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With the emergence and growing popularity of online social networks,

depth sensors (such as Kinect), smart phones/tablets, wearable devices,

and augmented reality (such as Google Glass and Google Cardboard), the

way in which people interact with digital media has been completely trans-

formed. Globally, the apparel market is expected to grow at a compound

annual growth rate of 5 between 2012 and 2025. Due to the huge impact for

ecommerce applications, there is a growing interest in methods for cloth-

ing retrieval and outfit recommendation, especially efficient ones suitable

for mobile apps. To this end, we propose a practical and efficient method

for mobile visual clothing search and implement it as a smart phone app

that enables the user to capture a photo of clothing of interest with their

smart phone and retrieve similar clothing products that are available at

nearby retailers. Furthermore, we propose an extended method where

soft biometric clothing attributes are combinedwith anthropometrics com-

puted from depth data for person identification and surveillance applica-

tions. This addresses the increased terrorist threat in recent years that has

driven the need for non-intrusive person identification that can operate at

a distance without a subject’s knowledge or collaboration. We implement

the method in a wearable mobile augmented reality application based on

a smart phone with Google Cardboard in order to demonstrate how a se-

curity guard could have their vision augmented to automatically identify

a suspect in their field of vision. Lastly, we consider that a significant pro-

portion of photos shared online and via apps are selfies and of dressed

http://www.soton.ac.uk
http://www.fpse.soton.ac.uk
http://www.ecs.soton.ac.uk


people in general. Hence, it is important both for consumers and for in-

dustry that systems are developed to understand the visual content in

the vast datasets of networked content to aid management and perform

smart analysis. To this end, this dissertation introduces an efficient tech-

nique to segment clothing in photos and recognize clothing attributes. We

demonstrate with respect to the emerging augmented reality field by im-

plementing an augmented reality mirror app formobile tablet devices that

can segment a user’s clothing in real-time and enable them to realistically

see themselves in the mirror wearing variations of the clothing with dif-

ferent colours or graphics rendered. Empirical results show promising

segmentation, recognition, and augmented reality performance.
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Chapter 1

Introduction

Ecommerce is an exponentially growing market. Global retail sales to-

taled $22.5 trillion in 2014, with $1.316 trillion of these sales occurring

online. By 2018, ecommerce retail spending is projected to increase to

nearly $2.5 trillion [1]. A significant proportion of this spending is on

clothing items. Between 2012 and 2025, India and China are predicted to

achieve clothing market compound annual growth rates (CAGR) of 12 and

10 respectively. Globally, this market is expected to grow at a CAGR of 5 to

$2.1 trillion in 2025 [2]. Therefore, there is a high commercial importance

in the global clothing ecommerce market, and in particular, the Indian

and Chinese markets. However, finding precisely the clothing you want

from online shops is still not a solved problem, and generally relies on

text based searching and navigating around complex websites crammed

with a massive choice of products. Due to the huge impact for ecommerce

applications, there is a growing interest in methods for clothing retrieval

and outfit recommendation, especially efficient ones suitable for mobile

apps.

Many people now possess a smart phone with integrated camera and reg-

ularly use the camera with various apps. More than 1.8 billion photos are

being uploaded to Flickr, SnapChat, Instagram, Facebook and WhatsApp

every day [3]. The rapidly accelerating growth of online visual platforms

such as these is transforming how people interact with photos and videos.

It is clear from browsing social networks that the subject of a significant

proportion of photos are “selfies” and of people in general. These large

1
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social network datasets of people can be exploited by computer vision

researchers. Particularly, computer vision algorithms to recognise cloth-

ing in photos of people may benefit content based image retrieval [4–6],

person identification[7, 8], surveillance[9], computer graphics[10], intelli-

gent fitting rooms[11], pose estimation[5], gender classification[12], and

customer profile analysis.

With respect to the popularity of mobile devices, Steve Jobs made a key

prediction at the D8 conference after the iPad’s release in 2010 that tablet

sales would eventually overtake personal computers. An interesting ex-

cerpt from his presentation which infers this prediction is as follows:

“We were an agrarian nation, all cars were trucks because

that’s what you needed on the farm. But as vehicles started to be

used in the urban centers and America started to move into those

urban and suburban centers, cars got more popular. PCs are

going to be like trucks. They’re still going to be around. They’re

still going to have a lot of value, but they’re going to be used by

one out of X people.”

According to Gartner, after five years of dramatic tablet growth and slowly

declining sales of PCs (consisting of both desktops and laptops), 2015 will

be the year that Jobs’ vision is realized. A total of 320 million tablet sales

and 316 million PC sales are predicted for 2015. Considering smart phones,

Gartner is predicting 1.95 billion mobile phone sales for 2015, approxi-

mately 70% of which will be smart phones. In terms of mobile OS, Android

is expected to leadwith 53% of themarket (1.37/2.59 billion units total) [20].

Thus, this shows the need for computer vision algorithms capable of run-

ning efficiently on (primarily Android) mobile devices, especially since it

can be seen that many people use their mobile device as their camera.

Recognition algorithms which infer semantic attributes of objects in a

scene have been rapidly gaining research attention. They allow for a more

detailed description of objects over the traditional tasks of object match-

ing and classification. Not only can objects be recognised by using the

predicted attributes, but also unfamiliar objects can be described.
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State of the art clothing labelling has been performed by image parsing.

Image parsing attempts to find localised semantic labels, such as pixel-

wise, rather than traditional recognition approaches which can only pro-

vide image-wise labels. Clothing parsing tackles the problem of explaining

an image at a more general scale by unifying image segmentation, object

detection, and recognition. This can allow for a wealth of possible appli-

cations including customer profile analysis, augmented reality and image

retrieval.

Fashionistas on Chictopia, a popular fashion social network, often describe

clothing primarily in terms of colours and patterns. However, 3D infor-

mation is also an important cue when humans attempt to recognize and

semantically describe dressed clothing because the dressed clothing may

not have consistent color and texture butmust inhabit an integrated region

in space. Depth images have several advantages over 2D intensity images

such as they are robust to changes in color and illumination, and they are

simple representations of 3D structure. With the popular emergence of

depth sensors, such as that found in the Microsoft Kinect, another impor-

tant cue has become widely available for computer vision algorithms to

exploit.

Imagine now to be able to take a photo on your smart phone of an item

of clothing that you like, visually retrieve similar products from ecom-

merce stores, and be able to try on those items of clothing in a virtual or

augmented reality without visiting a physical store. Virtual reality (VR)

and augmented reality (AR) have the potential to be two of the most dis-

ruptive technologies for a decade [13]. Virtual reality puts the user in an

entirely computer-generated world whereas augmented reality superim-

poses computer-generated images over the user’s real world environment.

As of 2013, there were 1.2 billion gamers in the world and none of them

had the hardware or software needed to play VR or AR games [14, 15].

With the emergence in 2014 of Google Cardboard and Facebook’s $2B ac-

quisition of Oculus Rift, VR and AR have been thrust into the mainstream

and the first devices have been made available to consumers. According

to CCS Insight [13], hardware shipments of AR devices will increase 16-

fold over the next 3 years, from 300,000 in 2015 to 4m by 2018. Hence,

augmented reality is an important emerging technology to consider.

http://www.chictopia.com
https://www.google.com/get/cardboard/
https://www.oculus.com
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Due to recent terrorist attacks and the increasing threat, there is a need

for non-intrusive person identification that can operate at a distance with-

out a subject’s knowledge or collaboration. Analysts forecast in 2014

that the global biometrics market will grow from $8.7 billion in 2013

to approximately $27.5 billion by 2019 with a five year compound an-

nual growth rate of 19.8% between 2014 and 2019 [16]. One of the

key drivers of this predicted expansion is the covert identification of

individuals[16, 17]. At present, covert identification is primarily achieved

through facial recognition software, however, there can be major prob-

lemswith covert facial recognition such as insufficient resolution provided

by the camera, shading, and occlusion or misalignment of a subject’s face

with the camera[18, 19]. Hence, this dissertation acknowledges the impor-

tance of the trend by investigating utilizing covertly captured traits of a

subject’s clothing and anthropometrics for this purpose.

1.1 Objective

Based on these findings and the associated gaps in literature, an investi-

gation into semantic parsing (segmentation/classification) and retrieval of

clothing given colour and/or depth images of individuals is the primary

goal of this thesis. Specifically, the problems of visual clothing search, aug-

mented reality try-on of clothing, and person re-identification using wear-

able augmented reality devices are considered.

The massive continued growth and popularity of social networks

and their associated image datasets, augmented reality, and smart

phone/tablet/wearable devices (with electronics consumers shifting to-

wards buying and using mobile devices and away from PCs) has created

a huge demand for fast, efficient, and scalable image analysis solutions.

To this end, these three characteristics underpin the investigations and

proposals. Hence, very computationally intensive models, such as those

based on deep neural networks will not be presented.
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1.2 Contributions

The main contributions of this thesis are as follows:

• A novel mobile client-server framework for automatic visual clothes

searching featuring a new dominant colour descriptor for the effi-

cient and compact representation of clothing is presented. The ap-

proach is evaluated on query images from a fashion social network

dataset along with a clothing product dataset for results, showing

promising retrieval results with a relatively fast response time. Thus

this contribution resides in a mobile system for automated clothes

search with proven capability. Figure 1.1 gives a brief preview of this

contribution.

• An efficientmethod for semantic parsing of predominantly uniformly

coloured clothing is proposed. The clothing is segmented using chro-

matic (colour) and achromatic (intensity) histograms, and high level

clothing attributes such as clothing brand are classified by heuristic

and random forest techniques. The method is quantitatively evalu-

ated and demonstrated with application to augmented reality cloth-

ing try-on.

• An extension to our aforementioned augmented reality clothing pars-

ing method. A dynamic multi-resolution approach is proposed for 3D

shape reconstruction of highly deformable surfaces (such as cloth) in

a photorealistic retexturing framework for augmented reality from

monocular vision in a non-laboratory environment. We show that

this approach can be used to realistically retexture graphics on cloth-

ing.

• A novel RGB-D based soft biometric clothing parsing framework for

automatic person re-identification and retrieval is presented. The

system extracts low and high level visual features as well as estimat-

ing core anthropometric features from captured RGB-D frames. K-

nearest neighbours is then utilized to retrieve the closest matches

and clothing parsing is performed to yield a semantically labelled

person identification result. We apply the approach to the emerg-

ing field of wearable mobile augmented reality, enabling a security
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FIGURE 1.1: Our mobile visual clothing search application.

guard’s vision to be augmented with the identify of a suspect in their

field of view.

Currently, the following papers have arisen from this research:

• G. A. Cushen and M. S. Nixon. Markerless Real-Time Garment

Retexturing From Monocular 3D Reconstruction. In IEEE ICSIPA,

pages 88–93, Malaysia, November 2011

• G. A. Cushen and M. S. Nixon. Real-Time Semantic Clothing Segmen-

tation. In ISVC, pages 272–281. Springer, 2012

• G. A. Cushen and M. S. Nixon. Mobile Visual Clothing Search. In

Multimedia and Expo Workshops (ICMEW), 2013 IEEE International

Conference on. IEEE, 2013

• G. A. Cushen. A Person Re-Identification System For Mobile Devices.

In Signal Image Technology & Internet Systems (SITIS). IEEE, 2015
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These publications form the foundation of the dissertation and have been

extended and improved upon. Most notably, they have been cited and

discussed by Kalantidis et al. [24], Jammalamadaka et al. [25], Jia-Lin

Chen et al. [26], Yamaguchi et al. [27, 28] and Traumann et al. [29].

1.3 Organisation

The thesis is structured as follows:

Chapter 2: Background gives a survey of the related state of the art

work in the relevent research fields within computer vision, machine

learning and computer graphics. Secondly, some of the core tools and

algorithms that are built on throughout the dissertation are introduced.

Chapter 3: Product Retrieval describes a visual clothing search system
for mobile devices such as smart phones which uses an efficient feature

extraction pipeline whilst achieving reasonable accuracy on the results

retrieved from real clothing e-commerce stores.

Chapter 4: Augmented Reality Mirror proposes efficient image segmen-

tation and semantic parsing for augmented reality try-on of upper body

clothing and fashion analysis. The approach is demonstrated in the form

of an app for tablets and smart phones.

Chapter 5: Augmented Reality Re-texturing extends the work in the pre-

vious chapter with amonocular surface reconstruction approach for retex-

turing graphics on the deformable clothing surface. For example, this can

enable different graphical T-shirt designs to be realistically augmented on

the user.
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Chapter 6: Person Identification proposes a solution to the problem of

person identification on mobile devices by combining soft biometric cues

from clothing and anthropometrics.

Chapter 7: Conclusions draws concluding remarks and discusses av-

enues for potential future work in the field.



Chapter 2

Background

Clothing parsing, mobile augmented reality, mobile visual search, and

mobile person re-identification are complicated problems that build upon

an in depth and wide breadth of research in computer vision, machine

learning and computer graphics. In this chapter, the related work in the

relevent research fields is reviewed and analysed.

Later in the chapter we introduce some of the core tools and algorithms

we build on throughout our work. They include local feature descriptors,

encoders, and classification algorithms.

2.1 Related Work

2.1.1 Clothing Segmentation and Parsing

Clothing can be considered to be one of the core cues of human appearance

and segmentation is one of the most critical tasks in image processing and

computer vision. Clothing parsing is a domain specific application of the

more general image parsing. The goal of image parsing in computer vision

is to provide a semantic label to each pixel in a given image. In this chapter

the problem of automatic and efficient labelling of clothing, textures (such

as logos) on the clothing, and the background is addressed. Clothing and

texture labels are considered as they can be important cues for augmented

reality and person identification applications.

9
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There has been a rapidly accelerating interest in clothing segmentation/-

parsing problems due to the important benefits of image retrieval for

e-commerce [4, 24, 30] (refer to chapter 3), virtual and augmented real-

ity [21] (refer to chapter 4), recognition for re-identification [8] (refer to

chapter 6), human detection [31], pose estimation [32], and fashion analy-

sis [33].

For background reading on segmentation techniques, the reader is re-

ferred to the literature survey of Zhang et al. [34]. From this survey, it

is clear that a popular representation of images uses graph theory and

in particular GrabCuts, however, we find this can be too computationally

intensive for responsive mobile phone applications.

A review of the literature yields a number of approaches to solving gen-

eral image segmentation and parsing problems [35–41]. One of the most

popular approaches for the more focussed area of clothing segmentation

involves a Markov Random Field (MRF) framework based on graph cuts

[8, 42, 43]. Although these approaches have robustness to a diverse range

of clothing, they can suffer in accuracy, producing very crude segmenta-

tion. This is especially true in cases of occlusions and difficult poses. The

MRF has since been reformulated to deal with groups of people [44]. More

recently, Wang and Ai [45] introduced a clothing shape model which is

learned using Random Forests and self-similarity features, with a blocking

model to address person-wise occlusions.

State of the art work focusses on offline clothes parsing with deep seman-

tic classification [5, 12, 24, 25, 27, 46–49], Kinect based segmentation [29]

(also refer to the method presented in chapter 6), and semantic 3D clothing

segmentation [50]. In chapter 4, the 2D approaches in related work are of

primary interest as an efficient application for mobile devices is consid-

ered and publicly available mobile devices are currently only capable of

capturing 2D images, so it’s the most practical.

Chen et al. [12] model clothing by a conditional random field (CRF) with

classification predictions from individual attribute classifiers. They pro-

pose an application to predict the dressing style of a person by analysing

a group of photos. Yamaguchi et al. [5] begin with superpixels and artic-

ulated pose estimation in order to predict and detect the clothing classes
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present in a real-world image. Their paper can be considered one of the

most notable early works on clothing parsing. Kalantidis et al. [24] present

a method similar to that of Yamaguchi et al. [5] but for an application of

cross-scenario retrieval. They start from an articulated pose estimation,

segmenting the person and clustering image regions in order to detect

the clothing classes present in a query image. Manfredi et al. [49] de-

sign a clothing retrieval system where clothing is segmented by Gaussian

Mixture Models (GMMs) and graph cuts. Their approach is offline and is

evaluated against a very simple dataset captured in a controlled lab en-

vironment. Yamaguchi et al. [27] employ a retrieval based approach to

tackle the problem of clothing parsing. Given a query image, similar styles

from a large database of tagged fashion images are found and used as ex-

amples to recognise clothing items in the query. The approach combines

global, local, and transferred parse-masks from retrieved examples. They

show significant improvements over previous state-of-the-art for both lo-

calization (clothing parsing given weak supervision in the form of tags)

and detection (general clothing parsing). They also find that the pose esti-

mation problem can benefit from the results of clothing parsing.

Themost notable state of the art two dimensional work on clothing parsing

is by Yamaguchi et al. [5, 27, 46–48]. They achieve good performance at

parsing a diverse range of clothing classes on real world photos from an

online fashion social network, although their methods, particularly [5],

are offline. The methods are very computationally intensive and require

a fully body pose (rather than upper body, such as in many of the “selfies”

photos that are shared on more general social networks).

Although the field has recently been gaining much attention, a real-time

clothing parsing system remains challenging. This is primarily due to the

wide diversity of clothing designs, uncontrolled scene lighting, dynamic

backgrounds, variation in human pose, and self and third-party occlu-

sions. Secondly, difficult sub-problems such as face detection are usually

involved to initialize the parsing procedure. The fastest approaches in

literature are the approaches presented in this chapter: Cushen and Nixon

[22] (2.0ms per detected person in the query image), Cushen and Nixon

[21] (3.7ms for the overall application including segmentation), as well as



Chapter 2. Background 12

the region growing approach presented in [9] (16.5ms per detected per-

son). Although [9] extracts the person including skin pixels, the approach

is fast, with the authors reporting 16.5ms per detected person for segment-

ing clothing and 10fps overall (including face detection and a classification

application). Their private dataset was captured in a controlled lab setup,

featuring a predominantly white background. In [51], an RGB-colorspace

approach is briefly described for segmenting T-shirt cloth and texture in a

manner which to some degree removes these drawbacks. However, their

method requires major a prioris such as cloth color and a simple rectan-

gular texture, and they only show subjective visual results for a specific

T-shirt.

The papers [21] and [22] resulted from the two approaches presented in

chapter 4. Even though research in the field of clothing segmentation

and parsing has rapidly accelerated in the last few years, with papers

such as [24, 25, 29] citing the above, our approaches remain unique as

they are specifically targeted towards practical applications for mobile

devices and real-time broadcasting where very high efficiency is required.

Furthermore, the related work exhibits a number of constraints and can

be less suitable and practical for the considered applications.

Face detection is employed inmany existing approaches to initialize points

on the cloth. It should be noted that due to frontal face detection, the

segmentation approaches are limited to frontal poses. The initial cloth

points are located by applying a (scaled) distance from the bottom of the

detected face. In the case of clothing with deep neck lines, such as vests

and many female tops, these methods can segment the skin rather than

the cloth. In contrast, we design a more complex initialization scheme

which attempts to avoid this.

The majority of related work focusses on segmenting a single image of

a single person offline. Contrary to these methods, it is attempted to si-

multaneously process multiple persons andmaintain reasonable accuracy

whilst increasing computational efficiency to enable real-time image/video

processing. The efficiency of the proposed methods makes them practical

for use on mobile devices. Furthermore, the author is not aware of any

existing fast approaches in literature to specifically yield a semantically
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labelled segmentation which includes contours for any textured regions,

such as logos, on the cloth.

2.1.2 Clothing Retrieval

Based on the clothing and mobile device statistics and trends mentioned

in chapter 1, an efficient mobile application to automatically recognize

clothing in photos of people and retrieve similar clothing items that are

available for sale from retailers could transform the way we shop whilst

giving retailers a great potential for commercial gain. Tightly connected

to this, is the potential for an efficient clothing retrieval system to be em-

ployed for the purpose of highly targeted mobile advertising which learns

what clothing a personmaywish to purchase given their social networking

photos.

The problem of efficient and practical mobile clothing search appears rel-

atively unexplored in literature [4], although there is a growing number

of papers related to the more general case of clothing recognition for re-

trieval and recommendation applications [24, 26, 27, 30, 33, 49, 52, 53].

This growth has been triggered by the evolution of automatic clothing

parsing and recognition methods which can enable natural semantic im-

age searching (refer to subsection 2.1.1).

One early scenario of clothing recognition for retrieval is presented in

[6, 11]. Si Liu et al. [30] address the problem of cross-scenario clothing

retrieval where the query image is a real world image and results are

retrieved from an online shopping dataset with simple poses and clean

backgrounds. The authors of the paper consider a human detector to lo-

cate human parts and a calculation on the parts is used to obtain one-to-

many similarities between the query photo and online shopping photos.

A mapping is created between real world and e-commerce images with a

sparsely coded transfer matrix so that the difference between these two

distributions does not adversely affect the quality of retrieval. Note that

their approach has offline elements and is designed for a PC - it does not

consider a mobile framework for retrieval, unlike the first photo in the

paper suggests. Kalantidis et al. [24] take a similar cross-scenario retrieval
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approach, employing clothing parsing to represent each clothing item ex-

plicitly and utilizing Yamagutchi’s Fashionista dataset to learn clothing

classes.

State of the art work focusses primarily on clothes parsing based on re-

trieval results [27], detection based deep semantic classification [53], ran-

dom forests [49], and interactive clothing retrieval [26]. The method of

Yamaguchi et al. [27] is discussed in subsection 2.1.1. Chen et al. [53]

do not segment the images, such as in clothing parsing methods like Yam-

agutchi et al. and instead propose a double-path deep domain adaptation

network to model the data from the two domains of constrained (as in

typical e-commerce photos) and unconstrained (as in real world photos)

images jointly. Alignment cost layers are placed to ensure the consistency

of the two domain features and the feasibility to predict unseen attribute

categories in one of the domains. Both of these related works achieve

good performance, but they are computationally intensive and unsuitable

for fast searching on a mobile infrastructure. In the third state of the art

work mentioned, Manfredi et al. [49] model the background with Gaus-

sian Mixed Models (GMMs) in order to segment the image and classifies

clothing attributes using a random forest. Their method is perhaps faster

than the previous approaches, however they only consider a very simple

dataset which appears to have been captured in a controlled lab environ-

ment. Jia-Lin Chen et al. [26] design an interactive clothing retrieval sys-

tem on Yamaguchi’s Fashionista dataset. However, the focus in chapter 4

is on automatic approaches.

Current mobile image retrieval systems include Google Goggles1, Kooaba,

and LookTel. However, these systems are developed for image retrieval

on general objects in a scene. When these systems are applied to clothes

search, they can provide visually and categorically less relevant results

than our method for retrieving products based on a dressed person and

can have significantly longer response times than our method.

1google.com/mobile/goggles, kooaba.com, looktel.com

google.com/mobile/goggles
kooaba.com
looktel.com
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2.1.3 Person Identification

The increased terrorist threat in recent years has driven the need for non-

intrusive subject identification that can operate at a distance. Person iden-

tification and retrieval are a critical tasks in surveillance for recognising a

person across spatially disjoint sensors. The emerging field of soft biomet-

rics consists of physical, behavioural or adhered human characteristics

which can be utilized for this task. Besides the rapidly growing number of

published papers on person identification, the importance of this field is

recognised in the recent survey on re-identification methods by Vezzani

et al. [54], published in the book on “Person Re-Identification” edited by

Gong et al. [55]. The reader is referred to this publication for a compre-

hensive background in person identification.

A number of soft biometric approaches have been presented recently [56–

59]. Some general re-identification applications have also been proposed

[60–62], as well as somemore specifically related to clothing[7, 8, 63]. Yang

and Yu [9] develop an application for a surveillance scenario albeit with

some major constraints. Baltieri et al. [64] introduced 3D anthropometric

information to the re-identification problem where a coarse and rigid 3D

body model was fitted to different pedestrians. Barbosa et al. [65] consid-

ering the use of depth sensors for re-identification and create an RGB-D

dataset for this purpose. Jaha and Nixon [63, 66] show how clothing traits

can be exploited for identification purposes, exploring the validity and us-

ability of a set of proposed semantic attributes. Baltieri et al. [67] exploit

non-articulated 3D body models to spatially map appearance descriptors

into the vertices of a regularly sampled 3D body surface.

Real world image sequences from CCTV cameras often feature a person

of interest in the foreground and a cluttered background. Some recent

approaches for general clothing retrieval [24, 30] formulate the problem

as one of cross-scenario. For cross-scenario retrieval, the query image for

searching is a real world image while the search results are often returned

from a dataset captured in a controlled lab environment with simple back-

grounds. The approach proposed in this chapter returns real-world images

of subjects with similar clothing and anthropometrics to those in a real-

world query image of a subject. Thus, the approach can more challenging
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and attempts to be more practical in terms of application than many more

general related works on clothing retrieval.

Relatedwork tends to focus on low-level visual appearance based cues and

pays relatively little attention to predicting clothing attributes or incorpo-

rating RGB-D sensors, although these topics are rapidly gaining attention.

Here, a soft biometrics method for person identification which predicts

high level clothing attributes (e.g. shirt) and exploits anthropometrics (e.g.

height) from RGB-D sensors is presented. By combining these cues, our

approach attempts to provide robustness to noise and minor variations

in clothing, occlusions, and illumination conditions, achieving promising

intermediate results for identification without requiring facial features

(i.e. the image does not need to be very high resolution). Furthermore,

by utilizing anthropometrics in the approach it can provide robustness

to a potentially large number of subjects wearing similar clothes, where

traditional appearance based cues for identification may be of little use.

Figure 2.1 shows a real-life need for the proposed soft biometrics approach

based on clothing attributes during the 2011 London Riots. The large im-

age highlights a marked suspect with a covered face2 and in the bottom

right corner is a separate image of a suspect in a different location who

appears to wear the same distinct clothes3. This example also demon-

strates that in some cases, semantic clothing attributes can be the only soft

biometric cue available for exploitation.

Table 2.1 lists a comparison of some common soft biometric traits. Cloth-

ing attributes and anthropometrics such as height are employed in this

thesis as they are both reasonably distinct cues that are commonly used by

humans to describe each other, can be captured non-intrusively at a dis-

tance and it is hypothesized that the increased permanence of the height

cue can help improve the performance over using clothing only cues. The

proposed system can also be used to supplement other biometrics such as

gait.

2http://www.adelaidenow.com.au/.../story-e6frea8l-1226111443592
3http://www.bbc.co.uk/news/uk-england-london-16171972

http://www.adelaidenow.com.au/news/world/profiles-of-london-locations-where-riots-have-broken-out/story-e6frea8l-1226111443592
http://www.bbc.co.uk/news/uk-england-london-16171972
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FIGURE 2.1: A usecase for soft biometrics based on clothing and anthro-

pometrics.

Soft biometric cue Permanence Distinctiveness Variable
Weight Medium Medium Continuous

Height High Medium Continuous

Semantic Clothing

Attributes

Low Medium/High Discrete

Gender High Low Binary

Gait Medium High Continuous

TABLE 2.1: Comparison of soft biometric traits

2.1.4 Augmented Reality

Augmented reality systems conventionally operate in real-time, allowing

the user to interact with computer-generated objects in a real scene. For

a comprehensive survey of traditional augmented reality literature, the

reader is referred to [68, 69]. The previously described work by Bradley

et al. [70] and Hilsmann and Eisert [51] can be considered the closest to

our augmented reality framework.

2.1.5 Clothing Surface Reconstruction

Our methods are primarily related to work from the following four areas

of research: (1) garment segmentation, (2) geometric recovery of flexible

surfaces, (3) cloth modeling, and (4) real-time augmented reality. This

section describes the most relevant work from each of these categories.
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The paper [21] resulted from the research presented in this chapter. Even

though our work has since been extended by [29], the approach in this

chapter remains unique as it does not require manual interaction or depth

images.

2D Surface Recovery An area of literature which is generally considered

to be solved is the 2D recovery of a non-rigid surface from monocular vi-

sion [71–75]. Recently, Bradley et al. [70] and Hilsmann and Eisert [51]

have extended the work on this topic for the purpose of AR applications.

Bradley et al. use markers printed onto a white T-shirt for 2D cloth recov-

ery and optical flow is used to track the marker positions over a video se-

quence for retexturing the markered region with a new image. Hilsmann

and Eisert extend this optical flow approach with a deformable model for

self-occlusion handling and consider a specific T-shirt with a rectangular

texture rather than markers.

3D Surface Recovery Multiple view geometry is a very popular field in

Computer Vision for solving problems such as human pose estimation and

3D shape reconstruction. A survey of multiple view reconstruction lit-

erature is presented in [76]. The 3D shape of non-rigid surfaces can be

reconstructed in a similar way to human vision: by constraining the depth

based on multiple view geometry and establishing point correspondences

across the views. Given sufficient views, this process is over-constrained

for a moderately deformable surface. However, for the case of a highly

non-rigid surface, such as cloth, the cloth can exhibit many self-occlusions

which make simple point correspondence techniques fail. White et al.

[77] addressed this with a marker-based approach where markers are

printed on the garments for successful cloth surface reconstruction. Re-

cently, Bradley et al. [78] improved upon this by presenting a markerless

approach.

Recovering the 3D geometric layout of deformable self-occluding surfaces

frommonocular vision remains an open and challenging problem in com-

puter vision due to the fact that it is severely under-constrained. The prob-

lem can be overcome to some extent by introducing deformation models

which are either physically-based [79–84] or learned from training data
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[85–88]. The model parameters in all these methods are initialized and

refined by the minimization of an image based objective function. Good

initialization is important but very difficult to achieve because this func-

tion generally has many local minima. Recent work [89–92] addresses this

issue by proposing constraints of a reference image in which the shape

is known, and pixel correspondences between the input and reference

images which are also known. These methods assume that the surface is

inextensible and hence the geodesic distances between neighboring sur-

face points must remain constant.

Alternatively, Shape from Shading (SfS) techniques can be used to recon-

struct 3D shape from shading information in a single image with a fully cal-

ibrated camera. This is especially suitable for relatively untextured objects,

with few reliable features. Traditionally, shape from shading techniques

were designed within the context of Lambertian surfaces of an unknown

albedo, with a distant single point light source [93]. Since then, many

variations [94] have been proposed, but shape from shading techniques

continue to suffer from a number of limitations because they depend on

very restrictive assumptions. Also, shape from shading is known to suf-

fer from the Bas-Relief Ambiguity [95]. This refers to the fact that there

is an implicit ambiguity in determining 3D shape from an unknown ob-

ject with Lambertian reflectance which is viewed orthographically. These

drawbacks reduce the applicability of shape from shading methods signifi-

cantly. Recently, more accurate models based on non-Lambertian surfaces

have been used to replace the Lambertian assumptions [96].

Cloth Modeling Cloth modeling is a popular field in computer graphics

which attempts to mimic the dynamic three-dimensional characteristics of

real deforming cloth. The wide range of literature [97, 98] can be grouped

into the following categories:

• Geometrical techniques tend to focus on methods such as curve fit-

ting, sub-division, relaxation, interpolation, and user interaction.

• Physical techniques tend to focus on methods such as Newtonian

dynamics, elasticity theory, and deformable models. Physical tech-

niques can be categorised into the following approaches:
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Energy-based approaches calculate the entire cloth energy from

a set of equations and then carry out energy minimisation. Generally

best suited for computing static cloth simulations.

Force-based approaches represent the forces at nodes as differen-

tial equations and then perform numerical integration at each time

step, to obtain the node coordinates. Generally best suited for com-

puting dynamic cloth simulations.

• Hybrid techniques exploit the advantages of geometrical and phys-

ical models in an attempt to achieve superior results. Generally, a

geometrical technique is employed to compute a rough representa-

tion of the cloth, and then a physical technique is employed to refine

the cloth structure.

Early computer graphics cloth simulation techniques were developed

some time ago and examples include Terzopoulos et al. [99], Terzopou-

los and Fleischer [100], Weil [101], Thingvold and Cohen [102], Carignan

et al. [103], Okabe et al. [104], Breen et al. [105].

In recent years, there has been a strong focus on high resolution, offline

cloth simulation [106], with one of the popular applications being photo-

realistic cloth simulation in films [107–109].

Mass spring systems are frequently used in the simulation of deformable

objects due to their high computational efficiency, conceptual simplicity,

and reasonable results [110, 111]. This allows for real-time processing. It

can be noted that results by Bridson et al. [108], Etzmuss et al. [112], Irving

et al. [113], Selle et al. [114] show that the more complex finite elements

models behave similarly to mass-spring models.
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(A) Microsoft Kinect (B) Components

FIGURE 2.2: Microsoft Kinect sensor

2.2 Devices

2.2.1 Microsoft Kinect

The Microsoft Kinect sensor (Figure 2.2) consists of an infrared (IR) laser

emitter, an infrared camera and an RGB camera. Unlike traditional cam-

eras, the device allows computers to accurately view the captured scene in

three dimensions. We choose to use the Microsoft Kinect for three dimen-

sional data capture since it is the most popular consumer depth sensor

(over 29 million units of the Kinect models sold [115]), is relatively afford-

able, achieves good performance, and is widely used for the purpose of

academic research.

FIGURE 2.3: Diagram of depth-disparity relationship

The IR laser emits a beam which is split into multiple beams by a diffrac-

tion grating to create a constant pattern of dots projected onto the scene.
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Objects in the scene cause the pattern to appear deformed. An IR camera

captures the resulting pattern and it is correlated against a reference pat-

tern to obtain a disparity map. For each pixel in the disparity map, the

distance between the object in the scene and the sensor can be calculated.

Figure 2.3 depicts the relationship between the distance of a point k and

the measured disparity d. Note that the coordinate system has the Z axis

perpendicular to the image plane, X axis orthogonal to Z along the baseline

b, and Y axis orthogonal to Z and X. Assuming that there is an object on

the reference plane at distance Z0 from the sensor and a corresponding

disparity d in image space, then by the similarity of triangles:

D

b
=
Z0 − Zk
Z0

(2.1)

and

d

f
=
D

Zk
(2.2)

where Zk is the depth distance of the point k in object space that we want

to measure, D is the displacement of point k, b and f are the base length

and focal length of the IR camera, respectively. Substituting D from Equa-

tion 2.2 into Equation 2.1 we can obtain the depth Zk:

Zk =
Z0

1 + Z0

fb
· d

(2.3)

The limitations of the Kinect are as follows [116]:

• field of vision is 57.8◦

• range is from 0.6m up to 5m

• frames are captured at 640× 480× 30fps (with 3 bytes of color and 2

bytes of depth data)

• density of points decreases with increasing distance from the sensor;

depth resolution is very low (7cm) at the maximum distance (5m)
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• random error of depth measurements increases quadratically with

increasing distance from the sensor, reaching 4cm at the maximum

range of 5m

• indoor use only, avoiding dusty environments, IR light, and variable

lighting

Ideally, data should be acquired within 1 to 3 metres of the sensor. Other-

wise, at larger distances, the data quality becomes significantly degraded

by noise and the low resolution of the depth measurements.

2.2.2 Google Cardboard

Google Cardboard is a virtual reality platform developed by Google for

use with a smart phone in a head mount made from folded cardboard,

as seen in Figure 2.4. It was conceptualized by David Coz and Damien

Henry and introduced in 2014 at the Google I/O developers conference. It

makes immersive virtual (or augmented) reality accessible to everyone

in possession of a smart phone in a simple, fun, and affordable way. The

head mount can be purchased ready-made or can be easily constructed

from cardboard, lenses, magnets, velcro and a rubber band (Figure 2.5) by

following Google’s instructions.

We choose to use Cardboard as our wearable virtual/augmented reality

device since it is currently the only popular product of its kind available

thatwe can develop for. Related products include Google Glass, Oculus Rift,

and HTC Vive (Steam VR). However, Google Glass was in an experimental

stage which ended in it becoming discontinued in January 2015, whilst

Google work to improve the technology. Whereas, Oculus Rift and HTC

Vive (Steam VR) are yet to be released and designed for gamers in a home

environment.

The Cardboard SDK can be utilized to build apps for Android and Apple iOS

smart phones that display 3D scenes with binocular rendering, track and

react to head movements, and interact with apps through trigger input.

https://www.google.com/get/cardboard/


Chapter 2. Background 24

FIGURE 2.4: The Google Cardboard virtual reality (VR) platform.

FIGURE 2.5: Constructing a Google Cardboard.

2.3 Feature Extraction

Feature extraction is a process to efficiently represent interesting parts

of an image as a compact numerical feature vector, suitable for machine

learning.

Note that global features such as colour histograms do not take spatial

information into consideration which can result in very disimilar images
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being matched due to their similar colour distribution. This problem can

be solved by including other descriptors for spatial information or by par-

titioning an image, computing the colour descriptor on each partition and

then concatenating to unify the sub-descriptors.

Colour Colour can be considered one of the most important features of

clothing, especially for the purpose of image retrieval where it is the most

extensively used feature. Furthermore, fashionistas commonly dress up

or purchase new clothing items based primarily on colour (related to our

application in chapter 3) and law enforcement commonly ask the public

for help identifying a subject based on attributes including clothing colour

(related to our application in chapter 6). Unlike humans, a computer sees

colour just as numeric pixel values of a colour space. Thus, colour space

must first be determined prior to selecting an appropriate colour descrip-

tor for our algorithms. Three of the most important and relevent colour

spaces, as shown in Figure 2.6, are now described.

(A) RGB (B) HSV (C) Lab

FIGURE 2.6: Colour spaces

The RGB space is composed of three colour components, red, green, blue,

and it is by far the most popular colour space for image capture and dis-

play. A colour in RGB space is defined by adding together values of its

components, thus it can be referred to as additive primaries. While the

RGB space is easy to understand, being perceptually non-uniform it fails

to mimic how humans perceive colour and it is also device-dependent.

The CIE Lab space consists of a lightness L component and two chromatic

components a and b. A major advantage of Lab is that it is device indepen-

dent and considered to be perceptually uniform.
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HSV space also consists of two chromatic components for hue H and sat-

uration S, as well as a lightness component called value V. An advantage

with HSV is that it is very intuitive for computer vision applications such as

image retrieval where we wish to retrieve an image based on illumination

invariant hue. Less computation is required for the conversion of RGB to

HSV than to Lab.

There is little agreement on which is the best all round color space. The

literature on image retrieval, and its parent field of computer vision, em-

ploys a wide range of different color spaces, often with little or no reason-

ing behind the selection. State of the art considers HSV or Lab to generally

achieve the best singular descriptor performance for image classification

and retrieval tasks, and combining them together for better performance

across a diverse dataset of real world images [117]. Thus, we choose to

consider HSV and/or Lab colour descriptors in this dissertation.

Histograms are used to give an efficient estimate of the probability density

of an underlying function, which in the case of this dissertation is the

probability P of a pixel color C occurring in an image I.

Each pixel in an image can be described by the three components of the

HSV or Lab colour space, so a histogram can be defined for each compo-

nent. The main parameter for a 3-dimensional histogram is the number of

bins in each dimension of the colour space. There is an important trade-off

with this parameter. Too few bins and the histogram will be unable to dis-

ambiguate between images with significantly different color distributions.

Likewise, with too many bins, images with very similar distributions may

be regarded as not similar even though in reality they are, so we would

like to match them. The number of bins for a colour histogram can be

dependent on the size of the dataset and how similar the color distribu-

tions of the images in the dataset are. Larger datasets containing a wide

range of colours will require a larger, more discriminative histograms. An

iterative, experimental approach can be used to optimize the parameter.

Note that clustering can be used to determine k dominant colours for a

particular region of interest over a training dataset. Then each of these

dominant colours is taken as a histogram bin to minimize the number
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of bins required and eliminate small noisy bins. Thus reducing computa-

tional cost in cases which would otherwise require a large number of bins.

However, clustering dominant colours in this way assumes images in the

test dataset will have the same dominant colours as the training dataset,

and it is an extra computational step that is not needed if the bin size is

already set relatively low.

2.4 Feature Encoding

2.4.1 Compressed Fisher Vectors

The Bag of Visual words (BoV) feature encoding technique is commonly

adopted in the image classification and retrieval literature. The technique

uses k-means clustering on a set of local features extracted from a large

training set of images to generate a codebook of visual words. The local

features of an image are each associated with their nearest visual word

and the overall image is represented by a histogram of visual words.

The Fisher Vector (FV) [118] can be viewed as a generalization of the BoV

framework. It is a powerful state of the art encoding technique that groups

a variable number of local features into a single fixed size vector using the

Fisher kernel. Compared to the Bag of Visual words, the Fisher Vector gives

a more complete representation of the samples as it encodes not only the

probabilistic count of occurrences but also higher order statistics based on

its distribution with respect to the words in the vocabulary. This leads to a

more efficient representation, since the vocabulary size to achieve a given

performance is greatly reduced. The FV has been shown to outperform

BoV and other encoding methods on a number of challenging datasets in

terms of both classification accuracy and efficiency [119, 120].

Although the Fisher Vector is an ideal image representation for small to

medium scale problems, it becomes impractical for large scale applica-

tions due to the storage requirements for the very high-dimensional and

dense representation. For example, 4 byte floating point FV represen-

tations with 512K dimensions will require 2MB of storage per signature.
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Storing the signatures for the 14M images of the ImageNet dataset would

require around 27TBs. Handling TBs of data also has other side effects

such as making experimentation very difficult and costly (particularly for

cloud based machine learning systems), or in the worst case, impractical.

In addition, dense feature vectors residing in a high-dimensional space are

not suitable for fast retrieval in a mobile visual search application. Ideally,

we want a low bit rate image representation in order to satisfy the time

and resource constraints of mobile visual search systems.

Perronnin et al. [121] address these problems by using Product Quanti-

zation (PQ), as an efficient and effective approach to perform lossy com-

pression of FVs which enables balancing accuracy, CPU cost, and memory

usage. This can be referred to as Compressed Fisher Vectors (CFV).

2.4.2 Pooling

A major challenge of object recognition is to generate feature represen-

tations that are robust to appearance variations. Pooling addresses this

problem by transforming the overall feature representation into a more

usable one that preserves the important discriminative information inher-

ent to the set of encoded features while discarding irrelevant information.

In particular, Spatial Pooling plays a key role in achieving these invari-

ance properties by grouping local features within spatial neighborhoods.

The Spatial Pyramid (SP) is a spatial pooling model introduced by [122]

which has been shown to be effective for object recognition with Fisher

Vectors [120]. It consists of subdividing the image into a set of regions and

aggregating descriptor statistics over these regions, such that one FV is

computed per image region and then the resulting FVs are concatenated

to form one fixed length feature vector.

2.4.3 Normalization

We now describe two normalization steps which have been shown to ben-

efit image retrieval and classification, especially when FVs are combined

with a linear classifier.



Chapter 2. Background 29

Power normalization The power law or Signed Square Root (SSR) is a sim-

ple form of normalization that has recently gained popularity. The Eu-

clidean distance is often used to compare low level features or higher level

encoded features. This distance measure can easily become dominated by

large feature values in a dimension of the feature vector, thus reducing

the accuracy of image retrieval and classification. Unfortunately, it has

been shown that large values often occur for low level descriptors [123]

and BoV/FV encoding [121, 124–126].

However, by performing a power normalization of the form:

x←− sign(x)|x|ρ 0 < ρ ≤ 1 (2.4)

to each dimension of the FV or low level feature, this undesired effect

caused by large values can be alleviated. Generally in literature, ρ is de-

fined as ρ = 0.5 and this specific case is referred to as the Signed Square

Root (SSR). Alternatively, a validation set can be used to tune the value of

ρ.

`2 normalization Feature scaling/normalization is a widely used tech-

nique in machine learning to improve image retrieval and classification

by standardizing the range of feature values. If a feature has a wide range

of values, a classifier’s distance metric will be governed by this particular

feature. Therefore, by normalizing the range of all features, each feature

should contribute approximately proportionately to the overall distance

between vectors.

`p normalization, in particularly `1 and `2, is very commonly applied to

all kinds of feature. We utilize `2 for this purpose of normalizing high-

dimensional feature vectors and also due to its characteristic on FVs of

cancelling out the fact that different images contain different amounts of

background information [121].
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2.5 Machine Learning

This dissertation is about learning from data. Generally we have a categor-

ical outcome (such as clothing brand) that we wish to predict based on a

set of features extracted from an image. Given a training dataset in which

we observe the outcomes Y = y1, . . . , yn for various features X = x1, . . . , xn,

we can build a prediction model to predict the outcome for features in new

unseen images. This kind of machine learning is referred to as supervised

learning since the algorithm is guided or ‘supervised’ by the available out-

come data. In this section, we briefly explore the background for some of

the main machine learning techniques utilized later on in the dissertation.

2.5.1 k-Nearest Neighbours

The k-nearest neighbour classifier (kNN) finds the k closest features in the

training set X to a query feature x and returns the majority vote of their

labels. The principle is based on the intuitive concept that features of the

same class should be closer together in the feature space. In the simplest

case of k = 1, there is no voting and the predicted class ŷ is directly given

by:

ŷ(x) = yn∗ (2.5)

where

n∗ = arg min
n∈X

d(x, xn) (2.6)

The distance metric d() is used to calculate similarity between features.

For real-valued feature vectors of dimension d, Euclidean distance is com-

monly used:

d(x,xn) = ‖x− xn‖2 = (x− xn)T (x− xn) =
d∑
i=1

(x(i)− xn(i))2
(2.7)
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An example of kNN classification is given in Figure 2.7. The green circle

represents the test sample that should be classified as either the blue or

red class. If k = 3 (solid line circle) it is assigned to the red class because

there are two red classes and only one blue class inside the inner circle.

Whereas, if k = 5 (dashed line circle) it is assigned to the blue class since

there are more blues than reds inside the outer circle.

?

FIGURE 2.7: k-nearest neighbour classification example. By Antti Ajanki,

licensed under CC-BY-SA-3.0.

The value of model parameter k is an important choice. As k increases, the

model averages over more data yielding smoother predictions, otherwise

for small values of k, the result will be more highly influenced by noise. A

large value makes the model very computationally expensive.

k-dimensional tree (kd tree) is a useful space-partitioning data structure

that addresses the computational inefficiencies of the naive brute-force ap-

proach for finding nearest neighbours. The feature vectors in the training

dataset are recursively split across a binary tree (similar to Figure 2.8, dis-

cussed further in the next section) by thresholding the vector dimensions.

The threshold is generally chosen at the dimension with the maximum

variance. Finally, the inner tree nodes terminate to leaf nodes which store

the features. A single leaf node representing the nearest neighbour of a

query feature is found by traversing the tree with the partitioned query

feature, comparing the values at each inner node in the tree.
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For n samples in d dimensions, the kd tree approach can dramatically

reduce the computational cost of a nearest neighbors search from O(dn) to

O(d log(n)) for small d < 20. This comes at the expense of increased training

time and complexity. When the dimension is very high, performance and

speed can significantly decrease. To rectify this, improvements have been

proposed such as creating multiple trees [127] or using fast approximate

k-NN search by locality sensitive hashing (a randomized technique) [128].

Furthermore, the dimension can be reduced in a pre-processing step, by

using principal component analysis (PCA) for example.

2.5.2 Random Forests

Random Forests (RF) combine the concept of bagging, a technique for re-

ducing variance of a prediction function, with the random selection of

features in order to construct a collection of de-correlated decision trees

with controlled variance.

A decision tree is a hierarchical structure of simple binary decision func-

tions containing two types of node. As depicted in Figure 2.8, the single

root andmultiple inner nodes function as binary splitting nodes which are

eventually terminated into leaf nodes. For classification purposes, each

leaf stores the probability distribution of class labels of the training sam-

ples that reached it. During testing, a splitting function f(x) → {0, 1} is
evaluated on sample x at the root and each of the inner nodes.

FIGURE 2.8: Binary decision tree structure.
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A major problem is that a single tree significantly over fits the training

data. This led to the random forest proposition of combining several deci-

sion trees with randomized splitting functions and training each tree on a

random subset of the training dataset [129]. To classify a new image from

an input feature vector, the input vector is put down each of the trees in

the forest. Each tree votes for a class. The forest chooses the classification

having the most votes over all the trees in the forest. Each tree b of B trees

in the random forest T = {Tb} is grown as follows:

For b = 1, ..., B:

1. If the training set has a total of N samples, choose the sample of the

training set for growing this particular tree by sampling N cases at

random but with replacement.

2. If there are M input features, a constant m << M is chosen for the

forest growing such that at each node, m features are selected at ran-

dom out of total M and the best split on these m is used to split the

node.

3. Each tree is grown until a stopping criterion, such as minimum node

size, is met. Then, each leaf l stores the distribution p(y|l).

The forest error rate depends on two things: the correlation between any

two trees in the forest and the strength of each tree in the forest, where

a tree with a low error rate is known as a strong classifier. The overall

error rate increases when the inter-tree correlation increases or when the

strength of individual trees decreases.
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Product Retrieval

Mobile visual clothing product search is an important task due to the con-

tinued growth of the global clothing industry, increasing popularity of

e-commerce, and dramatic growth in tablet and smart phone sales. The

goal is that a user can simply take a photo of someone wearing a product of

interest or select a social networking photo on a mobile device and an app

will quickly identify the product and/or retrieve visually similar products

from retailers.

Although there are now a number of related works, the majority of these

methods do not consider the discrepancy between the user-provided query

photos and clothing product images from e-commerce websites. They

also tend to extract features without prior clothing segmentation and thus

there can be inaccuracies from extracting features on background pixels

within the expected clothing region.

The main contributions of this chapter of the dissertation are as follows:

(1) we present a novel mobile client-server framework for automatic vi-

sual clothes searching; (2) we propose a dominant colour descriptor for the

efficient and compact representation of clothing; and (3) we have evalu-

ated our approach on query images from a fashion social network dataset

along with a clothing product dataset for results and shown promising

retrieval results with a relatively fast response time. The contributions in

this chapter thus reside in a mobile system for automated clothes search

with proven capability.

34
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FIGURE 3.1: Overview of the mobile visual clothing search pipeline.

The pipeline for our mobile visual clothing search system to retrieve sim-

ilar clothing products in nearby retail stores is shown in Figure 3.1. A

smart phone user can either capture a photo of a person wearing cloth-

ing of interest or choose an existing photo, such as from a social network.

The person is then detected in the image and clothing segmentation is per-

formed to attempt to select only the clothing pixels for feature extraction.

Note that we only consider searching upper body clothing since the images

in our social networking dataset indicate that many people just take upper

body fashion photos or selfies. The segmented upper body clothing image

is divided up into non-overlapping patches and features (dominant Lab

colours, HoG, LBP) are extracted to describe the shape, texture and colour

of the clothing. To enable large scale retrieval on mobile devices, PCA re-

duces the feature dimensions, Fisher Vectors encode the features, and the

encodings are compressed by product quantization. The compressed fea-

tures are sent to the server alongside the phone’s GPS coordinates. Similar

products are retrieved from the database, re-ranked by retailer location

and the resulting top product images (including product URLs) are down-

loaded to the smart phone. The user can then view a map detailing where

they can locally purchase the products or click their associated URLs for

purchasing online.
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It is impractical to store large scale databases of clothing products from

various retailers on the mobile phone client. Thus, a client-server architec-

ture is conceived for our mobile visual clothing search, rather than being

fully offline with no server infrastructure.

Our system is designed to be efficient with short response times and offer

an interactive graphical user experience after results are retrieved. The

client communicates with the server using compressed feature informa-

tion rather than directly uploading a large query image. This is especially

important since the majority of smart phones now have high megapixel

cameras which can capture images requiring over 12MB of storage each.

Hence, uploading an image this size (or even if resized) would be slow

over a mobile network. Our approach allows for fast transmission on typi-

cal 3 or 4G mobile networks and has the additional benefit of distributing

processing load between client and server so that the server may handle

more simultaneous search requests. Our contributions are described in

the following sections.

3.1 Datasets

The goal of our retrieval problem is to find the product images in the online

shopping domain that correspond to a given query photo in the street

domain that is uploaded by the user. Therefore, two different kinds of

data are required.

Several clothing datasets exist but none of them appear to be suitable to

evaluate our clothing retrieval task. Datasets mentioned in the current

literature either do not solely contain frontal poses [5], do not feature a

large range of clothing and people, are for the classification task, or are

private.

For the query dataset (DQ), we collected a subset of 914 images from Chen’s

Clothing Attribute Dataset [12]. First, we discard all the images where the

Mechanical Turk users were unable to agree on themain clothing category

present in each image. The category labels for these undecided cases were

stored as NaNs, so discarding them allows us to quantitatively evaluate
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TABLE 3.1: Query dataset classes and number of images per class.

Category Images
Shirt 112

Sweater 75

T-shirt 102

Outerwear 171

Suit 196

Tank Top 53

Dress 205

every image using our retrieval approach. Additionally, we discard all

images where a face cannot be detected by ViolaJones in the top half of

each image. This step is required since our approach is reliant on fast face

detection rather than slow pose estimation for initialisation. Table 3.1 lists

the clothing categories present in our dataset and the number of images

per category class.

For the shopping dataset (DP), we consider real e-commerce images from

esprit.co.uk. For this dataset, we collected 994 images equally divided

between the 7 categories used in our query dataset, such that there are 142

per class. We also store their associated product URLs (so visual retrieval

results can link to their product page for details and purchasing).

Furthermore, we select a small subset of query images from the Fashion-

ista dataset [5] that exhibit frontal poses suitable for our Viola-Jones face

detector. We use these images for the purpose of qualitatively demonstrat-

ing the cross-scenario retrieval scenario.

3.2 Pre-Processing

Real-world images captured on a smart phone or downloaded from online

social networks provide a number of challenges to computer vision algo-

rithms such as a wide variety of lighting/shading in the scene (referred to

as non-uniform illumination) and image dimensions. To address these is-

sues, the image is normalized to have a maximum side length of 600 pixels

and the illumination colour channel is normalized in HSV colour space.

esprit.co.uk
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In order to locate and process clothing in the photo, first we must locate

a person in the query image who is wearing the clothing of interest. The

Viola-Jones face detector is used to estimate the face size and location

which are fed as parameters to initialise a simple human detector. Our

human detector [4] yields an approximate bounding box for the person’s

full body pose excluding head, ROIp, and a smaller upper body only region,

ROIu. For efficiency, we constrain the face detector to the top half of the

image and find this to be a valid assumption for our dataset.

Note that an alternative is to estimate the full pose of the person in order

to more precisely localize the clothing features, but we found the popular

state of the art pose estimaters such as [130] to be unsuitable for real-time

use, particularly within a fast mobile framework. This is confirmed by

Yamaguchi et al. [48] who state that full body pose estimation is one of

their main bottlenecks. We explore a more accurate yet efficient solution

to this in chapter 6 by utilizing depth information. Whereas in this chapter,

we focus on using currently available technology that is built into tablets

and smart phones.

3.3 Clothing Segmentation

Query Image Due to the inherent nature of using an approximate bound-

ing box, some pixels belonging to the background will appear in the box

as well as the pixels belonging to the foreground clothing that we are in-

terested in. If features are extracted directly from this bounding box, it

will lead to inaccurate classification since parts of the background will

be considered as clothing. To address this, we attempt to automatically

segment the clothing from the person and background within the larger

bounding box ROIp by using the efficient yet high performance DenseCut

algorithm [131]. A probability mask is created to initialize the segmenta-

tion. It is created such that it labels the pixels within the middle half of

the upper body box ROIu as foreground and the pixels from the top of the

image to the centre of the detected face as background.

We further attempt to eliminate the skin from the segmented person by

employing an efficient thresholdingmethod. Chai andNgan [132] reported
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that skin pixels on the face can be identified by the presence of a certain set

of chrominance values in the YCrCb colour space and utilized for face de-

tection purposes. Based on this work, we propose a thresholding method

for the purpose of clothing segmentation that takes into account other skin

pixels on the body. This can be more challenging as we find illumination

on the face tends to be more uniform. Consider Rr and Rb as ranges of the

respective Cr and Cb values that correspond to the colour of skin pixels.

For a random sample of our social networking dataset, we found ranges

of Rr = [140 165] and Rb = [105 135] to be optimal. In our experiments, these

ranges prove to provide a good compromise between robustness against

different types of skin colour and attempting to preserve clothing pixels

of similar chrominance to the skin. Thus, we have the following equation:

skin(x, y) =

{
1 if Cr(x, y) ∈ Rr ∩ Cb(x, y) ∈ Rb

0 otherwise
(3.1)

where x and y are pixels in ROIp. Morphological opening is then performed

on the binary mask skin(x, y) to reduce noise.

Finally, the segmented full body clothing is cropped to the upper body

region ROIu and normalised in size. The area of segmented clothing is

compared to the area of the ROIu. If the percentage of clothing pixels is

less than an empirically defined threshold τa, we perform the next stage

(feature extraction) on the DenseCut image rather than the skin elimina-

tion result. This final step can increase overall robustness of the system to

the special case where the clothing and skin are of a very similar colour.

The resulting upper body clothing image is denoted Ic.

Figure 3.2 depicts the clothing segmentation process on a challenging real-

world image.

Database Product Images E-commerce clothing websites typically dis-

play product images against a clean solid background. A colour histogram

is computed on each product image in the database and we can assume

that the peak of each image’s histogram identifies its background colour.

The product mask can be obtained by comparing each pixel in the image

against the estimated background colour. Figure 3.3 depicts this process.
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(A) Query image (B) Segmented

FIGURE 3.2: Clothing segmentation of a query image given face detection

(blue) and estimated upper body bounding box (green).

(A) Product image (B) Segmented

FIGURE 3.3: Clothing segmentation for product images.

3.4 Clothing Features

Within the upper body bounding box that was detected in the previous

step, low-level clothing features are densely sampled on a grid. These

features include HOG [133], LBP [134], and our dominant Lab colour de-

scriptor. The grid is constructed such that the upper body clothing image

Ic is divided up into a regular grid of 4× 5 cells.

We propose an efficient method to compactly describe dominant clothing

colours based on the MPEG-7 descriptor [135]. We denote each column of
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the grid as ROI
k
c where k = 1 . . . 5 and we propose providing robustness to

layered clothing (e.g. jacket and top) by computing the dominate colours

for each column and concatenating.

A 3D histogram is computed on Ic ∈ ROIkc in HSV colour space. For clothing,
hue quantization requires the most attention. We find a quantization of

the hue circle at 20◦ steps sufficiently separates the hues such that the red,

green, blue, yellow, magenta and cyan are each represented with three

sub-divisions. Also, saturation and illumination are each quantized to

three sub-divisions. Hence the colour is compactly represented with a

vector of size 18× 3× 3 = 162.

The quantized colour of each colour bin is selected as its centroid. If we

let Ci represent the quantized colour for bin i,X = (XH , XS, HV ) represent

the pixel colour, and ni be the number of pixels in bin i, we can calculate

the mean of the bin’s colour distribution as follows:

Ci = X̄i =
1

ni

ni∑
j

Xi,j , 1 ≤ i ≤ 162 (3.2)

Ideally, the dominant colours would be given by bins with the greatest

percentage of image pixels. However, in practice, due to factors such as

uncontrolled illumination, bins of similar quantized colours often exist

per perceived clothing colour. Therefore, the mutual polar distance be-

tween adjacent bin centres is iteratively calculated and compared with a

threshold, τd, and similar colour bins are merged using weighted average

agglomerative clustering. Considering X1 and X2 in the adjacent bins, we

let PE represent the pixel percentage of the colour component E and per-

form the following equation for each colour component, substituting E for

the H, S, and V components respectively:

XE = XE
1

(
PE

1

PE
1 + PE

2

)
+XE

2

(
PE

2

PE
1 + PE

2

)
(3.3)

Bins with a pixel percentage less than τp are considered insignificant

colours and merged to their closest neighbour bin. Since each set of worn

upper body clothing in our product dataset is humanly perceived to gen-

erally have less than 3 dominant colours per ROIkc , thresholds τd and τp

are empirically defined to yield approximately this amount of dominant
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colours. For the purpose of our similarity stage, we convert the polar

HSV colours to the Euclidean LAB space and the represent the dominant

colours F c
k as:

F c
k = {(CL

1 , C
A
1 , C

B
1 , P1), . . . , (CL

n , C
A
n , C

B
n , Pn)} (3.4)

where (CL
1 , C

A
1 , C

B
1 ) is a vector of LAB dominant colour, the corresponding

percentage of that colour in the clothing is given by P1 and 0 > n ≤ 3 is

the number of dominant colours on the clothing. For our application, we

generate F c = {F c
k} (padding each F c

k if necessary) to yield total dimensions

of 4× 3× 5 = 60D.

Texture/shape features based on histogram of oriented gradient (HoG) and

local binary pattern (LBP) are computed in each cell on Ic. HoG gradient

orientations are quantized to every 45◦, thus there are 8 direction bins.

The local histograms of the cells are then concatenated together to form

the 8 × 20 = 160D HoG feature F h. For LBP, we extract a 26D feature on

each cell using the uniform LBP implementation which offers improved

rotation and grayscale invariance. Thus, we have an overall 26×20 = 520D

LBP feature F l

3.5 Clothing Similarity

Once the low-level features sets have been extracted, we use them to con-

struct a signature to describe the image.

First, PCA is performed on the feature descriptors to simplify the represen-

tation and reduce redundancy in the data. By reducing the dimensions to

64 with PCA, this helps to speed up the next step involving Fisher Vectors

(FVs) since the FV size scales linearly with feature dimension. Additionally,

it helps satisfy the FV diagonal covariance matrix assumption.

We use Fisher Vectors [118] to construct the overall image signature since

they have been found to be the most effective in a recent evaluation study

of feature pooling techniques for object recognition and retrieval [119,

120].
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The FV is a generalization of the very popular Bag Of Visual words (BoV)

representation. In the case of BoV, the local feature descriptor is quantized

according to k-means clustering on a large dataset of image descriptors.

Whereas, for each quantization cell of FV, not only are the number of as-

signed descriptors stored, but also their corresponding mean and variance

in each dimension. For K quantization cells and D dimensional descrip-

tors, this yields a signature with dimensions K(2D + 1). Since more data

is stored per cell, less quantization cells can be used than for BoV, making

the FV signature more compact and faster to compute. Unlike k-means

clustering in BoV, the FV representation uses Gaussian mixture clustering.

For training the GMM, a random subset of features are extracted over all

the images in the dataset.

We compute FVs for the PCA representation of the low-level features. Then

power and L2 normalizations are applied on the FV, which has been shown

to significantly improve the performance. Finally, the FV is compressed by

Product Quantization (PQ) [121] in order to reduce CPU andmemory/band-

width requirements.

For retrieval of similar product images to a given query image, we utilize

k-Nearest Neighbours (kNN). For efficiency and fast searching of large

scale databases, we implement a kd-tree to index the clothing images. The

similarity measure that we compute for the kNN is the fast and popular L2

distance metric. For cross-scenario retrieval, let Hj be the Compressed FV

(CFV) representing the query image and Hj be the CFV for the j
th image in

the product dataset. Thus, the index of the top result is given by:

ĵ = arg min
j

dist(Hq,Hj) (3.5)

where

dist(Hq,Hj) = ‖Hq−Hj‖2 = (Hq−Hj)
T (Hq−Hj) =

d∑
i=1

(hq(i)−hj(i))2
(3.6)

where d is the dimension of the CFV.

A further background on FV feature encoding, compression, kNN, and

kd-tree based retrieval can be found in chapter 2.
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3.6 Experimental Results

We consider evaluation with respect to within-scenario and cross-scenario,

by using the DQ query set by itself and alongside the DP product set, re-

spectively.

3.6.1 Quantitative

For quantitative evaluation, we focus on the within-scenario for the street

(DQ) dataset since this poses the most challenging images for both query-

ing and retrieving compared to the product dataset (DP).

Given a query image Iq, the retrieval procedure can rank all n images in

a dataset by similarity. If we denote Rel(i) as the groundtruth relevance

between q and the ith ranked image, we can use a precision to evaluate the

ranking of the top k retrieved images with respect to the query Iq:

Precision@k =

∑k
i Rel(i)

N
(3.7)

In order to ensure that correct ranking results in a precision score of 1, we

denote N as a normalization constant.

Our street (DQ) dataset labels the single most dominating upper body cloth-

ing category in each image. Therefore, Rel(i) will yield a binary value as

we only consider one attribute of the query image.

Considering within-scenario for the street dataset, we achieve a Preci-

sion@5 of 0.61. This result is roughly comparable to the state of the art

approaches which also use challenging real-world street datasets (such as

[52]), but our approach also has increased efficiency and is designed for a

mobile infrastructure. We focus on k = 5 since the top results are the most

important, especially for our mobile application where screen size is very

limited for displaying visual results. Note that when k is large enough, the

precision will ultimately increase to near 1.
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3.6.2 Qualitative

Our retrieval results are reported qualitatively in Figures 3.5 and 3.6 for

the within and cross scenario, respectively. We can see that the results

appear promising with relevant clothing results of a similar colour and

shape/texture to the query image generally retrieved.

The upper body clothing detection and segmentation stages are critical

since they initialize the system. If they are inaccurate, significant errors

can be propagated forward to the rest of the system.

Inaccuracies in the dimensions of the bounding box generated by upper

body clothing detection can occur when the face is at an angle and not di-

rectly aligned with the camera sensor, or in other cases where ViolaJones

face detection can be inaccurate. To address this, a more comprehensive

upper body person detector could be employed alongside non-maximum

suppression to select the best bounding box candidate, but this is chal-

lenging to implement on mobile, and whilst it can be less computationally

intensive than full body pose estimation, it is still a relatively intensive

operation with respect to our overall approach.

Segmentation inaccuracies appear to generally be caused by inherent is-

sues such as when scenes contain a garment that is a very similar colour to

the background or skin, or there is poor illumination present, or significant

clothing occlusions, such as long hair. However, when skin segmentation

fails and our algorithm decides to instead use the initial segmentation re-

sult to establish features, such as in Figure 3.6i, we see that the results can

still be reasonably relevant although may not be the most accurate.

3.6.3 Implementation

The server stage is implemented in Python and C++ and deployed on a

2.93GHz CPU. A graphical user application is designed for the client side

which is implemented in Java and C++ using the Android SDK, NDK, and

OpenCV library. Hence, the demonstration application is intended for An-

droid smart phones - specifically, we consider the popular Samsung Note

4 (Quad-core 1.3 GHz Cortex-A53 and Quad-core 1.9 GHz Cortex-A57) for
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(A) (B) (C) (D)

FIGURE 3.4: Mobile application: (a) home, (b) search query, (c) search

results, (d) local retailer location for top product result.

demonstration and timing analysis. For demonstration, we design features

such as photo querying, viewing top search results, product information

(by linking to the relevent product URL), and displaying similar products

from nearby local retailers on a map. Screenshots for these different as-

pects of the app can be seen in Figure 3.4. For evaluation purposes, we set

all products to one retail location so that only the more important visual

relevance is evaluated and not location relevence. Otherwise, the map

coordinates of the retailer’s local stores can be used and compared by the

system to the GPS location of the smart phone user. Note that the server

also sends the clothing class label belonging to the top retrieved result to

the mobile client as a rough classification that can be displayed in the app.

3.6.4 Computational Time

Our system takes on average approximately 1 seconds for client processing.

Although, we do not fully investigate transmission timing, our system can

achieve a total response time of 3 seconds to retrieve results from the

server across a 4G data network with excellent smart phone reception.

Table 3.2 lists the computational times of the various stages of the system

performed on the client and server. For reliability, the average timings

consider a random sample of 10 images with each image in the sample

being processed 10 times. These results show that the feature extraction is
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TABLE 3.2: Computational Time

Client Time (s)

Person Detection 0.16

Clothing Segmentation 0.21

Feature Extraction 0.43

Feature Encoding 0.05

Server Time (s)

Search and re-ranking 0.22

our biggest bottleneck. This can be improved by optimizing the code. Our

approach is slower than the real time work of [9], however their approach

is for a different application, is not implemented in a mobile framework

and their dataset is captured on a clean white background. Our approach

is much faster than the work by [5] which works offline, requiring 2− 3GB

of memory.

3.7 Summary

In this chapter, a complete novel mobile client-server system is presented

for automatic visual clothes searching of challenging real-world images. A

smart phone user can capture a photo (or select a social networking photo)

of somebody wearing clothing they like and retrieve similar clothing prod-

ucts that are available at nearby retailers. Our system first identifies the

clothing region in the image and segments it from the background using

a fast DenseCut implementation. HoG, LBP and novel Lab features are ex-

tracted to describe the clothing shape, texture and colour. To enable large

scale retrieval on mobile devices, PCA reduces the feature dimensions,

Fisher Vectors encode the features, and the encodings are compressed

by product quantization. The compressed features are sent to the server

alongside the phone’s GPS coordinates. Similar products are retrieved

from the database, re-ranked by retailer location and the resulting top

product images (including product URLs) are downloaded to the smart

phone. The user can then view a map detailing where they can locally pur-

chase the products or click their associated URLs for purchasing online.
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Parts of the research in this chapter have been published in [4] and notably

citated by Yamaguchi et al. [27] and Jia-Lin Chen et al. [26]. Our work

remains novel as our paper has been improved upon in this dissertation

and it also targets the specific application of mobile retrieval with a highly

practical, efficient and uniquemobile client-server framework. An avenue

for future work is to collect our own large scale dataset to address the lack

of such datasets in the retrieval field and perform a more comprehensive

evaluation.
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FIGURE 3.5: Within-scenario results: a sample from each clothing class is

queried and the top 3 upper body clothing photos are displayed. Retrieved

images that do not match the query clothing category are highlighted.
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(A) (B) (C) (D)

(E) (F) (G) (H) (I) (J)

FIGURE 3.6: Cross-scenario results: examples of top retrieval candidates.

Note that whilst the worn product images are depicted on the right in

each query/result pair, their corresponding unworn product images are

used for feature extraction.



Chapter 4

Augmented Reality Mirror

In this chapter, a new highly efficient approach is proposed for clothing

parsing on mobile devices, based on the discussion of clothing and mobile

devices in chapter 1. Related approaches are also discussed in chapter 3

and chapter 6 for use in product retrieval and person identification appli-

cations respectively. Our new approach leads to a demonstration of recol-

oring and retexturing upper body clothing in an augmented reality mirror

application for mobile tablet devices. A tablet user places the tablet in its

stand on a desk, selects an ecommerce product with the desired colour/-

texture to try on, and then the tablet acts similarly to a mirror, display-

ing a live fullscreen video stream from the integrated camera augmented

with the rendered product colour/texture as shown in Figure 4.1. The sys-

tem also predicts semantic attributes for clothing colour, neckline, sleeve

length and brand, which may be useful in applications such as fashion

analysis, customer profiling, and clothing retrieval.

Augmented Reality (AR) is the concept of adding virtual elements to real

world scenes. Virtual Try On (VTO) is the concept of allowing a user to try

on garments virtually to check the fit and look of garments on a textured

body model of themselves usually via an internet connected PC without

needing to visit the retailer. In contrast to AR, the VTO concept is tradi-

tionally a virtual reality environment in which the real world is entirely

replaced with a simulated one where the scene, user and clothing are mod-

eled and computer generated.

51
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(A) Real-time mirror (B) Product selection (C) Re-coloured dress

FIGURE 4.1: Our mobile augmented reality mirror application.

Virtual try on is revolutionizing the clothing retail and fashion industries

[158]. However, existing VTO methods can be complex to implement and

are computationally intensive requiring an offline setup with manual user

interaction for 3D body modeling and garment design. It is also challeng-

ing to model and texture a 3D representation of the user which is both pho-

torealistic and anthropometrically accurate given a practical non-invasive

consumer driven input such as a single 2D photo. Augmented Try On (ATO)

can be achieved by fusing the concept of ARwith VTO, allowing for systems

which are more real-time and photorealistic to be designed with a focus

on visualization of the look/style of the retextured garment worn by the

user rather than on checking the fit. This fusion may be particularly well

suited for visualization of printed textures on common garments whose

designs do not vary as much as other types of garment and for which users

will likely already know their size. It is designed to be practical for a con-

sumer and unlike most related work which utilizes high-end computer

vision cameras and special lighting, no expensive high-end hardware is

required or used for obtaining results.

Segmentation of the textured garment is required for our augmented re-

ality framework in order to find the flexible textured surface which we

wish to reconstruct and also for allowing the garment to be recolored dur-

ing rendering. We consider the segmentation of loose T-shirts since they

exhibit highly non-rigid properties and often feature a printed texture,
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which is required for our reconstruction and retexturing methods. The

segmentation of clothing worn on a subject is challenging due to the wide

diversity of clothing designs, the complexity of scene lighting, dynamic

backgrounds, and self/third-party occlusions.

The main previous real-time work by Hilsmann and Eisert [51], described

in Section 2.1.1, has major aforementioned a prioris such as T-shirt color

and a simple rectangular texture, and the authors only show subjective

visual results for a specific T-shirt. They do not take advantage of HSV-

colorspace which features improved hue invariance to lighting over RGB-

colorspace by separating the illumination channel from the color. Our

method is perhaps more closely related to the hue analysis part of the

CamShift algorithm [136].

We describe a clothing segmentation method for single images and video

which can yield semantic per pixel labels for upper body clothing of per-

sons in real-time, as summarized in Figure 4.2. Our approach is primarily

designed to benefit mobile devices and emerging augmented reality appli-

cations [21]. These augmented applications include computer gaming and

augmenting localized adverts or statistics onto players’ shirts for close-up

shots in live TV/internet broadcasting. Shirts worn by sports teams, such

as in major league basketball, are often uniformly coloured with text and

logos to indicate the player, team, and sponsors. For this reason, we focus

on the case of predominantly monochromatic tops, and attempt to addi-

tionally segment any textures on themwhich can be useful for the purpose

of retexturing.

Thus, the main contributions can be summarized as:

1. An efficient automated method for accurate semantic segmentation

of persons wearing primarily uniformly coloured upper body cloth-

ing which may contain textured regions. Semantic attributes for

clothing colour, neckline, sleeve length and brand are predicted. Spa-

tial priors are employed and each set of resulting cloth and texture

contours are semantically labelled as such and associated to a face.

Unlike most previous work which evaluates visually or with respect

to applications (such as recognition), we evaluate the segmentation

directly and quantitatively against a dataset of 100 people.
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FIGURE 4.2: Clothing parsing and surface reconstruction for our mobile

augmented reality mirror application.

2. An initialization scheme where initial points on the cloth are located

by estimating skin colour and employing an iterative colour similar-

ity metric to locate the clothing. This can prevent initializing cloth

points on the skin in the case of clothing with deep neck lines such

as vests and many female tops.

3. A mobile augmented reality mirror application to demonstrate the

method.

4.1 Datasets

A clothing dataset consisting of people in frontal poses wearing predomi-

nantly uniformly coloured upper body clothing is required to evaluate our

model. For this purpose, we utilize the Images of Groups [157] dataset. The

dataset features challenging real-world Flickr photos of groups of people,

enabling our method to detect and parse multiple persons per image.

A testing subset of 100 persons is formed from images featuring predom-

inantly uniformly coloured upper body clothing and does not feature
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groups where clothing of adjacent persons is of a very similar colour and

in direct contact. A training subset of 50 persons is randomly selected from

remaining images in the dataset for use in Sections 4.2.2 and 4.2.3.

For demonstration only purposes, we also collect several Creative Com-

mons licensed images from Flickr. This enables us to show a wider variety

of challenging clothing parses.

For the evaluation of clothing logo recognition, the FlickrLogos-32 is a

popular dataset, but unfortunately the classes are too general (not clothing

focussed) and the class set does not consist of the logo classes found in

the aforementioned clothing dataset. Also, we are interested in clothing

textures where the texture is not necessarily a logo or solely consisting

of a logo, such that the brand can be inferred if the texture is a unique

design. Thus FlickrLogos is unsuitable for this task. In this case, we collect

a small dataset of 75 clothing texture samples exhibiting 10 logo classes,

plus an extra unknown class containing 15 images of other logos and cloth.

To collect the images, we design a script to crawl Google Images using

keywords such as Hollister T-shirt and manually ensure that the dataset

includes instances where the cloth is deformed or partially self-occludes

the logo. We keep the dataset small to enable fast research and prototyping

and suggest it can be easily extended as future work.

4.2 Clothing Parsing

4.2.1 Pre-Processing and Initialization

For pre-processing, the single image or video frame is converted from

RGB to the more intuitive and perceptually relevant HSV colour-space.

The corresponding illumination channel and image dimensions are then

normalized, giving image N . This helps to alleviate, to some extent, the

non-uniform effects of uncontrolled scene lighting. Additionally, a 3 × 3

box blur is performed as a simple denoising measure, yielding image I.

We let the H, S, and V channels correspond to I0, I1, and I2 respectively and

use the OpenCV HSV intervals I0 = [0, 180] and I1,2 = [0, 255]. For our image

notation, we also refer to the origin as the top left of the image.
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A chromatic/achromatic mask is defined where achromatic pixels are

those with illumination extremes or low saturations:

chrome(I) = 0 ≤ I0 ≤ 180 ∧ 26 ≤ I1 ≤ 255 ∧ 26 ≤ I2 ≤ 230 (4.1)

Viola-Jones face detection is performed on image N as a prerequisite for

our segmentation approach. This technique is based on a cascade architec-

ture for reasonably fast and accurate classification with OpenCV’s popular

frontal face trained classifier cascade. We limit the region of interest for

object detection to the top half of the image in order to further increase

efficiency. For each face detected, the segmentation procedure in the fol-

lowing sections is performed.

4.2.2 Spatial Priors

To increase robustness against hues/intensities in the background which

are similar to those on the clothing, and to increase computational effi-

ciency, we constrain segmentation of each person to a region of interest

(ROI). The size of this region is determined by detecting faces in our train-

ing dataset (see § 4.4) and studying the upper body clothing bounds, given

by anatomy and pose, relative to the detected face size and position. As

a result of these studies, spatial priors are defined as 5 times the detected

face height and 4.5 times the face width and positioned as follows:

crop(I) = Rect(Point(Fx − 1.75Fwidth, Fy + 0.75Fheight),

Point(Fx + 2.75Fwidth, Fy + 0.75Fheight + 5Fheight))
(4.2)

where the F vector for each person is output by face detection. The bounds

of the ROI are also clipped to within the image dimensions.

4.2.3 Locating Points on the Clothing

Points on the clothing are required in order to initialise segmentation.

Previous work often employs a scaled distance from a detected face to

achieve this. However, this approach is susceptible to initialising clothing
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points on the skin in the case of clothing with deep neck lines such as vests

and many female tops, and hence the segmentation has reduced accuracy.

We propose a solution to this problem. The faces detected on the training

dataset in the previous section are scaled to within 80 × 80 pixels, whilst

maintaining their aspect ratios. We study the average face and define a

region which tends to primarily be skin pixels and avoids occlusion by

long hair:

FSkin(I) = Rect(Point(Fx + 15s, Fy + 36s), Point(Fx + 65s, Fy + 56s)) (4.3)

where the scale factor s = Fwidth/80. The skin colour α is estimated by

computing the mean of the pixels in the FSkin(I) region.

A sparse iterative procedure is established across the x = [Fx, Fx + Fwidth]

and y = [Fy + Fheight, Fy + 2Fheight] intervals, shifting a 5 × 5 pixel window.

During each iteration, the mean colour β of the window is computed. The

HSV colour similarity between the window’s mean β and the estimated

skin colour α is calculated. The two cylindrical HSV colour vectors are

transformed to Euclidean space using the following formulae:

x = cos(2I0) · I1/255 · I2/255, y = sin(2I0) · I1/255 · I2/255, z = I2/255 (4.4)

The Euclidean distance d is then computed between the 3D colour points.

If d ≤ 0.35, we assume the window primarily contains skin pixels. The

bottom of the clothing’s neck, Necky, is located as the lowest ‘skin window’

within the aforementioned x and y intervals. Note that in the case that the

subject is wearing clothing which is so similar in colour to their skin that

the colour similarity distance remains below the threshold, we establish

a cloth sampling window located around the x-coordinate of the face cen-

tre at the end of the y-interval. Otherwise, in the typical case, the cloth

sampling window is located beneath the garment’s neck at:

sample(I) =Rect(Point(Fx + 0.25Fwidth, Necky + 1.5γ),

Point(Fx + 0.75Fwidth, Necky + 1.5γ + 0.25Fheight))
(4.5)

where γ refers to the aforementioned window size of 5 pixels.
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TABLE 4.1: Segmentation Parameters

Segmentation Plane S
Parameter Hue I0 Intensity I2

q 16 15
λ 50 3

4.2.4 Chromatic vs Achromatic

We consider an approach to segment both chromatic (coloured) clothing

and achromatic (black, white, or grey) clothing. The segmentation of achro-

matic clothing can pose a much greater challenge since it is more sensitive

to the illumination present in the scene. We design a histogram based

approach because this is very efficient and can have a high accuracy on

segmenting clothing which is primarily monochromatic (i.e. plain and not

multi-coloured). In such cases, it can also be suitable for semantic segmen-

tation of printed/stitched textures within the clothing. First, we determine

the chromatic ratio of the clothing which is estimated by taking the mean

of the binary image chrome(I) (see Equation 4.1) with the sampling ROI of

Equation 4.5 applied:

Chromatic Ratio = r =
1

0.5Fwidth · 0.25Fheight

∑
x,y∈sample(I)

chrome(I(x, y)) (4.6)

Second, the image plane for segmentation is determined based on whether

the clothing is primarily achromatic or chromatic:

Segmentation Plane = S =

{
I0 if r ≥ 0.5

I2 otherwise
(4.7)

Based on these two cases, we empirically define some segmentation pa-

rameters in Table 4.1.
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4.2.5 Clothing Segmentation

This section describes our histogram based segmentation routine. A his-

togram {g}i=1...q is computed for image plane S with the ROI sample(I) ap-

plied:

gi =
∑

x,y∈sample(I)

δ[b(x, y)− i]. (4.8)

where δ is the Dirac delta function and let b : R2 → {1 . . . q} be the func-
tion which maps the pixel at location S(x, y) to the histogram bin index

b(x, y). We empirically choose to quantize to q bins as this provides a

good compromise between under-segmentation (due to variation in cloth

hue/intensity caused by lighting) and over-segmentation (due to objects

with similar hues/intensities which are in direct contact with the cloth-

ing). Quantization reduces the computational and space complexity for

analysis, clustering similar color values together. The histogram is then

normalized to the discrete range of image intensities:

hi = min

(
255

max(g)
· gi, 255

)
, ∀i ∈ 1 . . . q (4.9)

where h is the normalized histogram, g is the initial histogram, and sub-

scripts denote the bin index.

Image S is back-projected to associate the pixel values in the image with

the value of the corresponding histogram bin, generating a probability

distribution image P where the value of each pixel characterizes the like-

lihood of it belonging to the clothing (i.e. histogram h). The resulting

probability image is thresholded to create a binary image:

P (x, y) =

{
255 if P (x, y) ≥ λ

0 otherwise
(4.10)

Scene conditions such as illumination can alter the perceived hue/intensity

of the cloth, so we empirically set the λ threshold relatively low (see Table

4.1).

We further constrain P by considering chrome(I), the computed chromatic

mask. If S = I0, we let P = P ∧ chrome(I). Otherwise, if S = I2 and r ≤ 0.05,

we constrain with the achromatic mask, letting P = P ∧ (255− chrome(I)).
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(A) Detection (B) Chromatic mask (C) Backprojection

(D) Segmentation (E) Attributes

FIGURE 4.3: Our segmentation and parsing pipeline.

In the unlikely case that the sampled clothing pixels are mostly achro-

matic but not entirely (i.e. for 0.05 < r < 50), we do not constrain P with

the achromatic mask as it can exhibit significant holes at the location of

coloured cloth pixels.

Morphological closing with a kernel size of 3 × 3 is employed to remove

small holes, followed by opening, with the same kernel, to remove small

objects. Experimentally, this has been found to fill small holes in the edges

of the clothing caused by harsh lighting, and remove small objects of a

similar hue/intensity to the cloth which are in contact with it from the

camera’s perspective.



Chapter 4. Augmented Reality Mirror 61

Suzuki-Abe border tracing is employed to extract a set T of contours with

corresponding tree hierarchy H. We choose to limit the hierarchy to 3

levels deep as this can provide sufficient information for the clothing con-

tour, potential contours for a printed/stitched texture within, and potential

holes within the texture contour(s). The top level of the hierarchy is iter-

ated over, computing the bounding box area of each contour. The area is

approximated to that of the bounding box for efficiency and experimen-

tally this appears to be acceptable. We define the largest contour Tmax as

the clothing. Therefore, there is robustness to objects in the scene which

have a similar hue/intensity as the clothing but are not in contact with it

from the camera’s perspective. An initial clothing segmentation mask M̃c

can be defined by filling Tmax.

The initial clothing segment M̃c can suffer in accuracy in cases of harsh

illumination or patterned clothing. Robustness to these cases can be in-

creased by sequentially performing morphological closing and opening

with a large kernel size. The reason for not employing this larger kernel

on the first iteration of morphological operations is that this can decrease

accuracy if it is not just the clothing segment of interest present, but also

other large objects of similar hue/intensity in the background. Since the

morphological processes can create additional contours, border tracing is

computed again to extract the clothing as one segmentMc.

4.2.6 Logo/Graphics Segmentation

Existing clothing segmentation methods do not purposely attempt to se-

mantically segment printed/stitched textures within clothing masks. Seg-

mentation of any potential printed designs on clothing can be used tomake

the clothing cue more informative. We hypothesize that this could be use-

ful for the purpose of re-texturing in emerging augmented reality clothing

applications.

We iterate through the contours T in the second level of the contour hier-

archy H , computing their areas. Unlike the area computation for the cloth

contour, we do not approximate by bounding boxes here because textures
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can have more variation in shape, which may result in inaccurate area es-

timations. We consider contours with areas above a dynamic empirically

defined threshold of 0.25FwidthFheight to belong to a printed texture on the

clothing. If no contour above the threshold is found, then we assume that

there is no texture. Otherwise the extracted contours are filled and the

regions of their corresponding hole contours in the third level of the hier-

archy are subtracted (if they exist) from this result, yielding the texture

maskMt.

4.2.7 Clothing Attributes

Given a query image, the method has so far yielded per pixel labelling for

clothing segmentationMc, texture segmentationMt, and background.

A final parsing stage is presented to assign clothing colour, neckline, sleeve

length, and brand attributes as these attributes can be important for appli-

cations such as product retrieval (refer to chapter 3), subject identification

(refer to chapter 6), and fashion analysis.

Color Name The English language contains eleven main colour terms:

‘black’, ‘white’, ‘red’, ‘green’, ‘yellow’, ‘blue’, ‘brown’, ‘orange’, ‘pink’, ‘pur-

ple’, and ‘gray’. The estimated clothing colour attribute will be chosen

from this set. For a background of these main universal colour terms that

are used across many different cultures, the reader is referred to [137] and

[138].

The mean clothing colour in Lab representation (Lc, ac, bc) is computed

over the clothing segmentationMc. In order to convert this numeric HSV

representation of clothing colour to one that is more meaningful to hu-

mans, the popular CSS3 colour names by the World Wide Web Consortium

[139] are considered. CSS3 is the latest evolution of the Cascading Style

Sheets language, a language for describing the rendering of structured

documents (such as HTML and XML) on various media such as screen or

paper. CSS3 colour names are represented in a file which maps certain

colour strings to RGB colour values. The mappings for the eleven main

colours mentioned above are extracted from this file and converted to Lab
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colur space, allowing the mean clothing colour value to be matched to the

closest value in the list, giving a semantic attribute for clothing colour. The

Lab colour space is used for the matching process since it is perceptually

uniform, ensuring that the difference between two colors as perceived by

the human eye is proportional to the Euclidian distance ∆Eab within the

color space. The distance between (Lc, ac, bc) and a colour (Li, ai, bi) in the

colour name set can be calculated according to the Lab CIE76 formula:

∆Eab(i) =
√

(Li − Lc)2 + (ai − ac)2 + (bi − bc)2 0 ≤ i ≤ 10 (4.11)

where ∆ denotes difference, E is the German word for sensation, Empfind-

ung, and ab identifies this as the CIE76 formula. Minimizing the distance

across the colour name set yields the semantic colour name of the clothing:

î = arg min
i

∆Eab(i) (4.12)

Neckline In order to predict the neckline of the garment, we make the

assumption that the centre of the garment’s neckline is located at the same

x coordinate as the centre of the detected face. We find this assumption to

be valid for the majority of cases where the subject of the photo is standing

planar to the camera. Next, distances to the garment contour T are calcu-

lated to locate the closest point p on the contour that lies directly beneath

this x coordinate. To calculate the gradient of one side of the neckline, we

iterate up the garment contour from point p until the gradient approaches

zero. The gradient is then extracted at 5 keypoints along this section of the

contour. A simple sanity check is carried out on the estimated gradients

of both sides, in case for example there is any major anomoly caused by

incorrect estimation of p due to an unusual face position. The same pro-

cedure is repeated for the other side of the neckline, and the gradient key

points are averaged.

Samples of images containing crew-necks and v-necks are used to calculate

an average garment gradient vector for each respective neckline class. The

neckline feature vectors are weighted to favour the elements closest to the

centre point p. Finally, k-Nearest Neighbors is employed to classify the

neckline.
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Sleeve Length Related work tends to use pose estimation to locate the

position of the arms and then applies a learning algorithm on the low

level features of the arms. Without performing computationally intensive

pose estimation and low level feature learning, this becomes an evenmore

challenging task. To simplify the task, we assume that the arms usually

appear in a specific area of the image (such as by the sides of the body). For

each image in the training dataset, a bounding box is manually specified

for each of the arms (from the shoulder to the hand) and the result is

labelled as either ‘sleeveless’, ‘short sleeves’, or ‘long sleeves’. From the

manually specified arm bounding boxes in the training set and the ratio to

their face bounding box dimensions, dynamic arm bounding boxes can be

established in a new image. The amount of skin pixels in the mean of the

arm bounding boxes in an image can then be classified based on learned

thresholds.

Brand Logo recognition is an active area of research that has been receiv-

ing increased attention in the field of computer vision [140–152] as it can

be used to benefit the recognition of products and organizations. There

has beenmuch focus on printed logo retrieval where the logo is in a simple

image under ideal conditions and does not need to be located first [150].

Whereas, detecting logos in real world scenes has not received as much

attention [140–149, 151–153] and is generally more challenging, especially

as logos must be located in the photo prior to performing the recognition

task. Various logo detection methods have been proposed for real world

photos [141–149, 151, 153], videos [140, 152], and documents [154].

These approaches for real world photos can be grouped into the categories

of query based [141, 142, 144–146, 153] and model based [143, 147–149,

151]. The main difference being that in a model based approach, a model

is trained on a set of logos for each logo class, rather than just using one

query logo for detection. Hence, the model based approach can be more

accurate.

Logos on clothing exhibit non-rigid deformation and perspective tilt (based

on camera and clothing positions) that cause tough challenges for detec-

tion. SIFT matching [155] is comonly used for logo detection, but by design

it does not consider these challenges. Anti-distortion affine scale invariant
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FIGURE 4.4: Clothing brand classification using random forests.

feature transform (ASIFT) matching [156] can be used to overcome these

shortfalls. Both SIFT and ASIFT are computationally intensive, but ASIFT

is even more so. Thus for offline high performance detection, ASIFT could

be employed. However, the focus in this chapter is on highly efficient

algorithms for mobile devices.

Therefore, this investigation proposes a model based approach by extract-

ing multilevel Histograms of Oriented Gradients (HOG) and multilevel

uniform Local Binary Pattern (LBP) on the detected clothing texture (if

present). HOG and LBP are employed for their high efficiency and perfor-

mance, as discussed in chapters 3 and 6. Principal Components Analysis

(PCA) is then employed to further improve the performance by reducing

the dimension of the multilevel HOG and LBP feature vectors to 64D.

Random forests (RF) are employed for the purpose of classifying the cloth-

ing brand based on the PCA feature vector for the textureMt since they are

efficient multi-class classifiers that can handle high dimensional features

and are robust to noise and imbalanced datasets. A random forest classi-

fier consists of a collection of tree-structured classifiers {h(x,Θk), k = 1, . . .}
where {Θk} are independent identically distributed random vectors and
each tree casts a unit vote for the most popular class at input x. A back-

ground on random forests is presented in § 2.5. Figure 4.4 depicts the

clothing brand classification process.
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4.3 Augmented Reality Framework

Figure 4.2 gives an overview of our clothing parsing and augmented reality

pipeline. The augmented reality framework consists of the following steps:

1. Initialization of segmentation and reconstruction (refer to earlier in

this chapter and § 5.1 respectively).

2. Themobile tablet device user downloads the image of a clothing prod-

uct that they wish to try on from an ecommerce store. The product

should be predominantly uniformly coloured and similar to the cloth-

ing they are wearing but in a different colour or art work variation.

Hence, the method can work best for items such as plain/printed/em-

broidered T-shirts and tank-tops.

3. The dominant colour and any texture (such as graphic art work

or logo) are extracted from the product image by using the simple

method described in § 3.3. The product colour is then taken as the

mean of the segmented product image and the product texture as

the largest contours (if any) within the segmentated clothing contour.

The product image is hereafter referred to as the virtual clothing.

4. The user’s upper body clothing is automatically segmentated accord-

ing to the method presented earlier in this chapter.

5. Point correspondences are tracked (refer to Chapter 5.1).

6. Sparse 3D points are reconstructed (refer to Chapter 5.1).

7. The rectangular cloth surface containing the clothing texture is geo-

metrically reconstructed (refer to Chapter 5.2).

8. Illumination is recovered from the textured part of the cloth (de-

scribed in this section).

9. The augmented scene is rendered and displayed (described in this

chapter). The user can then choose to recolor and retexture the gar-

ment with different product designs.
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4.3.1 Illumination Recovery

The application of illumination recovery within our framework is two-fold.

Rather than simply overlaying a new colour or texture, we wish to remove

the existing texture (if there is graphic art work or a logo present on the

clothing) and then apply a new colour or texture of a potentially different

shape/size. We recovered the dominant clothing color during the segmen-

tation initialization stage, so this leaves the illumination to be recovered

in order to reconstruct the appearance of parts of the cloth which are oc-

cluded by any real texture. Secondly, wemodulate the alpha channel of the

virtual texture that is discussed in chapter 5 with the recovered illumina-

tion to increase realism of the augmentation within the real scene. Given

the segmentation mask of the real texture which we have obtained, we

can treat the mask as unknown pixel values and interpolate to reconstruct

the illumination values, yielding recovery of the cloth with any graphic art

work or logos removed. Inpainting is an advanced interpolation scheme

used to reconstruct unknown or lost parts of an image.

Traditionally, inpainting methods have focussed on recovering small

cracks in paintings. Inpainting on large areas remains a challenging task,

and even more so in real-time. Popular inpainting methods [166–168] are

generally intended for offline use or for near-online use interpolating very

small unknown areas. Although slow for online use, Telea’s approach is

significantly faster than the others mentioned.

We employ the fast inpainting approach presented by Telea. However, to

support the online nature of our framework, we must inpaint at a reduced

resolution based on the characteristic ρr ∝ 1/ρa where ρr is the resolution

and ρa is the area of the texture mask. For the purpose of demonstration,

we could limit results like previous work to textured clothing where the

texture consists of small to medium contours. However, our focus is on a

practical method with robustness to different clothing designs, and many

printed T-shirts in our random sample of the population feature large area

designs, so we employ a larger window for inpainting than previous work.

The columns in Figure 4.5 show the illumination channels before and af-

ter illumination recovery by inpainting. The first row shows the best case
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where the high frequencies across the texture are smoothed out. The sec-

ond row shows the worst case where there are significant folds present

within the textured region. These folds exibit harsh intensity changes

(high frequency data) which when inpainted, are overly-smoothed, reduc-

ing the realism of the folds. There is a compromise here because reducing

the window size can improve some regions of this result, however a small

window can also produce artifacts when interpolating across wide un-

known regions. The retexturing results in Figure 5.8 show that when the

texture is alpha-modulated by the recovered illumination, the artifacts

around the folds are not noticeable and the lighting is convincing. Thus

this is a reasonable result for interpolating across a large unknown area.

Sharp texture edges are filtered out and although there are some notice-

able artifacts inherent to interpolating large areas (especially in real-time),

smooth intensity changes are generally preserved.

FIGURE 4.5: Illumination Recovery: columns show before and after

whereas rows show best case and worst case respectively.

4.3.2 Rendering

OpenGL is employed to render the output according to the following algo-

rithm:
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1. A frame is captured from the integrated camera sensor of the tablet

device.

2. The captured frame is rendered fullscreen in the mobile app, such

that the user can see themselves in real-time like a mirror.

3. The virtual clothing colour fills the segmentation mask of the user’s

clothing.

4. If present, the virtual clothing texture (such as graphic art work or

logo) is mapped to the recovered 3D surface mesh.

5. The segmentation mask of the user’s clothing is applied to the recov-

ered illumination (i.e. the interpolated illumination channel for an

untextured garment) and used to modulate the alpha channel of the

virtual clothing color and texture, hence increasing the realism of the

augmentation within the real scene.

4.4 Experimental Results

In order to analyse the accuracy and robustness of our segmentation ap-

proach, we experiment with various printed T-shirts (different T-shirt col-

ors and printed textures) worn on various subjects against various back-

grounds. We study the quality of the clothing segmentation, robustness

to noise, qualitative evaluation of predicted clothing attributes, and the

computational timing. These results are reported in Table 4.2, alongside a

comparison with the state of the art. Augmented reality results are mainly

discussed in the next chapter, once the re-texturing method has been pre-

sented.

To compare the computational efficiency of our approach to the closest

state of the art, we similarly consider static image regions for each person

with resolution 200× 300. Note that the timing result excludes the texture

based clothing brand labelling stage in subsection 4.2.7 as it may be un-

representative using random forests on a small dataset. Our approach,

excluding pre-processing (Section 4.2.1), achieves on average 2ms per per-

son using a 2.93GHz CPU core and also runs in real-time when tested on a
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Proposed

Method

Yang

and Yu

[9]

Yamaguchi

et al. [27]

Wang

and Ai

[45]

Gallagher

and

Chen [8]

Timing 2.0ms pp.
2.9GHz
core

16.5ms
pp.

3.2GHz
core

20-40s pp Offline Offline

Seg. Accu-

racy

0.97 F-score N/A 84.7% (full
pose only)

92.8% 89.4%

Parses

Logo

3 7 7 7 7

Semantic

Attributes

3 colour,brand,neckline,sleevelength

7 3clothingcate-gories
7 7

TABLE 4.2: Indicative only - different datasets. Legend: pp = per person.

Samsung Galaxy Tab S 10.5 tablet with a Exynos 5 Octa CPU (1.9Ghz Quad-

core + 1.3 Ghz Quadcore). Thus our method is over 88% more efficient

than results reported by [9] under similar conditions, with the exception

that they employ a faster CPU core (3.16GHz). Our overall system, includ-

ing pre-processing (face detection and simple denoising), is fast, achieving

results at an average rate of 25fps (frames per second) for segmenting

one person given an input resolution of 480 × 640 pixels. The equivalent

computation time is dissected as 38ms pre-processing per image and 2ms

clothing segmentation per person. Face detection is our biggest computa-

tional bottleneck, so for high resolutions, the input to face detection could

be downscaled. The segmentation procedure could easily be parallelized

for each face detected, if using a multi-core CPU and the average number

of persons to segment justifies the threading overhead. Themobile version

of the application has been implemented for Android using the Android

SDK, NDK, and OpenCV library.

Segmentation accuracy is reported using the best F-score criterion: F =

2RP/(P + R), where P and R are the precision and recall of pixels in

the cloth segment relative to our manually segmented ground truth. We

achieve an average F-score over the entire testing dataset of 0.97. Since the

F-score reaches its best value at 1 and worst at 0, our approach shows good

accuracy. Additionally, by visual inspection of Figure 4.7, we can see that
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our approach can semantically segment clothing of persons in various diffi-

cult uncontrolled scenes with some robustness to minor occlusions (Figure

4.7c) and minor patterns (Figure 4.7b). Clothing segmentation literature

tends to report accuracy with regards to applications (such as recognition

or classification) rather than directly on segmentation. Although not di-

rectly comparable, the performance is higher than that reported in [45],

using mostly images from the same dataset.

We also consider robustness to one of the most common forms of noise: ad-

ditive white Gaussian noise. This is caused by random fluctuations in the

pixels. Naturally, this could be easily filtered but our aim is to demonstrate

robustness. If the input image is represented by Iinput, and the Gaussian

noise by Z, then we can model a noisy image by simply adding the noise:

Inoisy = Iinput+Z. Z consists of 3 planes which correspond to the RGB planes

of Iinput, and is drawn from a zero-mean normal distribution with standard

deviation σ. We study the effects of noise on a randomly selected image of

a single person. Figure 4.8a depicts a graph of accuracy (F-score) versus

the noise standard deviation (255σ) which shows our approach can handle

significant noise. Note that we multiply σ by 255 since we consider integer

images, and there is no data point plotted for σ = 0.9 because face detec-

tion mistakenly detects two faces and thus there are two results. Noise

can positively affect our segmentation, for example at σ = 0.2, if noise pix-

els with hues similar to the cloth are established in dark clothing regions

which originally had many unstable hues. At σ = 1.0, depicted by Fig-

ure 4.8b, the face detection accuracy continues to decrease; however, the

corresponding clothing segmentation in Figure 4.8c remains reasonably

accurate. The segmentation fails entirely at σ = 1.1 since the prerequisite

of face detection fails to detect any faces.

Preliminary results for clothing attribute labelling are promising, as seen

in Figure 4.3. Furthermore, Figure 4.6 presents examples of logo classi-

fication for the Hollister class. We can see that when the usual style of

Hollister bird logo or text is classified, it often results in a correct classi-

fication. However, when the graphics are in a more unusual style, the

classification fails mainly due to the lack of training data for such a style.

For future work, a larger clothing dataset can be collected for a compre-

hensive quantitative analysis of the semantic attributes generated by the
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FIGURE 4.6: Examples of logo classification for the Hollister class.

heuristic and random forest classifiers.

Our approach is subject to some limitations. We assume that there are no

significant objects of a similar hue/intensity to the chromatic/achromatic

clothing which are in direct contact with it from the camera’s perspective,

and the clothing is predominantly uniformly coloured (i.e. it is not sig-

nificantly patterned). These limitations should not significantly affect the

suggested computer games and broadcasting applications for the purpose

of augmented reality.

4.5 Summary

An approach has been presented for automatic semantic clothing segmen-

tation of multiple persons. It does so by estimating whether the clothing is

chromatic or achromatic and then applying a histogram based approach

on the hues or intensities. In order to initialise points on the cloth, we

have proposed a method consisting of skin colour estimation and colour

similarity to locate the bottom of the garment’s neck. A clothing attribute

stage then predicts the clothing colour, brand, neckline, and sleeve length.

Finally, we demonstrate the approach with an augmented reality mirror

app for mobile tablet devices that can segment a user’s clothing in real-

time and enable them to realistically see themselves in the virtual mirror

wearing variations of the clothing with different colours (or graphics ren-

dered as per chapter 5). We have shown that the proposed framework

is able to segment clothing more efficiently than existing state of the art

methods, whilst achieving good accuracy and robustness on a difficult
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(A)

(B)

(C)

FIGURE 4.7: Further segmentation results. Each pair shows the numer-

ically labelled person(s) on the left with their corresponding colour la-

belled clothing on the right.
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(A) (B) (C)

FIGURE 4.8: Robustness to noise: (a) graph of accuracy versus Gaussian

noise σ, (b) input with considerable noise (σ = 1.0), and (c) corresponding
clothing segmentation.

dataset. Although our approach is limited to predominantly uniformly

coloured clothing (which may contain textured regions), it can be of partic-

ular benefit to emerging real-time augmented reality applications such as

augmented try on of clothing, sports broadcasting, and computer gaming.

The papers [21] and [22] resulted from the approach presented in this

chapter. Even though research in the field of clothing segmentation and

parsing has rapidly accelerated in the last few years, with papers such as

[24, 25, 29] citing the above, the approaches in this chapter remain unique

as they are specifically targeted towards practical real-time applications

for mobile devices where very high efficiency is required. Furthermore,

the approaches do not have constraints of related work such as requiring

the full body of the subject to be visible in the image, manual interaction,

or depth images.



Chapter 5

Augmented Reality Re-Texturing

In this chapter, we extend the efficient clothing parsing and augmented

reality framework in the previous chapterwith a dynamicmulti-resolution

approach for 3D shape reconstruction of highly deformable surfaces (such

as cloth). This enables for clothing on a person to be re-textured with

different graphic art work, logos, colours, or 3D special effects. This can

be seen in Figure 5.1.

FIGURE 5.1: Demonstration of our augmented reality mirror: (a) input: a

monocular video frame capture; (b) output: the clothing is automatically

segmented, recoloured and retextured according to a re-projection of a

texture-mapped three-dimensional reconstructed clothing surface.

75
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Other applications of this work lie in TV broadcasting and advertising. Ad-

vertising space on a sports player’s shirt could be dynamically changed and

realistically re-textured during broadcast. If the broadcast was streamed

online, highly targeted adverts could appear based on the consumer’s

habits and geographical location. Otherwise, if broadcast live on TV, the

shirt could be retextured for different television markets. Existing work

may potentially be able to partially accomplish this but is not very well

suited for retexturing outside of the original textured region, or for high

definition (HD) broadcasting.

We argue that a photorealistic and practical reconstruction of cloth geom-

etry with retexturing is important for augmented reality applications and

requires a method that:

• is robust to a variety of T-shirt colors and textures under non-uniform

illumination against a variety of backgrounds.

• employs monocular vision. Consumer applications usually require

a single camera as current smart phones, tablets and laptops com-

monly have one integrated webcam, but not yet stereo cameras or

depth sensors. Additionally, considering the TV broadcasting applica-

tion, few sports broardcasts on TV currently feature multiple-views

of a subject which are in sync and fully calibrated together.

• reconstructs full 3D cloth geometry. The general increase in accuracy

over 2D recovery can improve realism, which may become partic-

ularly noticeable at high definition (HD) resolutions. Secondly, this

allows for the recovered surface to be viewed in 3D, which may have

potential applications in gaming and entertainment. Furthermore,

3D recovery is required for the next point.

• exhibits the dynamic behavior of cloth.

• is very fast and suitable for real-time applications.

The tradeoffs and design decisions which we make are founded on satisfy-

ing all of these requirements. In addition to the aforementioned require-

ments, monocular vision is chosen to recover the 3D layout since this prob-

lem is severely under-constrained, being a very challenging open problem.



Chapter 5. Augmented Reality Re-Texturing 77

Also, by focusing on the challenging monocular case, our approach is gen-

erally significantly more applicable than approaches designed for good,

less challenging, conditions such as muliple views.

The novel contribution presented in this chapter is a hierarchical multi-

resolution method employing thin-plate splines, cloth modeling, and patch

tessellation for detailed and dynamic 3D geometric reconstruction of

highly deformable surfaces (such as cloth) from a set of sparse 3D points

in real-time. A local thin-plate spline model recovers a continuous rect-

angular surface mesh from a limited set of tracked features on a partially

textured cloth. A global cloth model then attempts to (a) increase the accu-

racy of this reconstruction at regions with less texture and fewer features

such as the untextured cloth around arbitrarily shaped textures, and (b)

restore cloth dynamics. Patch tessellation is employed to subdivide the

mesh, increasing surface smoothness and improving realism at regions of

high curvature.

5.1 Recovery of Sparse 3D Points

This section focuses on reconstructing sparse 3D points from highly non-

rigid 3D surfaces, such as cloth, captured in monocular video (or alterna-

tively, a single image and a texture template). This work is in preparation

for the next section which describes our contribution for a hierarchical

reconstruction of a continuous surface from these sparsely recovered 3D

surface points.

Our reconstruction method requires geometric calibration of the camera.

We use the popular chessboard technique implemented in the OpenCV

library in order to calibrate the intrinsic and extrinsic camera parameters.

Figure 5.2 shows the extrinsic calibration used to define world space.

Previous work has already been discussed in subsection 2.1.5. Tight cloth-

ing, such as fitted T-shirts, is characterized by locally near-rigid deforma-

tions which can be approximated by surface skinning techniques. We fo-

cus on the muchmore complex case of non-rigidly deforming cloth such as

that represented by standard T-shirts. Cloth, such as 100% cotton T-shirts,
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FIGURE 5.2: Webcam Calibration: the red pyramid represents the camera

and its field of view whereas the colored grids represent the chessboard

positions.

typically expresses some small elasticity. Reconstructing a texture in 3D

frommonocular vision which can be both loosely hanging and stretched is

very challenging (and even more so in real-time) - this is a state-of-the-art

topic with little research. We assume that the T-shirt elasticity is negligible

and that the texture on the T-shirt is large and screen-printed which gives

locally near-inelastic properties, so that we can constrain the reconstruc-

tion algorithm to inelastic materials.

For very fast recovery of sparse 3D points from tracked 2D point corre-

spondences we use the approach presented by Perriollat et al. [90]. The

planar texture template is deformed to the unknown 3D surface by an un-

known isometric transformation. Due to the inextensibility constraint, the

geodesic curve1 between two points on the surface has the same length as

the geodesic distance in the template, however, the surface deformation

causes the Euclidean distance between the 3D points to be less. To find

1the shortest path along the surface between two points in a curved space
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FIGURE 5.3: Cloth layout recovery.

depths of the 2D points, their method computes bounds in a pairwise fash-

ion where two points along with the inextensibility constraint bound the

position of these points along their sightlines which intersect at the center

of the projective camera. The overall set of upper bounds are iteratively

refined to find an optimal solution.

Figure 5.3 shows an overview of the approach. First we describe com-

putation of 2D point correspondences and then the approach based on

Perriollat et al. for initialization and refinement of the depth bounds is

briefly described.

5.1.1 2D Point Correspondences

The first step involves establishing 2D point correspondences between the

deforming surface in the captured image frame and the template. SIFT

is often used for this purpose and is employed in [90], however it is not

suitable for real-time. We employ simple real-time registration. Since

we derive the template from the image sequence itself, there is a known

mapping between these images in world space. Robust feature points are

established at regions of high curvature on the texture. These points are

then tracked over the video sequence using sparse optical flow [159]. How-

ever, this optical flow algorithm traditionally finds pixel displacements in
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the sub-pixel range, and we require large displacements since we are cap-

turing human movement from a webcam. Therefore, a multi-resolution

scheme on a Gaussian image pyramid is integrated to handle larger pixel

displacements. Also, to handle occasional loss of features, we use tem-

poral coherence to attempt to re-establish them. This simple method has

limitations in that it does not regularize the optical flow field and does

not support self-occlusion handling, so it is best suited to short videos. We

find this to be an acceptable assumption as a user is unlikely to want to

spend a long time trying on one item of clothing in our augmented reality

application.

5.1.2 Initializing the Bounds

To find depths of the 2D points, distance bounds are computed in a pair-

wise fashion where two points along with the inextensibility constraint

bound the position of these points along their sightlines which intersect at

the center of the projective camera. For n correspondences, there are n− 1

bounds for each one, but only the most restrictive bound is kept.

The depth µi of a point can be converted to a 3D point Qi on a sightline Si

from the camera center C with the following equation:

Qi(µi) = µi · ri + C (5.1)

where the camera center C = −R−1t. R is the (3× 3) rotation matrix, and

t is the (3 × 1) translation vector. Both R and t are derived from camera

calibration (refer to § 5.1). Note that the camera matrix P is given by

concatenating the rotation matrix with the translation vector, i.e. P =

[R|t]. Finally, the direction ri of the sightline Si passing through the frame’s

image point Ii is given by:

ri =
R−1 · Ii
‖ R−1 · Ii ‖

(5.2)

The coordinate frame system is chosen for the pair of points under evalu-

ation as:

Qi =

(
µi

0

)
Qj =

(
µj cos(αij)

µj sin(αij)

)
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where αij is the angle between the two sightlines Si and Sj.

Given the depth of the point indexed at i as µi, and the distance between

points Qi and Qj as dij = ‖Qi − Qj‖, we can find the depth of the point
indexed at j:

µj(µi) = µi cos(αij)±
√
d2
ij − µ2

i sin2(αij) (5.3)

so long as:

µi ≤

√
d2
ij

sin2(αij)

The upper depth bound µ̆i is computed from the entire set of n tracked 2D

point correspondences (assuming a common camera lens which gives the

property αij ≤ π/2):

µ̆i = µ̆ii? = min

j = 1..n

j 6= i

(
dij

sin(αij)

)
(5.4)

The point which achieves the minimum upper bound has index i?. The

notation i → i? is used to state the property that point i? constraints the

upper bound of point i. Figure 5.4 depicts initialization of the bounds.

FIGURE 5.4: The upper bounds on the two sightlines Si and Sj .

5.1.3 Refining the Bounds

The method described in the previous section is suboptimal. This is partly

because the property i→ i? is unsymmetric: the reverse is not true. There-

fore, an iterative refinement technique for the upper bounds is described.
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We recall Equation 5.3 and focus on the upper bound on point j induced

by point i:

µj(µi) = µi cos(αij) +
√
d2
ij − µ2

i sin2(αij), (5.5)

which is given by the global maximum of the function µj at:

µmaxi =
dij

tan(αij)
µj(µ

max

i ) =
dij

sin(αij)
. (5.6)

Figure 5.5 shows a representation of the function.

FIGURE 5.5: Parameterization of the function giving the depth of point j
against the depth of point i.

Therefore, the upper bound for point j with respect to point i is given by:

µ̆ji =

 µi cos(αij) +
√
d2
ij − µ2

i sin2(αij) if µ̆i ≤ dij
tan(αij)

dij
sin(αij)

otherwise

(5.7)

The upper bound for point j is then updated by a minimization:

µ̆j = min(µ̆jj? , µ̆ji) (5.8)

In the next chapter, we use the upper depth bounds µ̆i as the reconstructed

depths of the points on the surface µ̃i.

µ̃i = µ̆i (5.9)

5.2 Recovery of 3D Cloth Surface

In this chapter, we propose a method to reconstruct a continuous 3D cloth

surface from a limited set of recovered sparse 3D points. Our approach
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has the following main benefits:

• a hierarchical scheme for recovery of a rectangular surface
from an arbitrarily shaped texture where a local thin-plate spline
model recovers a continuous rectangular surface mesh from a lim-

ited set of tracked features on a partially textured cloth. A global cloth

model then attempts to increase the accuracy of this reconstruction

at regions with less texture and fewer features such as the untextured

cloth around arbitrarily shaped textures.

• a multiresolution scheme where patch tesselation is employed to
subdivide the recovered surface mesh, increasing surface smooth-

ness and improving realism at regions of high curvature. These ef-

fects are particularly noticeable at high resolutions and thus our re-

construction is made more suitable for high definition (HD) applica-

tions.

• a dynamic reconstruction which attempts to retain the dynamic
behavior of the worn garment by means of the cloth model in the

hierarchical scheme. This could have potential uses for novel future

applications which will be briefly discussed.

5.2.1 Local Model

The set of maximal depth bounds {µ̆i}i=1...n computed in the previous sec-

tion was shown by Perriollat et al. [90] to exhibit a small error when

used as the reconstructed depths µ̃i = µ̆i. We utilize an optimization sim-

ilar to theirs which attempts to solve this minor problem by satisfying

the inextensibility constraint (mentioned earlier), i.e. the Euclidean dis-

tance between recovered 3D points ‖ Qi − Qi? ‖ equals their distance in
the template dii?. A temporal smoother is simultaneously introduced to

help stabilize recovered points by penalizing larger movements between

frames. The optimization equation is defined as:

µ̃ = arg min
µ

n∑
i=1

(µ̆i − µi)2 + γ (µi(t)− µi(t− 1))2
subject to ‖ Qi −Qi? ‖= dii?

(5.10)
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where µ̃ is the recovered depth, µi the depth of point i, µ̆i the upper bound,

n is the point correspondence count, t is the current frame, and operator

selected weight γ. Equation 5.10 is a linear least squares problem under

non-linear constaints which can be solved with the Levenberg-Marquardt

algorithm [160]. Unlike the previous work which is implemented in Mat-

lab, the GaussFit2 implementation of this algorithm in the C language is

employed as a fast solver.

A regular local mesh ξ̃l is established on the template image with vertices

{vi}i=1...s. Although the operator can choose the number of vertices, we

empirically define an s = 20 × 30 vertex mesh as this approximates the

ratio of many T-shirt logos in our sample whilst providing a compromise

between local surface resolution and computation time.

A mapping function can be fitted between the feature points in the 2D tem-

plate image F = {fi}i=1...n and the recovered sparse 3D points Q = {qi}i=1...n.

Thin-plate splines (TPS) are employed for this purpose because they are

popular for representing deformable objects and do so in an efficient man-

nor [161]. The TPS is an R2 → R function which is controlled by assign-
ing target values to 2D source points whilst enforcing several conditions

[161, 162]. The TPS can be considered to be the Radial Basis Function

(RBF) that minimizes the integral bending energy. Our R2 → R3 TPS warp

S is obtained by effectively stacking three TPS functions and sharing their

centres. In terms of matrix manipulation, this involves deriving a param-

eterization matrix fdp from the feature points F, computing its transform,

and multiplying by the recovered 3D points Q:

S = Q · fdp(F)T
(5.11)

In order to compute the deformed 3D surface, we must first kernalize the

source points F with the initialized local mesh vertices ξ̃l:

K = kernelize(F, ξ̃l) (5.12)

2http://clyde.as.utexas.edu/Software.html

http://clyde.as.utexas.edu/Software.html
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We implement the feature-driven parameterization function fdp and the

kernelize function to kernalize the local mesh in C++ based on the gen-

eralized thin-plate spline algorithm proposed by [163]. The generalized

thin-plate splines are chosen for their feature-driven parameterization

which is concise, efficient, and meaningful, having the advantages over

the standard TPS that it separates variables and introduces units.

Finally, the positions of vertices in the deformed local mesh are given by:

ξl = SK (5.13)

where the columns of ξl give the x, y, and z coordinates of each vertex in

the deformed local mesh.

5.2.2 Global Model

By design, the surface recovered by the local model is most accurate at re-

gions on the texture where many features are present. Geometric surface

errors can be caused by interpolation across relatively untextured regions

with few features and extrapolation outside of an arbitrary shaped tex-

ture. We propose to alleviate these errors by introducing a global model

to infer some knowledge of the worn garment. As we focus on recovering

a cloth surface and our demonstration is in respect to T-shirts, we choose

to employ a cloth model for this purpose. Additionally, a cloth model gives

us a dynamic surface recovery which can attempt to retain the real cloth

behavior. This could have potential uses for novel future applications such

as (a) temporal interpolation: cloth animation inbetween slow webcam

frame captures (like an analogy to frame interpolation in high-end TVs);

(b) video effects: cloth is animated when pausing the video; and (c) aug-

mented reality gaming: the game is played on the T-shirt and the surface

can be realistically changed based on game events.

Previous work has been described in Section 2.1.5. We design our global

model around the mass-spring approach since it is popular, efficient, and

can achieve an accurate simulation of cloth [98]. Our framework is per-

haps most similar to the work of Muller et al. [164]. Figure 5.6 depicts an
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example 2× 2mass-spring network where masses are arranged in a rect-

angular grid and connected to their neighbors by springs. The vertical and

horizontal springs constrain cloth stretching and compression whereas

the diagonal springs constrain bending. We define five core simulation

constraints for cloth stretching, bending, self collisions, edges, and deform-

ing key vertices to the local recovery mesh. We present each constraint

E... as a function with respect to a subset of vertex positions along with a

weight parameter k.... Vertex positions are computed at least once every

frame capture based on these constraints.

The procedure for initializing the global cloth mesh ξg is now described.

We start by finding the approximate y coordinates of the neck and bottom

of the T-shirt by minimizing and maximising y across a range of x coor-

dinates at the center of the frame’s cloth segmentation mask. Ideally, the

user holds their arms out sideways for this frame, as this pose has been

found to capture most of the front face of the cloth. Then we iterate up-

wards from the bottom of the shirt, minimizing and maximising x. We

stop and define the bottom of each of the sleeve intersections once the

change in x on each side of the shirt reaches a predefined threshold and

continues to do so for at least 3more y iterations, thus adding robustness

to noise. The mesh edges are first fitted to the rectangle obtained from the

x and y optimizations. The inner topology of ξg is structured so that it has a

vertex aligned with each of the vertices in the initialized ξl. The remaining

inner vertices are established horizontally and vertically in proportion ac-

cording to the ξl vertices/texture-width and vertices/texture-height ratios,

respectively. Vertices on the mesh edges below the sleeve intersections

are then refined to the edges of the segmentation mask. The x values for

vertices on the left and right sides above the intersections are set to the x

coordinate of each intersection respectively. We letm : il → ig be a function

which maps vertex indicies il ∈ ξl to ig ∈ ξg. We initialize {hi = 0}i∈ξg and
then iterate over all possible inputs of the function m to effectively store

all existing unique reverse mappings in h.

After initialization, the sleeve intersections continue to be computed every

frame for defining the edge constraint Eedge.

Since we assume cloth elasticity to be negligible, we propose penalising

compression and stretching of vertices which are horizontally or vertically
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FIGURE 5.6: Our mass-spring cloth model.

adjacent. Therefore, the stretching constraint is evaluated for horizontally

or vertically adjacent vertices vi and vj as:

Estretch =
∑
i,j

(
‖ vi − vj ‖ −li,j

li,j

)2

(5.14)

where li,j is the rest length of the edge between vi and vj in the initial state

of the mesh. The bending constraint takes the form:

Ebend =
∑
a,b

la,b · (na − nb)2
(5.15)

where na and nb are the normals of adjacent triangles a and b within the

triangulatedmesh, and la,b is the length of the common edge between them.

The anchor constraint deforms the key anchor points in the global mesh

to their corresponding points in the local mesh:

Eanchor =
∑
i∈ξl

‖ṽi − vm(i)‖2
(5.16)

where ṽi are the vertices in the local mesh ξl and vm(i) are the associated

vertices in ξg. The following constraints are combined with their corre-

sponding weights into one energy function which can be minimized with

the Newton-Raphson method:

E = kstretch · Estretch + kbend · Ebend + kanchor · Eanchor (5.17)

We choose the Newton-Raphson method because it is popular and its sta-

bility does not depend on the size of the time step (which is important

when considering a webcam as the frame capture device) but on the order
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and shape of the constraint functions.

Handling of cloth self-collisions is carried out separately with spatial hash-

ing [165] according to:

Eselfcol(vj,vi,vi+1,vi+2) = ((vj − vi) · nl)− h (5.18)

ensuring that point vj remains above the triangle face (vi,vi+1,vi+2) with

normal nl by the cloth thickness h = 1.

There is one external force, gravity fg, which acts on the vertices. The

three parameters for the cloth model comprise of kstretch, kbend, and kanchor.

The values of kstretch, kbend are constant and are discussed later on. The

parameter kanchor is effectively a constant and is defined dynamically after

feature extraction according to:

kanchor =

{
ρhi if hi 6= 0

0 otherwise
(5.19)

Each weight ρi is characterized by the proximity of point correspondences

in the local neighborhood ℵi of the corresponding vertex ṽi for the initial
state of mesh ξl in the template where ρi ∝ ℵ.

5.2.3 Surface Smoothing

Wediscovered experimentally that the global surface ξg can appear to have

coarse jagged edges at regions of high curvature. A simple way to help

alleviate this problem is to increase the resolution of the local and global

recoverymeshes. However, we introduce amulti-resolution scheme based

on GPU patch tessellation. This improves the detail and smoothness of the

rendered cloth at GPU level from the coarser mesh at CPU level. Thus the

speed of our reconstructions remains fast.

Detail is added using a tessellation patch which has the same shape as

a single triangle of ξg but it is subdivided into a specified triangle count

to determine the increased resolution. We empirically choose a patch

tesselation of 5 subdivisions as a compromise between coarse jagged edges

and over-smoothing the surface.
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FIGURE 5.7: Surface smoothing by patch tessellation: (a) before, and (b)

after.

The region of the global surface ξg which corresponds to the local surface

ξl is used for our reconstructions.

5.3 Experimental Results

Convincing results for deformable surface reconstruction from monocu-

lar vision and re-texturing/re-coloring are presented in Figure 5.8. The

columns show an arbitrary section of a captured video sequence which

exibits cloth deformation. The rows show tracking of 2D point correspon-

dences between a template derived from the start of the video sequence

(initialization step) and the respective frames; sparse 3D point recovery

(depth view); a mesh and retextured view of our continuous 3D surface

recovery; and rendering the augmented reality scene (which is discussed

in the previous chapter). Note that due to the way the camera has been

calibrated, the more negative the points are along the z-axis, the closer

they are to the camera.

Figure 5.7 shows the results of surface smoothing by patch tessellation. We

can clearly see that the patch tessellated surface is of a higher resolution

to the surface constructed from triangle patches. The increase in detail

has successfully alleviated the coarse jagged edges which were noticeable

at regions of high curvature.

Table 5.1 lists the core model parameters which we use for 3D surface

recovery. For the purpose of our demonstration, we empirically define

the cloth parameters kbend and kstretch to attempt to mimic behavior of 100%
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Parameter Value Parameter Value

kstretch 1.0 γ 106

kbend 0.7

TABLE 5.1: Model Parameters

cotton T-shirt cloth. We are not aware of a real-time technique for cloth pa-

rameter optimization, so our approach here avoids offline setup, keeping

our focus on a fully real-time method with minimal user interaction. Al-

though mass spring models are highly popular for simulating deformable

objects such as cloth due to their real-time appeal, conceptual simplicity,

and reasonable results, there is no ideal method and only methods which

have been met with limited success [79] for obtaining optimal model pa-

rameters. This is because there is no obvious relationship between elastic

material constitutive laws and model parameters.

We empirically set the weight γ to a very small value as a compromise

between regularisation and vertex movement over time. We wish to reg-

ularise the model with respect to the temporal domain, as this can help

remove anomalies. However, we consider large timesteps from webcam

or mobile tablet frame capture and potentially large movement from a

person within the scene, so we wish to encourage moderate movement of

vertices in ξl over time.

We now consider the speed of our framework. Frame capture rate is de-

pendent on factors such as CPU load and lighting conditions. Under our

re-texturing testing environment with a Microsoft LifeCam Cinema web-

cam at a resolution of 480 by 640 there is an average frame capture rate

of 10 fps. Our method achieves an average frame rate of 12 fps (including

rendering) on an Intel Core i7 CPU (4 cores at 2.93GHz). Thus if we only

process new frames, the output fps matches the input fps on average. Our

C++ implementation is only partially optimized with a parallel architec-

ture, so there is room for further performance enhancement. Also, in the

previous chapter, we successfully demonstrated that the re-colouring part

of the method performs in real-time on a recent tablet device.

Applications Ourmethod for cloth reconstruction and augmentation can

be used for emerging applications such as:
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FIGURE 5.8: Results for 3D Cloth Recovery and Retexturing.
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• Augmented try on: consumers could try on different clothing items

either remotely via an app or using the technology in-store to limit

or avoid the time required to find clothing of interest on the shelves

and try-on clothing in the fitting room. This is the application demon-

strated in the dissertation.

• TV broadcasting and advertising: advertising space on a sports

player’s shirt could be dynamically changed and realistically re-

textured during broadcast. Our detailed multi-resolution method

is particularly well suited for high definition (HD) broadcasting. If

the broadcast was streamed online, highly targeted adverts could

appear based on the consumer’s habits and geographical location.

Otherwise, if broadcast live on TV, the shirt could be retextured for

different television markets.

• Medicine: augmentations could be rendered on to skin to aid surgery

and for teaching purposes. Although, a simple texture would be re-

quired to be drawn on to the skin as a prerequisite.

5.4 Summary

We have presented a hierarchical approach for 3D geometric reconstruc-

tion of highly deformable surfaces, such as cloth, which is robust to par-

tially untextured regions given consecutive monocular video frames or a

single image and a texture template. A retexturing and recolouring frame-

work has been demonstrated for combining these two methods for the

purpose of mobile augmented reality clothing try on. Robustness has been

shown to relatively large timesteps (i.e. using a webcam or mobile de-

vice) under uncontrolled domestic lighting with variation in T-shirt shape

and color, print shape and color, subject, and background. Our results

show convincing 3D shape reconstruction and photorealistic retexturing

whilst employing a setup which is practical for a consumer. The paper [21]

resulted from this research.

Themain limitation of ourwork perhaps lies in our surface reconstruction,

in particularly the global model. The model assumes the resting state of
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the front face of the upper body clothing to be planar (i.e. a perfectly flat

chest). This creates an opportunity for extending the model to attempt

to increase accuracy, such as by modelling the underlying body. Also,

quantitative reconstruction analysis has not been carried out at this stage.

Therefore, the main avenue for future work is to setup a depth sensor

such as Microsoft Kinect to capture the ground truth clothing surface for

a quantitative evaluation against the reconstructed surface.



Chapter 6

Person Identification

6.1 Introduction

Person re-identification is a critical security task for recognising a person

across spatially disjoint sensors. Besides the rapidly growing number of

published papers on person re-identification, the importance of this field

is recognised in the recent survey by Vezzani et al. [54], published in

a book on ‘Person Re-Identification’ Gong et al. [55]. The identification

problem may be classed as either single shot or multi-shot. Single shot

[170–172] approaches are only able to utilize one image of each person

whereas multi-shot [173, 174] approaches can exploit multiple images of

each person. The related work generally establishes either new feature

representations [172, 173] or discriminative matching models [170, 171].

The closest work to ours is perhaps that of [9] and [175]. The approach

of [9] is limited to tagging 8 attributes on a simple dataset in a standard

lab environment. Whereas Layne et al. [175] discuss the new challenges

associated with mobile re-identification. Their work is the state of the art

and has only recently been published at the time of writing.

Person identification has been an active area of research for the past

decade, but has almost exclusively focused on popular 2D RGB image data

captured from fixed positions. This is a logical place to start since many

venues already have a large network of traditional surveillance cameras

which produce RGB data. Recently, more advanced sensor types such as

94
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FIGURE 6.1: Overview of our mobile re-identification pipeline.

the Kinect have become very popular and available at a low cost. Smart

mobile devices have also become very popular and have been considered

in related work for clothing retrieval [4]. Gartner is predicting 1.37 bil-

lion smart phone sales and 320 million tablet sales for 2015. In terms of

mobile OS, Android is expected to lead with 53% of the market [20]. The

diversity of mobile platforms with integrated sensors is growing with new

technologies such as wearable devices (Google Glass), intelligent robots,

and remotely operated vehicles. Given these observations, we believe it is

time to extend the literature to new up-and-coming scenarios. This is the

focus of this work, where we present a novel semantic approach that inte-

grates RGB and depth data to extract clothing and skeletal soft biometrics

in a re-identification system formobile devices. An overview of the system

is depicted in Figure 6.1. Since mobile devices have very limited comput-

ing resources available, much attention is given to efficiency unlike most

related work which is computationally intensive and runs on powerful

workstations. This mobile approach may be particularly useful for the

identification of persons in areas ill-served by fixed sensors or for tasks

where the sensor position and direction need to dynamically adapt to a

target. Furthermore, we contribute semantic ground truth clothing labels

for the BIWI dataset to enable evaluation of predicted clothing items.
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6.2 Datasets

Most RGB-D datasets of people are targeted towards activity and gesture

recognition. Very few RGB-D datasets exist for the purpose of person re-

identification. In [65], the first dataset explicitly for the purpose of RGB-D

re-identification is created but there are few frames available per subject

and the faces are blurred for privacy. We consider the state of the art BIWI

dataset [176] which overcomes these limitations.

The BIWI dataset is targeted to long-term people re-identification from

RGB-D cameras. It contains 50 training and 56 testing sequences of 50

different people captured with a Microsoft Kinect for Windows at approx-

imately 10fps. 28 of the people present in the training set have also been

recorded in two testing videos each: still and walking. These were col-

lected on a different day and in a different location with respect to the

training dataset, so most people are dressed differently. Thus, this dataset

can provide a challenge for re-identification.

For training the semantic clothing prediction, the annotated subset of

the Fashionista dataset [5] and the Paper Doll dataset [48] are utilized

since they contain a significantly more diverse range of clothing than that

present in the BIWI training dataset so can be applicable tomany scenarios.

The Fashionista dataset consists of 685 real-world photos from a popular

online fashion social network, chictopia.com. For each of these photos,

there are ground truth annotations consisting of 53 different clothing la-

bels, plus hair, skin, and null labels. Whereas the Paper Doll dataset is a

large collection of over 300, 000 fashion photos that are weakly annotated

with clothing items, also collected from chictopia.com.

In order to evaluate predicted clothing items worn by a subject in a given

test sequence, ground truth clothing labels are required. As these are not

available in the BIWI dataset, we contribute semantic ground truth cloth-

ing labels which will be published online (see URL in section 6.7). First,

five crowd-sourcing users are chosen to manually identify the clothing

present. They are shown each image sequence in the BIWI dataset and

given a choice of clothing attributes from the Fashionista dataset to tag.

Three or more votes are required for a tag to become associated with the

http://www.chictopia.com
http://www.chictopia.com
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sequence. To ensure high quality annotations, the received annotations

are verified.

6.3 Mobile Re-Identification

Our client-server framework for mobile devices identifies a subject facing

a depth camera given a single frame as input. In order to achieve this

goal, we consider two different approaches. First, a clothing descriptor is

computed and secondly, a skeletal descriptor is computed from the pose

estimation provided by the Microsoft Kinect SDK. These two kinds of soft

biometrics have been chosen since they are relatively efficient to compute,

which is important in amobile framework, whilst also showing reasonable

performance in previous work.

Person re-identification on mobile devices can differ significantly from

the traditional re-identification environment of two or more fixed sensors.

Consider the case of a security officer with wearable technology (similar

to Google Glass). The mobile infrastructure should consistently detect and

identify persons in the officer’s field of view using only one sensor, but the

targetmay enter and exit the viewmultiple times depending on themotion

of each party. In this case, there is no longer the concept of separate probe

and gallery datasets. An alternative mobile re-identification scenario is

where a suspicious person was previously identified and recorded in a

probe dataset. Mobile re-identification could help a robot or remotely

operated vehicle to locate the subject from the observed sensor data. We

focus more on the latter case in terms of probe and gallery datasets.

In this section, the pre-processing and features for person re-identification

are described. First, a mobile device captures an RGB image and corre-

sponding depth image of the subject using an RGB-D sensor, such as the

Microsoft Kinect. A background of the Kinect along with its features and

limitations is presented in § 2.2. The Microsoft Kinect SDK is used to pro-

vide pose estimation and segmentation of the person from the RGB-D data,

since the SDK is available and optimized for this purpose. These steps are

shown in Figure 6.2. Microsoft’s tracking algorithm can only accurately es-

timate frontal poses because it is based on a classifier which has only been
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trained with frontal poses of people. Hence, we discard frames where

any joint is reported by the SDK as untracked or where a face cannot be

detected by Viola-Jones.

An inherent problem with mobile re-identification is that it is more sus-

ceptible to motion blur than traditional re-id with fixed sensor systems.

Later in this section, we consider detecting and discarding blurred frames

to address this problem.

(A) Input RGB image

(B) Input depth image with pre-

dicted pose overlaid

(C) Segmentation

FIGURE 6.2: Pose estimation and person segmentation from RGB-D data.

A local clothing feature vector is calculated for each body part in the pose

estimation based on Lab colour, LBP-HF, HOG, skin/hair detection and

boundary distance (refer to subsection 6.3.2). These features are normal-

ized andmean-std pooling of the features is calculated on a 4×4 grid. Then

pooled feature vectors are concatenated into one representative clothing

descriptor and PCA is performed to reduce dimensionality for efficient

retrieval. Additionally, the anthropometric descriptor is computed as de-

scribed below and concatenated for the purpose of re-identification.
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6.3.1 Blur Detection

An inherent problem with mobile re-identification is that both the sensor

and the subject can be moving, unlike traditional re-identification where

only the subject can be moving. Another related issue is that mobile de-

vices and their sensors tend to have significantly less computational pro-

cessing power available and reduced frame capture speeds when com-

pared to fixed sensor systems. These problems can increase the proba-

bility of capturing blurred frames which lack the high frequency detail

required to provide an accurate identification of the subject. To address

this, we discard frames containing significant motion blur, so that we only

process frames where the subject is in focus.

Perhaps the most obvious way to detect the amount of blur in an image

would be to compute the Fast Fourier Transform of the image and then

analyse the distribution of frequencies. High frequency data represents

the details in the image, so the image can be considered blurry if there is a

low amount of high frequency data. However, in practice, it is problematic

and unintuitive to define thresholds for a low amount of high frequency

data and high amount of high frequency data.

Therefore, we examine the state of the art literature. Pertuz et al. [177]

present a survey of the field, Analysis of focus measure operators for shape-

from-focus, where they review 36 different methods to estimate the focus

measure of an image.

Ideally, we want to compute a single blurriness metric to represent how

blurry a given image is. Pertuz et al. reviewmany of these kind ofmethods

in their survey, which range from using greyscale intensity statistics to

Local Binary Patterns (LBP).

We utilize the variation of the Laplacian approach by Pech-Pacheco et al.

[178] since it is very intuitive, relatively efficient, and yields a single blur-

riness metric. We simply take the greyscale channel of the image and

convolve it with the following 3× 3 Laplacian kernel:
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
0 1 0

1 −4 1

0 1 0

 (6.1)

Then we take the variance of the convolution response and if the variance

falls below a pre-defined threshold β, the image frame is considered blurry

and we discard it:

Blurred =

1 if Var[response] < β,

0 if Var[response] ≥ β.
(6.2)

The Laplacian operator measures the second derivative of the image such

that it highlights regions with rapid greyscale intensity changes. When

there is a low variance, there is a small spread of responses, indicating

that there are relatively few edges in the image, so we can assume that the

image is blurred.

Figure 6.3 depicts the results of our blur detection. The value of the β

threshold constant is empirically defined as 130 based on our dataset.

6.3.2 Features

In this section, a discussion of the features employed in this approach is

presented.

The texture and shape are described by rotation-invariant local binary

pattern histogram Fourier (LBP-HF) features since they have been shown

to achieve very good general performance in an efficient manor[179]. The

HOG descriptor provides further information about the shape[133]. The

boundary distance is given by the negative log distance from the image

boundary. The pose distance is given by the negative log distance from

the pose estimation joints. A Lab colour descriptor is employed rather

than one based on a different colour space such as RGB since it models

the human vision system and is more perceptually uniform. Perceptually
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(A) Not blurred (B) Blurred

FIGURE 6.3: Detecting and discarding blurred frames.

uniform means that a change in colour value should produce a change of

about the same magnitude of visual importance.

Skin/hair detection gives the likelihood of skin or hair at the pixel. Gener-

alized logistic regression is used to compute the likelihood based on Lab,

LBP-HF, HOG, boundary distance, and pose distance for input. It is learned

from the Fashionista dataset using a one-vs-all strategy.

Skeleton based descriptors yield a signature vector for a given subject

based on their anthropometrics and body pose. Generally, skeletal trackers

with the highest performance are those that work on 3D data, as opposed

to 2D. However, feature-wise, 2D descriptors can perform better than their

3D counterparts [180]. Therefore, we let the Kinect tracker locate skeleton

joints in the 3D domain and then re-project them onto the 2D image plane
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FIGURE 6.4: Distances and ratios utilized for the soft biometric anthropo-

metric descriptor. Image courtesy of [176].

by taking into account the sensor calibration. Once the joints are available

in the 2D image domain, the skeleton features can be calculated.

We extract the following 13 skeleton features based on the work of [176]:

a) head height, b) neck height, c) neck to left shoulder distance, d) neck

to right shoulder distance, e) torso to right shoulder distance, f) right arm

length, g) left arm length, h) right upper leg length, i) left upper leg length,

j) torso length, k) right hip to left hip distance, l) ratio between torso length

and right upper leg length (j/h), m) ratio between torso length and left

upper leg length (j/i). These labels (a)-(m) correspond to those depicted in

Figure 6.4. The 13 features are then normalized and concatenated to form

the skeleton descriptor.

It is assumed that the re-identification system is applied in an indoor sce-

nario or outdoors during summertime when people often wear just one

layer of clothing and not large heavy clothes that may occlude key feature

points and distort the estimated anthropometrics.

6.3.3 Retrieval

In our approach, there are two retrieval algorithms. The former is used

for retrieving identification results and the latter is used for predicting

semantic attributes.
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In a mobile infrastructure, there is a need for efficient identification and

retrieval of subjects based on matching the feature vectors between the

probe and each subject that is enrolled in the gallery database. For this

purpose, the L2 distance is minimized over the descriptors to obtain the

k nearest neighbours (kNN) in the BIWI dataset. A kd-tree is constructed

to efficiently index the samples. A background on kNN and kd-trees is

presented in § 2.5.

The second retrieval algorithm is similar but operates on the Paper Doll

dataset to retrieve similar clothing attributes to those present in the query

image. It only considers the clothing descriptor as input and not the com-

bined clothing and anthropometric descriptor like that used in the former

retrieval algorithm.

Note that some retrieval precision could be sacrificed for increased speed

by using a more approximate algorithm. This trade-off is explored in

[181]. It is shown that with approximations, a speed increase of up to 3

orders of magnitude can be achieved over linear search (kd-trees) if we

are willing to accept a lower precision and hence less neighbors returned

are exact nearest neighbors. A significant decrease in precision would be

unacceptable for re-identification purposes.

6.4 Clothing Parsing

In this section, an approach is described based on the work of Yamaguchi

et al. [48] for detecting clothing attributes and localizing clothing items

on the query image to enable semantic colour prediction of each clothing

item.

Let yi be the semantic label of the clothing item at pixel i in the image.

After clothing attributes have been predicted by the retrieval stage, the

algorithm begins to parse the clothing in the query by computing the cloth-

ing likelihood S of assigning clothing label l to yi at pixel level by combin-

ing global Sglobal and transfer Stransfer models. This likelihood function S is
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modeled as:

S(yi | xi, D) ≡Sglobal (yi | xi, D)λ1 ·

Stransfer (yi | xi, D)λ2
(6.3)

where xi denotes the features at pixel i, Λ ≡ [λ1, λ2] are weighting parame-

ters. Since the gallery (retrieval) dataset that we utilize has a limited range

of clothing items, we introduce a large dataset of tagged fashion images,

Paper Doll, for predicting attributes present in the query image. Therefore,

we let D be the set of nearest-neighbours retrieved from the Paper Doll

dataset.

6.4.1 Global Parsing

Global clothing likelihood is the first term in the clothing parsing model.

It is modeled as a logistic regression that computes a likelihood of a label

assignment to each pixel for a given set of possible clothing items:

Sglobal (yi | xi, D) ≡ P (yi = l | xi, θgl ) · 1[l ∈ τ(D)] (6.4)

where P is a logistic regression based on the feature vector xi and model

parameter θgl . Let τ(D) be a set of predicted clothing attributes given by

the Paper Doll nearest-neighbour retrieval stage. Finally, let 1[· · · ] be an
indicator function defined as:

1[l ∈ τ(D)] = 1τ(D)(l) =

1 if l ∈ τ(D),

0 if l /∈ τ(D).
(6.5)

The following features are calculated for xi in the logistic regression: Lab

colour, pose distances, LBP-HF, and HOG. Note that unpredicted items are

set a probability of 0. The model parameter θgl is trained on all the clothing

items in the annotated training subset of the Fashionista dataset.
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6.4.2 Transferred Parsing

The transferred parse is the second stage of the parsing model. The mask

likelihoods that were estimated by the global parse Sglobal are transferred

from the retrieved Paper Doll images to the query image.

First we compute an over-segmentation [182] of both the query and re-

trieved images. For each super-pixel in the query image, we find the near-

est super-pixels in each retrieved image using the aforementioned L2 pose

distance and compute a concatenation of bag of words (BoW) from Lab,

LBP-HF, and gradient features. The closest super-pixel from each retrieved

image is chosen by minimizing the L2 distance on the BoW feature.

Let the transfer model be defined as:

Stransfer (yi | xi, D) ≡ 1

Z

∑
r∈D

M(yi, si,r)

1 + ‖h(si)− h(si,r)‖
(6.6)

where si is the super-pixel of pixel i, si,r is the corresponding super-pixel

from image r, h(s) is the BoW features of super-pixel s, and Z is a normal-

ization constant. Additionally, let us denote M as the mean of the global

parse over super-pixel si,r:

M(yi, si, r) ≡
1

|si,r|
∑
j∈si,r

P (yi = l | xi, θgl ) · 1[l ∈ τ(r)]
(6.7)

where τ(r)is the set of clothing attributes for image r.

6.4.3 Overall Likelihood

Once the two likelihood terms have been computed, the final pixel likeli-

hood S is given by the previously defined equation 6.3.

However, there is the problem of choosing the weighting parameters

Λ. The weights are chosen such that an optimal foreground accuracy is

achieved from the MAP assignment of pixel labels in the Fashionista train-

ing subset:
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max
Λ

∑
i∈F

1

[
ỹi = arg max

yi

SΛ(yi | xi)
]

(6.8)

where F are the pixels in the foreground and ỹi is the ground-truth anno-

tation of pixel i. The optimization is implemented with a simplex search

algorithm.

6.4.4 Semantic Clothing Color

A final stage is presented to assign soft biometric clothing color attributes.

These are important to enable natural language searching.

The English language contains eleven main color terms: ‘black’, ‘white’,

‘red’, ‘green’, ‘yellow’, ‘blue’, ‘brown’, ‘orange’, ‘pink’, ‘purple’, and ‘gray’.

The estimated clothing color attribute will be chosen from this set.

A color histogram is computed on each localized clothing item detected

in the previous stage. In order to convert this numeric color space rep-

resentation of clothing color to one that is more meaningful to humans,

the X11 color names [183] are considered. X11 is part of the X Window

System which is commonly found on UNIX like systems such as the popu-

lar Ubuntu operating system. X11 colour names are represented in a file

which maps certain color strings to color values. The mappings for the

eleven main colors mentioned above are extracted from this file, allowing

the dominant clothing color value to be matched to the closest value in

the list, giving a semantic clothing color attribute for each item of clothing

detected in the image.

6.5 Experimental Results

Qualitative results for clothing parsing are shown in Figure 6.5 and Fig-

ure 6.6. To aid understanding of the full pipeline, Figure 6.5 uses the same

query image as shown earlier in the example of segmentation and pose

estimation (Figure 6.2) and also appears as the query in the second row of
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the re-identification retrieval results (Figure 6.7). Figure 6.5 and Figure 6.6

show a reasonable localization of predicted clothing attributes, even in the

very challenging case of similarly coloured top and trousers. This is visu-

ally comparable to the state of the art [48] and in many cases improved

due in part to the feature processing and also the depth-based pose estima-

tion which enables an accurate segmentation and localization of clothing

labels.

However, there are some minor parsing inaccuracies such as with hair

over-segmentation and dual labelling of shoes and boots. It appears that

the hair segmentation is sensitive to shading on the face and the reduced

detail in the image caused by motion blur during image capture. This may

be improved by performing more advanced correction of non-uniform

illumination or capturing a dataset in an environment with more uniform

lighting. The dual shoe and boot labelling may be improved by constrain-

ing each image to only one type of footwear based on a metric such as

pixel voting.

In the first identification experiment, the aim is to qualitatively test short-

term person re-identification between the BIWI still and walking datasets.

Although the results are preliminary, our system is capable of operating

near real-time andwe can see in figure 6.7 that the results are encouraging

as the persons are generally correctly re-identified between the still and

walking datasets, implying a favorable rank-1. In some cases, clothing

labels which are not observed in the probe image can rank highly - this

may in part be due to the similarity of anthropometric features that are

used in the retrieval alongside visual cues, and additional optimisation

may be required.

Considering related work, the approach in [9] is faster than ours, but is

less practical as it is limited to tagging 8 attributes on a simple dataset in a

lab environment without consideration of mobile scenarios or RGB-D.

Due to the large-scale nature of the dataset and limited computing re-

sources available, (re-)training, model tuning and comprehensive eval-

uation are very time consuming. A Hadoop based framework is proposed

in the next section to address this problem.
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(A) Query image (B) Predicted attributes

FIGURE 6.5: Clothing parsing results. Given the parsing, predicted colour

attributes are obtained as purple shirt, blue jeans, white shoes/boots.

The framework consists of the mobile client, which may be a wearable

device, smart phone, or robot/drone, and a server. The devices are wire-

lessly connected over a network such as the internet. In this work, we

implement on a smart phone since these are currently the most popular

kind of mobile device. Mobile consumer devices with depth sensors are

yet to be made available, so we do not capture any input data on the mo-

bile device for testing or demonstration and instead use the pre-recorded

RGB-D data from the BIWI dataset as input. The client side is implemented

with the Android SDK and NDK to achieve native processing speed and

demonstrated on the Samsung Note 4 (1.3GHz Exynos 5433). The server

side is implemented in Matlab and C++, running on a quad-core 2.7GHz

CPU.

Additionally, we implement on the Google Cardboard platform to demon-

strate our new concept of wearable immersive augmented reality re-

identification. Google Cardboard is a virtual reality platform developed

by Google for use with a smart phone in a head mount made from folded

https://www.google.com/get/cardboard/
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(A) Query image (B) Predicted attributes

FIGURE 6.6: A challenging image to parse. Although the top is mistaken

as a coat occluded in parts by long hair, the black top and bottoms are

correctly segmented.

cardboard, as seen in Figure 2.4. Refer to § 2.2 for further reading about

the platform.

Figure 6.8 shows the results obtained using a smart phone, where Fig-

ure 6.8a is the live real-time image from the real world and Figure 6.8b de-

picts the predicted attributes which can be augmented into the real scene

along with the predicted identity of the person that the Google Cardboard

user is looking at. Note that the phone should be placed inside a Google

Cardboard head mount for correctly viewing the immersive augmented

reality, as the binocular display is split up in to two halves, one for each

eye. Currently, there is not a more practical wearable augmented reality

system available to demonstrate with. However, the future looks very

promising, with a large number of companies known to be developing

products, including Google who are working on improving their technol-

ogy that was originally developed for the now discontinued Google Glass.

For implementation, we use the Unity3D engine combined with the Card-

board SDK. These tools can be utilized to build apps for Android and Apple
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FIGURE 6.7: Preliminary results on the BIWI dataset. First column shows

RGB part of the RGB-D image for the subject (probe). Next two columns

show retrieval results for subject re-identification.

iOS smart phones that display 3D augmentations with binocular render-

ing, track and react to head movements, and interact with apps through

trigger input.

6.6 Spark and Big Data

Despite the theoretical scalability of the person re-identification algorithm

towards handling a large number of images, it was observed that using

Matlab to train over 300K images and tune a classifier on the single quad-

core 2.7GHz CPU available to us is impractical. Such image collections

can be considered as medium to large scale and cannot be stored and
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(A)

(B)

FIGURE 6.8: Our prototype Google Cardboard based immersive aug-

mented reality re-identification. The phone is placed inside the Cardboard

head mount for correct viewing.
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processed efficiently on a single computer. Image processing andmachine

learning on these medium to large image scale image collections ideally

require distributed computing. However, a large compute cluster with the

specific proprietry Matlab dependencies was unavailable and the Matlab

infrastructure for distributed computing is very costly, proprietary, and

limited.

To address these issues, we consider Apache Spark, the industry standard

for large scale data processing, and begin porting our implementation to

the powerful open-source Python language.

Spark is an open-source framework based on the MapReduce principle

that allows large scale datasets to be stored and processed in a distributed

environment across clusters of computers. Crucially, it can scale up from

single servers to thousands of machines based on demand and is tolerant

of hardware faults. Two functions are written, called Map and Reduce.

The system then manages the parallel execution and coordination of tasks

that execute Map or Reduce. Figure 6.9 depicts an overview for execution

of a MapReduce program.

Large scale Spark MapReduce tasks are typically run on a computing

cluster. Computing nodes with processor chip, memory, and storage are

mounted in racks and connected together by high speed Ethernet to form a

cluster architecture. Microsoft, Amazon, and Google currently offer Spark

in the cloud.

The revised framework therefore consists of Spark, Python, and OpenCV

deployed in the AmazonWeb Services cloud. A potential avenue for future

work is to finish porting the code to the new framework and performmore

comprehensive experiments in order to gain further results and insights.

6.7 Summary

In this chapter a person re-identification framework for mobile devices

(such as wearable augmented reality glasses, smart phones, and robots)

is presented and the BIWI dataset is extended with ground truth cloth-

ing labels. For the case of smart phones and tablets, we anticipate that a
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FIGURE 6.9: Execution of a MapReduce program [184].

depth sensor will be integrated into consumer mobile devices in the near

future and we currently demonstrate with a pre-recorded input. The mo-

bile device extracts clothing and skeletal features, reducing dimensions

by PCA. The features are transmitted over the internet to a server which

computes K-nearest neighbours to retrieve the closest matches from per-

sons enrolled in the database and predicts semantic clothing attributes.

Predicted clothing labels provide a meaningful soft biometric and can be

useful to enable natural language based person searching or to yield a

meaningful semantic description even when the subject has not been pre-

viously enrolled in the database.

The results presented are preliminary but encouraging. Due to the nature

of processing large datasets for machine learning with proprietary Matlab

software on a standard PC, major issues were encountered with resource

and time constaints. To address this, a new infrastructure consisting of

Spark, Python, and the Amazon Web Services cloud is proposed as an

avenue for potential future work.



Chapter 7

Conclusions

The dissertation investigated the relatively new and exciting fields of

semantic parsing (segmentation/classification) and retrieval of clothing

given colour and/or depth images of individuals. Specifically, the problems

of visual clothing search, augmented reality try-on of clothing, and person

re-identification using wearable augmented reality devices are considered.

The massive continued growth and popularity of social networks

and their associated image datasets, augmented reality, and smart

phone/tablet/wearable devices (with electronics consumers shifting to-

wards buying and using mobile devices and away from PCs) has created a

huge demand for fast, efficient, and scalable image analysis solutions. To

this end, these three characteristics underpin the proposed solutions.

In chapter 3, a complete novel mobile client-server system is presented

for automatic visual clothes searching of challenging real-world images. A

smart phone user can capture a photo (or select a social networking photo)

of somebody wearing clothing they like and retrieve similar clothing prod-

ucts that are available at nearby retailers. Our system first identifies the

clothing region in the image and segments it from the background using

a fast DenseCut implementation. HoG, LBP and novel Lab features are ex-

tracted to describe the clothing shape, texture and colour. To enable large

scale retrieval on mobile devices, PCA reduces the feature dimensions,

Fisher Vectors encode the features, and the encodings are compressed

by product quantization. The compressed features are sent to the server

alongside the phone’s GPS coordinates. Similar products are retrieved

114
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from the database, re-ranked by retailer location and the resulting top

product images (including product URLs) are downloaded to the smart

phone. The user can then view a map detailing where they can locally pur-

chase the products or click their associated URLs for purchasing online.

In chapter 4, computer vision techniques were investigated for automatic

semantic segmentation/parsing of dressed clothing in real-world photos.

It is shown that the proposed framework is able to segment clothing and

classify clothing attributes more efficiently than existing state of the art

methods, whilst achieving good accuracy and robustness on a difficult

dataset. We demonstrate the approach with an augmented reality mirror

app for mobile tablet devices that can segment a user’s clothing in real-

time and enable them to realistically see themselves in the virtual mirror

wearing variations of the clothing with different colours (or graphics ren-

dered as per chapter 5). Although the approach is limited to predominantly

uniformly coloured clothing (which may contain textured regions), it may

also be of particular benefit to emerging real-time augmented reality ap-

plications such as in sports broadcasting and computer gaming.

In chapter 5, the aforementioned augmented reality mirror is extended

with a hierarchical approach for 3D geometric reconstruction of highly

deformable surfaces, such as cloth, which is robust to partially untextured

regions given consecutive monocular video frames or a single image and

a texture template. A real-time retexturing and recoloring framework has

been demonstrated for combining this method with clothing parsing for

the purpose of augmented reality upper body clothing try on. Robustness

has been shown to relatively large timesteps (i.e. using a webcam or mo-

bile device) under uncontrolled domestic lighting with variation in cloth-

ing shape and color, texture shape and color, subject, and background.

Empirical results show convincing 3D shape reconstruction and photore-

alistic retexturing of graphics on clothing whilst employing a setup which

is practical for a consumer and could be run on smart phones/tablets.

In 6, a person re-identification framework for mobile devices (such as

wearable augmented reality glasses, smart phones, and robots) is pre-

sented and the BIWI dataset is extended with ground truth clothing labels.

For the case of smart phones and tablets, we anticipate that a depth sensor

will be integrated into consumer mobile devices in the near future and
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we currently demonstrate with a pre-recorded input. The mobile device

extracts clothing and skeletal features, reducing dimensions by PCA. The

features are transmitted over the internet to a server which computes K-

nearest neighbours to retrieve the closest matches from persons enrolled

in the database and predicts semantic clothing attributes. Predicted cloth-

ing labels provide a meaningful soft biometric and can be useful to enable

natural language based person searching or to yield a meaningful seman-

tic description even when the subject has not been previously enrolled in

the database. The results presented are preliminary but encouraging.

This dissertation offers insights into the fields of clothing retrieval, cloth-

ing parsing for augmented reality, and soft biometrics which can be ap-

plied to many important and practical applications including crime sus-

pect identification, visual product search for clothing ecommerce, product

retrieval for fashion advertising in social networks, personal fashion anal-

ysis, in-store customer profiling, and augmented reality clothes try on.

The number of photos uploaded and shared on online social networks con-

tinues to have strong growth and a significant proportion of these images

appear to contain people wearing clothing. Clothing can be considered to

be one of the core cues of human appearance and can also be used to infer

information about the wearer. However, the segmentation and parsing

of clothing worn on a subject is challenging due to the wide diversity of

clothing designs, the complexity of scene lighting, dynamic backgrounds,

and self/third-party occlusions. Therefore, it is clear that the challenges in

the fields of clothing parsing and soft biometrics will remain a key goal of

computer vision researchers for years to come.

Various avenues for future work have been discussed at the end of the

previous chapters. Despite the theoretical scalability of the person re-

identification algorithm towards handling a large number of images, the

Matlab infrastructure coupled with the lack of access to a large compute

cluster with the specific proprietry dependencies imposed tough chal-

lenges on carrying out a comprehensive large scale analysis. Hence, the

main avenue for potential future work is to complete the transition of port-

ing the re-identification implementation away from Matlab to an open-

source Python and Spark infrastructure. Spark is an open-source, dis-

tributed processing system commonly used for big data workloads and
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without the limitations of Matlab. A Spark based application can be de-

ployed for a low cost in the cloud, such as with AmazonWeb Services. This

would enable further results and insights to be gathered.
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