reliable distributed computing.

Chapter 8
Concluding Observations

Chapter 1 identified the need for new software techniques that can take advantage of the
increasing number of readily-available processors in each new generation of computer
hardware. Parallel programming is already a notoriously difficult practice, and large

processor counts do not make current approaches any simpler.

The approaches to fault-tolerance and resilient parallel programming built up in Chap-
ters 4-7 show that massive parallelism can be used to solve real-world problems despite
the non-determinism of the underlying communications fabric. Interleaving appropri-
ate fault-detection algorithms allows faults that have developed during execution to be

sensibly handled.

Whilst these techniques originated to broaden the portfolio of problems that can be
solved by SpiNNaker, they lay the ground-work for a new perspective on parallel software
and parallel computing in general. This chapter presents some avenues of future work

that can explore these new perspectives.

8.1 Contributing Back to SpiNNaker

8.1.1 Non-neural Infrastructure

Chapter 5 builds on the existing infrastructure to support more powerful parallel pro-
gramming techniques, using the concept of the “control tree” to implement a barrier
capability. The other algorithms presented in that chapter, along with the configura-
tion aspects of the tool-chain presented in Chapter 6, use the control tree for barrier-like

activities without using it as a barrier.

Extending the SpiNNaker API provided by SARK to understand the notion of a barrier

further broadens the scope of problems that can be mapped on the infrastructure built

175

176 Chapter 8 Concluding Observations

in this thesis. Consequently, more conventional parallel programming techniques such a
scatter/gather [78] and potentially even map/reduce [144] could be constructed around

the barrier.

Scatter/gather is perhaps the simplest extension of the barrier. Scatter distributes a
particular value (or set of values) to all cores in the system. This can be trivially
achieved by sequentially visiting each node of the control tree. Doing so in this manner
limits the traffic to only a single direction across the machine fabric and out of a limited
number of ports on each node. Contention is therefore completely avoided because cyclic

traffic flows are not possible (the structure is a tree).

Gather is the complementary operation where data is collected back to the root. It is
common for data collected in this manner to be subject to some function. For example,
consider a set of problem devices, IP, which each produce a result, R,Vp € P; the gather

operation can apply the sum function as results are gathered, leading to the root receiving

R=)"R,. (8.1)

pEP

However, this technique is not necessarily limited to problem devices on the root node.
Any problem device could request that a gather-sum is performed via an API call. This
request bubbles up the control tree to the root, wherein the root issues a gather-sum
request to all nodes via the control tree, and eventually R arrives back to the root,
where it is forwarded back down the control tree to the node from which the request

originated. P2P messages are used to remove the initial and final control tree traversals.

Map/reduce is much the same as scatter/gather, but map does not require the value
being broadcast to be homogeneous. A smalll set of simple functions for use with
Reduce/gather are implemented in SCAMP or SARK, but the concept can be extended

to allow applications to register more complex domain-specific functions as appropriate.

A final extension enabled by the control tree is the ability to pause applications at
run-time. This is more complicated than it sounds; recall that there is no global syn-
chronisation in SpiNNaker, so the idea of a computational “now” is only defined by the
barrier. Consider the case where an application is steadily applying a set of constants to
a flow of data from some source (potentially external to the physical hardware). After
the application starts, a new set of values for these constants becomes available. Instead
of rebuilding the data-structures and re-uploading the application, all cores are issued
with a pause message that flows down the control tree. Then a scatter/map operation
(or a directed-load) distributes the new parameter values. Finally, an unpause message

restores the application to normal working order.

Chapter 8 Concluding Observations 177

8.1.2 Simplifying Application Development

Augmenting SCAMP and SARK with the features described above allows SpiNNaker
to be the target of productivity languages that aim to reduce the complexity of writing
parallel software. X10! is of particular interest here because it offers a tool-chain that
generates C++ code designed to link against libraries that handle communications and
message-passing. Typically it assumes the presence of either MPI or the Deep Computing
Messaging Framework (DCMF) which is a variant of MPI designed for use on IBM Blue
Gene supercomputers. SpiNNaker bindings based on these concepts can easily add to

this repertoire, making SpiNNaker a viable target.

X10 is a high-level object-oriented language with asynchronous behaviour built into the
language itself. In contrast to some of the language features mentioned in section 2.1.4
(e.g., the async and await keywords in C#), X10 has been designed with a multi-
process model in mind, supporting both the SPMD and MPMD models. With careful
implementation of the appropriate binding libraries, a language such as X10 can simplify

writing SpiNNaker applications.

8.2 Fault Tolerance Techniques

8.2.1 Real-time Fault Discovery

Chapter 7 introduced the idea of running the discovery algorithms presented in Chapter 5
periodically during run-time to discover new faults that arise. The simplest course of
action to take is merely to report the presence of a new fault to the host computer
so that the application can be rebuilt, re-uploaded, and restarted. The omega was
introduced in section 5.6.2 illustrating that multiple disjoint state-machines can coexist
in an event-driven architecture without issue, supporting the notion of the algorithms

running alongside an application.

However, section 8.1.1 described using the control tree to pause the application at run-
time. Outside of SpiNNaker, this concept can be achieved in software using similar
techniques. Once paused, a snapshot of the state of the cores around the fault can be
downloaded and used to recompile only the part of the application affected by the fault
rather than the entire thing. The state snapshot can be restored to the nodes (subject
to any data migration required by problem devices that have been moved), and then the

application can be unpaused.

This approach is not necessarily applicable to all types of parallel application, but those

that are numerically similar to the heat diffusion application outlines in Chapter 6 will

1ht:tp ://x10-1lang.org/

http://x10-lang.org/

178 Chapter 8 Concluding Observations

recover from erroneous values caused by this repair. In the simplest case, the fault
is a malfunctioning port, which can be applied to all applications because only the

adjustment of problem edges is required to bypass the port.

8.2.2 Orthogonal Encoding Schemes

Following on from the above, tolerance of core and potentially even node faults might
be achievable if the data for a node can somehow be reconstructed from data stored in
neighbouring nodes. This is somewhat similar to RAID arrays which provide a degree

of robustness against data-loss by encoding data across multiple hard-drives.

If data for a particular node was split into smaller (potentially compressed) segments
distributed between neighbours, then a node failing during the execution of an applica-
tion can potentially be dealt with inside the machine rather that requiring an external
recompilation. As with the offline method described above, the application would need
to be globally paused using the barrier method, but then nodes around the fault could
dynamically increase the number of problem devices present to absorb those lost on
the failed node. Obviously the exact state of the devices at the point of failure cannot
be reconstructed unless additional data is shared, but for numerical applications that

converge with a stable trajectory this is not an issue.

Tolerating core faults is easier provided that problem devices are under-allocated to
ensure there are always spare cores. Copies of the core-local (or process-local, in a
general sense) data must reside in shared memory so that the new core can take over
the workload.

8.3 Parallel Software Synthesis

8.3.1 Functional Decomposition

To produce programs, compilers first build a graph of the operations described in the
source code. This graph passes through several optimisation stages before being synthe-
sised into the appropriate transfer language for that layer. For example, g++ compiles
C++ code into a Lisp-inspired intermediary language called Register Transfer Language

(RTL), which is then synthesised into assembly instructions for the target platform.

Problem graphs (see Chapters 4 and 6) can be similar to the graphs that lead to RTL,
but offer a far higher-level description of the software behaviour. This cross-over provides
a method of synthesising event handlers—both for SpiNNaker and in a general “atomic

computing” sense.

Chapter 8 Concluding Observations 179

For best results, a model of the data flow through the program is also required so that
workloads can be transformed into parallel segments where possible. Functional pro-
gramming languages are a natural route for this because, typically, functional programs
are compositions of general concepts that are applied to data. If a workload has a set
of functions that are applied in a loop with a constant termination criterion, it can be
trivially unrolled and synthesised into as many problem devices as required to obtain

the desired performance.

A more sophisticated approach is to examine the data-dependency graph of a program,
which contains the relationship between all the variables in all scopes of the program.
Functions that perform several discrete operations on disjoint variables can be split into

several problem devices operating in parallel.

This level of decomposition leads to very fine-grain parallelism that forms the basis
of the “atomic computing” principle. Tools like ROCCC? convert ‘C’ programs into
highly parallel implementations that can be synthesised into FPGAs to yield significant

performance increases; thus providing a good foundation for this avenue of enquiry.

8.3.2 Massively Reconfigurable Computing

SpiNNaker shares many similarities with programmable hardware. Hardware Descrip-
tion Languages (HDLs) are inherently parallel and provide a suitable front-end for de-
scribing “atomic computing” applications. HDL designs are described as a set of mod-
ules with signal paths that link them all together. A description of this form blends the

handler descriptions and problem graphs into a single entity.

Perhaps the most powerful aspect deriving from this is local reconfiguration at run-
time. Applications structured in this way naturally form a graph of interconnected
components that may be swapped for other implementations as required, triggered by a
signal from within the application itself. Using the application-pause concept described
in section 8.1.1, the application can be halted whilst individual programs are swapped
for more appropriate ones based on new information, then the barrier can be released

to resume execution.

This concept is perhaps most useful for dataflow programs which stream large volumes of
data through the problem graph. Coupled with some basic machine learning techniques,

this leads to highly self-adaptive and potentially self-repairing distributed applications.

thtp ://roccc.cs.ucr.edu/

http://roccc.cs.ucr.edu/

180 Chapter 8 Concluding Observations

8.4 Closing Comments
This thesis demonstrates the following;:

o Contributions to the SpiNNaker tool-chain for non-neural applications (Chapter 4):

— The Uploader tool [127] writes application data and routing tables mapped
by Loader into a target SpiNNaker machine, along with appropriate compiled
binaries. The communications subsystem that underpins this provides an
API that can be used separately to Uploader, enabling programs running
on conventional hardware to communicate with SpiNNaker and applications

running on it.

— The IntHand API [127, pgs. 17-23] is compiled into SpiNNaker applications
to augment the packet arrival and timer tick interrupts with the data mapped

by Loader, by traversing the mapped data-structures.

e Discovery algorithms that perform a complete fault-survey of an arbitrary SpiNNaker-

like system (Chapter 5) [3, 4]. Specific contributions include:

— The fault survey of the SpiNN-104 hardware shown in Figures 5.47 and 5.48,

subjecting the discovery algorithms to a real-world SpiNNaker environment.

— Discovering the SpiNNaker machine topology whilst also assigning unique
node labels (used to support P2P and MC communication) and constructing

the control tree, which is used to support barrier-like behaviour (section 5.5).

— Overcoming a shortcoming present in the existing node labelling scheme (sec-
tion 5.5), benefiting all SpiNNaker applications, not just those in the non-

neural domain.

o A demonstration application (Chapter 6) showing how to structure non-neural
software so that fine-grained parallelism can be achieved on SpiNNaker [1, 5, 7],

which has led to the following:

— The SpinDiscover tool combines the discovery algorithms (Chapter 5) with a
P2P table configuration algorithm (section 6.3.1), and downloads the complete
topological description of the target SpiNNaker machine (section 6.3.2) to

allow Loader to map applications to specific hardware.

— A “ping-pong” buffering technique (section 6.3.3) that reduces the back-
pressure felt by applications with a high packet flux.

— An assessment of the reliability mechanisms available in SpiNNaker that allow
non-neural applications to function on the neuromorphic hardware, provided
they adhere to a set of identified criteria (Chapter 7).

Appendix A

Published Papers

This work has contributed to the following publications:

1. A. Brown, R. Mills, J. Reeve, et al., “Atomic computing — a different perspective
on massively parallel problems,” in VOLUME 25: PARALLEL COMPUTING:
ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE),
Munich, Germany, 2013, pp. 334-343. DOI: 10.3233/978-1-61499-381-0-334

2. K. Dugan, A. Brown, J. Reeve, et al., “Interconnection system for the SpiNNaker
biologically inspired multi-computer,” IET Computers € Digital Techniques, vol. 7,
no. 3, pp. 115-121, May 2013, 1sSN: 1751-8601. DOI: 10.1049/iet-cdt.2012.0139

3. K. J. Dugan, J. S. Reeve, and A. D. Brown, “Self-discovery Algorithms for a
Massively-Parallel Computer,” in ADAPTIVE 2013, The Fifth International Con-
ference on Adaptive and Self-Adaptive Systems and Applications, Valencia, Spain,
May 2013, pp. 3639, 1SBN: 978-1-61208-274-5

4. K. J. Dugan, J. S. Reeve, A. D. Brown, et al., “Comparing topological dis-
covery methods for a massively parallel computer,” in ACACES 2014 - AD-
VANCED COMPUTER ARCHITECTURE AND COMPILATION FOR HIGH-
PERFORMANCE AND EMBEDDED SYSTEMS, Fiuggi, Italy: HIPEAC, 2014,
pp. 213-216

5. A. D. Brown, R. M. Mills, K. J. Dugan, et al., “Reliable computation with unre-
liable computers,” in DESIGNING WITH UNCERTAINTY WORKSHOP, York,
2014

6. A. D. Brown, S. B. Furber, J. S. Reeve, et al., “SpiNNaker - programming model,”
IEEFE Transactions on Computers, vol. 64, no. 6, pp. 1769-1782, 2014, 1sSN: 0018-
9340. DOI: 10.1109/TC.2014.2329686

181

http://dx.doi.org/10.3233/978-1-61499-381-0-334
http://dx.doi.org/10.1049/iet-cdt.2012.0139
http://dx.doi.org/10.1109/TC.2014.2329686

182 Appendix A Published Papers

7. A. D. Brown, R. Mills, K. J. Dugan, et al., “Reliable computation with unreliable
computers,” English, IET Computers € Digital Techniques, vol. 9, no. 4, pp. 230—
237, Jul. 2015, 18SN: 1751-8601. DOI: 10.1049/iet-cdt.2014.0110

http://dx.doi.org/10.1049/iet-cdt.2014.0110

Appendix B

Booting Software on SpiNNaker

B.1 Scatter Load Files

Scatter load files are an important part of the SpiNNaker application compilation process
because they essentially describe the memory map for the code. A scatter load file
comprises multiple images, each containing multiple sections with some base address.
SpiNNaker applications contain only a single image, but usually define (at least) three
sections within. Listing B.1 shows an example scatter load description (a full description

of the file format is given in reference [145]).

1 IMAGE_NAME ©

2 |
3 SECTION1 <address> [<size>]

4 {
5 some_object.o (some_area, <flags>)
6 * (<flags>)

s}
Listing B.1: Sample scatter load file placing some_object.o in SECTION1.

The names adopted in the example above are fairly arbitrary and can be any alphanu-
meric characters provided that the first is non-numeric. The number following IM-
AGE_NAME is the base address for the rest of the image, which is useful if the image
is going to be loaded at a fixed location on the target system. For SpiNNaker, this
value should remain 0 so that the images can be moved around memory while retaining

relative offsets elsewhere within the image.

SECTION1 is a piece of code or data that will eventually be loaded into memory. The
base address is required but the size seems to be optional. Within this section, multiple
object files can be specified to give some kind of order of the image. An object file can

contain multiple areas which are the units actually placed by the linker. When specifying

183

184 Appendix B Booting Software on SpiNNaker

areas of object files, the most typical flags are +FIRST and +LAST which allow them to
be aligned to the section in which they are defined.

The x object is a catch-all for any unspecified code. All objects passed to the linker
that do not have an entry in a section will be placed in the most appropriate catch-all
entry. Flags for these entries may be any of the following: +R0O, +RW, or +ZI. +RO refers to
read-only data that typically corresponds to executable code, +RW marks the section as
read-write and therefore suitable for data and pre-initialised variables, and +ZI means
zero-initialise and will cause the section to be initialised to all zeroes. +RO and +RW are

mutually exclusive, and +RW sections are usually +ZI as well.

1 ARM_LIB_HEAP 0x00400000 EMPTY -0x1000
> |
s}

Listing B.2: Specifying a memory region to hold the heap memory.

The sizes of sections can be negative as well as positive; for example, Listing B.2 creates
a section occupying the 4kB region below 0x00400000 (i.c., Ox0Q3FFORO—-0x00400000)
that will be EMPTY. This flag shows that the section can be used for a growable heap
by the ARM standard library. There are three such sections named ARM_LIB_HEAP,
ARM_LIB_STACK, and ARM_LIB_STACKHEAP that can reserve sections for the standard li-
brary. In any case, the heap grows from the bottom of an area upwards, and a stack

grows in the opposite direction.

B.1.1 Defining Sections in Code

In ARM assembly language files, an area is opened with the following directive:

area <name>, <options>

For code areas, readonly and code are the most common options which shows that it
should be put in a +RO region of the scatter file and that it contains 32-bit aligned data or
code. code16 and code32 can be used to switch between Thumb and ARM instruction
sets and an appropriate alignment. Alignment can be specified with the align=<bytes>
directive. Finally, the root section of assembly code should follow an entry directive
which marks the file as an entry point. This is why compiling applications that depend

on SARK produced the multiple entry-points warning; there are multiple entry areas.

Specifying that ‘C’ code should exist in various named areas can be achieved in two
ways, the simplest being shown in Listing B.3. Functions decorated by a section at-
tribute will be placed in the readonly region of the named section [146]. However,

variables decorated may appear in any region depending on how the variable has been

Appendix B Booting Software on SpiNNaker 185

1 // Marking section in the prototype.

2 void SomeFunction(...)

3 __attribute__((section("section_name")));
4 void SomeFunction(...)

5 |

6 // Some stuff

7}

8

9 // Marking section in the definition

10 __attribute__((section("section_name")))
11 void SomeOtherFunction(void)

12 |

13 // Some stuff

1}

15

16 // Variables have a slightly different syntax:

17 int SomeVariable __attribute__((section("section_name")))
18 = 90;

Listing B.3: Mapping ‘C’ functions and variables to specific scatter load regions.

defined/declared [147]. Normal read-write variables (as above) will appear in the +RW
region, const variables will be in the +RO region, and variables defined as follows will be
in the +Z1 region:

int SomeArray[90] attribute__((

section("section_name"), zero_init));

Parts of C/C++ source files can be divided into sections using the pragma directive
[148] as shown in Listing B.4. There are three section types that can be specified with

this directive: rodata, rwdata, and code.

1 #pragma arm section rwdata = "foo"

2 int SomeVariable = 9; // In foo's data part

3 const int SomeConst = 1; // In default rodata region
4 int SomeFunc (...) { // In default code region

5 // Some Stuff

o}

7 #pragma arm section rwdata // Resets to default rwdata region

Listing B.4: Dividing source code into sections using the #pragma directive.

B.1.2 Linker symbols

The linker defines a set of symbols for each section defined in the scatter load file
according to the following rule: Image$$<region>$$<section>$$<attr>. <region> may

take any name that has been defined in the scatter load file itself, using the listing at the

186 Appendix B Booting Software on SpiNNaker

start of this section as an example: Image$$SECTION1S. .. references the SECTION1 of
the image. <section> may be one of RO, RW, or ZI as previously explained, and <attr>

may be one of Base, Length, or Limit as defined in Table B.1.

Symbol Attribute Description

Base address of the region, relative to the base address

Base of the image file, as defined in the scatter load file.

Length of the region in bytes (note: this excludes the

L h
enge Z1 section if this references the region itself.)

Address of the byte immediately following this region;
Limit i.e., Base + Length. As with Length, this value does
not include any ZI part of the region.

Table B.1: Description of the linker symbol attribute parts.

A top level region/section may also be referenced, so Image$$SECTION1$$Base and Im-
age$$SECTION1$$RO$$Base are both equally valid and may point to different parts of

the image.

These symbols can be accessed in both ARM assembly (Listing B.6) [149] and C/C++
(Listing B.5) [150] using specific syntaxes. In assembly, the imported symbol must use

the same bar notation used to import the symbol.

1 // By Value:

2 extern unsigned int Image$$SECTION1$SZISSLimit;

3 // By Reference:
s+ extern void+ Image$$SECTION1S$ZISSL imit;

Listing B.5: Accessing the linker symbols from within ‘C’ and C++.

1 import |Imagel$$SECTION$$ZIBLimit|

2 ; Or
3 import | |ImageSECTION121Limit| |

Listing B.6: Accessing the linker symbols from within ARM Assembly.

B.2 ROM Boot-loader

The system boot software resides in the chip-local boot ROM and is executed automat-
ically after power-up. A scatter load file (Appendix B.1) is used to define the various
regions of the code, which are loaded into the correct parts of memory using standard
routines supplied by ARM. Some of the code (such as the initialisation and program
copier) remain in the ROM and are executed from there, whereas the rest of the exe-
cutable code is copied to the ITCM and pre-initialised variables are copied to the DTCM.

The ARM run-time invokes the ‘C’ main function after the copying has taken place.

Appendix B Booting Software on SpiNNaker 187

main first initialises and test the various processor-local peripherals before engaging in
the monitor arbitration process. The winner is then responsible for initialising and
testing the chip-local peripherals (RAMs, router, watchdog timers), while the losers
spin on bit 4 of the ‘misc control’ register (r14) [115, pg. 74] the system controller. The
newly allocated monitor processor sets this bit and then all processors initialise their
local timers and interrupt controllers, set their ‘OK’ flag in system controller register r4

[115, pg. 70], and then enter the wait-for-interrupt state.

Some important points to note here are:

1. The image copier responsible for loading and executing uploaded programs remains
in the boot ROM and runs from there, making it impossible to write an image

over the top of the copier.

2. All application cores effectively halt in the WFI state and may be woken up by
an interrupt from the system controller (most probably caused by the monitor

processor) or by a multi-cast packet arrival in the router.

3. The monitor core starts a timer with a period of around 1ms. Each time this timer
expires, the monitor resets the chip-local watchdog timer and updates a measure
of the elapsed time. Two separate periods are used for flashing an LED and also

emitting a test Ethernet frame.

4. Entering the WFI state is achieved using the system control coprocessor [151].
The MCR and MRC instructions move data into and out-of the coprocessor registers
respectively. When the coprocessor enters is instructed to enter the WFI state,
the main processor enters a low power state and the AHB write buffer is emptied.
The processor will be woken up even if interrupts are disabled, however, if they are
enabled then the interrupt handler is guaranteed to execute before the instruction
following the MCR.

Leaving the WFT state can be caused by incoming Ethernet packets, system controller
interrupts, and/or incoming NN or P2P packets. The most relevant to this document is
obviously the Ethernet packet arrival which eventually hands over control to application
code. Specific boot packets are used that include an instruction field. Instructions are
as in Table B.2.

The entry point offset of the above table could be a somewhat misleading name as it
should point to the first byte of a binary image that should be executed. Usually this
will be the APLX table (Appendix B.3) for the image that is added to the start of the
image using scatter load files (Appendix B.1), but in the case of SCAMP, this will be
the APLX-self extractor (Appendix B.4). The boot-loader passes control to the address
in operand 3, therefore it is required that this portion of the image be executable code

and not data.

188 Appendix B Booting Software on SpiNNaker
Instruction Value Operand 1 Operand 2 Operand 3
Number of 256
FF_START 1 (Unused) (Unused) word blocks being
sent.
Word count in
FF_BLOCK_DATA 3 bits [15:8]; block (Unused) (Unused)

number in [7:0]

FF_CONTROL 5 1 (Unused) Entry point offset

Table B.2: Boot commands and their operands as used by the Ethernet boot.

B.3 APLX Images

An APLX image (abbreviation unknown) is assembled by placing an APLX table at the
start of a compiled binary image using scatter load files (Appendix B.1). The ARM
linker, armlink, outputs an ELF image that can be converted into multiple formats
using the fromelf command that ships with it. As the layout of the image has been
guaranteed by the scatter-load file, the following command can be used to strip off the
ELF header and leave the binary data:

fromelf <compiled.elf> —--bin ——output <compiled.bin>

Usually these files have the .aplx extension but this is only for convenient identification.
The APLX header format is a table of arbitrarily many rows with four word-fields. As
with many SpiNNaker-related formats, the first of these four words is an instruction and
the remaining three are operands specific to each command—summarised in Table B.3,

and explained in Table B.4.

Instruction Value Operand 1 Operand 2 Operand 3
Dostinati i
APLX_ACOPY 1 estination ad Source address Length in bytes
dress
Source address
Destination ad- relative to the .
APLX_RCOPY 2 dress start of this Length in bytes
entry
Destinati i
APLX_FILL 3 estination ad- ¢ b in bytes Fill value
dress
APLX_EXEC 4 Program counter (Unused) (Unused)
APLX_END OxFFFFFFFF (Unused) (Unused) (Unused)

Table B.3: APLX commands and associated operands for the APLX table.

Appendix B Booting Software on SpiNNaker 189

Instruction Description

Copies a block of data from the source (absolute) to the destination

APLX_ACOPY
- address (absolute).

Copies a block of data from the source (relative to the start of the

APLX_RCOPY
-RCO APLX record) to the destination address (absolute).
APLX_FILL Initialises an area by filling it with a defined value.

Loads the program counter with the specified value, passing off exe-

APLX_EXEC . . .
- cution to that portion of the loaded image.

APLX_END Optional sentinel value to mark the end of the table.

Table B.4: Description of the APLX commands.

If the instruction field of the table is not one of the above values, or is APLX_END then
the APLX loader will halt and hence the processor will need to be reset (which may be
automatic if the Watchdog timer is in effect).

1 area <name>, readonly, code

2

import <various linker constants>

w

5 <aplx_table_label>

6 ; Row 1 - copy some code

7 dcd APLX_RCOPY

8 dcd <some address>

9 dcd <some address calculation - relative to start of record>
10 dcd <length in bytes>

11

 Row 2 — execute the code

12 ;

13 dcd APLX_EXEC

14 dcd <some address>
15 dcd ©

16 dcd ©

17

18 end

Listing B.7: APLX table construction in ARM Assembly.

The table itself must be constructed using ARM assembly as shown by Listing B.7. The
area name is fairly arbitrary but must be used in the scatter load file to assemble the
image correctly. Throughout the table, labels can be used to simplify the relative address
calculations. No sentinel value is required because control is passed to the given address
immediately after the APLX_EXEC command is processed. An APLX image can then be
constructed by the linker with a scatter load file similar to that shown by Listing B.8.

When the linker produces the output ELF image file, the APLX_TABLE_NAME section will
be placed at the start because it appears as the first section. ITCM_SECTION_NAME will

follow and will contain the majority of the executable code. Specifying both sections

190 Appendix B Booting Software on SpiNNaker

1 MY_IMAGE_NAME ©

2 |

3 APLX_TABLE_NAME © OVERLAY

4 {

5 my_aplx_table.o (<area name from assembly files, +FIRST)

6 }

7

8 ITCM_SECTION_NAME © OVERLAY

9 {

10 object_containing_entry_point.o (<entry point area>, +FIRST)
11 * (+RO) ; All unspecified code modules

12 ; Any other constraints

13 }

14

15 DTCM_SECTION_NAME <address in SpiNNaker mem. map> <size>

16 {

17 * (+RW) ; Use for read/write data (i.e. pre-initialised variables)
18 * (+Z1) ; Zero-initialise the remainder of the section

19 }

20}

Listing B.8: Scatter load file to appropriately construct an APLX image.

as OVERLAY means that they can share an address space and also prevents the standard
ARM-routines from loading an image. Instead, the linker assumes that there is an
overlay manager present somewhere in the image that will sort these sections out. This
is the purpose of the APLX tables and loaders.

Both SCAMP and SARK include an APLX loader that is copied to the very top of
the instruction memory in the hopes that an APLX copy will not overwrite the copier
itself. The boot-loader avoids this issue because the copier remains in the SRAM for
the duration of the copy process. The simplest method of constructing an APLX table
is to use the linker symbols defined in Appendix B.1.

B.4 Self-extracting APLX images

SCAMP has been designed to be executed by the boot-loader which has no understand-
ing of the APLX format, however it is still compiled as an APLX image so that it can
(in principle) be loaded by SARK if required. A small self-extractor is prepended to the

main executable APLX image.

This bootstrap code can be executed directly (and will be if it is at the start of the
image) and begins by copying the APLX loader to the top of the instruction memory.
Execution is then passed to the freshly copied APLX loader and the SCAMP APLX
table is processed identically to any other APLX image file.

Appendix B Booting Software on SpiNNaker 191

B.5 SpiNNaker System Software

Both SCAMP and SARK include APLX loaders that behave identically to the self-
extracting preamble. The loader is copied to the upper 64 bytes of the instruction
memory and then execution is handed over. Obviously these function calls never return

because control is passed.

SCAMP is compiled with both the self-extractor and a complete APLX table in the
correct place. However, SARK is a library and merely contains the required information.
A scatter load file is essential for all application code because it correctly places SARK

around the application code. A typical SARK scatter load file is shown in Listing B.9.

1 APLX_IMAGE_NAME ©

2 |

3 APLX @ OVERLAY

4 {

5 spini_api_lib.o (sark_aplx, +FIRST)
6 }

7

8 ITCM @ OVERLAY

9 {

10 spinl_api_lib.o (sark_init, +FIRST)
11 * (+RO)

12 spini_api_lib.o (sark_align, +LAST)
13 }

14

15 DTCM 0x00400000

16 {

17 * (+RW)

18 * (+21)

19 }

20

21 ARM_LIB_STACKHEAP +@ EMPTY ©x1000

22 {

23 }

24}

Listing B.9: Scatter load file for applications linking against SARK.

Unlike other scatter load files, the names in this one are fixed as above. This is because
the linker symbols are already compiled into the partially linked image spini_api_lib.o
and hence having different section names in the scatter load file will prevent the required

linked symbols from existing.

Bibliography

A. Brown, R. Mills, J. Reeve, K. Dugan, and S. Furber, “Atomic computing — a
different perspective on massively parallel problems,” in VOLUME 25: PARAL-
LEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND
ENGINEERING (CSE), Munich, Germany, 2013, pp. 334-343. DOI: 10.3233/
978-1-61499-381-0-334.

K. Dugan, A. Brown, J. Reeve, and S. Furber, “Interconnection system for the
SpiNNaker biologically inspired multi-computer,” IET Computers € Digital Tech-
niques, vol. 7, no. 3, pp. 115-121, May 2013, 1SSN: 1751-8601. DOI: 10.1049/iet~
cdt.2012.01309.

K. J. Dugan, J. S. Reeve, and A. D. Brown, “Self-discovery Algorithms for
a Massively-Parallel Computer,” in ADAPTIVE 2013, The Fifth International
Conference on Adaptive and Self-Adaptive Systems and Applications, Valencia,
Spain, May 2013, pp. 36-39, 1SBN: 978-1-61208-274-5.

K. J. Dugan, J. S. Reeve, A. D. Brown, and S. Furber, “Comparing topological
discovery methods for a massively parallel computer,” in ACACES 2014 - AD-
VANCED COMPUTER ARCHITECTURE AND COMPILATION FOR HIGH-
PERFORMANCE AND EMBEDDED SYSTEMS, Fiuggi, Italy: HIPEAC, 2014,
pp. 213-216.

A. D. Brown, R. M. Mills, K. J. Dugan, J. S. Reeve, and S. B. Furber, “Reli-
able computation with unreliable computers,” in DESIGNING WITH UNCER-
TAINTY WORKSHOP, York, 2014.

A. D. Brown, S. B. Furber, J. S. Reeve, J. D. Garside, K. J. Dugan, L. A.
Plana, and S. Temple, “SpiNNaker - programming model,” IEEE Transactions
on Computers, vol. 64, no. 6, pp. 1769-1782, 2014, 1ssN: 0018-9340. poI: 10.
1109/TC.2014 .2329686.

A. D. Brown, R. Mills, K. J. Dugan, J. S. Reeve, and S. B. Furber, “Reliable com-
putation with unreliable computers,” English, IET Computers € Digital Tech-
niques, vol. 9, no. 4, pp. 230-237, Jul. 2015, 1SSN: 1751-8601. DOI: 10.1049/iet~
cdt.2014.0110.

193

http://dx.doi.org/10.3233/978-1-61499-381-0-334
http://dx.doi.org/10.3233/978-1-61499-381-0-334
http://dx.doi.org/10.1049/iet-cdt.2012.0139
http://dx.doi.org/10.1049/iet-cdt.2012.0139
http://dx.doi.org/10.1109/TC.2014.2329686
http://dx.doi.org/10.1109/TC.2014.2329686
http://dx.doi.org/10.1049/iet-cdt.2014.0110
http://dx.doi.org/10.1049/iet-cdt.2014.0110

194

BIBLIOGRAPHY

[10]

[11]

[17]

G. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics,
vol. 38, no. 8, pp. 114-117, Jan. 1965, 1ssN: 0018-9219. DOI: 10.1109/ JPROC .
1998 .658762.

G. E. Moore, “Progress in digital integrated electronics,” in INTERNATIONAL
ELECTRON DEVICES MEETING, vol. 21, 1975, pp. 11-13.

M. Santarini, “Xilinx Ships Industry’s First 20-nm All Programmable Devices,”
Xcell Journal, no. 86, pp. 8-15, 2014.

J. Soat. (2014). Maximizing Performance from the Bottom Up, [Online]. Avail-
able: https://www . oracle.com/servers/sparc/sparc-innovation . html
(visited on 02/13/2016).

S. E. Thompson and S. Parthasarathy, “Moore’s law: the future of Si microelec-
tronics,” Materials Today, vol. 9, no. 6, pp. 20-25, Jun. 2006, 1SSN: 13697021.
DOI: 10.1016/51369-7021 (06)71539-5.

K. Rupp. (2015). 40 Years of Microprocessor Trend Data, [Online]. Available:
https://www.karlrupp.net/2015/06/40-years—-of-microprocessor-trend-
data/ (visited on 02/14/2016).

H. Sutter. (2005). The free lunch is over: A fundamental turn toward concur-
rency in software, [Online|. Available: http://www . gotw.ca/publications/
concurrency-ddj.htm (visited on 02/14/2016).

S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C.-c. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney,
and J. Zook, “TILE64™ Processor: A 64-Core SoC with Mesh Interconnect,”
in 2008 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE
- DIGEST OF TECHNICAL PAPERS, San Francisco, CA: IEEE, Feb. 2008,
pp- 88-89, 1SBN: 978-1-4244-2010-0. DOI: 10.1109/ISSCC. 2008 .4523070.

D. Fick, R. G. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpa-
thy, Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. Chen, T. Mudge, D. Sylvester,
and D. Blaauw, “Centip3De: A 3930DMIPS/W configurable near-threshold 3D
stacked system with 64 ARM Cortex-M3 cores,” in 2012 IEEE INTERNA-
TIONAL SOLID-STATE CIRCUITS CONFERENCE, IEEE, Feb. 2012, pp. 190—
192, 1SBN: 978-1-4673-0377-4. DOI: 10.1109/ISSCC.2012.6176970.

D. Fick, R. G. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpathy,
Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. Chen, T. Mudge, D. Blaauw, and D.
Sylvester, “Centip3De: A Cluster-Based NTC Architecture With 64 ARM Cortex-
M3 Cores in 3D Stacked 130 nm CMOS,” English, IEEE Journal of Solid-State
Circuits, vol. 48, no. 1, pp. 104-117, Jan. 2013, 18SN: 0018-9200. DOI: 10.1109/
JSSC.2012.2222814.

http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1109/JPROC.1998.658762
https://www.oracle.com/servers/sparc/sparc-innovation.html
http://dx.doi.org/10.1016/S1369-7021(06)71539-5
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://dx.doi.org/10.1109/ISSCC.2008.4523070
http://dx.doi.org/10.1109/ISSCC.2012.6176970
http://dx.doi.org/10.1109/JSSC.2012.2222814
http://dx.doi.org/10.1109/JSSC.2012.2222814

BIBLIOGRAPHY 195

18]

[19]

[28]

[29]

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H.
Wilson, N. Borkar, G. Schrom, et al., “A 48-core IA-32 message-passing processor
with DVFS in 45nm CMOS,” in SOLID-STATE CIRCUITS CONFERENCE
DIGEST OF TECHNICAL PAPERS (ISSCC), 2010 IEEE INTERNATIONAL,
vol. 9, IEEE, Feb. 2010, pp. 108-109, 1sBN: 978-1-4244-6033-5. DOI: 10.1109/
ISSCC.2010.543407T7.

P. Li, J. L. Shin, G. Konstadinidis, F. Schumacher, V. Krishnaswamy, H. Cho, S.
Dash, R. Masleid, C. Zheng, Y. David Lin, P. Loewenstein, H. Park, V. Srinivasan,
D. Huang, C. Hwang, W. Hsu, and C. McAllister, “4.2 A 20nm 32-Core 64MB L3
cache SPARC M7 processor,” in 2015 IEEE INTERNATIONAL SOLID-STATE
CIRCUITS CONFERENCE - (ISSCC) DIGEST OF TECHNICAL PAPERS,
IEEE, Feb. 2015, pp. 1-3, 1SBN: 978-1-4799-6223-5. DOI: 10.1109/ISSCC. 2015.
T062931.

H. Sutter, “Modern C++: What You Need to Know,” in BUILD, San Francisco,
CA, 2014.

Intel Corporation, Intel @ Itanium ®@ Architecture Software Developer’s Manual,
2.3. 2010.

D. Koufaty and D. Marr, “Hyperthreading technology in the netburst microar-
chitecture,” IEEE Micro, vol. 23, no. 2, pp. 56—65, Mar. 2003, 1SSN: 0272-1732.
DOI: 10.1109/MM. 2003 .1196115.

D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, Fourth. Elsevier, Inc., 2009.

T. Austin, D. Blaauw, T. Mudge, K. Flautner, M. Irwin, M. Kandemir, and V.
Narayanan, “Leakage current: Moore’s law meets static power,” English, Com-
puter, vol. 36, no. 12, pp. 68-75, Dec. 2003, 1SSN: 0018-9162. DOI: 10.1109/MC.
2003 .1250885.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
“Dark Silicon and the End of Multicore Scaling,” IEEE Micro, vol. 32, no. 3,
pp. 122-134, May 2012, 1SSN: 0272-1732. DOI: 10.1109/MM.2012.17.

A. A. Chien and V. Karamcheti, “Moore’s Law: The First Ending and a New
Beginning,” Computer, vol. 46, no. 12, pp. 48-53, Dec. 2013, 1SSN: 0018-9162.
DOI: 10.1109/MC.2013.431.

L. B. Kish, “End of Moore’s law: thermal (noise) death of integration in micro
and nano electronics,” Physics Letters A, vol. 305, no. 3-4, pp. 144-149, Dec.
2002, 1SSN: 03759601, DOT: 10.1016/S0375-9601 (02)01365-8.

L. Eeckhout, “Heterogeneity in Response to the Power Wall,” IEEE Micro, vol.
35, no. 4, pp. 2-3, Jul. 2015, 1sSN: 0272-1732. DOI: 10.1109/MM.2015.86.

ARM Ltd. (2015). big.LITTLE Technology, [Online]. Available: https: //www .

arm.com/products/processors/technologies/biglittleprocessing.php.

http://dx.doi.org/10.1109/ISSCC.2010.5434077
http://dx.doi.org/10.1109/ISSCC.2010.5434077
http://dx.doi.org/10.1109/ISSCC.2015.7062931
http://dx.doi.org/10.1109/ISSCC.2015.7062931
http://dx.doi.org/10.1109/MM.2003.1196115
http://dx.doi.org/10.1109/MC.2003.1250885
http://dx.doi.org/10.1109/MC.2003.1250885
http://dx.doi.org/10.1109/MM.2012.17
http://dx.doi.org/10.1109/MC.2013.431
http://dx.doi.org/10.1016/S0375-9601(02)01365-8
http://dx.doi.org/10.1109/MM.2015.86
https://www.arm.com/products/processors/technologies/biglittleprocessing.php
https://www.arm.com/products/processors/technologies/biglittleprocessing.php

196

BIBLIOGRAPHY

[30]

[37]

[38]

[39]

G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in PROCEEDINGS OF THE APRIL 18-20, 1967,
SPRING JOINT COMPUTER CONFERENCE ON - AFIPS 67 (SPRING),
New York, New York, USA: ACM Press, Apr. 1967, p. 483. DOI: 10 . 1145/
1465482 .1465560.

J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM, vol.
31, no. 5, pp. 532-533, May 1988, 1ssN: 00010782. DOI: 10.1145/42411 .42415.

M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,” Computer,
vol. 41, no. 7, pp. 33-38, Jul. 2008, 1sSN: 0018-9162. DOI: 10.1109/MC . 2008 .209.

C. Hewitt, P. Bishop, and R. Steiger, “A universal modular ACTOR formalism
for artificial intelligence,” in PROCEEDINGS OF THE 3RD INTERNATIONAL
JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI’73), Mor-
gan Kaufmann Publishers Inc., Aug. 1973, pp. 235-245.

C. A. R. Hoare, “Communicating sequential processes,” Communications of the
ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978, 1ssN: 00010782. DOI: 10 .1145/
359576.359585.

S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and
A. D. Brown, “Overview of the SpiNNaker System Architecture,” IEEE Transac-
tions on Computers, pp. 1-14, 2012, 1ssN: 0018-9340. DOI: 10.1109/TC.2012.142.

M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IFEFE
Transactions on Computers, vol. C-21, no. 9, pp. 948-960, Sep. 1972, 1sSN: 0018-
9340. DOI: 10.1109/TC.1972.5009071.

R. Duncan, “A survey of parallel computer architectures,” Computer, vol. 23, no.
2, pp. 5-16, Feb. 1990, 1ssN: 0018-9162. DOI: 10.1109/2.44900.

J. McCutchan. (2013). Using SIMD in Dart, [Online]. Available: https://www.
dartlang.org/articles/simd/ (visited on 02/26,/2016).

R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam,
P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara, G. Chiu, P.
Boyle, N. Chist, and C. Kim, “The IBM Blue Gene/Q Compute Chip,” English,
IEEE Micro, vol. 32, no. 2, pp. 4860, Mar. 2012, 1SSN: 0272-1732. DOI: 10.1109/
MM.2011 .108.

D. E. Shaw, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho,
D. J. Lerardi, I. Kolossvary, J. L. Klepeis, T. Layman, C. McLeavey, M. M. Den-
eroff, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald,
B. Towles, S. C. Wang, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon,
C. Young, B. Batson, and K. J. Bowers, “Anton, a special-purpose machine for
molecular dynamics simulation,” Communications of the ACM, vol. 51, no. 7,
pp- 91-97, Jul. 2008, 1sSN: 00010782. DOI: 10.1145/1364782.1364802.

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/42411.42415
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1109/TC.2012.142
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/2.44900
https://www.dartlang.org/articles/simd/
https://www.dartlang.org/articles/simd/
http://dx.doi.org/10.1109/MM.2011.108
http://dx.doi.org/10.1109/MM.2011.108
http://dx.doi.org/10.1145/1364782.1364802

BIBLIOGRAPHY 197

[41]

[42]

[43]

[44]

[47]

Intel Corporation, Intel® 64 and IA-32 Architectures Software Developer’s Man-
ual - Volume 2 (24, 2B & 2C): Instruction Set Reference, A-Z. 2015.

L. Chen, P. Jiang, and G. Agrawal, “Exploiting Recent SIMD Architectural
Advances for Irregular Applications,” in 14TH ANNUAL IEEE/ACM INTER-
NATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION
(CGO 2016), Barcelona, Spain, 2016.

0. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking SIMD Vectorization
for In-Memory Databases,” in PROCEEDINGS OF THE 2015 ACM SIGMOD
INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA - SIG-
MOD ’15, New York, New York, USA: ACM Press, May 2015, pp. 1493-1508,
ISBN: 9781450327589. DOI: 10.1145/2723372.2747645.

A. Halaas, B. Svingen, M. Nedland, P. Saetrom, O. Snove, and O. Birkeland, “A
recursive MISD architecture for pattern matching,” English, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 7, pp. 727-734, Jul.
2004, 1ssN: 1063-8210. DOI: 10.1109/TVLSI.2004 .830918.

B.-O. Schneider and J. Rossignac, “M-Buffer: A flexible MISD architecture for
advanced graphics,” Computers & Graphics, vol. 19, no. 2, pp. 239-246, Mar.
1995, 1sSN: 00978493. DOI: 10.1016/0097-8493 (94)00149-S.

M. Pharr and W. R. Mark, “ispc: A SPMD compiler for high-performance CPU
programming,” English, in 2012 INNOVATIVE PARALLEL COMPUTING (IN-
PAR), IEEE, May 2012, pp. 1-13, 1sBN: 978-1-4673-2633-9. DOI: 10.1109/InPar .
2012 .6339601.

D.-H. Lee, H. Moon, J. C. Koo, and H. R. Choi, “MATRIX: A message passing
interface for MPMD (Multiple Program Multiple Data) applications on hetero-
geneous distributed network,” English, in 2012 9TH INTERNATIONAL CON-
FERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE
(URAI), IEEE, Nov. 2012, pp. 310-315, ISBN: 978-1-4673-3112-8. DOL: 10.1109/
URATI.2012.6463002.

D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to pro-
gram GPUs for general-purpose uses,” ACM SIGPLAN Notices, vol. 41, no. 11,
pp- 325-335, Oct. 2006, 1sSN: 03621340. DOI: 10.1145/1168918.1168898.

E. W. Dijkstra, “Solution of a problem in concurrent programming control,”
Communications of the ACM, vol. 8, no. 9, p. 569, Sep. 1965, 1ssN: 00010782.
DOI: 10.1145/365559.365617.

L. Lamport, “A new solution of Dijkstra’s concurrent programming problem,”
Communications of the ACM, vol. 17, no. 8, pp. 453-455, Aug. 1974, ISSN:
00010782. DOI: 10.1145/361082.361093.

M. J. Quinn, Parallel Computing: Theory and Practice. McGraw-Hill, Inc., 1994,
ISBN: 0-07-051294-9.

http://dx.doi.org/10.1145/2723372.2747645
http://dx.doi.org/10.1109/TVLSI.2004.830918
http://dx.doi.org/10.1016/0097-8493(94)00149-S
http://dx.doi.org/10.1109/InPar.2012.6339601
http://dx.doi.org/10.1109/InPar.2012.6339601
http://dx.doi.org/10.1109/URAI.2012.6463002
http://dx.doi.org/10.1109/URAI.2012.6463002
http://dx.doi.org/10.1145/1168918.1168898
http://dx.doi.org/10.1145/365559.365617
http://dx.doi.org/10.1145/361082.361093

198

BIBLIOGRAPHY

[52]

[53]

[58]

[59]

T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable memory
transactions,” in PROCEEDINGS OF THE TENTH ACM SIGPLAN SYMPO-
SIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING
- PPOPP 05, New York, New York, USA: ACM Press, Jun. 2005, pp. 4860,
ISBN: 1595930809. DOI: 10.1145/1065944 .1065952.

J. Hill and D. Skillicorn, “Practical barrier synchronisation,” English, in PRO-
CEEDINGS OF THE SIXTH EUROMICRO WORKSHOP ON PARALLEL
AND DISTRIBUTED PROCESSING - PDP ’98 -, Madrid: IEEE Comput. Soc,
1998, pp. 438-444, 1SBN: 0-8186-8332-5. DOI: 10.1109/EMPDP .1998.647231.

D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, S. Kumar, V.
Salapura, D. Satterfield, B. Steinmacher-Burow, and J. Parker, “The IBM Blue
Gene/Q Interconnection Fabric,” English, IEEE Micro, vol. 32, no. 1, pp. 3243,
Jan. 2012, 18SN: 0272-1732. DOI: 10.1109/MM. 2011 .96.

V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Com-
puting: Design and Analysis of Algorithms. The Benjamin/Cummings Publishing
Company, Inc., 1994, 1sBN: 0-8053-3170-0.

ARM Ltd. (2015). CoreLink CCN-502, [Online|. Available: https: //www.arm.
com/products/system-ip/interconnect/corelink—ccn-502 . php (visited on
02/29/2016).

W. Dally and B. Towles, “Route packets, not wires: on-chip interconnection net-

works,” in DESIGN AUTOMATION CONFERENCE, 2001. PROCEEDINGS,
2001, pp. 684-689. DOI: 10.1109/DAC. 2001 .156225.

W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks.
Elsevier, Inc., 2004.

S. Satpathy, K. Sewell, T. Manville, Y.-p. Chen, R. Dreslinski, D. Sylvester,
T. Mudge, and D. Blaauw, “A 4.5Tb/s 3.4Tb/s/W 64x64 switch fabric with
self-updating least-recently-granted priority and quality-of-service arbitration in
45nm CMOS,” in SOLID-STATE CIRCUITS CONFERENCE DIGEST OF TECH-
NICAL PAPERS (ISSCC), 2012 IEEE INTERNATIONAL, IEEE, Feb. 2012,
pp. 478-480, 1SBN: 978-1-4673-0377-4. DOI: 10.1109/1SSCC.2012.6177098.

Intel Corporation, An Introduction to the Intel® QuickPath Interconnect. 2009.

HyperTransport™ Consortium, HyperTransport™ 1/0 Technology Overview—An
Optimized, Low-latency Board-level Architecture. 2004.

D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, S. Kumar, V.
Salapura, D. Satterfield, B. Steinmacher-Burow, and J. Parker, “The IBM Blue
Gene/(Q interconnection network and message unit,” in HIGH PERFORMANCE
COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2011 IN-
TERNATIONAL CONFERENCE FOR, Seatle, WA, 2011, pp. 1-10.

http://dx.doi.org/10.1145/1065944.1065952
http://dx.doi.org/10.1109/EMPDP.1998.647231
http://dx.doi.org/10.1109/MM.2011.96
https://www.arm.com/products/system-ip/interconnect/corelink-ccn-502.php
https://www.arm.com/products/system-ip/interconnect/corelink-ccn-502.php
http://dx.doi.org/10.1109/DAC.2001.156225
http://dx.doi.org/10.1109/ISSCC.2012.6177098

BIBLIOGRAPHY 199

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.
Seizovic, and W.-K. Su, “Myrinet—a gigabit-per-second local-area network,” Sym-
posium Record Hot Interconnects II, no. February, pp. 161-180, 1995. DOI: 10.
1109/CONECT . 1994 . 765346.

P. Geoffray, “OPIOM Off-Processor 10 with Myrinet,” Parallel Processing Let-
ters, vol. 11, no. 2-3, pp. 237-250, Sep. 2001, 1ssN: 01296264. DOI: 10 . 1016/
S0129-6264 (01)00055-5.

C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M.
Welcome, and K. Yelick, “An evaluation of current high-performance networks,”
in PROCEEDINGS INTERNATIONAL PARALLEL AND DISTRIBUTED PRO-
CESSING SYMPOSIUM, IEEE Comput. Soc, 2003, p. 10, 1SBN: 0-7695-1926-1.
DOI: 10.1109/1PDPS.2003.1213106.

S. Majumder and S. Rixner, “Comparing Ethernet and Myrinet for MPI commu-
nication,” in PROCEEDINGS OF THE 7TH WORKSHOP ON WORKSHOP
ON LANGUAGES, COMPILERS, AND RUN-TIME SUPPORT FOR SCAL-
ABLE SYSTEMS - LCR 04, New York, New York, USA: ACM Press, 2004,
pp- 1-7. DOI: 10.1145/1066650 .1066659.

M. J. Rashti and A. Afsahi, “10-Gigabit iWARP Ethernet: Comparative Per-
formance Analysis with InfiniBand and Myrinet-10G,” in 2007 IEEE INTER-
NATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM,
IEEE, 2007, pp. 1-8, 1SBN: 1-4244-0909-8. DOI: 10.1109/IPDPS. 2007 . 370480.

(2016). Node.js, [Online]. Available: https : //nodejs . org/en/ (visited on
03/01/2016).

(2014). File System, [Online|. Available: https://nodejs.org/docs/latest-
v0.12.x/api/fs.html (visited on 03/01/2016).

(2016). Asynchronous I/0, event loop, coroutines and tasks, [Online]. Available:
https://docs.python.org/3/library/asyncio.html (visited on 03/01/2016).

(). pthreads(7): POSIX threads, [Online]. Available: http://linux.die.net/
man/7/pthreads (visited on 03/01/2016).

(2016). std::thread, [Online]. Available: http://en.cppreference.com/w/cpp/
thread/thread (visited on 03/01/2016).

(2015). std::promise, [Online]. Available: http://en.cppreference.com/w/cpp/
thread/promise (visited on 03/01/2016).

(2015). std::future, [Online]. Available: http://en.cppreference.com/w/cpp/
thread/future (visited on 03/01/2016).

(2015). std::packaged_ task, [Online|. Available: http://en.cppreference.com/
w/cpp/thread/packaged%7B%5C_%7Dtask (visited on 03/01/2016).

http://dx.doi.org/10.1109/CONECT.1994.765346
http://dx.doi.org/10.1109/CONECT.1994.765346
http://dx.doi.org/10.1016/S0129-6264(01)00055-5
http://dx.doi.org/10.1016/S0129-6264(01)00055-5
http://dx.doi.org/10.1109/IPDPS.2003.1213106
http://dx.doi.org/10.1145/1066650.1066659
http://dx.doi.org/10.1109/IPDPS.2007.370480
https://nodejs.org/en/
https://nodejs.org/docs/latest-v0.12.x/api/fs.html
https://nodejs.org/docs/latest-v0.12.x/api/fs.html
https://docs.python.org/3/library/asyncio.html
http://linux.die.net/man/7/pthreads
http://linux.die.net/man/7/pthreads
http://en.cppreference.com/w/cpp/thread/thread
http://en.cppreference.com/w/cpp/thread/thread
http://en.cppreference.com/w/cpp/thread/promise
http://en.cppreference.com/w/cpp/thread/promise
http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/thread/packaged%7B%5C_%7Dtask
http://en.cppreference.com/w/cpp/thread/packaged%7B%5C_%7Dtask

200 BIBLIOGRAPHY

[76] (2016). Asynchronous Programming with Async and Await, [Online]. Available:
https://msdn.microsoft.com/en-gb/library/hh191443 . aspx (visited on
03/01/2016).

[77] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP : Portable Shared
Memory Parallel Programming. Cambridge, MA, USA: MIT Press, 2007.

[78] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using Advanced MPI:Modern
Features of the Message-Passing Interface. MIT Press, 2014.

[79] F.Akgul, ZeroM@. Birmingham, UK: Packt Publishing Ltd., 2013, 1SBN: 9781782161059.

[80] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. Homogeneous
synaptic input.,” Biological cybernetics, vol. 95, no. 1, pp. 1-19, Jul. 2006, 1SSN:
0340-1200. DOI: 10.1007/s00422-006-0068-6.

[81] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mammalian tha-
lamocortical systems.,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 105, no. 9, pp. 3593-8, Mar. 2008, 1ssN: 1091-6490.
DOI: 10.1073/pnas.0712231105.

[82] X. Jin, A. Rast, F. Galluppi, S. Davies, and S. Furber, “Implementing spike-
timing-dependent plasticity on SpiNNaker neuromorphic hardware,” in THE 2010
INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN),
IEEE, Jul. 2010, pp. 1-8, 1SBN: 978-1-4244-6916-1. DOI: 10.1109/IJCNN.2010.
5596372.

[83] E. M. Izhikevich, “Polychronization: computation with spikes.,” Neural compu-
tation, vol. 18, no. 2, pp. 245-82, Feb. 2006, 1ssN: 0899-7667. DOI: 10 .1162/
@89976606775093882.

[84] (2015). BrainScaleS, [Online]. Available: https : / /brainscales . kip . uni -
heidelberg.de/ (visited on 03/02/2016).

[85] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-
scale neuromorphic hardware system for large-scale neural modeling,” in PRO-
CEEDINGS OF 2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS
AND SYSTEMS, IEEE, May 2010, pp. 1947-1950, 1SBN: 978-1-4244-5308-5. DOTI:
10.1109/ISCAS.2010.5536970.

[86] S. Scholze, S. Schiefer, J. Partzsch, S. Hartmann, C. G. Mayr, S. Hoppner, H.
Eisenreich, S. Henker, B. Vogginger, and R. Schiiffny, “VLSI Implementation
of a 2.8 Gevent/s Packet-Based AER Interface with Routing and Event Sorting
Functionality.,” English, Frontiers in neuroscience, vol. 5, p. 117, Jan. 2011, 1SSN:
1662-453X. DOI: 10.3389/fnins.2011.00117.

https://msdn.microsoft.com/en-gb/library/hh191443.aspx
http://dx.doi.org/10.1007/s00422-006-0068-6
http://dx.doi.org/10.1073/pnas.0712231105
http://dx.doi.org/10.1109/IJCNN.2010.5596372
http://dx.doi.org/10.1109/IJCNN.2010.5596372
http://dx.doi.org/10.1162/089976606775093882
http://dx.doi.org/10.1162/089976606775093882
https://brainscales.kip.uni-heidelberg.de/
https://brainscales.kip.uni-heidelberg.de/
http://dx.doi.org/10.1109/ISCAS.2010.5536970
http://dx.doi.org/10.3389/fnins.2011.00117

BIBLIOGRAPHY 201

[87]

[38]

[90]

[92]

[93]

[94]

[95]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F.
Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, 1. Vo,
S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R.
Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” en, Science, vol. 345, no. 6197,
pp- 668-673, Aug. 2014, 1ssN: 0036-8075. DOI: 10.1126/science.1254642.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,
N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo,
J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth:
Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic
Chip,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 10, pp. 1537-1557, Oct. 2015, 1SSN: 0278-0070. DOI: 10 .
1109/TCAD.2015.2474396.

S. W. Moore, P. J. Fox, S. J. Marsh, A. T. Markettos, and A. Mujumdar,
“Bluehive - A Field-Programable Custom Computing Machine for Extreme-Scale
Real-Time Neural Network Simulation,” in 2012 IEEE 20TH INTERNATIONAL
SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MA-
CHINES, TEEE, Apr. 2012, pp. 133-140.

L. a. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S. Yang, “A
GALS Infrastructure for a Massively Parallel Multiprocessor,” IEEE Design €
Test of Computers, vol. 24, no. 5, pp. 454-463, Sep. 2007, 1SSN: 0740-7475. DOLI:
10.1109/MDT . 2007 .149.

J. Wu and S. Furber, “Delay Insensitive Chip-to-Chip Interconnect Using In-
complete 2-of-7 NRZ Data Encoding,” in PROCEEDINGS OF THE 18TH UK
ASYNCHRONQOUS FORUM, Newcastle upon Tyne, UK: University of Newcas-
tle, 2006, pp. 16-19.

N. T. Carnevale and M. L. Hines. (2013). NEURON - for empirically-based sim-
ulations of neurons and networks of neurons, [Online]. Available: https://www .
neuron.yale.edu/neuron/ (visited on 03/03/2016).

M. Hines, “The NEURON Simulation Program,” in THE KLUWER INTERNA-
TIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE, ser. The
Kluwer International Series in Engineering and Computer Science, J. Skrzypek,
Ed., vol. 254, Boston, MA: Springer US, 1994, ch. Neural Net, pp. 147-163, ISBN:
978-1-4613-6180-0. DOI: 10.1007/978-1-4615-2736-1T.

M. L. Hines and N. T. Carnevale, “The NEURON Simulation Environment,” en,
Neural Computation, vol. 9, no. 6, pp. 1179-1209, Aug. 1997, 1ssN: 0899-7667.
DOI: 10.1162/neco.1997.9.6.1179.

H. Markram, “The blue brain project.,” Nature Reviews Neuroscience, vol. 7, no.
2, pp- 153-160, Feb. 2006, 1sSN: 1471-003X. DOI: 10.1038/nrn1848.

http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.1109/MDT.2007.149
https://www.neuron.yale.edu/neuron/
https://www.neuron.yale.edu/neuron/
http://dx.doi.org/10.1007/978-1-4615-2736-7
http://dx.doi.org/10.1162/neco.1997.9.6.1179
http://dx.doi.org/10.1038/nrn1848

202

BIBLIOGRAPHY

[96]

[97]

[98]

[101]

[102]

[103]

[104]

[105]

[106]

(2016). NEST Simulator - The Neural Simulation Tool, [Online]. Available: http:
//www .nest-simulator.org/ (visited on 03/03/2016).

M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool),” Schol-
arpedia, vol. 2, no. 4, p. 1430, Apr. 2007, 1SSN: 1941-6016. DOI: 10 . 4249 /
scholarpedia.1430.

H. E. Plesser, J. M. Eppler, A. Morrison, M. Diesmann, and M.-O. Gewaltig,
“Efficient Parallel Simulation of Large-Scale Neuronal Networks on Clusters of
Multiprocessor Computers,” in FURO-PAR 2007 PARALLEL PROCESSING:
18TH INTERNATIONAL EURO-PAR CONFERENCE, RENNES ,FRANCE ,
AUGUST 28-31, 2007. PROCEEDINGS, A.-M. Kermarrec, L. Bougé, and T.
Priol, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 672-681,
ISBN: 978-3-540-74466-5. DOI: 10.1007/978-3-540-74466-5_T71.

R. Brette, D. Goodman, and M. Stimberg. (2016). The Brian spiking neural
network simulator, (visited on 03/03/2016).

D. F. M. Goodman and R. Brette, “The Brian simulator,” English, Frontiers
in Neuroscience, vol. 3, no. 2, pp. 192-197, Sep. 2009, 1SSN: 1662-453X. DOI:
10.3389/neuro.01.026.2009.

(). PCSIM: A Parallel neural Circuit SIMulator, [Online]. Available: http: //
www. lsm.tugraz.at/pesim/ (visited on 03/03/2016).

D. Pecevski, T. Natschlager, and K. Schuch, “PCSIM: a parallel simulation en-
vironment for neural circuits fully integrated with Python,” English, Frontiers
in Neuroinformatics, vol. 3, pp. 1-15, Jan. 2009, 1SSN: 1662-5196. DOI: 10.3389/
neuro.11.011.2009.

(2015). Open Source Brain, [Online]. Available: http: //www.opensourcebrain.
org/ (visited on 03/03/2016).

P. Gleeson, V. Steuber, and R. A. Silver, “neuroConstruct: A Tool for Modeling
Networks of Neurons in 3D Space,” Neuron, vol. 54, no. 2, pp. 219-35, Apr. 2007,
ISSN: 0896-6273. DOI: 10.1016/j.neuron.2007.03.025.

(2013). PyNN, [Online]. Available: http://neuralensemble.org/PyNN/ (visited
on 03/03/2016).

D. Briiderle, E. Miiller, A. Davison, E. Muller, J. Schemmel, and K. Meier, “Es-
tablishing a novel modeling tool: a python-based interface for a neuromorphic
hardware system,” English, Frontiers in neuroinformatics, vol. 3, p. 17, Jan.
2009, 18SN: 1662-5196. DOI: 10.3389/neuro.11.017.2009.

http://www.nest-simulator.org/
http://www.nest-simulator.org/
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.1007/978-3-540-74466-5_71
http://dx.doi.org/10.3389/neuro.01.026.2009
http://www.lsm.tugraz.at/pcsim/
http://www.lsm.tugraz.at/pcsim/
http://dx.doi.org/10.3389/neuro.11.011.2009
http://dx.doi.org/10.3389/neuro.11.011.2009
http://www.opensourcebrain.org/
http://www.opensourcebrain.org/
http://dx.doi.org/10.1016/j.neuron.2007.03.025
http://neuralensemble.org/PyNN/
http://dx.doi.org/10.3389/neuro.11.017.2009

BIBLIOGRAPHY 203

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]
[116]

[117]

F. Galluppi, A. Rast, S. Davies, and S. Furber, “A General-Purpose Model
Translation System for a Universal Neural Chip,” in LECTURE NOTES IN
COMPUTER SCIENCE, ser. Lecture Notes in Computer Science, K. W. Wong,
B. S. U. Mendis, and A. Bouzerdoum, Eds., vol. 6443, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, ch. Neural Inf, pp. 58—65, 1SBN: 978-3-642-17536-7. DOI:
10.1007/978-3-642-17537-4.

A. P. Davison, D. Briiderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski,
L. Perrinet, and P. Yger, “PyNN: A Common Interface for Neuronal Network
Simulators,” English, Frontiers in neuroinformatics, vol. 2, p. 11, Jan. 2008, 1SSN:
1662-5196. DOI: 10.3389/neuro.11.011.2008.

(2015). NeuroML, [Online]. Available: https://www.neuroml .org/ (visited on
03/03/2016).

(2013). NineML, [Online]. Available: http: //software. incf.org/software/
nineml (visited on 03/03/2016).

(). Introduction to NineML, [Online|. Available: http://software. incf.org/
software/nineml/wiki/introduction-to-nineml (visited on 03/03/2016).

(). LEMS - Low Entropy Model Specification, [Online|. Available: http://lems.
github.io/LEMS/ (visited on 03/03/2016).

M. Vella, R. C. Cannon, S. Crook, A. P. Davison, G. Ganapathy, H. P. C. Robin-
son, R. A. Silver, and P. Gleeson, “libNeuroML and PyLEMS: using Python to
combine procedural and declarative modeling approaches in computational neu-
roscience.,” English, Frontiers in Neuroinformatics, vol. 8, p. 38, Jan. 2014, 1SSN:
1662-5196. DOI: 10.3389/fninf.2014.00038.

R. C. Cannon, P. Gleeson, S. Crook, G. Ganapathy, B. Marin, E. Piasini, and
R. A. Silver, “LEMS: a language for expressing complex biological models in
concise and hierarchical form and its use in underpinning NeuroML 2.,” English,
Frontiers in Neuroinformatics, vol. 8, p. 79, Jan. 2014, 1SsSN: 1662-5196. DOTI:
10.3389/fninf.2014.00079.

University of Manchester, SpiNNaker datasheet version 2.02, 2011.

E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R.
Lester, A. D. Brown, and S. B. Furber, “SpiNNaker: A 1-W 18-Core System-
on-Chip for Massively-Parallel Neural Network Simulation,” IEEE Journal of
Solid-State Circuits, vol. 48, no. 8, pp. 1943-1953, Aug. 2013, 1ssN: 0018-9200.
DOI: 10.1109/JSSC.2013.2259038.

S. Furber and A. Brown, “Biologically-Inspired Massively-Parallel Architectures
- Computing Beyond a Million Processors,” in 2009 NINTH INTERNATIONAL
CONFERENCE ON APPLICATION OF CONCURRENCY TO SYSTEM DE-
SIGN, TEEE, Jul. 2009, pp. 3-12, 1SBN: 978-0-7695-3697-2. DOI: 10.1109/ACSD.
2009 .17.

http://dx.doi.org/10.1007/978-3-642-17537-4
http://dx.doi.org/10.3389/neuro.11.011.2008
https://www.neuroml.org/
http://software.incf.org/software/nineml
http://software.incf.org/software/nineml
http://software.incf.org/software/nineml/wiki/introduction-to-nineml
http://software.incf.org/software/nineml/wiki/introduction-to-nineml
http://lems.github.io/LEMS/
http://lems.github.io/LEMS/
http://dx.doi.org/10.3389/fninf.2014.00038
http://dx.doi.org/10.3389/fninf.2014.00079
http://dx.doi.org/10.1109/JSSC.2013.2259038
http://dx.doi.org/10.1109/ACSD.2009.17
http://dx.doi.org/10.1109/ACSD.2009.17

204

BIBLIOGRAPHY

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

S. Furber and J. Bainbridge, “Future Trends in SoC Interconnect,” in 2005 In-
ternational Symposium on System-on-Chip, IEEE, 2005, pp. 183-186, 1SBN: 0-
7803-9294-9. DOI: 10.1109/ISSOC. 2005 .1595673.

J. Bainbridge and S. Furber, “Chain: a delay-insensitive chip area interconnect,”
IEEE Micro, vol. 22, no. 5, pp. 16-23, Sep. 2002, 1sSN: 0272-1732. DOI: 10.1109/
MM.2002.1044296.

W. Bainbridge, W. Toms, D. Edwards, and S. Furber, “Delay-insensitive, point-
to-point interconnect using m-of-n codes,” in NINTH INTERNATIONAL SYM-
POSIUM ON ASYNCHRONOUS CIRCUITS AND SYSTEMS, 2003. PRO-
CEEDINGS., IEEE Comput. Soc, 2003, pp. 132-140, 1SBN: 0-7695-1898-2. DOLI:
10.1109/ASYNC.2003.1199173.

J. Wu, S. Furber, and J. Garside, “A Programmable Adaptive Router for a GALS
Parallel System,” in 2009 15TH IEEE SYMPOSIUM ON ASYNCHRONOUS
CIRCUITS AND SYSTEMS, IEEE, May 2009, pp. 23-31, 1SBN: 978-0-7695-3616-
3. DOI: 10.1109/ASYNC.2009.17.

K. Boahen, “Point-to-point connectivity between neuromorphic chips using ad-
dress events,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 47, no. 5, pp. 416-434, May 2000, 1ssN: 10577130. DOTI:
10.1109/82.842110.

K. Dugan, A. Brown, and J. Reeve, “SpiNNaker Peripheral 10,” University of
Southampton, Southampton, Tech. Rep., 2013. [Online]. Available: http: //
spinnaker .ecs.soton.ac.uk/docs/spin-io/pdfs/SpiNNakerPeripherallO%
5C_latest.pdf.

S. Temple, AppNote 10 - SpiNN-2/B - Brief Guide, Private Correspondence,
2015.

T. Sharp, C. Patterson, and S. Furber, “Distributed configuration of massively-
parallel simulation on SpiNNaker neuromorphic hardware,” in THE 2011 IN-
TERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IEEE,
Jul. 2011, pp. 1099-1105, 1SBN: 978-1-4244-9635-8. DOI: 10.1109/IJCNN . 2011 .
6033346.

M. M. Khan, J. Navaridas, A. D. Rast, X. Jin, L. A. Plana, M. Lujan, J. V.
Woods, J. Miguel-Alonso, and S. B. Furber, “Event-Driven Configuration of
a Neural Network CMP System over a Homogeneous Interconnect Fabric,” in
2009 EIGHTH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DIS-
TRIBUTED COMPUTING, IEEE, Jun. 2009, pp. 5461, 1SBN: 978-0-7695-3680-
4. DOI: 10.1109/ISPDC. 2009.25.

http://dx.doi.org/10.1109/ISSOC.2005.1595673
http://dx.doi.org/10.1109/MM.2002.1044296
http://dx.doi.org/10.1109/MM.2002.1044296
http://dx.doi.org/10.1109/ASYNC.2003.1199173
http://dx.doi.org/10.1109/ASYNC.2009.17
http://dx.doi.org/10.1109/82.842110
http://spinnaker.ecs.soton.ac.uk/docs/spin-io/pdfs/SpiNNakerPeripheralIO%5C_latest.pdf
http://spinnaker.ecs.soton.ac.uk/docs/spin-io/pdfs/SpiNNakerPeripheralIO%5C_latest.pdf
http://spinnaker.ecs.soton.ac.uk/docs/spin-io/pdfs/SpiNNakerPeripheralIO%5C_latest.pdf
http://dx.doi.org/10.1109/IJCNN.2011.6033346
http://dx.doi.org/10.1109/IJCNN.2011.6033346
http://dx.doi.org/10.1109/ISPDC.2009.25

BIBLIOGRAPHY 205

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

K. Dugan, “SpiNNaker Uploader Documentation,” University of Southampton,
Southampton, Tech. Rep., 2013. [Online|. Available: http: //spinnaker . ecs .
soton.ac.uk/docs/uploader /pdfs/SpiNNakerUploader%T7B%5C_%TDlatest .
pdf.

A. Brown, D. Lester, and L. Plana, “SpiNNaker: The design automation prob-
lem,” Advances in Neuro-Information Processing, vol. 5507, pp. 1049-1056, 2009.
DOI: 10.1007/978-3-642-03040-6_12T7.

A. D. Rast, M. Khan, and S. B. Furber, “Virtual synaptic interconnect using
an asynchronous network-on-chip,” in 2008 IEEE INTERNATIONAL JOINT
CONFERENCE ON NEURAL NETWORKS (IEEE WORLD CONGRESS ON
COMPUTATIONAL INTELLIGENCE), IEEE, Jun. 2008, pp. 2727-2734, 1SBN:
978-1-4244-1820-6. DOI: 10.1109/IJCNN. 2008 .4634181.

A. D. Rast, L. A. Plana, S. R. Welbourne, and S. Furber, “Event-driven MLP
implementation on neuromimetic hardware,” in THE 2012 INTERNATIONAL
JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), IEEE, Jun. 2012,
pp. 1-8, ISBN: 978-1-4673-1490-9. DOIL: 10.1109/IJCNN. 20126252821 .

A. D. Rast, F. Galluppi, X. Jin, and S. Furber, “The Leaky Integrate-and-Fire
neuron: A platform for synaptic model exploration on the SpiNNaker chip,” in
THE 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NET-
WORKS (IJCNN), IEEE, Jul. 2010, pp. 1-8, 1SBN: 978-1-4244-6916-1. DOI: 10.
1109/IJCNN.2010.5596364.

M. Lujan, L. A. Plana, S. Davies, S. Temple, and S. B. Furber, “Modeling Spiking
Neural Networks on SpiNNaker,” Computing in Science & Engineering, vol. 12,
no. 5, pp. 91-97, Sep. 2010, 1ssN: 1521-9615. DOI: 10.1109/MCSE . 2010.112.

S. B. Furber and J. V. Woods, “Efficient modelling of spiking neural networks
on a scalable chip multiprocessor,” in 2008 IEEFE INTERNATIONAL JOINT
CONFERENCE ON NEURAL NETWORKS (IEEE WORLD CONGRESS ON
COMPUTATIONAL INTELLIGENCE), IEEE, Jun. 2008, pp. 2812-2819, ISBN:
978-1-4244-1820-6. DOI: 10.1109/1JCNN. 2008 . 4634194.

B. K. Choi and D. Kang, Modeling and Simulation of Discrete FEvent Systems.
John Wiley & Sons, 2013, 1SBN: 9781118732854,

J. Banks, J. S. Carson, and B. L. Nelson, Discrete-Fvent System Simulation:

Pearson New International Edition. Pearson, 2013.

X. Jin, F. Galluppi, C. Patterson, A. Rast, S. Davies, S. Temple, and S. Furber,
“Algorithm and software for simulation of spiking neural networks on the multi-
chip SpiNNaker system,” in THE 2010 INTERNATIONAL JOINT CONFER-
ENCE ON NEURAL NETWORKS (IJCNN), IEEE, Jul. 2010, pp. 1-8, ISBN:
978-1-4244-6916-1. DOI: 10.1109/IJCNN.2010.5596759.

http://spinnaker.ecs.soton.ac.uk/docs/uploader/pdfs/SpiNNakerUploader%7B%5C_%7Dlatest.pdf
http://spinnaker.ecs.soton.ac.uk/docs/uploader/pdfs/SpiNNakerUploader%7B%5C_%7Dlatest.pdf
http://spinnaker.ecs.soton.ac.uk/docs/uploader/pdfs/SpiNNakerUploader%7B%5C_%7Dlatest.pdf
http://dx.doi.org/10.1007/978-3-642-03040-6_127
http://dx.doi.org/10.1109/IJCNN.2008.4634181
http://dx.doi.org/10.1109/IJCNN.2012.6252821
http://dx.doi.org/10.1109/IJCNN.2010.5596364
http://dx.doi.org/10.1109/IJCNN.2010.5596364
http://dx.doi.org/10.1109/MCSE.2010.112
http://dx.doi.org/10.1109/IJCNN.2008.4634194
http://dx.doi.org/10.1109/IJCNN.2010.5596759

206 BIBLIOGRAPHY

[137] K. Chandy and J. Misra, “Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs,” IEEE Transactions on Software Engineer-
ing, vol. SE-5, no. 5, pp. 440—452, Sep. 1979, 1ssN: 0098-5589. DOI: 10.1109/TSE .
1979.230182.

[138] C. Bai, “Parallel discrete event simulation on the SpiNNaker engine,” Ph.D. The-
sis, University of Southampton, 2013.

[139] ARM Ltd. (2010). RealView Development Suite, [Online]. Available: http: //
infocenter.arm.com/help/index. jsp?topic=/com.arm.doc . subset.swdev.
rvds/index.html (visited on 03/21/2016).

[140] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-
merical Methods. Athena Scientific, 1997, I1SBN: 1886529019.

[141] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equa-
tions: An Introduction, 2nd. Cambridge, UK: Cambridge University Press, 2005,
ISBN: 0-521-60793-0.

[142] L. D. Solano-Quinde and B. M. Bode, “Module Prototype for Online Failure Pre-
diction for the IBM Blue Gene/L,” in 2008 IEEE INTERNATIONAL CONFER-
ENCE ON ELECTRO/INFORMATION TECHNOLOGY, IEEE, May 2008, pp. 470
474, 1SBN: 978-1-4244-2029-2. DOI: 10.1109/E1T. 2008 .4554349.

[143] J. Gaisler, “A portable and fault-tolerant microprocessor based on the SPARC v8
architecture,” in PROCEEDINGS INTERNATIONAL CONFERENCE ON DE-
PENDABLE SYSTEMS AND NETWORKS, IEEE Comput. Soc, 2002, pp. 409
415, 1SBN: 0-7695-1597-5. DOI: 10.1109/DSN . 2002 .1028926.

[144] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008,
ISSN: 00010782. DOI: 10.1145/1327452.1327492.

[145] ARM Ltd. (2011). Using Scatter-loading Description Files, [Online]. Available:
http://infocenter.arm.com/help/topic/com.arm.doc.kui@10@1a/armlink_
babddhbf.htm (visited on 03/24/2016).

[146] ——, (2010). ARM Compiler toolchain Compiler Reference—function attribute,
[Online]. Available: http: //infocenter . arm.com/help/index . jsp ?topic=
/com.arm.doc.dui®491c/Cacbgief.html (visited on 03/24/2016).

[147] ——, (2010). ARM Compiler toolchain Compiler Reference—variable attribute,
[Online]. Available: http: //infocenter . arm.com/help/index . jsp?topic=
/com.arm.doc.dui@491c/Caccache.html (visited on 03/24/2016).

[148] ——, (2010). ARM Compiler toolchain Compiler Reference—+#pragma arm sec-
tion, [Online|. Available: http://infocenter.arm.com/help/index. jsp?topic=
/com.arm.doc.dui@491c/BCFJBABB. html (visited on 03/24/2016).

http://dx.doi.org/10.1109/TSE.1979.230182
http://dx.doi.org/10.1109/TSE.1979.230182
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.rvds/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.rvds/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.rvds/index.html
http://dx.doi.org/10.1109/EIT.2008.4554349
http://dx.doi.org/10.1109/DSN.2002.1028926
http://dx.doi.org/10.1145/1327452.1327492
http://infocenter.arm.com/help/topic/com.arm.doc.kui0101a/armlink_babddhbf.htm
http://infocenter.arm.com/help/topic/com.arm.doc.kui0101a/armlink_babddhbf.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/Cacbgief.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/Cacbgief.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/Caccache.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/Caccache.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/BCFJBABB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/BCFJBABB.html

BIBLIOGRAPHY 207

[149] ——, (2010). Importing linker-defined symbols in ARM assembler, [Online|. Avail-
able: http://infocenter .arm.com/help/index. jsp?topic=/com.arm.doc.
dui@4T4c/CHDCGJIFI . html (visited on 03/24/2016).

[150] ——, (2010). Importing linker-defined symbols in C and C++, [Online|. Avail-
able: http://infocenter .arm.com/help/index. jsp?topic=/com.arm.doc.
dui@4T74c/CHDBIJJD. html (visited on 03/24/2016).

[151] ——, (2006). ARM968E-S™ Technical Reference Manual-—CP15 c7 core control
operations, [Online|. Available: http://infocenter.arm.com/help/index. jsp?
topic=/com.arm.doc.ddi@311d/11014521 .html (visited on 03/24/2016).

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/CHDCGJFI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/CHDCGJFI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/CHDBIJJD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0474c/CHDBIJJD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0311d/I1014521.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0311d/I1014521.html

