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Abstract:

Dissolved and particulate neodymium (Nd) are mainly supplied to the oceans via
rivers, dust, and release from marine sediments along continental margins. This
process, together with the short oceanic residence time of Nd, gives rise to
pronounced spatial gradients in oceanic '**Nd/'**Nd ratios (exq). However, we do not
yet have a good understanding of the extent to which the influence of riverine point-
source Nd supply can be distinguished from changes in mixing between different
water masses in the marine geological record. This gap in knowledge is important to
fill because there is growing awareness that major global climate transitions may be
associated not only with changes in large-scale ocean water mass mixing, but also
with important changes in continental hydroclimate and weathering. Here we present
ena data for fossilised fish teeth, planktonic foraminifera, and the Fe-Mn
oxyhydroxide and detrital fractions of sediments recovered from Ocean Drilling
Project (ODP) Site 926 on Ceara Rise, situated approximately 800 km from the
mouth of the River Amazon. Our records span the Mi-1 glaciation event during the
Oligocene-Miocene transition (OMT; ~23 Ma). We compare our eyg records with
data for ambient deep Atlantic northern and southern component waters to assess the
influence of particulate input from the Amazon River on Nd in ancient deep waters at
this site. eng values for all of our fish teeth, foraminifera, and Fe-Mn oxyhydroxide
samples are extremely unradiogenic (exg = —15); much lower than the exg for deep

waters of modern or Oligocene-Miocene age from the North Atlantic (exg = —10) and
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South Atlantic (exg = —8). This finding suggests that partial dissolution of detrital
particulate material from the Amazon (eng = —18) strongly influences the eng values
of deep waters at Ceara Rise across the OMT. We conclude that terrestrially derived
inputs of Nd can affect exg values of deep water many hundreds of kilometres from
source. Our results both underscore the need for care in reconstructing changes in
large-scale oceanic water-mass mixing using sites proximal to major rivers, and
highlight the potential of these marine archives for tracing changes in continental

hydroclimate and weathering.

Keywords: Neodymium isotopes, fish teeth, foraminifera, Amazon, Oligocene-Miocene, ODP Site 926

1 Introduction

The weathering and transport of continental rock substrate is a major source of
dissolved neodymium to the oceans (Goldstein and Jacobsen, 1987). The neodymium
isotopic composition (eng = [(143Ndsample/ 144Ndsample) / (**Ndeyur/**Ndepur) — 1] %
10*; where CHUR is the chondritic uniform reservoir) of continental rocks varies
according to both the Sm/Nd ratio and age of the rock, such that ancient continental
crust exhibits very low (unradiogenic) eng values (down to —40), whereas younger
volcanic sequences generally have much higher (radiogenic) values (up to +12;
Goldstein and Hemming, 2003). Because neodymium has a residence time on the
order of the mixing time of the ocean (500 to 2000 yr; Piepgras and Wasserburg,
1987; Tachikawa et al., 2003), deep waters formed in the North Atlantic, which is
surrounded by Proterozoic and Archean rocks, are characterised by low eng (—13.5;
Piepgras and Wasserburg, 1987; Lacan and Jeandel, 2005a). On the other hand, deep
water masses formed in the Southern Ocean have higher eng (between —7 and —9;
Piepgras and Wasserburg, 1987; Jeandel, 1993; Stichel et al., 2012) due to the
contribution of young mantle-derived material surrounding the Pacific Ocean that
mixes with Atlantic waters in this region. Records of seawater exq values recorded in
marine sediments have therefore been widely used to identify the source of the

overlying water masses (Scher and Martin, 2004; Piotrowski et al., 2005).
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In addition to the influence of riverine solute inputs, the isotopic composition of
dissolved Nd in seawater can be modified by exchange of Nd in river-born particulate
material with seawater via “boundary exchange” on continental margins (Jeandel et
al., 2007; Pearce et al., 2013) and also in certain deep sea settings (Lacan and Jeandel,
2005b; Carter et al., 2012; Wilson et al., 2012; Abbott et al., 2015b). Various
modelling studies even suggest that release of Nd from continental margins is by far
the dominant source of Nd to the oceans (contributing as much as 90%; Arsouze et
al., 2009; Rempfer et al., 2011). Dissolved deep water eng at these continental margin
locations is likely a function of three variables: (i) the magnitude of the Nd flux from
sediment pore fluids, (ii) the difference between the exg value of the overlying water
and the pore fluid, and (iii) the exposure time to this benthic flux of Nd (Abbott et al.,
2015a).

The Amazon River is the world’s largest river and each year carries 5 x10® tons of
suspended sediment (Gibbs, 1967) that is relatively enriched in Nd (~40 ppm;
McDaniel et al., 1997) compared to seawater (typically <10 ppb; Piepgras and
Wasserburg, 1987). These Nd-rich Amazon sediments have been shown to influence
the dissolved eng of near-shore seawater (€.g. the mid-salinity zone of the Amazon
Estuary; Rousseau et al., 2015), and have also been suggested to affect deep water eng
as far afield as the Caribbean Sea (Osborne et al., 2014). An improved understanding
of the extent to which river-born particulate material can influence deep water enq s,
therefore, critical to our understanding of Nd cycling in the oceans (Stichel et al.,
2012; Kraft et al., 2013; Pearce et al., 2013). This is particularly true for major
climate transitions when rock weathering and the flux of riverine particulate material
may vary (West et al., 2005), centres of precipitation can shift altering river drainage
patterns (Wang et al., 2004), and ocean circulation can change the exposure time of
water masses to benthic sources of Nd (Abbott et al., 2015a). Records of past
seawater and associated sediment enq in relative proximity to major riverine sources
of Nd such as the Amazon River are therefore vital to understanding Nd exchange

between particulate and dissolved phases in continental margin settings.
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1.1  Archives of seawater eng

Fossilised fish teeth recovered from deep sea sediment cores are an ideal substrate for
reconstructing past changes in eng values of ancient bottom waters. Fish teeth are
found throughout the world’s oceans and incorporate the majority of their Nd post-
mortem (>100 ppm Nd), during early diagenetic recrystallization of the biogenic
apatite at the sediment-seawater interface. They are therefore resistant to late
diagenetic overprinting (Martin and Scher, 2004). Analysis of Nd associated with
authigenic Fe-Mn oxyhydroxides in marine sediments can also be used to extract
bottom water Nd isotope compositions (Piotrowski et al., 2005), although care must

be taken during sample processing (Elmore et al., 2011).

The only method by which eng values of surface waters have been successfully
reconstructed to date is through the analysis of reductively cleaned planktonic
foraminifera (Vance and Burton, 1999). However, because diagenetic
ferromanganese coatings formed on the seafloor and in pore waters are extremely
enriched in Nd (200 ppm) compared with biogenic calcite (0.1 ppm), these coatings
must be effectively removed (Pomigs et al., 2002). eng records of cleaned planktonic
foraminifera that have elevated Nd/Ca are likely compromised by incomplete
removal (<98%) of ferromanganese coatings or reabsorption of Nd released during
the cleaning process. For this reason, even cleaned foraminifera often exhibit eng

values similar to bottom waters (Roberts et al., 2012; Tachikawa et al., 2014).

1.2 Scope of this study

Here we assess evidence for changes in continental inputs from the Amazon River
during the Oligocene-Miocene transition (OMT), through analysis of exgq in fish teeth,
planktonic foraminifera, and the Fe-Mn oxyhydroxide and detrital fractions of
sediments recovered from ODP Site 926 (Figure 1). The OMT is marked by a
positive excursion (>1%o) in benthic foraminiferal 80 at 23 Ma (Figure 2) that
represents cooler deep-water temperatures and increased Antarctic ice volume
associated with the so-called Mi-1 glaciation event (Pélike et al., 2006; Liebrand et

al., 2011). We use our exg data to assess the contribution of the Amazon as a source
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of Nd to the regional Equatorial Atlantic water mass signal at this site during this
interval of climatic variability, and discuss the implications of these data for

interpretation of exg records in terms of water mass mixing.
2 Materials and methods
2.1  Geological setting and core chronology

Samples spanning the OMT were selected from sediment cores recovered from ODP
Leg 154, Site 926, Hole B (3°43.148'N, 42°54.507'W, ~3600 m water depth; Leg 154
Shipboard Scientific Party, 1995), situated approximately 800 km to the northeast of
the mouth of the River Amazon (Figure 1). The geographic position and water-depth
of Site 926 have not changed significantly since the Oligocene. Although there is no
magnetostratigraphic age control available for ODP Leg 154 cores, a high quality
orbital chronology is available for the Oligocene-Miocene sequence at ODP Site 926
(Pélike et al., 2006) and can be correlated to ODP Site 1090 on the Agulhas Ridge
(Liebrand et al., 2011) where a high quality magnetostratigraphy is available (Figure
2; Channell et al., 2003). We apply the age model of Pilike et al. (2006).

2.2 Sample preparation

Sediment samples were dried in an oven at 50°C, then gently disaggregated in
deionised water using a shaker table and washed over a 63 um sieve. Tests (~1 mg) of
the planktonic foraminifer Dentoglobigerina venezuelana were picked from the 355-
400 pm size fraction for trace element analysis (See Supplementary Information)
following the morphotype description of Stewart et al., (2012). Larger samples of D.
venezuelana (~25 mg) and a second species, Globigerina bulloides (~5 mg), were
picked for Nd isotope analysis from the >355 pm size fraction. Additionally,
fossilised fish teeth (and one fish bone sample) were taken for eng analysis. These

samples consisted of an average of three individual teeth.
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2.2.1 Detrital and authigenic Fe-Mn oxyhydroxide extraction

Dried and ground bulk sediment (~420-610 mg) was transferred into centrifuge tubes
for processing. After an initial wash in MQ water and centrifuging, 15 ml of a
reductive cocktail containing 0.05 M hydroxylamine hydrochloride, 15% acetic acid,
and 0.01 M buffered EDTA was added following methods of Blaser et al. (2016),
with reductive cocktail concentrations as used in Gutjahr et al. (2007). Samples were
centrifuged and the supernatant was removed for purification of Nd from the Fe-Mn
oxyhydroxide fraction. Another 25 ml of the reductive leaching solution was added to
remove any remaining Fe-Mn oxyhydroxides (Gutjahr et al., 2007) in order to target
the pure terrigenous signal without residual authigenic Nd contributions. After
shaking for 24 hours, the supernatant was discarded following centrifuging and the
sample was dried. Approximately 50 mg of the dried re-homogenised residue was
first treated with concentrated HNO; and 30% H,O, for effective oxidation of
organics. Dried samples were subsequently treated with aqua regia prior to pressure
digestion in steel bombs (190°C over three days) in a mixture of concentrated HNO;
and HF. Dried digested samples were treated three times with concentrated HNO;
before conversion to chloride with HCI and column purification using procedures

outlined in Section 2.2.3.

2.2.2 Foraminifera and fish tooth cleaning procedure

All foraminifera and fish teeth samples were subject to cleaning prior to analysis
using established methods (Rosenthal et al., 1999). Briefly, adhering clay particles
were removed through repeated ultrasonication and rinsing with MQ water and
methanol. Samples were then cleaned to remove ferromanganese oxide coatings and
organic matter, and finally leached in weak acid to remove any re-adsorbed ions.
Foraminiferal calcite and fish teeth samples for isotopic analysis were dissolved in

0.075 M and 0.15 M HNO:; respectively.

2.2.3 Separation of Nd from the sample matrix

Nd was separated from the sample matrix using a two-stage chromatography

procedure. Sample solutions were dried down on a hotplate and then re-dissolved in
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0.2 M HCI. This solution was then loaded onto a Teflon column containing 2.4 ml of
Bio-Rad™ AG50W-X12 cation exchange resin. Matrix elements were removed by
eluting with 4 M HCI. Rare earth elements were then collected in 6 M HCI. The
recovered rare earth fraction was dried down, re-dissolved in 0.18 M HCI, and loaded
onto a second cation exchange column containing 0.6 ml of Eichron™ Ln spec resin
of particle size 50 to 100 um. Residual Sr and approximately 90% of the Ce were first
eluted with 8 ml of 0.18 M HCI, and the Nd fraction was collected by addition of a
further 7 ml of 0.18 M HCI. The total procedural blank from the columns was 13 pg
of Nd, which is typically <<1% of the sample size.

2.3 Analytical techniques

Details and results of analysis of Nd/Ca and Mn/Ca in foraminiferal calcite are shown
in the Supplementary Information. The Nd isotopic composition of the fish teeth and
foraminifera was determined by multicollector inductively coupled plasma mass
spectrometry (MC-ICP-MS; ThermoFisher Neptune) at the University of
Southampton, and the Nd isotopic composition of the sediment leaches and digests
was carried out at GEOMAR in Kiel (MC-ICP-MS; ThermoFisher Neptune Plus),
using the method of Vance and Thirwall (2002). Measured '**Nd/'**Nd ratios were
corrected to a "**Nd/"**Nd ratio of 0.7219 to remove mass bias effects (Wombacher
and Rehkémper, 2003). The external reproducibility of our Nd isotope measurements,
for Nd solutions of 25 to 50 ppb is better than £0.16 (n=37) and £0.11 (n=19) € units
(20) in Southampton and Kiel, respectively. Corrected data were normalised by
adjusting the average 'Nd/'**Nd ratio of the JNdi-1 Nd isotope standard measured
during that analytical session to the accepted value of 0.512115 (Tanaka et al., 2000).
BNd/'**Nd ratios (end0y) were corrected for post-depositional ingrowth of Nd
from "*’Sm (eNnd(r)) using an initial 7Sm/"*Nd ratio of 0.1286 for fish teeth (Thomas
et al., 2003) and 0.1412 for foraminifera, detrital and Fe-Mn oxyhydroxide samples
(Vance et al., 2004). This adjustment is small for our samples (lowering exg by <0.17

units). All subsequent discussion refers to the adjusted enq() values.
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3 Results

In Figure 2 we compare our records of eng in the detrital fraction, Fe-Mn
oxyhydroxides (Table 1), fish teeth, and foraminifera (D. venezuelana, and G.
bulloides; Table 2) from ODP Site 926 with the benthic foraminiferal oxygen isotope
record from the same site (Figure 2 A; Pilike et al., 2006). We further compare these
eng Mmeasurements to records of representative contemporaneous deep water eng
(Figure 1; Figure 2 B) from the North (Fe-Mn crust ALV539; O'Nions et al., 1998),
South (fish teeth from ODP Site 1090; Scher and Martin, 2008), and Equatorial
Atlantic Ocean (Fe-Mn crust ROM46; Frank et al., 2003). With the exception of the
North Atlantic Fe-Mn crust site ALV539 (depth 2.7 km) the water depths (and
palaeodepths) of all of these sites are similar to that of Ceara Rise (Figure 1). Despite
its slightly shallower depth, we assume that the eng of seawater at Site ALV539 is

typical of northern sourced deep water to Ceara Rise.

Most of our data for the detrital fraction from the OMT at Ceara Rise show distinctly
unradiogenic eng values with a baseline of around —18 & units. Four samples show
slightly more radiogenic values (around —16.5 ¢ units) at 22.4, 23.3, 23.6, and 24.1
Ma but the occurrence of these data points shows no clear correspondence to

structure in the benthic foraminiferal oxygen isotope stratigraphy from the same site.

end values for fish teeth are, on average, —14.5 and all data points are lower than
—13.0 € units. The foraminiferal exg records for D. venezuelana and G. bulloides are
generally within analytical uncertainty of one another and vary between —16.5 and —
13.2 & units. Compositions of the Fe-Mn oxyhydroxide fraction are within 0.26 ¢
units of the foraminiferal eng values. Furthermore, the pattern of change seen in the
Fe-Mn oxyhydroxide and foraminiferal eng records is remarkably similar to that of
the fish teeth record. We therefore find no discernible difference between the fish
teeth, foraminifera, and Fe-Mn oxyhydroxide eng records, even during the large

oxygen isotope excursion corresponding to the Mi-1 glaciation event.

4  Discussion
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To assess the potential influence of input of riverine particulate material from the
Amazon to Ceara Rise, we first discuss the Nd isotope composition of the detrital
fraction of the sediments. We then assess the impact of the Amazon on the Nd
isotopic composition of seawater in the western equatorial Atlantic across the OMT
by comparing Nd isotope compositions in the three different palaco-seawater

substrates.

4.1 Source of detrital sediments at Ceara Rise

The Nd isotopic composition of the detrital fraction of the sediments is used to assess
the Nd isotopic signature of terrestrial material from the Amazon River reaching the
Ceara Rise during the OMT. Sediment particles delivered to the modern Amazon Fan
from the River Amazon and its tributaries exhibit a wide range of exg values today
(from —8 to —22; Allegre et al., 1996), reflecting the variable age of the catchment
bedrock (Figure 3 A). Unradiogenic exg values are observed in the eastern tributaries
(Tapajos tributary exg = —20, Trombetas tributary exg = —22; Allégre et al., 1996),
which drain ancient cratonic sequences of the Guiana Shield (>2.3 Ga). By contrast,
the western tributaries draining younger Phanerozoic sedimentary rocks have more
radiogenic sedimentary particulate loads (eng ~ —8). These eroded sediments from the
east and west tributaries combine to give an intermediate exg value for the modern
Amazon suspended sediment load output to the Atlantic Ocean, which has eng = —10
(Allegre et al., 1996; McDaniel et al., 1997; Rousseau et al., 2015). These large
regional distinctions in &yg composition between geological terranes mean that
changes in drainage patterns have the potential to give rise to dramatic changes in the

eng of riverine suspended sediments to the Atlantic Ocean.

The drainage of the Amazon during the Oligocene and Miocene is thought to have
been very different from today because of the lower altitude of the Andes (Figure 3
B; Campbell et al., 2006; Figueiredo et al., 2009; Shephard et al., 2010). Stratigraphic
records suggest that, prior to the middle-Miocene (Cunha et al., 1994; Eiras et al.,
1994), the Amazon Basin consisted of two catchments divided by the Purus Arch: the

Eastern Amazon basin to the east and the Pebas Wetlands to the west (Figueiredo et
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al., 2009). Under this configuration, the outflow from the Amazon to the Atlantic
would have originated almost exclusively from the Eastern Amazon Basin, which is
underlain by the Guiana Shield and today yields very unradiogenic exg values for
suspended loads, between —17 and —22 (Allegre et al., 1996). The low exg values
recorded in the detrital fraction (—18 € units) that we document at Site 926, together
with colour, grain-size and rare earth element logs of sediments recovered from other
ODP Leg 154 sites (Dobson et al., 2001), all suggest that the Guiana Shield was the

dominant source of terrigenous sediment to Ceara Rise throughout our study interval.

Four samples in our data set show higher enq in the detrital fraction (up to —16.5) and
are interpreted to reflect the incorporation of detrital material from more radiogenic
terranes adjacent to the ancient Guiana Shield. One possible source of more
radiogenic Nd is the westerly Purus Arch (Figure 3 B). Changes in Amazon
vegetation cover (e.g. van der Hammen and Hooghiemstra, 2000) and distribution of
precipitation have been linked to global climate (Wang et al., 2004), as centres of
tropical precipitation are often shifted meridionally away from the hemisphere of
maximum cooling (Arbuszewski et al., 2013). Nearly all detrital exg values are
slightly higher (more radiogenic) before the Mi-1 event than they are afterwards, but
there is no obvious relationship between our detrital exg record and the benthic 5'%0
record across the OMT (Figure 2 A; Pilike et al., 2006), even during the Mi-1
glaciation. We therefore conclude that changes in the source of Amazonian
terrigenous sediment to Site 926 during our study interval are not strongly modulated
by processes coupled to changes in high latitude temperature and continental ice
volume. On the other hand, our data indicate that measurement of detrital exg of more
recent Ceara Rise sediments (e.g. McDaniel et al., 1997) could represent a powerful
tool for determining the disputed timing of westward enlargement of the Amazon
Basin to its modern configuration during the Miocene/Pliocene (Campbell et al.,

2006; Figueiredo et al., 2009).
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4.2 Nd in fish teeth and fossilised foraminifera at Ceara Rise

Of the data types presented here, those generated using fish teeth are commonly
regarded as the most robust archive of changes in oceanic bottom water exg because
most of the Nd contained in fish tooth fluorapatite is acquired during early diagenesis
on the seafloor (Martin and Haley, 2000; Martin and Scher, 2004). In our study, exg
data from planktonic foraminifera are strikingly similar to data from fish teeth and the
authigenic Fe-Mn oxyhydroxide fraction, despite reductive cleaning that is expected
to remove authigenic overgrowths from test calcite. While it is possible that the eng
value of surface water was identical to the eng value of bottom water during the
OMT, high Mn/Ca (>500 pmol/mol) and Nd/Ca (>1 pumol/mol) ratios measured in
these foraminifera (see Supplementary Information) imply that the Nd in these
samples more likely has an authigenic origin and is not representative of surface

water (Pomic¢s et al., 2002; Tachikawa et al., 2014).

4.3  Sources of Nd to deep water at Ceara Rise

Fish teeth exg records from South Atlantic ODP Sites 689, Maud Rise (Scher and
Martin, 2004) and 1090, Agulhas Ridge (Scher and Martin, 2006; Figure 2 B) suggest
that, during the OMT, Atlantic deep waters originating in the Southern Ocean had eng
values close to those of modern southern component water (eng ~ —8). Unradiogenic
enda values typical of modern northern component deep water (—13.5; principally
North Atlantic Deep Water; Piepgras and Wasserburg, 1987; Lacan and Jeandel,
2005a) only appear in the marine sedimentary record in the late Neogene, following
closure of the Central American Seaway (Burton et al., 1997). The enxg value of
northern component deep water in the Miocene is estimated to have been much
higher (~ —10; O'Nions et al., 1998; Scher and Martin, 2006) than its present day
composition. Thus, simple mixing between northern and southern component deep
waters cannot explain the low exg that we document in fish teeth, planktonic
foraminifera, and the authigenic Fe-Mn fraction of sediments from Site 926 (~ —15
end units; Figure 2 B). Rather, the deep waters must be affected by input of very

unradiogenic Nd from a regional source, a clear candidate being the River Amazon.
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Neodymium is exported from rivers to the oceans in three main phases, (i) dissolved
Nd (Goldstein and Jacobsen, 1987), (ii) pre-formed oxides (Bayon et al., 2004), and
(i11)) Nd contained in detrital suspended particulate matter (Pearce et al., 2013).
Various lines of evidence point to detrital particulate-bound supply as the major
influence on deep water eng at Ceara Rise. First, dissolved Nd concentration in the
modern Amazon Estuary is observed to increase in the mid-salinity zone and is
accompanied by a shift in eyg from riverine values (>-9) to values closer to the
suspended load (<-10) (Rousseau et al., 2015). Therefore, Nd in the dissolved phase
of Amazon river waters is extremely susceptible to alteration by Nd released from
suspended particles during estuarine mixing. Second, if pre-formed Fe-Mn oxides
were controlling the bottom water Nd isotope signature at Ceara Rise, this should be
most clearly identifiable in isotopic differences between fish tooth- and Fe-Mn
oxyhydroxide-derived eng. In such a scenario, the Fe-Mn oxyhydroxides would yield
eng values similar to the detrital composition (C.f. Bayon et al., 2004; Kraft et al.,
2013). By contrast, the Nd incorporated into fish teeth is derived from bottom waters
or pore fluids (Martin and Scher, 2004). Hence, our data indicate that pore fluid and
bottom water eng at Ceara Rise differed from that of deep water in the central Atlantic
(with eng ~ —10; O'Nions et al., 1998). The most likely reason for this is partial
dissolution of Amazon particulate material within Ceara Rise pore fluids (Lacan and
Jeandel, 2005a; Carter et al., 2012; Pearce et al., 2013; Abbott et al., 2015a). Once
delivered to Ceara Rise, this particulate-bound Nd is transferred to the overlying deep
waters through dissolution or desorption, thus shifting the deep water signal
regionally towards less radiogenic eng values. Discovery of this signal at a site more
than 800 km from the outflow source, in 3.6 km water depth, indicates that this
process is not restricted to the continental shelves and can operate further offshore if

particle fluxes are high.

To assess the percentage contribution of detrital Amazon-derived Nd to deep water
end at this site we compare fish tooth, foraminifera, and Fe-Mn oxyhydroxide data,
with eyg measurements of the corresponding detrital fraction and open ocean

seawater. In this analysis, we used the detrital measurement closest to the sample
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depth of the fish tooth, foraminifera and leachate data where data from the same
sample was not available (we note that our choice between detrital data from identical
or adjacent samples for comparison to estimates of seawater exq has little impact on
the main findings of this study). Assuming that the exg value of northern component
water bathing Ceara Rise during the OMT was —10 (O'Nions et al., 1998), we
calculate that the majority of the Nd in bottom waters at this site (average 64%) was
derived from Amazon particulate material (Figure 2 C). Although we observe large
amplitude variability in our down-core record (between 45% and 90%) that is likely
related to variations in sediment sourcing from various Amazon tributaries (Figure 3),
there is no clear link between short-term increases/decreases in the estimated fraction
of Amazon particulate-derived Nd on the eng signal of Ceara Rise bottom water and
pronounced changes in high latitude climate inferred from benthic foraminiferal §'*0

(Figure 2 A; Pilike et al., 20006).

We note that eng values for deep water of similar age and water depth to our samples
derived from a Fe-Mn crust (ROM46) recovered from the central Equatorial Atlantic
Ocean are also relatively unradiogenic (—11.5; Figure 2 B), and also cannot therefore
be explained by simple mixing between northern and southern component deep
waters (Frank et al., 2003). Such unradiogenic deep water eng at the ROM46 site,
more than 1,000 km from land, prompted the authors to invoke additional sources of
Nd including Saharan dust and also the Amazon River (Frank et al., 2003). Our new
data from Ceara Rise support a far-reaching Amazon source for deep water Nd at the
ROM46 site during the Oligocene-Miocene, given that this more distal central
Atlantic site yields deep water eng values that fall between those observed at Ceara

Rise and contemporaneous northern/southern component water.

4.4 Potential impact of regional terrestrial inputs on seawater eng in the Neogene

Ocean

The highly unradiogenic eng composition of suspended particulate material in the
Amazon River during the OMT points to more restricted drainage than in the

Amazon Basin today, with the dominant terrestrial input coming from the ancient
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terrane of the Guiana Shield in the East Amazon Basin. The fingerprint of this highly
unradiogenic sediment source on deep water gxq is recognisable far from the Amazon
outflow source, yielding values outside of the range defined by mixing of northern
and southern component water masses in the Atlantic. This result is consistent with
the findings of Abbott et al. (2015a), who suggest that seawater exg can be strongly
affected by inputs of pore fluid Nd if the exg of those pore fluids is significantly offset

from that of the overlying water mass.

In more recent geological times the flux and eng composition of the open deep
Equatorial Atlantic water mass and Amazon weathering sources have changed. First,
the sediment flux from the Amazon increased from the late Miocene to the Pliocene
in conjunction with Andean uplift (Figueiredo et al., 2009). This uplift has also
resulted in a larger modern Amazon drainage basin that now includes younger
Phanerozoic sedimentary rocks (Figueiredo et al., 2009). As the eng of suspended
sediments is strongly influenced by drainage pattern changes in the heterogeneous
Amazon basin, broadening of the Amazon catchment westwards introduces
suspended sediments with more radiogenic compositions (exg ~ —10; Figure 3 A;
Allegre et al., 1996; Rousseau et al., 2015). Second, the exg composition of northern
component deep water became less radiogenic, starting at about 4 to 3 Ma in the late
Neogene (Burton et al., 1997), and is now approximately —13.5 (Piepgras and
Wasserburg, 1987). Both of these changes are in a direction that makes it more
difficult to discern the influence of regional terrestrial sources from changes in
northern/southern component water mass mixing despite the higher Amazon
sediment fluxes. For example, a 60% contribution of Nd sourced from the Amazon
detrital sediments to Ceara Rise today (exg = —10; Allegre et al., 1996) would be
enough to increase the seawater value by 2 € units above the modern northern
component water value. Such a change could be incorrectly interpreted to represent

an increased contribution from southern sourced deep waters at this site.

Authigenic eng records for the last 25 thousand years from piston cores GEO B1515-1
and GEOB 1523-1 on Ceara Rise (Figure 1) show a much more radiogenic signal

than we measure across the OMT, with values changing from about —10 at the last
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glacial maximum to approximately —12 or —13 for the Holocene (Lippold et al.,
2016). This Pleistocene to Holocene shift is interpreted to be the result of a change in
water mass provenance at Ceara Rise, from predominantly Atlantic southern
component water to more unradiogenic northern component water (Lippold et al.,
2016). The Holocene Nd isotope compositions in these cores match modern seawater
end (Piepgras and Wasserburg, 1987). We note however that these (de-)glacial deep
water eng values are close to modern Amazon suspended sediment values. Therefore,
a potential alternative explanation for these Pleistocene eng data could be a greater
influence of the benthic sedimentary flux of Nd (~60% of total Nd) on deep water at
Ceara Rise during the last glacial maximum. This could be due to increased exposure
time to the benthic sedimentary Nd flux (e.g. Abbott et al., 2015a) during this time of
more sluggish Atlantic oceanic overturning (Lippold et al., 2016). Yet because both
an increased contribution of southern component water, and a higher flux of benthic
(pore fluid) Nd, act to shift deep water exg towards more radiogenic values, the effect
of enhanced Nd release from the particulate fraction at the last glacial maximum at

Ceara Rise cannot be unambiguously resolved at this stage.

5 Conclusions

We present eng records in fossilised fish teeth, planktonic foraminifera and Fe-Mn
oxyhydroxide substrates from Ceara Rise for the Oligocene-Miocene transition.
Records from these three substrates are remarkably consistent with one another,
implying that all three archives have acquired the exg signature of bottom waters. Yet
the eng data that we have obtained are extremely unradiogenic (down to —15) in
comparison to those for contemporaneous bottom waters in the Atlantic Ocean. They
cannot therefore be explained by simple large-scale ocean mixing between northern
and southern component Atlantic deep waters, both of which were significantly more
radiogenic (exg of —10 and —8 respectively). We suggest that bottom waters at Ceara
Rise were strongly influenced by inputs of Nd derived from weathering of ancient
cratonic rocks in the eastern Amazon drainage basin. The similarity between the fish
teeth, planktonic foraminifera, and Fe-Mn oxyhydroxide Nd isotope records provides

evidence for significant release of Nd from sedimentary particulate material from the
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River Amazon during the OMT. Discovery of such a strong regional continental
influence on deep waters, many hundreds of kilometres from source, suggests that
boundary exchange processes can operate far from continental shelf regions (under
high particle flux conditions). Caution must therefore be exercised in site selection
and when interpreting seawater exg records in light of the vast distances across which
major point sources of Nd may influence deep water eng. On the other hand, these
techniques present an opportunity to investigate changes in sourcing of riverine-

supplied Nd to the ocean associated with major tectonic and/or climatic change.
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461

462 Figure 1: Location of ODP Leg 154 Site 926B Ceara Rise in relation to other deep water
463 eng records across the Oligocene-Miocene transition discussed in this study. Fe-Mn crust
464 ALV539, 2,665 m water depth (O'Nions et al., 1998), Fe-Mn crust ROM46, 3,350 m water
465 depth (Frank et al., 2003), Fish tooth record from ODP Site 1090, 3,700 m water depth
466 (Scher and Martin, 2008). Colours correspond to line/marker colours in Figure 2. Inset
467 shows location of ODP Site 926B in relation to the Amazon River mouth and piston core
468 sites on Ceara Rise, GEOB 1515-1 (3,129 m water depth) and GEOB 1523-1 (3,292 m
469 water depth) used in the study by Lippold et al. (2016).

470

471 Figure 2: gyq records across the Oligocene-Miocene transition at ODP Site 926. A. Benthic
472 oxygen isotope record for this site (Pilike et al., 2006), B. eyq values for fossilised fish
473 teeth (green triangles), planktonic foraminifera D. venezuelana (blue circles) and G.
474 bulloides (red circles), Fe/Mn oxyhydroxides (black diamonds), and the detrital fraction
475 (squares). Deep water eyg values for the South Atlantic (Scher and Martin, 2008),
476 Equatorial Atlantic (Frank et al., 2003), and North Atlantic (O'Nions et al., 1998) at the
477 OMT are also shown for comparison. Colour scale corresponds to that used in Figure 3
478 showing potential Amazon basin source rock eyg ranges for Guiana Shield, Purus Arch and
479 Phanerozoic sediments (Allegre et al., 1996). C. Estimated percentage of enyg seawater
480 signal at Ceara Rise coming from Amazon sources relative to northern component water
481 during the OMT. Error bars represent the 2 standard error of each measurement.
482 Magnetostratigraphic correlation from ODP Site 1090 in the South Atlantic (Billups et al.,
483 2002; Channell et al., 2003).

484

485 Figure 3: Geology of the Amazon Basin. Star shows the position of ODP Site 926 on Ceara
486 Rise. Panel A. Coloured squares (colour scale corresponds to that used in Figure 2) show
487 eng values of modern suspended sediments in Amazon tributaries (Allégre et al., 1996).
488 Shaded regions show basement lithology. Panel B. Amazon drainage during the Oligocene-
489 Miocene. Black arrows and blue dashed line show, respectively, the inferred drainage
490 pattern and catchment area at this time (Figueiredo et al., 2009; Shephard et al., 2010).

491

492 Table 1: eyqg measurements of detrital sediments and Fe/Mn oxyhydroxides from the
493 Oligocene-Miocene transition of ODP Site 926. Ages are calculated using the age model of
494 Pilike et al. (2006). exq(0) denotes measured eyg values, and eyq(t) values have been
495 adjusted for ingrowth of "**Nd since the Oligocene (assumption: initial '¥’Sm/"**Nd ratio
496 0.1412 for detrital and Fe-Mn oxyhydroxide samples).

497

498 Table 2: eyg measurements of fossilised fish teeth and planktonic foraminifera (D.
499 venezuelana and G. bulloides) from the Oligocene-Miocene transition of ODP Site 926.
500 Ages are calculated using the age model of Pilike et al. (20006). eng(0) denotes measured eng
501 values, and eyq(t) values have been adjusted for ingrowth of '*Nd since the Oligocene
502 (assumption: initial 'Y’Sm/'**Nd ratio 0.1286 for fish teeth and 0.1412 for foraminifera
503 samples).
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Figure 1: Location of ODP Leg 154 Site 926B Ceara Rise in relation to other deep water eéNd records across the
Oligocene-Miocene transition discussed in this study. Fe-Mn crust ALV539, 2,665 m water depth (O'Nions et al.,
1998), Fe-Mn crust ROM46, 3,350 m water depth (Frank et al., 2003), Fish tooth record from ODP Site 1090, 3,700 m
water depth (Scher and Martin, 2008). Colours correspond to line/marker colours in Figure 2. Inset shows location of
ODP Site 926B in relation to the Amazon River mouth and piston core sites on Ceara Rise, GEOB 1515-1 (3,129 m
water depth) and GEOB 1523-1 (3,292 m water depth) used in the study by Lippold et al. (2016).
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Figure 2: eyq records across the Oligocene-Miocene transition at ODP Site 926. A. Benthic oxygen isotope record for this
site (Palike et al., 2006), B. exq values for fossilised fish teeth (green triangles), planktonic foraminifera D. venezuelana (blue
circles) and G. bulloides (red circles), Fe/Mn oxyhydroxides (black diamonds), and the detrital fraction (squares). Deep
water eyg values for the South Atlantic (Scher and Martin, 2008), Equatorial Atlantic (Frank et al., 2003), and North
Atlantic (O'Nions et al., 1998) at the OMT are also shown for comparison. Colour scale corresponds that used in Figure 3
showing potential Amazon basin source rock eyg ranges for Guiana Shield, Purus Arch and Phanerozoic sediments (Allegre
et al.,, 1996). C. Estimated percentage of exq seawater signal at Ceara Rise coming from Amazon sources relative to northern
component water during the OMT. Error bars represent the 2 standard error of each measurement. Magnetostratigraphic
correlation from ODP Site 1090 in the South Atlantic (Billups et al., 2002; Channell et al., 2003).
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Detrizal (Total digest) Fe-Mn oxyhydroxides

ODP Sample Identification =~ Depth  Age BNA*Nd ena(0) ena(t) B3NANd ena(0) ena(t)

Site, Hole, Core, Section, (mbsf) (Ma)  (normalised) (normalised)

l-lalf, Int. 2SE 2SE
926 B 46 4 W 40 - 50 427.8 21.61 0.511710 -18.10 -17.95 0.06 0.511859 -15.20 -15.04 0.05
926 B 46 6 W 70 - 80 4311 21.72

926 B 47 1W 65 -67 4331 21.80 0.511701 -18.27 -18.12 0.05 0.511831 -15.74 -15.59 0.06
926 B 47 2W 70 - 80 4347 21.85 0.511698 -18.33 -18.17 0.05 0.511909 -14.21 -14.06 0.08
926 B 47 4W 10 -20 437.1 21.93

926 B 47 6 W 42 -50 4404 22.05 0.511700 -18.30 -18.15 0.06 0.511887 -14.64 -14.49 0.06
926 B 48 2W 72 -80 4444 2217

926 B 48 4 W 52 -60 447.2 2227 0.511647 -19.34 -19.18 0.05 0.511793 -16.49 -16.33  0.05
926 B 48 6 W 91 - 100 450.6 22.38

926 B 48 6 W 132 - 134 4509 22.39 0.511800 -16.34 -16.19  0.05 0.511917 -14.06 -13.90 0.06
926 B 49 4 W 109 - 120 4573 22.62 0.511691 -18.47 -18.31 0.05 0.511860 -15.18 -15.02 0.04
926 B 49 6 W 5-15 4593 2270

926 B 50 4 W 102 - 105 466.9 23.00 0.511725 -17.81 -17.64 0.04 0.511852 -15.32 -15.16  0.05
926 B 50 5W 55 -75 4675 23.02 0.511688 -18.52 -18.36  0.05 0.511849 -15.39 -15.23  0.05
926 B 50 5W 111 - 114 4685 23.06 0.511698 -18.34 -18.18 0.05 0.511866 -15.07 -14.90 0.04
926 B 50 6 W 82 -92 469.8 23.11 0.511702 -18.27 -18.10 0.04 0.511846 -15.45 -15.29 0.05
926 B 51 2W 35 -45 4729 2322

926 B 51 2 W 128 - 133 473.8 23.26 0.511786 -16.61 -16.45 0.05 0.511917 -14.07 -13.91 0.06
926 B 51 5W 53 -60 4776 23.40

926 B 52 1W 94 - 104 4815 23.63 0.511771 -16.91 -16.75 0.06 0.511880 -14.79 -14.62 0.06
926 B 52 1W 141 - 143 4819 23.64 0.511733 -17.66 -17.49 0.05 0.511818 -16.00 -15.83 0.05
926 B 52 5W 29 - 38 486.8 23.84 0.511700 -18.29 -18.12 0.05 0.511874 -14.90 -14.73  0.05
926 B 53 1W 35-44 4906 23.99

926 B 53 3W 105 - 114 4943 24.10 0.511786 -16.62 -16.44 0.04 0.511959 -13.24 -13.07 0.05

Table 1: exg measurements of detrital sediments and Fe/Mn oxyhydroxides from the Oligocene-Miocene transition
of ODP Site 926. Ages are calculated using the age model of Pilike et al. (2006). exq(0) denotes measured eyq values,
and eyq(t) values have been adjusted for ingrowth of 14°Nd since the Oligocene (assumption: initial 14’Sm/!*Nd
ratio 0.1412 for detrital and Fe-Mn oxyhydroxide samples).



Fish teeth D. venezuelana G. bulloides

ODP Sample Identification ~ Depth  Age  '"Ng/'Nd  &xa(0) enalt) "Nd/"Nd ena(0) enalt) "Nd/"Nd ena(0) enalt)

Site, Hole, Core, Section, (mbsf) (Ma)  (normalised) (normalised) (normalised)

Half, Int. 2SE 2SE 2SE
926 B 46 4W 40 -50 4278 21.61 0.511869 1500  -14.81 0.19 0.511854 1528 -15.13 0.2 0.511856 1526 -15.11 0.39
926 B 46 6W 70 -80 4311 21.72 0511869 -1500  -14.81 0.8 0.511840 -1556  -1541 0.20

926B 47 1W 65 -67 4331 21.80

926B 47 2W 70 -80 4347 21.85 0511928 1386  -13.67 0.17 0.511907 41426  -1411 021

926B 47 4W 10 -20 4371 21.93 0.511888 11463 -1444 019 0.511846 11545  -1530 0.23 0.511855 41527 -1512 046
926B 47 6 W 42 -50 4404 22.05 0511916 41409  -13.90 0.9 0511871 41496  -14.81 0.20 0.511870 41499  -1483 031
926B 48 2W 72 -80 4444 2217 0511898 11443 -1425 018 0.511865 11507 -1492 027

926B 48 4W 52 -60 447.2 2227 0511868 41502 -14.83  0.19 0511791 1652 -1636  0.17 0.511782 -16.70  -16.55 0.25
926B 48 6 W 91 - 100 450.6 22.38 0511884 21470 -1451 0.8 0.511858 41521 -15.06  0.23 0511874 21490  -1475 0.24
926 B 48 6 W 132 - 134 4509 22.39

926 B 49 4W 109 - 120 457.3 22.62 0.511841 1556  -1536 0.8 0.511860 1518 -15.03 0.16 0.511844 1548 1532 0.27
926B 49 6W 5-15 4593 2270 0511895 21450  -1431 0.20 0511878 1482 -14.66 0.20 0.511886 1467  -1451 0.9

926 B 50 4 W 102 - 105 466.9 23.00
926 B 50 5W 55 -75 4675 23.02
926 B 50 5W 111 - 114 4685 23.06

926 B 50 6 W 82 -92 4698 23.11 0.511847 -15.43 -15.23  0.26 0.511832 -15.72 -15.56  0.20 0.511813 -16.10 -15.94  0.40
926 B 51 2W 35 -45 4729 2322 0.511897 -14.46 -14.26  0.36 0.511861 -15.16 -15.00 0.25 0.511854 -15.30 -15.14 043
926 B 51 2W 128 - 133 4738 23.26 0.511924 -13.92 -13.72 0.24 0.511909 -14.23 -14.06  0.22 0.511834 -15.68 -15.52 0.50
926 B 51 5W 53 -60 4776 23.40 0.511894 -14.52 -1432  0.20 0.511861 -15.15 -1499 024

926 B 52 1W 94 - 104 4815 23.63 0.511803 -16.29 -16.09 0.16 0.511883 -14.72 -14.56  0.18 0.511841 -15.55 -15.39 071
926 B 52 1W 141 - 143 4819 23.64

926 B 52 5W 29 -38 4868 23.84 0.511924 -13.92 -13.72 0.25 0.511873 -14.92 -14.76  0.21

926 B 53 1W 35 -44 4906 23.99 0.511830 -15.77 -15.57 0.19 0.511832 -15.72 -15.56 0.24

926 B 53 3W 105 - 114 4943 24.10 0.511953 -13.37 -13.16  0.26 0.511958 -13.27 -13.11 021 0.511952 -13.38 -13.21 045

Table 2: eyg measurements of fossilised fish teeth and planktonic foraminifera (D. venezuelana and G. bulloides)
from the Oligocene-Miocene transition of ODP Site 926. Ages are calculated using the age model of Pilike et al.
(2006). exg(0) denotes measured eyg values, and eyq(t) values have been adjusted for ingrowth of 143Nd since the
Oligocene (assumption: initial '*’Sm/!'**Nd ratio 0.1286 for fish teeth and 0.1412 for foraminifera samples).





