
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Interconnection Networks Performance Modelling for Multi-core

Multi-Cluster Architecture

By

Norhazlina Hamid

Thesis for the degree of Doctor of Philosophy in Computer Science

June 2016

Norhazlina Hamid

i

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Interconnection Networks Performance Modelling for Multi-core

Multi-Cluster Architecture

Norhazlina Hamid

In High Performance Computing (HPC) system design and deployment there is an

increasing trend towards networked parallel systems such as cluster computing

systems. Cluster computing is typically built from a group of workstations connected

by high-speed networks to form a single high-availability system. One of the driving

forces behind high-performance clusters is the advent of multi-core clusters. The aim

of the research reported here is to design a new architecture for large-scale multi-core

cluster computing systems and to investigate the interconnection network

performance of the new architecture.

 Since the overall performance of cluster computing systems always depends on the

efficiency of its communication networks, performance analysis of the interconnection

networks is vital. A general problem in the network may arise from the fact that

multiple messages can be in transmission at the same time, using the same network

links.

 The contribution of this thesis is to develop a new architecture known as Multi-core

Multi-cluster Architecture (MCMCA), composed of numbers of clusters where each

cluster is a multi-core processor. Next, a simulation model is built to investigate the

interconnection network performance of the new architecture, and the results are

presented. The main performance metrics to be simulated are the latency and network

throughput. The model is then used to evaluate the impact on scalability and cluster

size of the interconnection network performance. Finally, analytical model including

statistical analysis are used to validate the simulation results under various working

conditions.

 The analysis indicates that, from single-core to multi-core, there is a significant

improvement in processor performance. To judge from the latency results, compared

Norhazlina Hamid

ii

to single-core cluster a multi-core cluster can improve the network performance.

Another observation is that the architecture can achieve lower latency and higher

throughput as the number of cores increases. The experiments also demonstrated that

a multi-core cluster can scale better than a single-core cluster. The results comparison

between the analytical model and those produced from the simulation experiments has

shown that the derived simulation model provides a good basis for predicting the

communication delay of the interconnection network performance of the Multi-Core

Multi-Cluster Architecture (MCMCA).

Norhazlina Hamid

iii

Table of Contents

Table of Contents .. iii

List of algorithms .. ix

List of figures .. xi

List of tables ………………………………………………………………………..xv

Declaration of Authorship .. xvii

Acknowledgements .. xix

Definitions and Abbreviations ... xxi

Chapter 1 Introduction ... 1

1.1 Research Motivation ... 1

1.2 Research Objectives ... 3

1.3 Published Papers ... 4

1.4 Thesis Structure .. 5

Chapter 2 Literature Review ... 7

2.1 Introduction .. 7

2.2 Computers and Processors .. 7

2.3 Multi-core Processors .. 9

2.3.1 Moore’s ‘Law’ Changes with Multi-core Processor 11

2.4 Cluster Computing ... 12

2.4.1 Cluster Interconnection Networks ... 14

2.5 Single-core Clusters ... 15

2.6 Multi-core Clusters ... 16

2.6.1 The Advantages of a Multi-core Cluster 18

2.6.2 Research Challenges .. 19

Norhazlina Hamid

iv

2.7 Multi-cluster Architectures... 20

2.8 Message, Packet and Flits .. 21

2.9 Modelling and Simulation .. 21

2.9.1 Modelling and Simulation Techniques 22

2.9.2 Simulation Model Structure ... 23

2.10 Summary .. 27

Chapter 3 The New Architecture .. 29

3.1 Introduction .. 29

3.2 Multi-core Multi-cluster Architecture (MCMCA) 29

3.3 Appropriate characteristics for cluster architecture design...... 31

3.3.1 Intra-Chip network (AC) .. 31

3.3.2 Inter-Chip network (EC) ... 32

3.3.3 Intra-Cluster Network (ACN) .. 33

3.3.4 Inter-Cluster Network (ECN) and Multi-Cluster Network

(MCN)…….. ... 33

3.4 The MCMCA Queueing Network Model ... 34

3.5 MCMCA Activity Diagrams ... 37

3.6 Simulation model to investigate interconnection network

performance .. 39

3.6.1 OMNeT++ Network Simulation Tool 40

3.7 The MCMCA Simulation Model ... 42

3.7.1 Experiments with a Single-core Cluster 43

3.7.2 Experiments with Multi-core Clusters 46

3.8 Summary .. 48

Chapter 4 The Performance Model using Store-and-Forward Flow

Control Mechanism .. 49

Norhazlina Hamid

v

4.1 Introduction .. 49

4.2 Store-and-Forward Flow Control Mechanism 51

4.3 Assumptions and Notations .. 51

4.3.1 Assumptions... 51

4.3.2 Notations ... 52

4.4 Evaluation Methodology ... 53

4.4.1 Simulation Structures .. 53

4.4.2 The Simulation Activity Diagram ... 57

4.4.3 Simulation Experimental Setup .. 57

4.5 The Analytical Model ... 62

4.5.1 Preliminaries ... 63

4.5.2 Average Message Latency of an Internal-Cluster

Network….. ... 63

4.5.3 Average Message Latency of an External-Cluster

Network….. ... 65

4.5.4 Average Message Latency of MCMCA 66

4.5.5 Implementation of the Analytical Model 66

4.6 Performance Evaluation (SQ4) ... 70

4.6.1 Latency and Throughput Performance on MCMCA 71

4.6.2 The impact on cluster size... 73

4.6.3 The impact on message length and scalability 75

4.7 Summary .. 77

Chapter 5 The Performance Model using Wormhole Flow Control

Mechanism…. .. 79

5.1 Introduction .. 79

5.2 Wormhole Flow Control Mechanism ... 80

Norhazlina Hamid

vi

5.3 Assumptions and Notations .. 80

5.4 The Simulation Model .. 80

5.4.1 Simulation Structure .. 80

5.4.2 The Experimental Setup.. 82

5.5 The Analytical Model ... 82

5.5.1 Preliminaries ... 82

5.5.2 Average Message Latency of an Internal-Cluster

Network….. ... 83

5.5.3 Average Message Latency of an External-Cluster

Network….. ... 85

5.5.4 Average Message Latency of MCMCA 87

5.5.5 Implementation of the Analytical Model 87

5.6 Performance Evaluation (SQ4) .. 93

5.6.1 Baseline experiment on MCMCA .. 93

5.6.2 Latency and throughput on MCMCA..................................... 94

5.6.3 The Impact on cluster size .. 97

5.6.4 The impact on message length and scalability 100

5.7 Summary .. 102

Chapter 6 Statistical Analysis .. 105

6.1 Introduction .. 105

6.2 Analysis of Experimental Results... 105

6.2.1 Normality test .. 106

6.3 Mean Differences between Mechanisms 110

6.3.1 Discussion ... 111

6.4 Mean Differences between Processor Core Performance 112

Norhazlina Hamid

vii

6.4.1 Discussion ... 114

6.5 Summary .. 115

Chapter 7 Conclusions, Contributions and Future Work 117

7.1 Conclusions .. 117

7.2 Research Contributions .. 120

7.3 Future Research Directions .. 121

7.3.1 Limitations of the Research ... 121

7.3.2 Specific Extensions ... 123

7.4 Concluding Remarks .. 124

Appendix 2-A .. 125

Appendix 3-A .. 127

Appendix 3-B ... 155

Appendix 4-A .. 161

References…. .. 164

Norhazlina Hamid

viii

Norhazlina Hamid

ix

List of algorithms

Algorithm 4-1: Internal cluster switch connection (ISwitch) for store-and-forward flow

control mechanism ... 59

Algorithm 4-2: External cluster switch connection (ESwitch) for store-and-forward flow

control mechanism ... 60

Algorithm 4-3: Message probability in the internal cluster and external cluster 62

Algorithm 4-4: Process flow in calculating the communication latency of

interconnection networks in MCMCA .. 66

Algorithm 4-5: Pseudocode of process flow in calculating the communication latency of

interconnection networks in MCMCA using MATLAB based on Store-and-Forward

flow control ... 67

Algorithm 5-1: Process flow in calculating the communication latency of

interconnection networks in MCMCA based on a wormhole flow-control mechanism

 ... 88

Algorithm 5-2: Pseudocode of process flow in calculating the communication latency of

interconnection networks in MCMCA using MATLAB based on wormhole flow

control ... 89

Norhazlina Hamid

x

Norhazlina Hamid

xi

List of figures

Figure 2-1: Basic design of single-core processor .. 9

Figure 2-2: Basic design of multi-core processor .. 10

Figure 2-3: Cluster architecture (reproduced from (Baker et al., 2000) 13

Figure 2-4: Illustration of a Single-core cluster basic structure 16

Figure 2-5: Illustration of Multi-core Clusters basic structure ... 17

Figure 2-6: Communication level in Multi-core cluster ... 18

Figure 2-7: An illustration of the subdivision of a message into packets and of packets

into flits (reproduced from (Dally & Towles, 2004)) .. 21

Figure 2-8: An 8-port 2-tree constructed by proposed algorithm 24

Figure 2-9: The incorporate entities in MCMCA .. 28

Figure 3-1: Overview of the proposed Multi-Core Multi-Cluster Architecture (MCMCA) 30

Figure 3-2: Communication for message passing between two processor cores on the

same chip .. 32

Figure 3-3: Communication for message passing across processors in different chips,

but within a node .. 32

Figure 3-4: Communication routes for messages passing between processors on

different nodes, but within the same cluster ... 33

Figure 3-5: Communication routes for transmitting messages between clusters 34

Figure 3-6: Queuing network of single-core cluster ... 35

Figure 3-7: Queuing network of multi-core cluster ... 36

Figure 3-8: Queuing network of Multi-core Multi-cluster Architecture (MCMCA) 36

Figure 3-9: Activity diagram of a packet traversing the cluster node of a single-core

processor ... 37

Figure 3-10: Activity diagram of a packet traversing the cluster node of a multi-core

processor ... 38

Figure 3-11: Model Structure in OMNeT++ (Varga & Hornig, 2008) 42

Figure 3-12: Bahman's model for 8-cluster system with M=32 44

Figure 3-13: MCMCA model with C=8, M=32 based on Store-and-Forward Flow Control

 ... 44

Figure 3-14: Bahman's model for 8-cluster system with M=64 45

Figure 3-15: MCMCA model with C=8, M=64 based on Store-and-Forward Flow Control

 ... 45

Figure 3-16: MCMCA Simulation Results based on Store-and-Forward Flow Control..... 47

Figure 3-17: MCMCA Simulation Results based on Wormhole Flow Control 47

Figure 4-1: Flow diagram of the Store-and-Forward flow control mechanism

(reproduced from (Dally & Towles, 2004)) ... 51

Norhazlina Hamid

xii

Figure 4-2: Activity diagram of MCMCA simulation model .. 58

Figure 4-3: Message latency and throughput results based on store-and-forward flow

control mechanism with M=8KB using Network Bandwidth I 71

Figure 4-4: Message latency and throughput results based on store-and-forward flow

control mechanism with M=8KB using Network Bandwidth II 72

Figure 4-5: Simulation results of the impact on the message latency with various

number of clusters based on Network Parameter I ... 73

Figure 4-6: Simulation results of the impact on the message latency with numbers of

clusters based on Network Parameter II ... 74

Figure 4-7: Simulation results of the impact on the message latency with various

message lengths based on Network Parameter I ... 75

Figure 4-8: Simulation results of the impact on the message latency with various

message lengths based on Network Parameter II .. 76

Figure 5-1: MCMCA model with C=8, M=32 flits, F=256 bytes based on Wormhole Flow

Control .. 94

Figure 5-2: Message latency and throughput simulation results based on Wormhole

Flow Control Mechanism with M=32F, F=256 bytes .. 95

Figure 5-3: Message latency and throughput simulation results compared to analytical

calculation results based on Wormhole Flow Control with M=32 flits, F=256 bytes

 ... 95

Figure 5-4: Message latency and throughput simulation results based on Wormhole

Flow Control Mechanism with M=32 flits, F=512 bytes .. 96

Figure 5-5: Message latency and throughput simulation results compared to analytical

calculation results based on Wormhole Flow Control with M=32 flits, F=512 bytes

 ... 96

Figure 5-6: Message latency predicted by the simulation model with M=32 flits, F=256

bytes and λg=0.001.. 98

Figure 5-7: Message latency predicted by the simulation model with M=32 flits, F=256

bytes and λg=0.002.. 98

Figure 5-8: Message latency predicted by the simulation model with M=32 flits, F=512

bytes and λg=0.001.. 99

Figure 5-9: Comparison of message latency with M=32 flits, F= 256 and 512 bytes

predicted by the simulation model using λg=0.001 .. 99

Figure 5-10: Simulation results of the impact on the message latency with various

message lengths based on Number of cluster = 8 .. 101

Figure 5-11: Simulation results of the impact on the message latency with various

message lengths based on Number of cluster = 32 .. 101

Norhazlina Hamid

xiii

Figure 6-1: Histogram with distribution curve plotted for store-and-forward flow control

mechanism with 1-core .. 109

Figure 6-2: Histogram with distribution curve plotted for wormhole flow control

mechanism with 1-core .. 109

Figure 6-3: Histogram with distribution curve plotted for store-and-forward flow control

mechanism with 2-core .. 109

Figure 6-4: Histogram with distribution curve plotted for wormhole flow control

mechanism with 2-core .. 109

Figure 6-5: Histogram with distribution curve plotted for store-and-forward flow control

mechanism with 4-core .. 110

Figure 6-6: Histogram with distribution curve plotted for wormhole flow control

mechanism with 4-core .. 110

Figure 6-7: Error bar chart of average message latency between store-and-forward flow

control and wormhole flow control ... 111

Norhazlina Hamid

xiv

Norhazlina Hamid

xv

List of tables

Table 3-1: A comparison of OMNeT++ with other simulation tools 41

Table 3-2: Interconnection network parameters ... 43

Table 3-3: Model cases for single-core clusters .. 43

Table 3-4: Model cases for multi-core clusters ... 46

Table 4-1: Notations used in MCMCA .. 52

Table 4-2: Interconnection Networks Parameter I ... 70

Table 4-3: Simulation Input I .. 70

Table 4-4: Interconnection Networks Parameter II .. 73

Table 4-5: Simulation Input II ... 75

Table 4-6: Simulation Input III .. 75

Table 5-1: Notations used in MCMCA for Wormhole Flow Control 80

Table 5-2: Interconnection Networks Parameters ... 93

Table 5-3: Input Parameters ... 93

Table 5-4: Baseline results comparison between MCMCA with 1-core with multi-cluster

model presented by Javadi et al. (2006) ... 94

Table 5-5: Simulation Input for cluster sizes .. 97

Table 5-6: Simulation Input for scalability ... 100

Table 6-1: Descriptive Results for Store-and-Forward Flow Control 106

Table 6-2: Descriptive Results for Wormhole Flow Control .. 106

Table 6-3: SPSS Output for S-W tests of normality using Store-and-Forward Flow Control

Mechanism .. 107

Table 6-4: SPSS Output for S-W tests of normality using Wormhole Flow Control

Mechanism .. 107

Table 6-5: Descriptive Statistics for Skewness with Store-and-forward flow control ... 108

Table 6-6: Descriptive Statistics for Skewness with Wormhole flow control 108

Table 6-7: The comparison of flow control mechanism performance using Mann-

Whitney test .. 111

Table 6-8: Comparison between processor core performance with two flow control

mechanism .. 113

Table 6-9: Pairwise comparison between processor core performance for two flow

control mechanism ... 113

Table 6-10: Comparison between processor core performance with Store-and-Forward

flow control mechanism ... 113

Table 6-11: Pairwise comparison between processor core performance with Store-and-

Forward flow control mechanism .. 113

Norhazlina Hamid

xvi

Table 6-12: Comparison between processor core performance with Wormhole flow

control mechanism ... 114

Table 6-13: Pairwise comparison between processor core performance with Wormhole

flow control mechanism .. 114

Norhazlina Hamid

xvii

Declaration of Authorship

I, Norhazlina Hamid,

declare that this thesis and the work presented in it are my own and have been

generated by me as the result of my own original research.

INTERCONNECTION NETWORKS PERFORMANCE MODELLING FOR

MULTI-CORE MULTI-CLUSTER ARCHITECTURE

I confirm the following:

 This work was done wholly or mainly while in candidature for a research degree

at this University.

 Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been

clearly stated.

 Where I have consulted the published work of others, this is always clearly

attributed.

 Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

 I have acknowledged all main sources of help.

 Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

 Either none of this work has been published before submission, or parts of this

work have been published as:

1. Hamid, N., Walters, R. J. and Wills, G. B. (2014), Performance evaluation of

multi-core multi-cluster architecture, presented at Emerging Software as a

Service and Analytics, Barcelona, ES,03 - 05 Apr 2014. Scitepress9pp, 46-

54.

2. Hamid, N., Walters, R. J. and Wills, G. B. (2014), Analytical Calculation of

Multi-Core Multi-Cluster Architecture (MCMCA), presented at International

Conference of Postgraduate in Education, Melaka, Malaysia, 17 – 18 Dec

2014.

Norhazlina Hamid

xviii

3. Hamid, N., Walters, R. J. and Wills, G. B. (2015), An Architecture for

Measuring Network Performance in Multi-Core Multi-Cluster Architecture

(MCMCA). In, International Journal of Computer Theory and

Engineering vol. 7, no. 1, pp. 57-61, February 2015.

4. Hamid, N., Walters, R. J. and Wills, G. B. (2015), Performance evaluation of

multi-core multi-cluster architecture (MCMCA). In, Chang, Victor, Walters,

Robert John and Wills, Gary (eds.) Delivery and Adoption of Cloud

Computing Services in Contemporary Organizations. Hershey, US, IGI

Global.

5. Hamid, N., Walters, R. J. and Wills, G. B. (2015), An analytical model of

multi-core multi-cluster architecture (MCMCA). In Open Journal of Cloud

Computing (OJCC), 2, (1), 1-12.

6. Hamid, N., Walters, R. J. and Wills, G. B. (2015), Simulation and

Mathematical Analysis of Multi-core Cluster Architecture, presented at 17
th

International Conference on Computer Modelling and Simulation

(UKSim2015), Cambridge, United Kingdom, 27-29 March 2015.

7. Hamid, N., Walters, R. J. and Wills, G. B. (2015), Interconnection Network

Performance of Multi-core Cluster Architecture, presented at 2
nd

International Conference on Computer, Communication and Control

Technology (I4CT), Sarawak, Malaysia, 21-23 April 2015.

8. Hamid, N., Walters, R. J. and Wills, G. B. (2015), “Understanding the Impact

of the Interconnection Network Performance of Multi-core Cluster

Architectures,” presented at 4
th

 International Conference on Computer

Technology and Science (ICCTS), Bandar Seri Begawan, Brunei, 01-02 June

2015.

9. Hamid, N, Walters, R. J. and Wills, G. B., “Understanding the Impact of the

Interconnection Network Performance of Multi-core Cluster Architectures,”

Journal of Computers, vol. 11, no. 2, pp. 132-139, 2016.

Signed:

Date: 17 June 2016

Norhazlina Hamid

xix

Acknowledgements

All praise to Allah SWT, the most Gracious, the most Compassionate. Alhamdulillah, I

am given this golden opportunity, will and strength to pursue my PhD. I am absolutely

delighted that I finally made it, and this chapter in my life is finally over!

Certainly, this PhD journey may never see the light without the support and

encouragement from many wonderful and brilliant people who have helped me in

various ways towards the completion of my study.

My sincere and deepest appreciation goes to my superb supervisors, Dr. Robert J.

Walters and Dr. Gary B. Wills. Indeed, I am so grateful to have them as my supervisors

who have taught me so many priceless lessons which I will never forget. A very big

thank you to them for the guidance, advice, patience, and continuous support

throughout my study. I am truly indebted for their tremendous effort to supervise me,

together with the friendship forged throughout this journey. The success of this

research would not be possible without their excellent supervision.

I would also like to extend my appreciation to my internal examiner, Mr.Lester Gilbert,

and my external examiner, Professor Vassil Alexandrov. Their invaluable advice and

constructive comments were certainly helpful in improving this thesis.

To my beloved family, I would like to thank them for all their prayers, love and

encouragement. To my beloved parents, Dato’ Haji Abdul Hamid Hamat, and Datin

Hajah Wan Khuzaimah Wan Mamat, I would like to thank them for their continuous

prayers, support, and unconditional love throughout all my pursuits. A big thank you

too to my mother-in-law, Hasmah Jusoh, for her prayers while we were thousand miles

away from her. I believe that it was the prayers of my loved ones who made me sustain

my PhD journey.

A special dedication goes to the most loving, supportive and encouraging husband,

Saipulbahri Mustapha, and my three lovely children, Arif Fikri, Sarah Alya and Adam

Haris, for their patience, love, understanding, faith and support during this challenging

yet rewarding period. I am truly blessed with a great family and am certainly looking

forward to the arrival of my baby Viva in July 2016!

Norhazlina Hamid

xx

Thank you to my siblings, all my family members, my in-laws, my friends especially in

PERJASA Group and DSG Group, and certainly the Malaysian community in

Southampton, who have indirectly contributed to my success.

Thank you to all my friends at the ECS laboratory for their great help, and for

motivating me to persevere and strive towards my goal. A special appreciation goes to

Dr. Sei Ping Lau for his knowledge, time and continuous help in my simulation

development which became an instrumental part of my thesis.

I would like to acknowledge the IRIDIS High Performance Computing Facility, and the

associated support services at the University of Southampton, for the services and

facilities offered to help with the completion of this work.

I would also like to acknowledge the Public Service Department of Malaysia for the

scholarship awarded and the financial support to pursue my studies at this highly

acclaimed University of Southampton, and fulfill my dream.

Last but not least, to all the many other amazing people I have met, who have

contributed directly or indirectly towards this wonderful journey, from the bottom

of my heart: Thank you, Thank you, and Thank You Very Much!

Norhazlina Hamid

xxi

Definitions and Abbreviations

Analytical

Model

A set of equations describing the performance of the cluster to

support the simulation analysis.

Average

message

latency

The average amount of time elapsed from the generation of a

message until the last packet reaches the destination node.

Bandwidth The capacity of a network connection for supporting data transfers.

Blocking A network is blocking if it cannot handle all switch requests that are

a permutation of the inputs and outputs.

Buffered flow

control

Store a packet in a buffer, preventing the waste of channel bandwidth

caused by dropping or misrouting packets.

Bufferless flow

control

Uses no buffering and simply allocates channel and bandwidth to

competing packets.

Chip A complex and tiny modules that store computer memory or provide

logic circuitry for processors.

Clock cycle The time measured between two adjacent pulses of the oscillator and

sets the tempo of the computer processor.

Clock rates An indicator of the processor’s speed and typically refers to the

frequency.

Cluster

computing

A form of computing in which a group of computers are linked

together to act like a single entity.

Channel

bandwidth

Transports messages between nodes and buffers, such as registers

and memories, which allow messages to be held temporarily at the

nodes.

Communication The exchange of data between a source and a destination receiver in

interconnection networks architecture.

Computer

cluster

A group of computers connected to each other by fast local area

networks which work together to form a single computer.

Computer A piece of electronic equipment which, when given some data, will

process that data in some pre-defined way to produce the required

results (Willis & Kerridge, 1983).

A complete system, composed of many interacting parts while

computer systems are made of hardware and software (Sullivan,

Lewis & Cook, 1988).

Computer

system network

Essential elements for the computer network system to function

include multiple servers, terminals, printers, network links, software,

users, and support systems, including maintenance and repair,

training, and spare parts.

Contention Occurs when two or more messages want to use the same shared

resource in the network.

Control state Tracks the resources allocated to the packet within the node and the

state of the packet’s traversal across the node.

Core A complete computational engine (Burger, 2005).

Norhazlina Hamid

xxii

Deadlock Occurs when resources are waiting on another set of resources to

complete a work cycle.

Deterministic

routing

The path a packet takes is only a function of its source and

destination.

Flit Flow control digits are the basic units of bandwidth and storage

allocation used by most flow control mechanisms.

Flow control Determines how a network’s resources – such as channel bandwidth,

buffer capacity and control state – are allocated to messages as they

progress along their route in the network.

Frequency The number of waves that pass a fixed place in a given amount of

time.

Hardware Parts of a computer that we can see and touch and the most

important piece of hardware is a tiny rectangular chip inside our

computer called the central processing unit (CPU), or microprocessor

(Karmakar, 2011).

High

Performance

Computing

(HPC)

Any computational activity requiring more than a single computer to

execute a task.

Homogeneous

network

A computer network composed of computers using similar

configurations.

Interconnection

Network

A physical connection between the different components of a parallel

system.

Microprocessor A computer that has been made on a single chip of silicon about 4 to

6 millimetres square and ½ millimetre thick, and contains a minimum

of a few thousand transistors (Stevens, 1986).

Model A model is a representation of an actual system (J. Banks, 1998) or

process (Carson, 2005).

Modelling The process of identifying and abstracting relevant entities and

relationships from a system under study.

Model

validation

Substantiating that a computerized model, within its domain of

applicability, behaves with satisfactory accuracy consistent with the

intended application of the model.

Model

verification

Ensuring that the computer program of the computerized model and

its implementation are correct.

MCMCA

Simulation

Model

A descriptive model to investigate the performance of multi-core

cluster system using simulation model.

Message A logically contiguous group of bits that are delivered from a source

node to a destination node.

Message

Passing

Interface (MPI)

A library specification and standard for message-passing between

multiple computers running a parallel program across distributed

memory.

Multi-cluster A multiple cluster system that is connected via the cluster

interconnection networks where each cluster system/node has

multiple processors (Shahhoseini, Naderi & Buyya, 2000).

Norhazlina Hamid

xxiii

Multi-core

processor

A single processor with two processing cores which means to place

two or more processing cores on the same chip (Burger, 2005).

Multi-core

cluster

A cluster where all the nodes in the cluster have multi-core

processors.

Multi-core

multi-cluster

An architecture built up of numbers of clusters where each cluster is

composed of numbers of nodes consist a number of processors in a

single chip, each with two or more cores.

Network Characterised by the media it uses to carry messages, the way the

network links devices and the expansiveness of the network.

Network latency A delay that happens as data packets transmits from one point to

another over a network.

Node Consists a multiple processor chip.

Operating

system (OS)

Software that manages the computer and the devices connected to it,

for example Windows or Linux.

Packet The basic unit of routing and sequencing.

Personal

Computer (PC)

A computer that is designed to be used by one person.

Processor The logic circuitry that responds to and processes the basic

instructions that drive a computer; in the simplest terms, the

computer’s brain (Rouse, 2006).

Poisson

distribution

A probability distribution which expresses the probability of a

number of procedures occurring in a fixed phase of time.

Random

number

generator

A program written for and used in probability and statistics

applications when large quantities of random digits are needed.

Routing

algorithm

Determines the path to be used for data transmission.

Scalability An ability to radically change the size of something in order to meet

the additional requirements of a resource.

Simulation An imitation of a system as it progresses through time (Robinson,

2004) and contains a set of entities and relationships to fulfill a

certain purpose (Wehrle, Gunes & Gross, 2010).

Simulation

model

The process of creating and analysing a digital prototype of a

physical model to predict its performance in the real world.

Single-core

processor

A processor with only one processing core.

Single-core

cluster

A cluster consists of numbers of single-core processor.

Single-core

multi-cluster

An architecture built up of numbers of clusters where each cluster is

composed of numbers of nodes that consist a number of single-core

processors.

Software The instruction or programs that tell the hardware what to do.

Store-and-

forward flow

control

A packet switching mechanism whereby the message to be

transmitted is partitioned into a sequence of packets.

Norhazlina Hamid

xxiv

Supercomputers Large mainframes used primarily for the analysis of scientific and

engineering problems (Sullivan et al., 1988).

System A construct or collection of different elements such as people,

machines, resources, that together produce results not obtainable by

the elements alone.

Throughput The rate at which traffic is delivered to the destination.

Topology The interconnection structure used to connect different processors

or processors and memory modules.

Transistor A semiconducting device that switches and amplifies electronic

signal.

Transmission

time

The network cycle time taken by a single packet to travel from one

node to another node in the simulator.

Up*/Down*

routing

An assignment of direction (up or down) to network channels where

a spanning tree whose node (also called ‘vertex’) corresponds to a

switch in the network, based on building a ‘breadth-first search’ (BFS)

spanning tree used in Autonet (M. D. Schroeder et al., 1991)

Workstations Type of computer that requires a moderate amount of computing

power and relatively high quality graphics capabilities.

Wormhole flow

control

A packet switching mechanism that works by dividing packets into a

sequence of fixed-size units called ‘flits’, with channel and buffers

allocated to flits.

Norhazlina Hamid

1

Chapter 1 Introduction

The emergence of High Performance Computing (HPC), including Cluster computing,

has improved the availability of high performance computers and high speed network

technologies. High performance in this context is defined as a computational activity

requiring more than a single computer to execute a task (Qian, 2010). The main target

of HPC is better performance in computing and one of the aims is to leverage cluster

computing to solve advanced computation problems (Hope & Lam, n.d.). Cluster

computing is playing a major role in solving large-scale computing application

problems as they need faster and more reliable systems, especially as they are often

built using commodity-off-the-shelf (COTS) hardware components and commonly-used

software (Hamid, Walters & Wills, 2015c).

 The exponential growth in computing performance quickly led to more

sophisticated computing platforms. This rapid growth increased the demand for faster

computing performance: every new enhancement in processors leads to greater

performance demands (Jin et al., 2011). Moore’s Law predicted that the number of

transistors on a processor would double approximately every two years, providing

regular leaps in computing power (Moore, 1965). Over more than four decades, this

has driven the impressive growth in computer speed and accessibility. However,

Moore’s Law has begun to show signs of failing, being replaced by the emergence of

multi-core processors, which involves placing two or more processing cores within the

same processor (Burger, 2005). This allows the processor to perform more work within

a given clock cycle.

 With the emergence of high-speed networks, High Performance Computing (HPC)

has adopted network-based computing clusters as cost-effective platforms to achieve

high performance, which has led the trend towards cluster systems with multi-cores:

the multi-core cluster (Wu & Taylor, 2013). The multi-core cluster becomes more

powerful due to the combination of faster processors, faster memory and faster

interconnection (Bethel & Howison, 2012).

1.1 Research Motivation

Processor performance is often associated with high processor clock frequencies and

increasing power dissipation. Every new performance enhancement in processors leads

to greater performance demands. The demand for increasing performance continues

and as single-core processors reach their physical limits of possible complexity and

Norhazlina Hamid

2

speed, the movement towards multi-core processors begins. A multi-core processor

means one processor with two or more complete computational engines (cores) within

a single processor to enhance performance, reduce power consumption and permit

simultaneous processing of multiple tasks (Al-Babtain, Al-Kanderi, Al-Fahad & Ahmad,

2013). Multi-core processors represent a major trend over the past decade and allow

faster execution of applications by taking advantage of parallelism.

 The Top 500 Supercomputer List published in June 2014 (Admin, 2014) showed

that multi-core processors have been widely deployed in clusters of parallel computing,

and more than 95% of the systems are using dual-core or quad-core processors.

Another trend is reflected in the advances in multi-core processor technology that

makes multi-core processors an excellent choice to use in clustered nodes (Soryani,

Analoui & Zarrinchian, 2013). Many studies (Fengguang, Moore & Dongarra, 2009;

Ichikawa & Takagi, 2009; Lei, Hartono & Panda, 2006; Ranadive, Kesavan, Gavrilovska

& Schwan, 2008) have been carried out to improve the performance of multi-core

clusters but few clearly distinguish a key issue: that of the performance of the

interconnection networks. The existing multi-core cluster architectures are therefore

unable to capture the potential performance and the characteristics of the traffic of the

interconnection networks within the implementation of a multi-core cluster

architecture. The cluster interconnection network is nonetheless critical for delivering

efficiency and scalability for the applications, as it needs to handle the networking

requirements of each processor core (Dally & Towles, 2004; Shainer et al., 2013). Even

so, existing multi-core cluster architectures do not address the potential performance

issues of the interconnection networks within multi-core clusters.

 In a multi-core cluster architecture, multiple computing nodes are connected via

the cluster interconnection network. The implementation of the architecture typically

imposes higher latency for communication between processors located on different

nodes compared with the processors located on the same nodes.

 Apart from addressing the above concern, this thesis will expand the multi-core

cluster architecture to a more scalable approach by applying multi-cluster architecture.

Existing studies (Abdelgadir, Pathan & Ahmed, 2011) have found that having a good

network bandwidth and a faster network will produce a better performance in relation

to the scalability of the clusters. The conventional approach to improving cluster

throughput is to add more processors, but there is a limit to the scalability of this

approach: the infrastructure cannot provide effective memory access to unlimited

numbers of processors and the interconnection network(s) become saturated

(Shahhoseini et al., 2000). This thesis will identify the potential scalability of the

multi-core cluster and will expand the architecture by employing a multi-cluster

Norhazlina Hamid

3

architecture. The combination of multi-core cluster and multi-cluster architecture

presents a novel architecture known as Multi-core Multi-cluster Architecture (MCMCA).

The research described here is motivated by the fact that it is considered to be the first

investigation of interconnection network performance of multi-core multi-cluster

architecture.

 Multi-core clusters allow for the faster execution of applications by taking

advantage of the ability to work on multiple cores simultaneously. Several performance

models of cluster systems have been proposed in (Alzeidi, Ould-Khaoua & Khonsari,

2008; Geyong, Yulei, Ould-Khaoua, Hao & Keqiu, 2009; Bahman Javadi, Abawajy &

Akbari, 2008b; Sarbazi-Azad, Ould-Khaoua & Mackenzie, 2001; Yulei, Geyong, Keqiu &

Javadi, 2012), but the evaluations are confined to a single-core processor in a cluster.

In order to take advantage of a multi-core processor in a cluster system, it is important

to have an in-depth understanding of the characteristics of multi-core clusters and

their impact on application performance and behaviour.

 This research also develops novel simulation models for predicting and

investigating the MCMCA interconnection network performance. The main performance

metrics to be simulated are the latency, network throughput and bandwidth. Latency is

the time required for a packet to travel from a source node to a destination node;

network throughput is the rate at which the networks sends or receives data, and

bandwidths refers to the maximum rate at which a packet can be transferred. The

model is then used to evaluate the impact of performance metrics on scalability and

cluster size.

1.2 Research Objectives

The thesis objectives are to investigate and evaluate the interconnection network

performance of multi-core multi-cluster architecture (MCMCA). The main research

question is:

RQ1: What is an appropriate architecture to investigate the communication

latency of multi-core processors in multi-cluster?

Hence, this RQ1 addresses the following sub-research questions:

SQ1: What are the appropriate characteristics to be considered in designing cluster

architecture?

SQ2: What is an appropriate simulation model to investigate interconnection network

performance?

SQ3: How well does the MCMCA simulation model analyse cluster performance?

Norhazlina Hamid

4

RQ2: What is an appropriate flow control mechanism for communication latency

modelling of the Multi-core Multi-cluster Architecture (MCMCA)?

Hence, this RQ2 addresses the following sub-research questions:

SQ4: What is the impact of the flow control mechanism in improving communication

latency?

In order to achieve this goal, three research hypotheses are tested:

Hypotheses H1: Employing a multi-core processor in multi-cluster architecture will

improve the performance of a cluster system.

Hypotheses H2: The proposed simulation model can be used to investigate the

interconnection network performance in MCMCA.

Hypotheses H3: The common flow control mechanism can be employed to evaluate the

impact of MCMCA on interconnection network performance

1.3 Published Papers

The research undertaken in this thesis has contributed in part or full to the following

publications:

1. Hamid, N., Walters, R. J. and Wills, G. B. (2014), Performance evaluation of

multi-core multi-cluster architecture, presented at Emerging Software as a

Service and Analytics, Barcelona, ES,03 - 05 Apr 2014. Scitepress9pp, 46-54.

2. Hamid, N., Walters, R. J. and Wills, G. B. (2014), Analytical Calculation of Multi-

Core Multi-Cluster Architecture (MCMCA), presented at International Conference

of Postgraduate in Education, Melaka, Malaysia, 17 – 18 Dec 2014.

3. Hamid, N., Walters, R. J. and Wills, G. B. (2015), An Architecture for Measuring

Network Performance in Multi-Core Multi-Cluster Architecture (MCMCA).

In, International Journal of Computer Theory and Engineering vol. 7, no. 1, pp.

57-61, February 2015.

4. Hamid, N., Walters, R. J. and Wills, G. B. (2015), Performance evaluation of

multi-core multi-cluster architecture (MCMCA). In, Chang, Victor, Walters,

Robert John and Wills, Gary (eds.) Delivery and Adoption of Cloud Computing

Services in Contemporary Organizations. Hershey, US, IGI Global.

Norhazlina Hamid

5

5. Hamid, N., Walters, R. J. and Wills, G. B. (2015), An analytical model of multi-

core multi-cluster architecture (MCMCA). In Open Journal of Cloud Computing

(OJCC), 2, (1), 1-12.

6. Hamid, N., Walters, R. J. and Wills, G. B. (2015), Simulation and Mathematical

Analysis of Multi-core Cluster Architecture, presented at 17
th

 International

Conference on Computer Modelling and Simulation (UKSim2015), Cambridge,

United Kingdom, 27-29 March 2015.

7. Hamid, N., Walters, R. J. and Wills, G. B. (2015), Interconnection Network

Performance of Multi-core Cluster Architecture, presented at 2
nd

 International

Conference on Computer, Communication and Control Technology (I4CT),

Sarawak, Malaysia, 21-23 April 2015.

8. Hamid, N., Walters, R. J. and Wills, G. B. (2015), “Understanding the Impact of

the Interconnection Network Performance of Multi-core Cluster Architectures,”

presented at 4
th

 International Conference on Computer Technology and Science

(ICCTS), Bandar Seri Begawan, Brunei, 01-02 June 2015.

9. Hamid, N, Walters, R. J. and Wills, G. B., “Understanding the Impact of the

Interconnection Network Performance of Multi-core Cluster Architectures,”

Journal of Computers, vol. 11, no. 2, pp. 132-139, 2016.

1.4 Thesis Structure

This thesis is divided into seven chapters. This first chapter provides an overview of

the research motivation, the research hypotheses and the research questions. The rest

is organised as follows:

Chapter 2 presents a review of the literature on related research domains: multi core

clusters. This chapter specifically highlights the importance of particular research

topics and shows how they benefit the main contribution. This chapter also provides

some background to modelling and simulation, including the simulation model

structure.

Chapter 3 introduces the new Multi-core Multi-cluster Architecture (MCMCA) and its

interconnection network. The research methodology involved with baseline

experimental results is also covered in this chapter.

Chapter 4 presents the new simulation model with an analytical model as a validation

for the simulation results based on a store-and-forward flow control mechanism.

Norhazlina Hamid

6

Chapter 5 presents the new simulation model with an analytical model as a validation

to the simulation results based on a wormhole flow control mechanism.

Chapter 6 discusses the statistical analysis and findings of the performance model.

Chapter 7 draws conclusions from the reported results, research limitations and also

suggests a future direction for this research.

Norhazlina Hamid

7

Chapter 2 Literature Review

2.1 Introduction

In the early days of personal computing, personal computers (PCs) were stand-alone

devices with single-user operating systems. User interaction occurred via text-based

interfaces and only one program would run at a time. Over time, however, the

exponential growth in computing performance quickly led to a more sophisticated

computing platform.

 This chapter provides a background to the multi-core cluster that employs the

characteristics of cluster computing and multi-core processors. Accordingly, this

chapter starts in section 2.2 with an introduction to computers and processors,

followed by an introduction to multi-core processing in section 2.3. This is followed in

section 2.4 by an introduction to cluster computing. Since the multi-core cluster is a

relatively new architecture (Wu & Taylor, 2013), it is important to have an in-depth

understanding of the application behaviours and trends in order to obtain optimal

performance. Thus section 2.5 provides reviews of the single-core cluster, to be

compared with the multi-core cluster in section 2.6. Section 2.7 introduces the

structure of multi-cluster architecture and section 2.8 introduces the differences

between message, packet and flits. The background of the simulation model structure

is presented in section 2.9 as an overview of the development of the new simulation

model.

 This chapter aims to clarify the apparent ambiguity by comparing multi-core

clusters with traditional single-core clusters. Challenges and issues are identified,

demonstrating why this study focuses on the issue of an interconnection network in a

multi-core cluster.

2.2 Computers and Processors

A computer is a piece of electronic equipment which, when given some data, will

process that data in some pre-defined way to produce the required results (Willis &

Kerridge, 1983). Willis and Kerridge also state that a ‘computer system’ is a computer

with software that makes the system more flexible in solving many different types of

problem. A ‘personal computer’ (PC) is a computer system that is designed to be used

by one person.

 Every computer system has hardware components that perform four basic

functions: input, output, processing and storage. In their book, Sullivan et al. (1988)

Norhazlina Hamid

8

define a computer as a complete system composed of many interacting parts, while

‘computer systems’ are composed of hardware and software. ‘Hardware’ refers to the

parts of a computer that we can see and touch, and the most important piece of

hardware is the tiny rectangular chip inside the computer called the central processing

unit (CPU), or microprocessor (Karmakar, 2011). Other hardware items are the monitor,

keyboard, mouse, printer and devices such as a webcam. ‘Software’ refers to the

instructions or programs that tell the hardware what to do (Kim & Bond, 2009). The

operating system (OS) – for example Windows or Linux – is software that manages the

computer and the devices connected to it. ‘Workstations’ refer to a type of computer

that requires a moderate amount of computing power and relatively high-quality

graphics capabilities, while ‘supercomputers’ are large ‘mainframes’, used primarily for

the analysis of scientific and engineering problems (Sullivan et al., 1988). ‘Mainframes’

are very large computers that are built to perform complex and critical applications.

 The ‘processor’ is the logic circuitry that responds to and processes the basic

instructions that drive a computer; in the simplest terms, it is the computer’s brain

(Rouse, 2006). It is the part that translates instructions and performs calculations.

Stevens (1986) mentioned that the term ‘processor’ has generally replaced the term

‘central processing unit’ (CPU), and the processor in a personal computer, or one

embedded in a small device, is often called a ‘microprocessor’. A microprocessor is a

computer processor that has been made on a single chip of silicon about 4 to 6

millimetres square and ½ millimetre thick, and contains a minimum of a few thousand

transistors (Stevens, 1986). A transistor is a semiconducting device that switches and

amplifies electronic signal, which is also an essential component in CPU (Intel, 1997).

Stevens also points out that most of the chips called microprocessors are not complete

computers, but rather the central processing units (CPUs) of computers. Personal

computer systems are usually built from CPU-only chips and the term ‘microprocessor’

is therefore applied to any chip that contains a whole CPU. Each generation of

processors has grown smaller and faster, dissipating more heat and consuming more

power (Schauer, 2008).

 Processors were originally developed with only one core, as in Figure 2-1. A ‘core’

is a complete computational engine or the processing element in a processor

(Varghese, McKee & Alexandrov, 2010). ‘Single-core’ denotes only one processing

element within a single processor, and a ‘multi-core’ processor combines two or more

processing elements in a single processor, on a single chip or multiple chips (Roy,

2008). A single-core processor can perform one task at a time whereas a multi-core

processor can divide the work between two or more ‘execution cores’, allowing more

work to be done within a given clock cycle (Burger, 2005). A ‘clock cycle’ is the time

measured between two adjacent pulses of the oscillator and sets the tempo of the

Norhazlina Hamid

9

computer processor. Thus a ‘dual-core’ processor contains two cores (such as the Intel

Core Duo), a ‘quad-core’ processor contains four cores (e.g. AMD Phenom II X4) and a

‘hexa-core’ processor contains six cores (e.g. Intel Core i7 Extreme Edition 980X).

Chip

Memory

Node 0

Core

Cache

Figure 2-1: Basic design of single-core processor

2.3 Multi-core Processors

In 1965, Gordon Moore made his famous observation, the so-called ’Moore’s Law’,

which predicted that the number of transistors per integrated circuit would double

every year and that the speed would double every two years (Intel, 1997). Over more

than four decades, this has driven the impressive growth in computer speed and

accessibility.

 In the past, the trend was to increase a processor’s speed to get better

performance. Transistor size had been reduced to increase the number of transistors

that could be applied to processor functions and reduce the distance that signals must

travel (Schauer, 2008). This allowed processor clock rates to soar. However, Lei, Qi and

Panda (2007) have pointed out that nowadays it has become more difficult to speed up

processors by increasing frequency. Frequency describes the number of waves that

pass a fixed place in a given amount of time or the processor’s speed (Stevens, 1986).

As processor frequencies increase, the amount of heat produced by the processor

increases (Pase & Eckl, 2005). The solution is to reduce the transistor size – because

smaller transistors can operate at lower voltages, and this allows the processor to

produce less heat. Unfortunately, David Geer (2005) demonstrated that, as a transistor

gets smaller, it will be less able to block the flow of electrons. Also, smaller transistors

keep using electricity even when they aren’t switching, which wastes the power.

However, transistors can’t shrink forever, and chip manufacturers have struggled to

cap power usage and heat generation which slow the processor performance (Chan,

Ling & Aubanel, 2012). For these reasons, computer engineers are building a processor

Norhazlina Hamid

10

with more processing cores, which means placing two or more processing cores on the

same chip (Burger, 2005).

 Multi-core processors are the solution to the deficiencies of single-core

processors, as they increase bandwidth while decreasing power consumption (Burger,

2005). Multi-core processors have been developed to adhere to reasonable power

consumption and heat dissipation. By dividing the workload among different cores,

multi-core processors can speed up application performance by running at lower

frequencies while minimising heat generation and the use of power (Lei et al., 2007).

Multi-core processors do not necessarily run as fast as the highest-performing

single-core models, but they improve overall performance by handling more work in

parallel (Geer, 2005). Basic design of a multi-core processor is seen in Figure 2-2.

Core Core

Cache Cache

Dual-Core Chip

Memory

Core Core

Cache Cache

Dual-Core Chip

Memory

Node 0

Processor 0 Processor 1

Figure 2-2: Basic design of multi-core processor

 Despite such huge performance potential, many issues remain unsolved and need

further attention – such as high-latency communication in interconnection networks

(Rauber & Runger, 2010). Communication in this work refers to the exchange of data

between a source and a destination receiver in interconnection networks architecture.

Multiple cores on a single processor give rise to some problems and challenges, as

follows (Hamid et al., 2015c; Karmakar, 2011; Lei et al., 2007; Schauer, 2008; Soryani

et al., 2013):

 Interconnection networks: A faster network means a lower latency in network

communication and memory transactions. Extra memory will be useless if the

amount of time required for the memory request does not improve.

Norhazlina Hamid

11

 Power and temperature: To reduce unnecessary power consumption and lessen

the heat, the design model must run the multiple cores at a lower frequency. It

must also ensure heat dissipation is distributed across the processor while

being careful not to form any hot spots.

 Cache coherence: Since each core has its own cache, the copy of the data in

that cache may not always be the most up-to-date version. This may produce

invalid results.

 Multi-threading: Programmers have to write applications with subroutines able

to be run on different cores. This is to ensure that the full advantage of

multi-core capabilities can be exploited.

 Improved memory system: Larger caches sizes are needed for multi-threaded

multi-core processors.

 Parallel programming: Programmers need to learn how to write parallel

programs that can be split up and be run concurrently on multiple cores.

 Starvation: If a program is not developed correctly for use in a multi-core

processor, one or more cores may be starved for data. The thread would simply

run in one of the cores while the other cores sit idle.

 Homogeneous vs heterogeneous cores: Homogeneous cores have the same

cache sizes, equivalent frequencies, functions, etc., while each core in a

heterogeneous system may have a different function, frequency, memory model

etc.

2.3.1 Moore’s ‘Law’ Changes with Multi-core Processor

For years, Moore’s ‘Law’ has been the one of the guiding principles of computer

architecture. Instead of increasing clock speeds, which allows software to automatically

run faster, chip manufacturers have been increasing the number of cores on a single

chip (Bethel & Howison, 2012). Multicore or many cores, again embodying Moore’s

‘Law’, has become one of the important technologies in the electronic chip industry. It

is foreseeable that hundreds of cores on a single chip will appear in the future (Holt,

2016). With the continuously increasing number of cores, it is important to fully

harness the abundant computing resources with programming models that are still

easy-to-use (Bethel & Howison, 2012). It is more difficult to speed up processors

nowadays by increasing frequency.

 The prevalence of multi-core processors beyond quad-cores forms the building

block of high performance computing architectures (Chan et al., 2012). Multi-core

processors have started to put pressure on the application development and

programming language development. Taking advantage of multi-core processors

requires that software is able to split the work among cores. The software must be

Norhazlina Hamid

12

designed to support parallelism to use multi-core processors and to avoid stagnant

performance (Lin-Dong, De-Yu, Qiang & Jin-Xin, 2014). Exploiting parallelism as the

number of cores grows is a challenge (Donald & Martonosi, 2006). Thus, switching to

multi-core processors chips grows the technological frontier asymmetrically by

benefiting parallelized software.

 Even after 50 years, Moore’s ‘Law’ still leaves an impact and benefits in many ways

(Intel, 2015). For the technological impact, Moore’s observation transformed

computing into a pervasive and affordable necessity. The technologies also created

two important keys to technology development, performance and cost. Processing

power has been increased and energy efficiency improved at a lower cost by applying

multi-core processor technology, which has had an economic impact in the chip

industry. These drivers have set the pace for innovation and development, but more

research is being conducted into computing performance to investigate how the

impact of multi-core processor compares to Moore’s ‘Law’ prediction.

2.4 Cluster Computing

Cluster computing is a form of computing in which a group of computers are linked

together to act like a single entity (Baker & Buyya, 1999a). Cluster computing was first

developed in the 1960s by IBM (Admin, 1999) as an alternative way of connecting large

mainframes to provide a more cost effective form of commercial parallelism (Buyya,

Hai & Cortes, 2002). However, cluster computing only gained momentum after the

convergence in the 1980s of high performance microprocessors, high-speed networks

and standard tools for high performance distributed computing. The recent advances

in these technologies are making clusters an appealing solution for cost-effective

parallel computing, and have emerged as mainstream parallel platforms for high-

performance, high-throughput and high-availability computing.

A computer cluster can be defined as “a collection of individual computers”

(Baldassari, Kopec, Leshay, Truszkowski & Finkel, 2005) “connected to each other by

fast local area networks” (Baker & Buyya, 1999b) which “work together to form a single

computer” (Baker, Apon, Buyya & Jin, 2000). A computer cluster works as one to

execute intensive computation that would be not feasible on a single computer. Each

individual computer in a cluster represents a computer node. Computer nodes are

capable of full independent operation and are employed individually for stand-alone

workloads and applications (T. Sterling, Apon & Baker, 2000). The nodes may

incorporate a single processor or multiple processors with memories and operating

systems (Hamid, Walters & Wills, 2014). The key components of a cluster include

multiple stand-alone computers (PCs, workstations or SMPs), high-performance

Norhazlina Hamid

13

interconnects, parallel programming environments and applications (Baker & Buyya,

1999b). The typical architecture of a cluster is shown in Figure 2-3.

Figure 2-3: Cluster architecture (reproduced from (Baker et al., 2000)

There are many kinds of computer cluster, ranging from some which employ the

world’s largest computers to collections of personal computers. Clustering was among

the first computer system architecture techniques to achieve significant improvements

in overall performance, user access bandwidth and reliability (T. L. Sterling, 2002). In

their 2002 paper, Buyya, Hai and Cortes described cluster computing as a fusion of the

fields of parallel, high-performance, distributed, and high-availability computing.

Despite the definition and stated key components, there are a number of important

cluster features (Baker et al., 2000; Buyya et al., 2002; Goscinski, Hobbs & Silcock,

2001) that need to be noted, such as:

 Clusters are generally localized within a room or building.

 Clusters have a single administration.

 Clusters primarily focus only on compute-intensive problems and HPC.

 Clusters are typically homogeneous, based on a single processor and operating

system.

 Clusters are static in nature, with fixed sets of processors and resources,

A cluster is deployed to increase performance and availability, and clusters are more

cost-effective than a single computer. However, for all the benefits, there are

challenges in cluster computing, as follows (Sadashiv & Kumar, 2011; Srinivas &

Ramasubramaniam, 2011):

Norhazlina Hamid

14

 Middleware: the need for a software environment that provides an illusion of a

single system image, rather than a collection of independent computers.

 Program: applications that run on the clusters must be explicitly written so as

to incorporate the division of tasks between nodes.

 Elasticity: providing a capability to adapt to changing potential requirements,

for example the variance in real-time response time when the number of service

requests changes dramatically.

 Scalability: an ability to scale up in order to meet the additional requirements of

a resource. This can affect the performance of the system.

2.4.1 Cluster Interconnection Networks

An interconnection network is a physical connection between the different components

of a parallel system, and it can be used with a multi-core cluster system. A network is

characterised by the media it uses to carry messages, the way the network links

devices, and the expansiveness size of the network (Sullivan et al., 1988). In multi-core

cluster systems, the interconnection network is used to connect the nodes to each

other (Peh, 2001) and is used to connect the processors to the memory modules. In a

network, a node is a connection point, either a redistribution point or an end point for

data transmissions (Rouse, 2006).

 The main task of the interconnection network is to transfer messages from a

specific processor to a specific destination, which can be another processor or a

memory module (Gramsamer, 2003). The objective for the interconnection network is

to perform the message transfer correctly as quickly as possible, even if several

messages have to be transferred at the same time (Rauber & Runger, 2010).

Interconnection networks are an attractive alternative to dedicated wiring because they

allow limited wiring resources to be shared by several low-duty-factor signals (Dally &

Towles, 2004).

 Interconnection networks are critical in achieving high performance in clusters

(Shainer et al., 2013). While ideal networks support both high bandwidth and low

latency, there often exists a trade-off between these two parameters (Dally & Towles,

2004). In this work, bandwidth represents the capacity of a network connection to

support data transfers while latency is a delay that happens when data packets are

transmitted from one point to another over a network. High network bandwidth with

low network latency often refers to better performance (Tanenbaum, 1996). For

example, a network that offers low bandwidth tends to keep the network resources

busy, often causing contention for the resources, which will increase the latency of the

messages. Contention will occur when two or more messages want to use the same

shared resource in the network. With a good combination of network topology, routing

Norhazlina Hamid

15

technique and flow control mechanism, this problem can be minimised (Dally &

Towles, 2004).

 Clusters need to incorporate a high performance interconnection network to

support low latency and high bandwidth communication between cluster nodes. Slow

interconnection networks had always been a critical performance bottleneck for cluster

computing (Baker et al., 2000). Cluster interconnection networks enable messages to

be transferred through a combination of hardware and software support between

logical elements distributed among a set of separate processor nodes within a cluster

(T. Sterling, Apon & Baker, 2000). The nodes in a cluster communicate over high-speed

networks using a standard networking protocol such as TCP/IP or a low-level protocol.

Some interconnect technologies used in high-performance computers include Gigabit

Ethernet (Koibuchi et al., 2011), Myrinet (Petrini, Frachtenberg, Hoisie & Coll, 2003)

and QsNet (Qian, 2010). Each interconnect provides a different level of

programmability, raw performance and integration with the operating system.

 Interconnection networks exhibit a wide range of communication behaviours and

impose diverse requirements on the underlying communication architecture. Some

problems require the high bandwidth and low latency found only in earlier parallel

processing systems, and may not be well suited to clusters (Buyya et al., 2002). As the

network performance attributes improve, the range of problems that can be effectively

handled also expands. With the emergence of the multi-core cluster, it is increasingly

important to understand the capabilities and potential performance of interconnection

networks for clusters.

2.5 Single-core Clusters

A traditional cluster with single processor nodes is shown in Figure 2-4. A single

processor is a processor which contains only one core. The most important

characteristic of such a cluster is its uniformity, where each node is identical to every

other node. Each node has its own dedicated memory and cache as well as its own

path to the interconnection network. A cache is a place to store active data temporarily

in computing to shorten access times, reduce latency and improve application

performance (Karmakar, 2011). Based on a common algorithm such as the Message

Passing Interface (MPI), any cluster with single processor nodes is equally good for

running any process independently (Yeo et al., 2006). MPI is a library specification and

standard for message-passing between multiple computers running a parallel program

across distributed memory.

Norhazlina Hamid

16

Core

Cache

single-core chip

Memory

Node 0

Processor 0 Processor 1

Core

Cache

single-core chip

Memory

Cluster 0

Interconnection network

Core

Cache

single-core chip

Memory

Node 0

Processor 0 Processor 1

Core

Cache

single-core chip

Memory

Cluster n

Figure 2-4: Illustration of a Single-core cluster basic structure

 The performance of a single-core cluster depends on its processor frequency

(Karmakar, 2011). Adding more single-core processors to the same chip would, in

theory, result in twice the performance, although in practice the actual speed of each

core is slower than the fastest single-core processor (Burger, 2005). This is due to

latency in every communication level of the interconnection network in the cluster.

2.6 Multi-core Clusters

The convergence of high-speed networks in high performance computing has

introduced network-based computing systems, i.e. clusters of multiprocessors. Earlier

clusters were equipped with multiple single-core processors. The industry has

therefore adopted the development of a chip with multiprocessors, or multi-cores, to

overcome single-core cluster issues (Admin, 2014). The trade-off that must now be

made is that each processor core is slower than a single-core processor (Hamid et al.,

2015c). But two or more cores in a chip together may be able to provide greater

throughput, even though the individual cores are slower (Geer, 2005). Each generation

of multi-cores will thus likely increase the number of cores and decrease processing

time.

 The multi-core cluster is a cluster with multi-core processor nodes, as shown in

Figure 2-5. Each cluster node has multiple processors, each of which contains multiple

cores. With such cluster nodes, both the memory and the connection to the

interconnection network are now shared.

Norhazlina Hamid

17

Cluster 0

Interconnection network

Cluster n

Core Core

Cache Cache

Dual-Core Chip

Memory

Core Core

Cache Cache

Dual-Core Chip

Memory

Node 0

Processor 0 Processor 1

Core Core

Cache Cache

Dual-Core Chip

Memory

Core Core

Cache Cache

Dual-Core Chip

Memory

Node 0

Processor 0 Processor 1

Figure 2-5: Illustration of Multi-core Clusters basic structure

 Multi-core clusters typically have a hierarchical memory structure, where cores

from the same processor share caches (Fengguang et al., 2009). On the other hand,

cores belonging to distinct processors built from the same node share the main

memory and cores belonging to different nodes do not share any memory. High

performance can be achieved when executing parallel applications with tasks being

allocated to the cores according to the application communication pattern and

environment characteristics (Silva, Drummond & Boeres, 2010). Tasks that

communicate more frequently should be allocated to the same node so as to avoid

remote communication. However, depending on the amount of task computation and

data to be processed, the allocation of multiple tasks to the same processor can

constitute a bottleneck due to the resources being shared by the processor cores

(Soryani et al., 2013).

 In a multi-core cluster, there are three levels of communication in a multi-core

processor (Lei et al., 2007), as shown in Figure 2-6. The communication between two

cores on the same processors is referred to as ‘intra-chip communication’. The

communication across chip but within a node is referred to as ‘inter-chip’ and the

communication between two processors on different nodes is referred to as ‘inter-

node’ (Chan et al., 2012).

Norhazlina Hamid

18

Figure 2-6: Communication level in Multi-core cluster

Message passing in multi-core clusters is more complicated due to the use of

different interconnection networks for communication, depending on which cores are

involved. This is because of the overhead cost in moving data between cores which

involve multiple interconnection networks (Pourreza & Graham, 2007). Data movement

between two cores in the same processor is faster than between those in different

processors in the same nodes, which is significantly faster than moving data between

cores in different cluster nodes (Hamid, Walters & Wills, 2015a). It demonstrates that a

multi-core cluster with a good interconnection network will lead to better network

performance than would a traditional cluster.

2.6.1 The Advantages of a Multi-core Cluster

A multi-core cluster has a lot of advantages, and nowadays more software is being

designed to run with multiple threads. Burger (2005) also states multi-core technology

allows systems to run tasks in parallel that previously would have required multiple

processors, and multi-core clusters are more easily scalable and can put more

processing power in a smaller package that uses less power and generates less heat

for the computational power derived. As it gains in popularity, the multi-core cluster

will provide greater advantages in speed, scalability and flexibility (Creel & Goffe,

2007; Geer, 2005).

Intra-Chip Intra-Chip
Inter-Chip

 Core Core

Cache Cache

Dual Core

Chip

Memory

Dual Core

Chip

Memory

 Core Core

Cache Cache

Inter-Chip

 Core Core

Cache Cache

Dual Core

Chip

Memory

Dual Core

Chip

Memory

 Core Core

Cache Cache

Inter-Node

Cluster 0

Norhazlina Hamid

19

A multi-core cluster can be used to run two programs side by side and when an

intensive program is running, such as an audio visual scan, video conversion or CD

ripping, another core can be utilised to run the browser to check e-mail, scanning for

viruses or using another application (Burger, 2005). A multi-core cluster shows its

capabilities when using a program that can utilise more than one core, called

parallelisation, to improve the program’s efficiency (Karmakar, 2011). Programs such

as graphic software and games can run multiple instructions at the same time and

deliver faster, smoother results (Creel & Goffe, 2007).

2.6.2 Research Challenges

a) Interconnection Network Performance

Earlier research around multi-core clusters has uncovered a wide variety of issues

regarding the network architecture and the limitation of its performance. That focused

on multi-core clusters has raised many issues about how to reduce execution time by

adding more processors to minimise the communication between nodes. However,

while such issues are important, the view of this researcher is that each study misses

key issues raised by other studies. Although minimising the communication between

nodes may reduce the execution time, it does not guarantee optimal execution time

(Ichikawa & Takagi, 2009). B. Javadi, Akbari, Abawajy & Nahavandi (2006), for instance,

state that it always depends on the effectiveness of its interconnection network to

determine the overall performance of a cluster system.

 Performance models in cluster architecture based on single-core clusters have

been widely reported (Alzeidi, Khonsari, Ould-Khaoua & Mackenzie, 2007; Furhad,

Haque, Kim & Kim, 2013; Geyong et al., 2009; Bahman Javadi, Abawajy & Akbari,

2008a; Khosravi, Khorsandi & Akbari, 2011; Sarbazi-Azad, Ould-Khaoua & Zomaya,

2005). Although various issues have been resolved, the evaluations cannot capture the

communication capacities in individual processors. In order to take advantage of

multi-core processors in a cluster system, it is important to have an in-depth

understanding of the characteristics of multi-core clusters and their impact on

application performance and behaviour.

 Over time, architectures based on multi-core clusters have been proposed to

predict and evaluate network communication performance (Abad, Puente & Gregorio,

2012; Jingjing, Ponomarev & Abu-Ghazaleh, 2012; Khanyile, Tapamo & Dube, 2012; Lei

et al., 2007; Mei, Zheng, Gioachin & Kal, 2010; Shainer et al., 2013; Soryani et al.,

2013). Previous work on modelling either concentrated on inter-node communication

networks or focused on high performance multi-core architecture design without

considering the effect of interconnection networks on the performance. Although

various issues have been resolved, only a few distinguish the key issue of the

Norhazlina Hamid

20

performance of interconnection networks. The existing models are therefore unable to

evaluate the potential communication performance of the interconnection networks

within the implementation of multi-core cluster architecture.

b) The Scalability of The Network

Scalability in this work refers to the ability of a cluster architecture and its

interconnection network to handle an increasing amount of work and the ability to use

additional resources with a predictable increase in performance (Sadashiv & Kumar,

2011). The ability of a cluster is not only to function well in the rescaled situation, but

to take full advantage of it. Cluster architecture can scale to very large systems, with

hundreds or even thousands of machines being networked to suit the application

needs. In fact, the entire Internet can be viewed as one truly huge cluster (Leangsuksun

et al., 2005). In this research, the scalability of the new architecture will be examined

from small (8-cluster) to large (128-cluster), with up to 4-core processors in each

cluster. It will also take advantage of the various message lengths to predict the

potential performance in term of latency and throughput.

 It is always important to examine scalability when evaluating clusters. Abdelgadir,

Pathan and Ahmed (2011) found that having a good network bandwidth and a faster

network will produce better performance in relation to the scalability of the clusters.

The conventional approach to improving cluster throughput is to add more processors,

but there is a limit to the scalability of this approach; the infrastructure cannot provide

effective memory access to unlimited numbers of processors, and the interconnection

networks become saturated (Shahhoseini et al., 2000). The interconnection networks in

a cluster system need to be plan with the capacity to meet growing demand of services

so that it can handle the expected workloads (Haddad, 2006). Therefore, it is

important to address network scalability issue in a new architecture to maintain high

network performance.

 The new architecture will be examined for scalability potential from 1-core to

4-core processor, cluster size from 8 to 128 number of clusters and 128 bytes to 16

KB of message length. The experiments have been conducted and the results have

been produced in Chapter 4 and Chapter 5.

2.7 Multi-cluster Architectures

A ‘multi-cluster architecture’ is a system of clusters connected with the cluster

interconnection networks, where each cluster system/node has multiple processors.

Multi-clusters were introduced to address the main concern of a basic cluster system of

limited service capacity of its common resources, something that causes an increase in

Norhazlina Hamid

21

the waiting time of the processor as the number of processors increases (Rechistov,

Ivanov, Shishpor & Pentkovski, 2012). Using more powerful common resources is the

conventional method for decreasing waiting time, but the capacity for servicing

resources – such as effective memory access time and the interconnection network

bandwidth – is saturated by the technology and the structures (Shahhoseini et al.,

2000). To overcome the problems, advances in computational and communication

technologies has made it economically possible to combine multiple clusters to

develop a large-scale system known as a ‘multi-cluster system’ (Abawajy & Dandamudi,

2003).

2.8 Message, Packet and Flits

A message may be defined as a logically contiguous group of bits that are delivered

from a source node to a destination node (Dally & Towles, 2004). Because messages

may be arbitrarily long, resources are not directly allocated to messages, and

messages may be divided into one or more packets. A packet is the basic unit of

routing and sequencing, and a ‘control state’ is allocated to a packet. ‘Flits’, or flow

control digits, are the basic units of bandwidth and storage allocation used by most

flow control mechanisms (Bahman Javadi et al., 2008a). Figure 2-7 illustrates the

partitioning of a message, packet and flit.

Figure 2-7: An illustration of the subdivision of a message into packets and of packets

into flits (reproduced from (Dally & Towles, 2004))

2.9 Modelling and Simulation

Modelling is defined as the process of identifying and abstracting relevant entities and

relationships from a system under study (Wehrle et al., 2010). It is a process of

producing a close approximation to the real system which represents the construction

and working method of a system of interest (Maria, 1997). A model is thus a

representation of an actual system (J. Banks, 1998) or process (Carson, 2005).

Norhazlina Hamid

22

 Simulation is defined as an imitation of a system as it progresses through time

(Robinson, 2004), and contains a set of entities and relationships to fulfil a certain

purpose (Wehrle et al., 2010). Simulation modelling is the process of creating and

analysing a digital prototype of a physical model to predict its performance in the real

world. A ‘system’ is a construct or collection of different elements – such as people,

machines and resources – that together produce results not obtainable by the elements

alone (C. Banks, 2008).

 Simulation is needed to predict the performance of systems that are subject to

variability, for example in its interconnections and its complexity. With simulation it is

possible to predict system performance, to compare alternative system designs and to

determine the effect of alternative policies on system performance.

2.9.1 Modelling and Simulation Techniques

Whether the model and the simulation implementing it accurately represent the real

system can be checked with two techniques, model verification and model validation.

Model verification is defined as “ensuring that the computer program of the

computerized model and its implementation are correct” (Sargent, 2013). Model

validation is “substantiating that a computerized model, within its domain of

applicability, behaves with satisfactory accuracy, consistent with the intended

application of the model” (Schlesinger, 1979). Model validation deals with building the

right model.

 Development of modelling and simulation involves human actions and

knowledge-intensive activities, in which errors, uncertainties, and inadequacies are

inevitable, leading to quality deficiencies in models and simulation results (Sargent,

2011). Verification and validation focus on assessing the accuracy of an application

with respect to its objectives (Shannon, 1977), and is intended to ensure that only

correct and suitable models and simulation results are used in practice. Credibility of

simulation results not only depends on model correctness, but is also significantly

influenced by accurate formulation of the problem (Balci, 1994). Therefore, validation,

verification and testing techniques must be employed throughout the life cycle of the

study, which is the methodology used in this work.

 This thesis will discuss an MCMCA simulation model verification by predicting new

behaviours for a multi-core cluster architecture. An analytical model using

mathematical calculations is used to validate the simulation results and the testing will

be demonstrated in Chapters 4 and 5. Numerous sets of experimental conditions are

designed to test the applicability of the simulation model. The outputs from various

sets of experimental conditions are graphed to determine whether the simulation

Norhazlina Hamid

23

model behaviour is comparable with the analytical model. This is intended to answer

all the Research Questions and Sub-research Questions listed in section 1.2.

2.9.2 Simulation Model Structure

The main structure in the simulation model is its interconnection network. An

interconnection network is a connection between two or more computer networks via

network devices such as routers and switches, so as to exchange traffic back and forth

and guide traffic across the complete network to its destination (Tanenbaum, 1996).

The main task of the interconnection network is to transfer messages from a specific

processor to a specific destination, which can be another processor or a memory

(Gramsamer, 2003). Routers will determine the route for a packet based on a routing

algorithm, and transmit it from the source to its destination on a node of another

network. While routers connect the networks, switches create a network by filtering

and forward packets between networks.

 To achieve the performance specifications in multi-core cluster system, a

comprehensive design of network architecture within technology constraints is

essential by implementing the network topology, routing algorithm and flow control

mechanism. These three components will be a basis in developing a simulation model.

a) Network Topology

Topology describes the interconnection structure used to connect different processors

or processors and memory modules. It can be characterised as static or dynamic

interconnection (Kumar, Grama, Gupta & Karypis, 1994). Static interconnection

networks are also called ‘direct’ networks or ‘point-to-point’ networks, while dynamic

interconnection networks are called ‘indirect’ networks. Direct networks connect nodes

directly with each other by fixed physical links, while indirect networks connect nodes

indirectly via switches and links. Some include a ‘bus’ network, a ‘crossbar’ network, a

‘butterfly’ network ‘or ‘fat-tree’ network (Kumar et al., 1994; Tanenbaum, 1996).

 The common topologies that are used for interconnection networks are shared bus

and crossbar switches (Prisacari, Rodriguez, Minkenberg & Hoefler, 2013). However,

shared bus and crossbar switches do not scale well with the growth of the processor

numbers (Khosravi et al., 2011). Many network topologies have thus been proposed for

clusters, of which fat-tree topologies are among the most popular (Furhad et al., 2013).

‘Fat-tree’ derives from a popular class multistage interconnection network,

‘Butterfly-Fat-tree’ (Xuan-Yi, Yeh-Ching & Tai-Yi, 2004). In Fat-tree, as in Figure 2-8,

each node in the tree is represented by a set of coordinates (level, position), where

‘level’ denotes the level in the tree and ‘position’ denotes the location, using right to

left ordering. The vertical levels are numbered from zero, starting at the leaves. The

Norhazlina Hamid

24

‘leaves’ in the trees correspond to nodes, and the upper levels represent routers. Fat-

tree topology can be scalable with more processing nodes, and the regularity of the

processing node connection can also be exploited to develop more efficient parallel

algorithms (Lin, 2003).

Figure 2-8: An 8-port 2-tree constructed by proposed algorithm

 There can be many possible paths that a message could take through the network

topology to reach its destination, and this will be determined by the routing algorithm,

discussed in the next section.

b) Routing Algorithm

The routing algorithm determines the path to be used for data transmission, and a

good routing algorithm balances the load uniformly regardless of the offered traffic

pattern (Rauber & Runger, 2010). There are three main routing techniques:

deterministic, oblivious and adaptive. Deterministic routing always sends the packet in

the shortest direction; oblivious routing randomly picks a direction for each packet,

while the adaptive routing technique sends the packet in the direction for which the

local channel has the lowest load. While adaptive routing changes the path of packets

dynamically, deterministic routing determines a path statically.

 Deterministic routing has the following advantages (C. Gomez, Gilabert, Gomez,

Lopez & Duato, 2007; Koibuchi, Watanabe, Kono, Akiya & Amano, 2003):

(1) It guarantees the FIFO packet delivery, which is required with several message

passing libraries.

(2) It makes the detection and tracing of misrouted packets much easier than

adaptive routing, since there is a pre-determined path between each pair of

hosts.

 Some routing algorithms for cluster networks have been proposed (Koibuchi,

Jouraku & Amano, 2002; Koibuchi, Watanabe, et al., 2003; Sancho, Robles & Duato,

Norhazlina Hamid

25

2004) but, in general, these routing algorithms are designed for irregular topologies.

For regular topologies like fat-trees, most cluster networks adopt a deterministic

routing algorithm (Bahman Javadi, Abawajy & Akbari, 2006).

 The deterministic routing algorithm performs the balance traffic distribution and it

will extinguish the switch contention problem (Bahman Javadi et al., 2008b). In

deterministic routing, a message traverses a fixed path between source and

destination, which simplifies the implementation, avoids a message deadlock and

guarantees an in-order delivery (Yulei et al., 2012). Gomez et al., (2011) show that

deterministic routing can achieve a similar, and in some scenarios an even higher, level

of performance than adaptive routing in the fat-tree network topology.

 Routing is carefully designed to avoid deadlocks. A deadlock occurs in an

interconnection network when a group of packets is unable to make progress because

they are waiting on one another to release a resource; usually this is a buffer or

channel (Dally & Towles, 2004). The simplest deadlock-free deterministic routing used

in cluster networks is Up*/Down* routing (Sancho et al., 2004; M. D. Schroeder et al.,

1991).

 ‘Up*/Down* routing’ is based on an assignment of direction (up or down) to

network channels where a spanning tree whose node (also called ‘vertex’) corresponds

to a switch in the network, based on building a ‘breadth-first search’ (BFS) spanning

tree used in Autonet (M. D. Schroeder et al., 1991). Based on this spanning tree, the

’up’ end of each link is defined as:

(1) The end whose switch is closer to the root in the spanning tree,

(2) The end whose switch has the lower identifier, if both ends are at switches

at the same tree level.

A deadlock occurs when flow control holding resources are waiting on another set of

resources to complete a work cycle. To avoid deadlocks while still allowing all links to

be used, this routing scheme uses the following Up*/Down* rule: a legal route must

traverse zero or more links in the up direction followed by zero or more links in the

down direction (Sancho et al., 2004). Thus the Up*/Down* rule prohibits any packet

transfer from the down direction to the up direction. The Up*/Down* rule can never

cause a deadlock because of the ordering imposed by the spanning tree, and no

deadlock-producing loops are possible (M. D. Schroeder et al., 1991). It also

guarantees deadlock-free routing since no cycles are formed among paths with the

above rule while still allowing all hosts to be reached (Koibuchi, Akiya, Watanabe &

Amano, 2003). Although Up*/Down* routing was originally an adaptive routing, it can

be implemented as a deterministic routing by choosing a single path from several

alternative paths (Koibuchi et al., 2002).

Norhazlina Hamid

26

c) Flow-Control Mechanisms

Flow control determines how a network’s resources – such as channel bandwidth,

buffer capacity and control state – are allocated to messages as they progress along

their route in the network (Gramsamer, 2003). Channel bandwidth transports

messages between nodes and buffers – such as registers and memories, which allow

messages to be held temporarily at the nodes – are storage-implemented within the

nodes. The ‘control state’ tracks the resources allocated to the packet within the node

and the state of the packet’s traversal across the node (Dally & Towles, 2004).

 The fact that multiple messages can be in transmission and attempt to use the

same network link at the same time will cause a problem in the network. If this

problem occurs, some of the message transmission must be blocked while other

messages are allowed to proceed (Kumar et al., 1994).

 A good flow control forwards packets with minimum delay and avoids deadlocks.

Flow control can be divided into two methods: bufferless and buffered (Rauber &

Runger, 2010). ‘Bufferless’ flow control uses no buffering and simply allocates channel

and bandwidth to competing packets, while ‘buffered’ flow control can store a packet

in a buffer, preventing the waste of ‘channel bandwidth caused by dropping or

misrouting packets.

d) Poisson Distributions

Poisson distribution expresses the probability of a number of occurrances in a fixed

interval, and these happen independently of the time and with a known average speed

(Sadeghi & Barati, 2012). The term can also be used for the number of events in other

specified intervals such as distance, area, or volume. A Poisson distribution is a

discrete distribution and focuses only on the discrete occurrences over some interval.

(The Poisson distribution is characterized here by lambda (λ), the inter-arrival time in

the interconnection network).

e) Random Number Generators (RNGs)

A random number generator (RNG) is a program written for and used in probability and

statistics applications when a large volume of random digits are needed (Dally &

Towles, 2004). RNGs are widely used in number of applications, particularly in

simulation. These programs produce endless strings of single-digit numbers, usually in

base 10, known as the decimal system. When large samples of random numbers are

taken, each 10 digits in the set [0,1,2,3,4,5,6,7,8,9] occurs with equal frequency, even

though they are not evenly distributed in the sequence. ‘Mersenne Twister’ is the

random number generator employed by OMNeT++, used to distribute the message

destinations in the simulation model in this thesis. The details of the tests of the

Norhazlina Hamid

27

random number generator to establish its fitness for purpose is provided in Appendix

2-A.

2.10 Summary

This chapter described the motivation, as reflected in the literature, for using clusters

as well as the technologies available for building a new cluster architecture. Much

emphasis is placed on using commodity-based hardware and software components to

achieve high performance and scalability, and at the same time to keep the ratio of

price versus performance low. Cluster computing has emerged as a result of the

convergence of several trends, including the availability of inexpensive

high-performance microprocessors and high-speed networks, the development of

standard software tools for high performance parallel and distributed computing, and

the increasing need of computing power for computational science and commercial

applications. Clusters have evolved through web servers and e-commerce, to support

applications ranging from supercomputing and mission-critical software, to

high-performance database applications.

It is clear that high-speed networks for cluster computing are important in order

to support the needs of better performance. The rapid changes in interconnection

network technology have provided a new opportunity to improve the performance of

cluster computing. Although much progress has been made in the development of

low-latency protocols and new standard architecture, it creates interesting new

challenges. The capability of clusters to deliver high performance and availability on a

single platform is empowering many existing and emerging applications and making

clusters the platform of choice.

This chapter also presented the background to a simulation model structure

which includes network topology, flow control mechanism and routing algorithms.

These are important components of message-passing and communication in

interconnection networks. Once a topology is ready, routing will pick a route that gets

the messages to their destinations. Routing algorithms establish the path between the

source and the destination of a message. Flow control determines how a network’s

resources are allocated to messages as they progress along their route in the network.

 Several research issues are discussed in the context of multi-core clusters and

interconnection networks which contribute to a new architecture. The various issues

presented in this chapter show that disadvantages of a single-core cluster moved the

present researchers to focus on multi-core clusters. This is the reason why this thesis

will focus on designing a new architecture of interconnection network in a multi-core

cluster.

Norhazlina Hamid

28

 This thesis will apply store-and-forward flow control mechanisms and wormhole

flow control mechanisms to evaluate the performance of interconnection networks in a

multi-core cluster architecture. The research will focused on buffered flow control, with

store-and-forward flow control representing packet-buffer flow control and wormhole

flow control, indicating flit-buffer flow control, in order to determine the allocation of

the network’s resources. Since a packet is a part of a message, in this thesis ‘message’

and ‘packet’ will be used interchangeably.

 Multi-core clusters resolve the various concerns by dividing the workload between

different cores to speed up performance. Multi-core clusters also provide a scalable

performance computing solution, and use the aggregated power of computing nodes

to form a high-performance solution for parallel applications. This thesis will tackle the

challenge to incorporate multi-cluster and multi-core cluster into a novel architecture

known as Multi-core Multi-cluster Architecture (MCMCA). The incorporate entities in

MCMCA are shown in Figure 2-9.

Figure 2-9: The incorporate entities in MCMCA

 The next chapter presents the new architecture proposed to tackle the

performance issue discussed in the literature.

MCMCA

Cluster
computing

Multi-core
processor

Multi-
cluster

Norhazlina Hamid

29

Chapter 3 The New Architecture

3.1 Introduction

Chapter 2 introduced the concept and characteristics of cluster computing and

multi-core processors to address cluster performance by networking. The need for a

new architecture was highlighted.

This chapter presents the Multi-core Multi-cluster Architecture (MCMCA) as a new

structure to improve cluster performance with low latency. This is the first published

investigation of interconnection network performance of MCMCA by simulation. This

chapter aims to answer the following research question:

RQ1: What is an appropriate architecture to investigate the communication

latency of multi-core processors in multi-cluster?

Hence, the following sub-research questions will be addressed:

SQ1: What are the appropriate characteristics to be considered in designing a

cluster architecture?

SQ2: What is an appropriate simulation model to investigate interconnection

network performance?

SQ3: How well does the MCMCA simulation model analyse cluster performance?

Section 3.2 presents the new architecture, with the design of a modified queueing

network. Section 3.3 provides architectural detail to be considered in cluster design,

followed in section 3.4 by a queueing network model and, in section 3.5, a flow

diagram, all focusing on a new structure of interconnection network to achieve low

latency and high bandwidth. Finally, the methodologies which will be used for the

performance analysis are discussed in section 3.6, while section 3.7 discusses the

feasibility of an MCMCA simulation model by comparing the baseline results with

previous research.

3.2 Multi-core Multi-cluster Architecture (MCMCA)

This new architecture is introduced in Figure 3-1. The structure of MCMCA is derived

from a Multi-Stage Clustering System (MSCS) (Shahhoseini et al., 2000) which is based

on a basic cluster using single-core nodes. The MCMCA for its part is built up of

numbers of clusters where each cluster is composed of numbers of nodes, the

numbers of which are determined at run time. Each node of a multi-core cluster has

more than one processor. Cores on the same chip share local memory, but have their

own cache. The interconnection network connects the cluster nodes.

Norhazlina Hamid

30

Figure 3-1: Overview of the proposed Multi-Core Multi-Cluster Architecture (MCMCA)

Norhazlina Hamid

31

3.3 Appropriate characteristics for cluster

architecture design

To answer research question RQ1 and sub-research question SQ1, a systematic review

was conducted of existing literature. The characteristics for designing cluster

architecture were investigated from 1999 onwards in the area of high performance

computing.

 With the emergence of multi-core clusters, each core will run at least one process

with multiple interconnection networks to several other processes. This will put

immense pressure on the interconnection network. Nonetheless, interconnection

networks are critical in achieving high performance in clusters (Shainer et al., 2013).

While ideal networks support both high bandwidth and low latency, there often exists a

trade-off between these two parameters. For example, a network that supports high

bandwidth tends to keep the network resources busy, often causing contention for the

resources which will increase the latency of the messages. Contention occurs when two

or more messages want to use the same shared resource in the network. When a

packet has to travel from one interconnection network to another to get to its

destination, many problems such as contention and blocking can arise, and this may

contribute to communication latency of the interconnection network.

 The performance of a cluster system depends on the communication latency of its

interconnection network. The research conjecture is that, by employing a multi-core

processor in a multi-cluster architecture, it is possible to achieve a lower latency and a

faster transmission than is possible with a single-core processor. There are five

interconnection networks in MCMCA.

 Two of them are commonly found in any multi-core cluster architecture; the

intra-chip network (AC) and the inter-chip network (EC).

 The three new interconnection networks introduced in this research are the

intra-cluster network (ACN), the inter-cluster network (ECN), and the

multi-cluster network (MCN).

3.3.1 Intra-Chip network (AC)

The communication between two processor cores on the same chip is the intra-chip

network (AC), as shown in

Figure 3-2. Messages are divided into a number of cores by the AC, as shown by arrow

1 and arrow 2, which act as connectors between two or more processor cores on the

Norhazlina Hamid

32

same chip. In theory, dividing the messages into a number of cores results in more

than twice the performance with lower communication delay (Furhad et al., 2013).

Intra-Chip (AC)

Inter-Chip (EC)

1

Core n
(A)

Core n+1
(B)

Node n

Chip n

Intra-Cluster Network (ACN)

Cluster n

Chip n+1

Intra-Chip (AC)

Node n+1

Chip n Chip n+1

Inter-Chip (EC)

2

Intra-Chip (AC)

Core n

Intra-Chip (AC)

Core nCore n

Figure 3-2: Communication for message passing between two processor cores on the

same chip

3.3.2 Inter-Chip network (EC)

Figure 3-3 shows an inter-chip network (EC) for communicating across processors in

different chips but still within the same node. Messages travelling to different chips in

the same node communicate from source A by arrow 1 via the intra-chip (AC) and

arrow 2 via inter-chip (EC) to reach their destination B by arrow 3 via EC and by arrow 4

via AC.

Inter-Chip (EC)

2

1

Core n
(A)

Core n+1

Node n

Chip n

Intra-Cluster Network (ACN)

Cluster n

Core n Core n+1
(B)

Chip n+1

3

4

Intra-Chip (AC) Intra-Chip (AC)

Node n+1

Chip n Chip n+1

Inter-Chip (EC)

Intra-Chip (AC)

Core nCore n

Intra-Chip (AC)

Figure 3-3: Communication for message passing across processors in different chips,

but within a node

Norhazlina Hamid

33

3.3.3 Intra-Cluster Network (ACN)

Intra-cluster network (ACN) is a network to connect nodes within a cluster. As depicted

in Figure 3-4, messages that cross the nodes (arrow 3) to other nodes (arrow 4) in the

same cluster are connected by ACN via intra-chip (AC) by arrow 1 and the inter-chip

(EC) by arrow 2 to complete its journey by arrow 5 and 6.

Inter-Chip (EC)

2

Node n

Cluster n+1

Intra-Cluster Network (ACN)

4

Node n+1

Cluster n

Inter-Chip (EC)

1

Core n
(A)

Core n+1

Chip n

Intra-Chip (AC) Intra-Chip (AC)

Chip n+1

Core n

Intra-Chip (AC)

Chip n+1

Core n

6

Core n
(B)

Core n+1

Chip n

Intra-Chip (AC)

ACN

3

5

Figure 3-4: Communication routes for messages passing between processors on

different nodes, but within the same cluster

3.3.4 Inter-Cluster Network (ECN) and Multi-Cluster Network (MCN)

The longest route for messages to travel involves ECN and MCN. As shown in Figure

3-5, messages travelling from their source to their destination between clusters

communicate via two interconnection networks, ECN and MCN, to reach other clusters.

 An inter-cluster network (ECN) is used to transmit messages between clusters. The

clusters are connected to each other via the multi-cluster network (MCN). When the

messages reach another cluster (arrow 5), they are connected by the ECN of the cluster

before arriving at their destination. The same process will continue with the other

clusters until all the packets exit the network.

Norhazlina Hamid

34

Inter-Chip (EC)

2

Node n

Intra-Cluster Network (ACN)

Cluster n

Core n Core n+1

Chip n+1

Node n+1

EC

Intra-Cluster Network (ACN)

Cluster n+1

Multi-Cluster Network (MCN)

Inter-Cluster Network (ECN) Inter-Cluster Network (ECN)

3

4
5

6

1

Core n
(A)

Core n+1

Chip n

Intra-Chip (AC) Intra-Chip (AC) Intra-Chip (AC)

Chip n

Core n

Node n

EC

Intra-Chip (AC)

Chip n

Core n

Inter-Chip (EC)

7

Node n+1

Core n Core n+1
(B)

Chip n+1

8

Core n Core n+1

Chip n

Intra-Chip (AC) Intra-Chip (AC)

Figure 3-5: Communication routes for transmitting messages between clusters

3.4 The MCMCA Queueing Network Model

Message-passing in MCMCA is embedded within the queueing network model

approach, as shown in Figure 3-8. In interconnection networks, packets spend a lot of

time waiting in queues before they are transmitted by a processor core to their

destination. A source will generate packets at a rate of

1

λ
 packets per second and they

will be queued while waiting to be transmitted into the network. An interconnection

network then removes the packets from the queue on a first-in-first-out (FIFO) basis

and processes them with an average transmission time (Hamid, Walters & Wills,

2015b).

 Approximations of packet latency are based on a queueing network model so as to

predict the average amount of time that a packet spends waiting in each queue in the

architecture (Deng & Purvis, 2011). A queueing network consists of service centres (i.e.

interconnection networks) and customers (i.e. packets). A service centre has one or

more queues to hold jobs waiting for service. After being serviced, a job either moves

to another service centre or exits the network (Kaplan & Nelson, 1994). Illustration of

the equation in internal-cluster and external-cluster with graphs of their individual

behaviour is shown in Appendix 4-A.

Norhazlina Hamid

35

This work will consider the distribution of the transmission time upon reaching a

high traffic density due to a packet’s arrival in an M/G/1 queueing network. Queueing

networks with an M/G/1 Markovian queue model are used to analyse systems with a

Poisson distribution transmission time (Sadeghi & Barati, 2012). The M/G/1 queueing

network studies have been widely reported, which makes tractable the solution of

modelling interconnection networks of MCMCA by simulation (Bahman Javadi et al.,

2008b; Sarbazi-Azad et al., 2001; Sharifi, Akbari & Javadi, 2009). In general, an M/G/1

queuing network with arbitrary transmission time distribution has occupancy of –

𝑊 =
(𝛽)2𝜆𝑖

2(1 − 𝛽𝜆𝑖)

Where

𝜆𝑖 = arrival rate

𝛽 = average transmission time

As discussed in section 2.5 above, a traditional cluster contains single processor nodes

with one interconnection network, as shown in Figure 3-6. The messages passing

between processors in single clusters are going through an intra-cluster network (ACN)

which involves queues for messages to enter the network. Queuing networks for

multi-core clusters are shown in Figure 3-7. Multi-core clusters were also included in

single cluster architecture, but with multiple cores in a processor. With multiple cores

in a chip, the combination may be able to provide greater throughput by reducing the

queues in each processor (Geer, 2007). Basically, this will decrease the latency and

improve the interconnection network performance. Compared to traditional clusters,

multi-core clusters involved three interconnection networks. Chip communication

consists of inter-chip networks (AC) and inter-chip networks (EC), while communication

between processors in the single cluster is via intra-cluster networks (ACN).

Intra-cluster

(ACN)

Key:

ACN – Message passing between

processors in the same cluster

Processor

Figure 3-6: Queuing network of single-core cluster

Norhazlina Hamid

36

Figure 3-7: Queuing network of multi-core cluster

Referring to the new architecture proposed in section 3.2, queuing networks for

MCMCA is shown in Figure 3-8. As discussed in section 3.3, MCMCA involves five

interconnection networks in a multi-cluster architecture. Each processor generates

packets independently, following a uniformly-distributed Poisson process. Intra-cluster

networks (ACN) represent the process in the same cluster and inter-cluster networks

(ECN) represent the communication between clusters through a multi-cluster network

(MCN). The output of ECN in another cluster is a feedback to the same processor. This

queuing network demonstrated that a long waiting queue can be reduced with multi-

core processors, which will save transmission time. By incorporating multi-clusters,

MCMCA has boundless service capacity of its common resources, which will contribute

to reducing the waiting time of the processor.

Figure 3-8: Queuing network of Multi-core Multi-cluster Architecture (MCMCA)

Norhazlina Hamid

37

3.5 MCMCA Activity Diagrams

A flow diagram detailing the work flow in a cluster node with a single-core is depicted

in Figure 3-9, and a flow diagram representing the work flow in a cluster node with a

multi-core processor is shown in Figure 3-10. After source generates a packet, that

packet will access the processor through a node, where a node can contain one or

more processors. If the first processor in the first node is idle, that processor will

divide the task between a number of cores on the processor. If the first processor is

busy, it will first pass the packet to another processor in the same node before

distributing it to the other processors in other nodes. The target node will

communicate with nodes through the interconnection network.

Figure 3-9: Activity diagram of a packet traversing the cluster node of a single-core

processor

Norhazlina Hamid

38

Since the packet distribution in single-core cluster only contains single cores in a

cluster node, it has go through a longer work cycle to complete the network

transmission (Ichikawa & Kawai, 2008). This will consume more time, and more latency

will be created. The new architecture overcomes these issues by employing multi-core

processors, by which the task will be divided between a number of cores in each

processor. More network transmissions can thus take place at the same time, which

will save time and decrease the latency.

Figure 3-10: Activity diagram of a packet traversing the cluster node of a multi-core

processor

Norhazlina Hamid

39

3.6 Simulation model to investigate interconnection

network performance

Simulation and analysis are the most popular tools to measure the performance of an

interconnection network. Simulation provides accurate performance estimation but

requires more time to generate results. For more accurate performance estimation,

therefore, simulation is mostly performed to validate approximate results derived from

analysis. This has been demonstrated by many analytical researchers in validating their

model or results (Furhad et al., 2013; Khanyile et al., 2012; Shainer et al., 2013;

Soryani et al., 2013).

 Analysis provides approximate performance results with a minimum amount of

effort and gives insight into how different factors affect performance. By deriving a set

of equations, analysis can predict the performance of an entire network with different

simultaneous configurations and parameters. However, analysis usually involves

making a number of approximations that may affect the accuracy of results (Caliri,

2000).

Simulation is needed to predict the performance of systems that are subject to

variability, for example in their interconnections and complexity. With simulation it is

possible to predict system performance, to compare alternative system designs and to

determine the effect of alternative policies on system performance (C. Banks, 2008).

Maria (1997) stated that simulation is best used before an existing system is altered or

a new system built, in order to reduce the chances of failure, to meet specifications, to

eliminate unforeseen bottlenecks, to prevent under- or over-utilisation of resources,

and to optimise system performance. To imitate or to produce a close approximation

to the real system, a simulation model is thus the best choice.

In the area of communication networks, simulation is a useful methodology since

the behaviour of a network can be modelled by calculating the interaction between the

different network components such as routers, channels or packets using

mathematical formulas (Brakmo & Peterson, 1996). The simulation is modelled by

capturing and playing back experimental observations from real networks (Jia,

Xiangzhan & Jun, 2009). The data from simulation experiments and the behaviour of

the network can then be observed and analysed in offline test experiments, using

mathematical and statistical analyses. All kinds of environmental attributes can be

modified in a controlled manner to see how the network behaves under different

parameters or different configuration conditions. Network simulation can be used,

together with different applications and services, to observe performance in networks

(Pan, 2008).

Norhazlina Hamid

40

 The next sections introduce the network simulation tool used in modelling the

Multi-core Multi-cluster Architecture (MCMCA) in order to answer sub-research question

SQ2:

‘What is an appropriate simulation model to investigate interconnection network

performance?’

3.6.1 OMNeT++ Network Simulation Tool

Network simulation tools are computer-assisted technologies applied in the simulation

of networking algorithms or systems (Pan, 2008). Most network simulation tools apply

discrete-event simulation (Mehta, Sulatan & Kwak, 2010). Discrete-event simulation

manages events in time: the simulator reads the queue and triggers new events as

each event is processed. An event is an instantaneous occurrence that changes the

model’s state (Carson, 2005); examples include the arrival of a packet for each node in

a cluster, and the service completion of a packet for the same node. Simulation models

for MCMCA used discrete-event simulation and were developed using the OMNeT++

network simulation tool.

 OMNeT++ is a C++-based discrete-event simulator which uses the process-

interaction approach and it has been publicly available since 1997 (A. Varga, 2001). It

has been created with the simulation of distributed systems, parallel systems,

communication networks and multiprocessors. OMNeT++ is an open-source discrete

event simulation tool that can be used in the design and analysis of systems in which

state changes are discrete (Jingjing, Ponomarev & Abu-Ghazaleh, 2012). It provides an

open-source, modular, scalable, extendible and fully parameterizable framework for

modeling multi-core multi-cluster architecture (MCMCA).

a) The Comparison of Network Simulation Tools

Network simulation tools have changed a lot in the past ten years (Varga & Hornig,

2008). Comparison studies of network simulators have been conducted (Mehta et al.,

2010; Pan, 2008; Varga & Hornig, 2008; Weingartner, vom Lehn & Wehrle, 2009) which

involved OMNeT++, MATLAB, ns-2, ns-3, OPNet and QualNet.

 Table 3-1 examines the simulation packages most relevant for the analysis of

telecommunication networks and compares them to OMNeT++. NS-2 is still the most

widely used network simulator in academia, but OMNeT++ provides more

infrastructures. OMNeT++ is also popular in academia and industry because of its

extensibility, since it is also open-source. There is also plentiful online documentation

and mailing lists for general discussion. Although NS-3 demonstrated the best overall

performance, it still needs to improve its simulation credibility (Weingartner et al.,

2009), and OMNeT++ can be considered as a viable alternative. Although it is a

Norhazlina Hamid

41

commercial product, OPNet has similar foundations to OMNeT++ and contains an

extensive model library; also it provides several additional programs and GUI tools.

The other two commercial products are QualNet, which emphasizes wireless

simulations, and MATLAB, which needs several prerequisite components for its files to

function normally.

Table 3-1: A comparison of OMNeT++ with other simulation tools

No Features\Tools OMNeT++ MATLAB ns-2 ns-3 OPNet QualNet

1 Applicability for

Network Simulation

Yes Yes Yes Yes Yes Yes

2 Interface C++ C++ C++ C++/

Phyton

C or C++ Parsec

(C-

Based)

3 Traditional Models

eg.TCP/IP,

Ethernet), Wireless

Support

Yes No Yes Yes Yes Yes

4 Parallelism MPI/PVM Yes No Yes Yes SMP/

Beowulf

5 Free License Yes No Yes Yes No No

6 Scalability Large Very

Large

Small Large Medium Very

Large

7 Documentation and

user support

Good Excellent Excellent Excellent Excellent Good

8 Clustering Yes Yes n/a Yes Yes Yes

9 Graphic User

Interface (GUI)

Yes Yes No No Yes Yes

b) Model Structure of OMNeT++

An OMNeT++ model consists of modules that communicate with message-passing. The

active modules are termed ‘simple’ modules; they are written in C++, using the

simulation class library. Simple modules can be grouped into compound modules and

so forth, and the number of hierarchy levels is unlimited. The whole model, called

‘network’ in OMNeT++, is itself a compound module. Messages can be sent either via

connections that span modules or directly to other modules. This is shown in Figure

3-11: the boxes with heavy borders represent simple modules and boxes with thin

borders represent compound modules, while the arrows connecting the small boxes

represent connections and gates (Varga & Hornig, 2008).

Norhazlina Hamid

42

Figure 3-11: Model Structure in OMNeT++ (Varga & Hornig, 2008)

 Modules communicate with messages, which may contain arbitrary data. Simple

modules send messages via gates, which are the input and output interfaces of

modules. An input and output gate can be linked with a connection that was created

within a single level of module hierarchy; within a compound module, corresponding

gates of two sub-modules or a gate of the compound module can be connected.

Modules can have parameters that are used to pass configuration data to simple

modules and to help define module topology. The model structure (i.e. the modules

and the interconnection) is described in OMNeT++’s topology description language,

Network Description (NED). NED lets the user declare simple modules, and to connect

and assemble them into compound modules.

 The model behaviour built into each NED file will be captured in C++ files as a

code. After the program is started, it will first read all NED files, and then read a

configuration file. The simulation can also perform with different inputs and all the

values can be stored in a .INI file, usually called ‘omnetpp.ini’, containing settings that

control how the simulation is executed.

 The output of the simulation is written into result files: output vector files, output

scalar files or histograms. Statistical methods are used to elicit the relevant data and

reach a conclusion with the result by drawing a chart. The details of the simulation

models, structure diagrams, the code of each modules and tests plan is provided in

Appendix 2-A

As mentioned in 2.9.2e), a random number generator (RNG) is a program written for

use in probability and statistics applications when large quantities of random digits are

needed (Dally & Towles, 2004). Mersenne Twister is the random number generator

employed by OMNeT++ (Varga, 2011), used to distribute the message destinations in

the simulation model.

a) Mersenne Twister RNG

OMNeT++ primarily uses Mersenne Twister for random number generation. It uses the

MT19937 RNG developed by Makoto Matsumoto and Takuji Nishimura in 1997 which

has a cycle length of 219937 − 1 (Matloff, 2008). The Mersenne Twister has passed

Norhazlina Hamid

43

numerous tests for randomness and is distributed uniformly in 623 dimensions,

generating an output which is free of long-term correlations (Jagannatam, 2008). It is

considered to be fast as it avoids multiplications and divisions by using the advantages

of caches and pipelines.

 A configurable number of random numbers are provided to the simulation. Global

random number streams are mapped to OMNeT++’s module which allows the use of

variance reduction techniques without the need to change the configuration in the

simulation model (Varga & Hornig, 2008). While seeding is automatic, auto-assigned

using the run number, it is also possible to use manually-selected seeds. The

simulation requires as many seeds as the number of global RNG streams configured.

Due to the practically infinite cycle length of Mersenne Twister, overlapping of RNG

streams is not an issue.

b) Seeding the Mersenne Twister RNG

Seeding is the procedure of setting the initial states of the RNG, so that it will produce

a stream of random numbers (Wehrle et al., 2010). The RNG class implements support

for seeding. Seed sets can be specified in the initialization section or for each run of

OMNeT++. Mersenne Twister has such a long cycle that there is no need for seed

generation because chances are very small that any two seeds produce overlapping

streams (Matloff, 2008).

c) Chi-square Goodness of Fit Test

This is a non-parametric test used to find out how the observed value is significantly

different from the expected value. In Chi-Square test, the term goodness of fit is used

to compare the observed sample distribution with the expected probability

distribution. This test also determines how well theoretical distribution (such as normal

or Poisson) fits the empirical distribution. In this test, sample data is divided into

intervals. Then the numbers that fall into each interval are compared with the expected

numbers in each interval. The formula for the statistic is:

 2 =∑
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

A high value of  2 implies a poor fit between the observed and expected value, so the

upper tail of the distribution is used for most hypothesis testing for goodness of fit. To

determine whether the traffic generation rates are random, the null and alternative

hypotheses are as follows:

Norhazlina Hamid

44

𝐻0: Traffic generation rates are random

𝐻1: Traffic generation rates are not random

Chi-Square 0.001

Degrees of Freedom 9

p-value 1.0

Table 1: Chi-Square goodness of fit test

Table 1 shows the test statistics and p-value. Since the p-value = 1.0 >0.05, the null

hypotheses was not rejected. At the =0.05 level of significance, there was not enough

evidence to reject the null hypotheses, thus, the RNG fitted the theory that the traffic

generation rates are random.

Appendix 3-A.

3.7 The MCMCA Simulation Model

The MCMCA simulation model is a descriptive model for investigating the performance

of a multi-core cluster system, using a simulation model to experiment with, evaluate

and compare various configurations and design parameters. The simulation model is

an imitation of a physical network architecture to predict its performance in the real

world. To get more insight on the feasibility of the MCMCA simulation model, different

designs were developed based on two flow controls, store-and-forward and wormhole.

 In order to illustrate the feasibility and the accuracy of the simulation model, a set

of baseline experiments were conducted and compared with previous research, using

several system configurations. The details of the actual running of the simulations

including screen shots of parameter entries, simulation progress and results is

demonstrated in Appendix 3-B. The next section presents a baseline experiment

conducted to answer sub-research question SQ3:

Norhazlina Hamid

45

 ‘How well does the MCMCA simulation model analyse cluster performance?’

3.7.1 Experiments with a Single-core Cluster

This section presents the results of experiments based on Bahman’s model (Javadi,

Akbari & Abawajy, 2006) conducted on single-core clusters based on the

interconnection network parameters listed in Table 3-2 and model cases in Table 3-3.

Table 3-2: Interconnection network parameters

Parameter Internal-cluster External-cluster

Network latency 0.01s 0.02s

Switch latency 0.01s 0.01s

Network Bandwidth 1000 b/s 500 b/s

Table 3-3: Model cases for single-core clusters

C,m,n Message Length (M) Flit length (F)

8,8,2 32 flits 256 bytes

8,8,2 32 flits 512 bytes

8,8,2 64 flits 256 bytes

8,8,2 64 flits 512 bytes

The results of the simulations with message length (M) = 32 flits are depicted in Figure

3-12 and Figure 3-13, in which average message latencies are plotted against the

traffic rate with the store-and-forward flow control mechanism. The figures

demonstrate the analytical results plotted against those provided by the simulation

results predicted by Bahman’s model (Javadi et al., 2006). The X-axis represents the

traffic generation rate, while the Y-axis denotes the communication latency. The results

in Figure 3-13 are derived from simulation of the new architecture using the same

configuration and parameters as Bahman’s model. These figures reveal that the latency

results obtained from the simulation closely match to those obtained from Bahman’s

model.

Norhazlina Hamid

46

Figure 3-12: Bahman's model for 8-cluster system with M=32

Figure 3-13: MCMCA model with C=8, M=32 based on Store-and-Forward Flow Control

Norhazlina Hamid

47

Figure 3-14: Bahman's model for 8-cluster system with M=64

Figure 3-15: MCMCA model with C=8, M=64 based on Store-and-Forward Flow Control

Norhazlina Hamid

48

Figure 3-15 shows the simulation results of the new architecture, MCMCA, for an

8-cluster system with M=64 using the same configuration as in Table 3-2 and Table 3-3

and as in Bahman’s model in Figure 3-14. As traffic increased, increased contention

causes latency to increase as messages must wait for buffers and channels, but at low

traffic latency zero-load latency is approached. The zero-load latency assumption is

that a packet never has to contend for network resources with other packets. It gives a

lower bound to the average latency of a packet through the network. These figures

reveal that the latency results obtained from the MCMCA with 1-core closely matches

those obtained from Bahman’s model.

 These results show that there are inconsistencies when the analytical model and

the simulation are under heavy traffic and start to saturate with less than 4-7%

difference. However, under light traffic the analytical model differs from the simulation

by less than 2%. This is due to the approximations to simplify the development of the

model in Bahman’s analytical model (Bahman Javadi et al., 2008a).

In conclusion, experiments with different message lengths (M) demonstrated that

the MCMCA architecture predicts the average message latency with a good degree of

accuracy and can be extended to large-scale cluster architecture.

3.7.2 Experiments with Multi-core Clusters

To test the validity of the simulation of the MCMCA, a simulation experiment was

performed based on model cases in Table 3-4. Two different flow control mechanism,

store-and-forward and wormhole, are used to verify the simulation model.

Table 3-4: Model cases for multi-core clusters

Items Quantity

No. of cores (nc) 1, 2, 4

Message Length (M) and Flit Length (F) 32 flits, 256 bytes

No. of cluster, m-port, n-tree 8, 8, 2

Figure 3-16 depicts the average message latency vs. the traffic generation rate curve

based on store-and-forward flow control, and Figure 3-17 shows the average message

latency with the same traffic generation rate for the wormhole flow control with

single-core and multi-core processors. As the traffic increases, the contention latency

begins to dominate and the vertical asymptotes of the latency curves are determined

by the saturation throughputs of the different flow control mechanisms. Both figures

show that the traffic starts to saturate at about 50% of the traffic rate capacity with

dual-core processors, but higher throughput is achieved with quad-core processors.

These results confirmed that the simulation model of MCMCA architecture could

predict the average message latency under various design issues.

Norhazlina Hamid

49

Figure 3-16: MCMCA Simulation Results based on Store-and-Forward Flow Control

Figure 3-17: MCMCA Simulation Results based on Wormhole Flow Control

Norhazlina Hamid

50

3.8 Summary

This chapter has presented a novel architecture as well as the simulation model for

measuring the performance of interconnection networks in Multi-Core Multi Cluster

Architecture (MCMCA), in order to answer research question RQ1 and sub-research

question SQ1, SQ2 and SQ3. The architecture presented identifies the perceived core

aspects of improving the network performance of multi-core clusters. This architecture

will assist programmers in developing network applications with optimum network

performance potential. By integrating multi-core processors and multi-clusters, the

architecture’s purpose is to provide an alternative for interconnection networks that

improves their performance.

 The new architecture is intended to improve this performance by allowing higher

throughput and minimising network latency. The new architecture can thus be

evaluated by two metrics: latency and throughput. This chapter started with

introducing the new architecture designed to overcome the interconnection issues

discussed in the literature. The new structure of interconnection networks was

intended to provide greater throughput by reducing the waiting time.

Research methodology involved simulation development and experiment. The

validation of the simulation model compared simulation experiments with various

configurations and design parameters as conducted for Bahman’s model, to match the

work reported in earlier papers. The new model was examined with two message

lengths (M) to evaluate the performance under various workload conditions. The

results showed that, based on the assumptions that the messages have to wait for

resources before traversing into a network, as traffic rate increases, the average

latency will increase, while at low traffic density, latency will approach zero-load

latency. Simulation experiments have revealed that the results obtained from the

multi-cluster simulations compare with previous models and are closely matched.

These results have shown that the simulation model can be extended to investigate the

performance of a multi-core cluster system based on multi-cluster architecture. The

simulation models are general and applicable to predicting the performance of a

multi-core cluster.

 The next chapter presents the methodology and performance evaluation of this

research, leading to the implementation and evaluation of the proposed new

architecture.

Norhazlina Hamid

51

Chapter 4 The Performance Model using

Store-and-Forward Flow Control

Mechanism

4.1 Introduction

Chapter 3 reviewed the various structure of high performance computing focusing on

cluster systems and multi-core processors. New approaches are proposed to enhance

the outcome of cluster systems in term of improving the performance and reducing the

network latency with efficient interconnection networks. This chapter aim to examine

through simulation and experiment in order to answer the research question RQ2:

What is an appropriate flow control mechanism for communication latency

modelling of the Multi-core Multi-cluster Architecture (MCMCA)?

Hence, this RQ2 addresses the following sub-research questions SQ4:

What is the impact of the flow control mechanism in improving communication

latency?

The development of the MCMCA simulation model started with a small 8-cluster

system (C) comprising a single-core processor with one interconnection network. To

build the MCMCA simulation model using OMNeT++, modifications were made by

changing this small cluster into progressively larger clusters, C=16, 32, 64, 128, with

multi-core processors. Since the simulation development involved complex and large

scale computation, it consumed more time by ran longer than expected. The basic

design of a large cluster with a single-core processor was completed as planned so that

it was tested for baseline results, as mentioned in section 3.7. The simulation results

were compared with earlier similar research with single cores and demonstrated a

good degree of accuracy.

The simulation results were validated with an analytical model using mathematical

calculation, but inconsistencies became apparent when the analytical model and the

simulation were under heavy traffic. Despite the small differences, the results

demonstrated that the model can be extended to Multi-core Multi-cluster Architecture

(MCMCA).

 Another challenge in simulation development was the ability of the hardware to

run the simulation execution. For each experiment, 10 traffic rates with 10 latency

results were needed to form a single graph. Since the simulation involved larger

Norhazlina Hamid

52

clusters with 10,000 messages for every traffic rate, using the normal high

specification workstation, the simulation took about 1 hour to complete its cycle. This

consumed around 10 to 12 hours to complete one full simulation experiment. The

simulation was therefore ported to the ‘Iridis Compute Cluster’ (Admin, 2013), the

University of Southampton’s High Performance Computing (HPC) facility. By

comparison, the simulation took around 10 minutes to complete one traffic rate, and

total of around 2 hours to complete one experiment.

The main structure in the simulation model is its interconnection network. The

simulation model was built at run time to form a topology based on a scalable fat-tree

topology (Lin, 2003) that represents the geometric structure. As the simulation model

setup is to send the packet in the shortest direction, this work will apply the

‘Up*/Down*’ deterministic routing (A. Gomez et al., 2011), a deadlock-free

deterministic routing for interaction between modules. In order to determine the

allocation of the network’s resources, the research experiment focused on buffered

flow control, with store-and-forward flow control representing packet-buffer flow

control, and wormhole flow control indicating flit-buffer flow control. ‘Mersenne

Twister’ is the random number generator employed by OMNeT++, used to distribute

the message destinations in the simulation model. This thesis will also focus on

Gigabit Ethernet, a high performance network technology, as it is synonymous with the

cluster system.

 The critical issue for network architecture is the impact of network latency on

overall network performance. This chapter thus delves into an evaluation of the latency

and throughput performance of networks constructed from the Multi-core-Multi-cluster

Architecture (MCMCA) proposed in this thesis, with two flow control mechanisms:

store-and-forward and wormhole.

 However, to improve the performance of the interconnection networks, having a

good flow control mechanism can minimise the delay and waiting time (Akhter &

Roberts, 2006; Rauber & Runger, 2010). Evaluating the performance of interconnection

networks using various flow control mechanism in Multi-core Multi-cluster Architecture

(MCMCA) is therefore, important for predicting the performance potential. To this end,

this chapter presents a new simulation model to investigate the performance of

interconnection networks of a multi-core multi-cluster architecture based on a

store-and-forward flow control mechanism. The performance of single-core cluster and

multi-core cluster architectures are compared through simulation experiments and

analytical model analysis is used to validate the simulation results. The main

performance metrics to be simulated are latency and bandwidth. The model is then

Norhazlina Hamid

53

used to evaluate the impact of interconnection network performance on scalability and

cluster size.

 The methodology guiding the simulations and evaluation is outlined in section 4.4,

and the mathematical analysis to validate the simulation results is described in section

4.5. Various performance evaluations are performed in section 4.6.

4.2 Store-and-Forward Flow Control Mechanism

‘Store-and-forward flow control’ is a packet switching mechanism whereby the

message to be transmitted is partitioned into a sequence of packets (Rauber & Runger,

2010). Each packet is sent separately to its destination according to routing

information. Store-and-forward flow control allocates channel bandwidth and buffer

resources to packets, and the resources are used by one packet at a time, as shown in

Figure 4-1. Figure 4-1 contains 4 packets, a to d, which are completely transmitted

across one channel before transmission across the next channel is started. With

store-and-forward flow control, each node along a route waits until a packet has been

completely received or stored and then forwards the packet to the next node.

a b c

a

d

b c d

ba c d

a cb

0 1 2 3 4 5 6 7 8 1211109

0

1

2

3

13 14

Cycle

Ch
an

ne
l

d

15

Figure 4-1: Flow diagram of the Store-and-Forward flow control mechanism

(reproduced from (Dally & Towles, 2004))

4.3 Assumptions and Notations

4.3.1 Assumptions

The simulation model and the analytical model were built on the basis of the following

assumptions, which are used in similar studies (Bahman Javadi et al., 2008b; B. Javadi

et al., 2006; Yulei et al., 2012):

1. Each processor generates packets independently, following a Poisson distribution

with a mean rate of lambda (λ), and inter-arrival times are exponentially

distributed.

Norhazlina Hamid

54

2. The destination of each message is any node in the system with uniform

distribution.

3. The numbers of processors and cores in all clusters are the same, and the cluster

nodes are homogeneous.

4. The communication switches are input-buffered, and each channel is associated

with a single packet buffer.

5. Message length is fixed.

4.3.2 Notations

The notations which are used in developing both models are presented in Table 4-1.

Table 4-1: Notations used in MCMCA

Abbr. Description

AC

EC

ACN

ECN

MCN

C

M

n

nc

M

F

N

ρ

nt

𝜆𝑖

𝜆𝑒

𝜆𝑠𝑤

SS

 S

𝛽

𝛼

𝑃

𝑃(𝑓, 𝑛𝑐)

𝛼𝑛𝑒𝑡

𝛼𝑠𝑤

𝛽𝑛𝑒𝑡

Intra-chip Network

Inter-chip Network

Intra-cluster Network

Inter-cluster Network

Multi-cluster Network

Number of clusters in the architecture

Number of ports in m-port n-tree fat-tree topology

Number of trees in m-port n-tree fat-tree topology

Number of cores in each processor

Message length (flit)

Flit length (bytes)

Number of nodes

Number of processors in each cluster

Number of trees in the MCN

Arrival rate in ICN (s)

Arrival rate in ECN (s)

Arrival rate in MCN (s)

Number of stages in the network

Stage number

Time to transfer packet/flit between two adjacent switches

Time to transfer packet/flit between a switch and a node

Probability for message exit from a cluster

Probability of a message crossing 2f-link

Network latency

Switch latency

Network bandwidth

Norhazlina Hamid

55

𝑊𝑖

𝑊𝑒

𝑊𝑠𝑤

𝑇𝑖

𝑇𝑒

𝑅𝑖

𝑅𝑒

∑̅𝐿𝑖

∑̅𝐿𝑒

∑̅𝐿

Average waiting time in internal-cluster

Average waiting time in external-cluster

Average waiting time at transfer switches

Average transmission time in internal-cluster

Average transmission time in external-cluster

Average time for the last packet/flit to reach its destination in

the internal-cluster

Average time for the last packet/flit to reach its destination in

the external-cluster

Average message latency in the internal-cluster

Average message latency in the external-cluster

Average message latency of interconnection networks in

MCMCA

4.4 Evaluation Methodology

The simulation model and experiments were developed and performed using

OMNeT++ Network Simulation Tool as mention in 3.6.1. This section gives details on

simulation modules and experiment designs.

4.4.1 Simulation Structures

The topology and the communication links between the modules are represented by

the network description, NED. Six modules were built to describe the simulation

model, as follows:

1. Network Topology module

2. Network Interface module

3. Communication Switch module

4. Routing module

5. Message-Generator module

6. Message-Sink module

a) The Network Topology Module

This module develops the building blocks of the fat-tree topology, including cores,

nodes and clusters. The simulation structure was mainly based on interconnection

network properties: network topology, routing and switching strategies, and the flow

control mechanism.

Norhazlina Hamid

56

Interconnection networks are composed of a set of shared router nodes and

channels, and the topology of the network refers to the arrangement of these nodes

and channels. The ‘fat tree’ is an efficient network topology to provide high

performance and low latency structures in cluster systems (Prisacari et al., 2013; Yulei

et al., 2012). The literature in fat tree has been discussed in section 2.9.2a).

A fat-tree topology is a complete ‘tree’ that gets thicker near the root. In this

thesis, we employed an m-port n-tree to construct the MCMCA architecture. Moreover,

the m-port n-tree topology is a full bisection bandwidth (Lin, 2003), which will

eliminate contention and optimize a throughput. The network organized as a matrix of

routers with n rows, and each network switch has m communication ports that are

attached to other switches or processing nodes. The m-port n-tree consists of N

processing nodes and 𝑆𝑤 communication switches (Xuan-Yi et al., 2004) which are

given in the equation

𝑁 = 2(
𝑚

2
)
2

 [4.1]

𝑆𝑤 = 2𝑛 − 1(
𝑚

2
)
𝑛−1

 [4.2]

The number of channels, 𝑁𝑐ℎ, in this topology were given by

𝑁𝑐ℎ = 4𝑛 (
𝑚

2
)
𝑛

 [4.3]

To achieve a low latency, the topology must maintain a small average distance between

nodes. The distance between nodes is measured as, D, where messages need to

traverse in number of channels and processing nodes on average to reach its

destination. For n>1, the equation for distances between nodes (Xuan-Yi et al., 2004) is

as follows:

𝐷 =
(𝑛𝑚 − 2𝑛 − 1) (

𝑚
2)

𝑛

+ 1

((
𝑚
2) − 1) ((

𝑚
2)

𝑛

−
1
2)

 [4.4]

All the equations above are preliminaries to the simulation input in the simulation

experiment.

Norhazlina Hamid

57

b) The Network Interface module

This module contains the interface of module types in fat-tree topology. Cores, nodes,

clusters, switch, channel and the interconnection network are declared in this module

and connections between them are established.

The number of clusters (C), number of processing nodes (N), m-port n-tree and

message lengths (M) comprise the basic simulation input for each experiment. Number

of processing nodes (N) is based on one processor in each node (Lin, 2003). However,

for MCMCA, the number of processors in each cluster, 𝜌, is depends on number of

core inputs (nc). To simulate the multi-core processors in MCMCA, the number of

processors in a cluster will multiply with number of cores, where nc must be smaller or

equal than number of clusters, 𝐶, following the Assumption 3; the numbers of

processors and cores in all clusters are the same. The equation can be expressed as –

𝜌 = 2𝑛𝑐 (
𝑚

2
)
2

, 𝑛𝑐 ≤ 𝐶 [4.5]

Thus, the packets will be distributed into a designated number of cores throughout the

complete cycle, with the same number of cluster nodes based on message probability

by given equation (Shahhoseini et al., 2000).

𝑃𝑜 =
𝑁 − 𝜌

𝑁 − 1
 [4.6]

𝑃𝑖 = 1 − 𝑃𝑜 [4.7]

c) The Message-Generator module

This will follow the generation of messages at each node with a message-generator

module based on the assumptions that the network traffic follows a uniform Poisson

distribution (Sadeghi & Barati, 2012). Messages are divided into packets or flits, the

assumption being that the message destinations are uniformly distributed. The

message destination is distributed by P
o

, the probability for a message to exit from a

cluster, and P
i

 , the probability of messages staying in a cluster, given by equations 4.6

and 4.7.

d) The Routing module

A routing module determines the route taken by a packet from source node to

destination node. This module determines the path and schedules the routing

algorithms for the packets in all communication networks based on FIFO

Norhazlina Hamid

58

(First-In-First-Out), and it represents a single server queue that provides the same

service rate for each packet.

Based on message probability expressed in equations 4.6 and 4.7, this module

will determine total packet to be executed in internal-cluster and external-cluster. By

theory, when number of cores in a cluster increase, more task can be done internally

with less packets will be distributed to external-cluster. Therefore, lower latency and

higher throughput can be achieved.

The attractive properties of deterministic routing motivate the use of the

Up*/Down* routing algorithm (Schroeder et al., 1991). ‘Up*/Down* routing’ is

deadlock-free routing which is required to avoid deadlock occurrence in the

architecture. In this routing algorithm, a message will experience two phases: an

ascending phase to get to the nearest common ancestor (NCA), followed by a

descending phase until the message reaches its destination. This routing algorithm is

able to perform balanced traffic distribution.

e) The Communication Switch module

This module acts as the connection for each switch and router in the model, and it will

determine how a message is transmitted along a path that has been selected by the

routing algorithm. This module also acts as a flow control mechanism to allocate

resources such as channel and buffer to the packets. Since this chapter describes an

evaluation based on store-and-forward flow control, the blocking probability is zero.

This makes the transmission time of a packet to the next switch equal to the

transmission time on a node to a switch connection, 𝛼𝑖𝑒. This simulation adopts two

types of connection: 𝛼 is the time taken for a packet of the message to transmit on a

node–to-switch (or vice versa) connection, while  is the time taken for a packet of the

message to transmit on a switch-to-switch connection (B. Javadi, Akbari & Abawajy,

2005). 𝑀 is the message length, 𝛼𝑛𝑒𝑡 and 𝛼𝑠𝑤 are the network and switch latencies,

and 𝛽𝑛𝑒𝑡 is the transmission time of one byte.

 𝛼𝑖𝑒 = 0.5 𝛼𝑛𝑒𝑡 + 𝑀
1

𝛽𝑛𝑒𝑡
 [4.8]

𝛽𝑖𝑒 = 𝛼𝑠𝑤 +𝑀
1

𝛽𝑛𝑒𝑡
 [4.9]

f) The Message-Sink module

This module will destroy the packets after each generation is completed and will

gather event information for statistics. The sink module collects latency and

Norhazlina Hamid

59

throughput at the packet and flit levels. The ‘batch mean method’ (Dally & Towles,

2004) is used to collect the statistics of the network performance for each simulation

experiment. This method provides an average over the total number of messages,

which are divided into many batches, and statistics are accumulated for these batches.

The use of the batch mean method to gather the statistics reduces the standard

deviation of the measurement, which leads to higher confidence in the estimation.

4.4.2 The Simulation Activity Diagram

Figure 4-2 depicts the simulation activity diagram, showing the connection between

the simulation modules. After the generator module start distributes the packet, the

routing module will determine the path by which the packets traverse the network. The

flow control mechanism will allocate a channel to the packet, and since the

store-and-forward flow control is a buffer flow control, a buffer will be allocated to the

packet as well. When the buffer is available to hold the packets, it will send a request

to the communication switch for the output port. Once the passage is granted, the

packet leaves for the crossbar switch and goes on to the next step.

4.4.3 Simulation Experimental Setup

This thesis focuses on the measuring of the steady-state performance of a network: the

performance of a network with a stationary traffic source after it has reached

steadiness. A network has reached ‘steadiness’ when its average queue lengths have

reached their steady-state values. To measure steady-state performance, the simulation

experiments were conducted in three phases: warm-up, measurement and drain (Dally

& Towles, 2004). To minimise systematic errors, the first 10% of the messages are

discarded as part of the ‘warm-up phase’ and the last 10% in the ‘drain phase’ were not

used in the measurement, so as to provide enough time for all packets to reach their

destination. ‘Warm-up’ is when the influence of the simulation initialisation is minimal.

The network has reached its steady state once the network is warmed up (Dally &

Towles, 2004). This means that the statistics of the network are stationary and no

longer change with time, which will determine an accurate estimation.

Each simulation experiment was run until the network reached its steady state,

meaning that a further increase in the simulation time did not change the statistical

results. The communication between processors relies on a message passing between

the source and its destination. The message passes over a channel that directly

connects two processor cores and might have to pass through several processor cores

based on the designate flow control before it reaches its destination, where each

Norhazlina Hamid

60

communication involves a lot of latency. To generalise the simulation details in this

section, ‘node’ will represent processor and core as well as itself.

Norhazlina Hamid

61

Figure 4-2: Activity diagram of MCMCA simulation model

 In these simulation experiments, a total of 100,000 messages were used to gather

statistics. The first 10,000 messages were discarded, as they were assumed to occupy

the warm-up phase before the simulation reached it steady state; and the last 10,000

messages were discarded in the drain phase. In these experiments, 100,000 messages

were divided into 10 batches, where the size of each batch was 10,000 messages.

 As mentioned in section 4.4.1b), simulation inputs must be predetermined before

each run. The simulation can behave with different inputs and specified parameters of

the model, such as the number of cores (nc), number of clusters (C), number of

messages to be generated (λg), message length (M) and inter-arrival time (λ). This will

be followed by the generation of messages at each node by a message-generator

module, based on the assumptions that the network traffic follows a uniform Poisson

distribution (see section 2.9.2d) above). The addresses of the source node and

destination node are randomly produced, based on the number of nodes and the

number of switches.

 Each simulation experiment started with the creation of the simulation structure

based on fat-tree network topology by the network topology module. Each network

switch has m communication ports that are connected with other switches or router or

nodes with n level of tree. The switch connection is established by a communication

switch module which will also transmit the messages based on the route selected by

routing algorithm. The switch connection for an internal cluster is represented by

‘ISwitch’, and by ‘ESwitch’ for an external cluster, as reflected in Algorithm 4-1 and

Algorithm 4-2 below.

Algorithm 4-1: Internal cluster switch connection (ISwitch) for store-and-forward flow

control mechanism

// Internal cluster

void AbstractinFifo::handleMessage(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 simtime_t d = simTime()-msg->getTimestamp();

 if (gmsg!=NULL){

 if (gmsg->getRouted()==0)

 {

 endService(msg, 0);

 return;

Norhazlina Hamid

62

 }

 gmsg->setRouted(0);

 }

 if (msg==endServiceMsg)

 {

 endService(msgServiced ,1);

 if (queue.empty())

 {

 msgServiced = NULL;

 }

 else

 {

 msgServiced = (gensinkMsg *) queue.pop();

 simtime_t serviceTime = startService(msgServiced);

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 }

 else if (!msgServiced)

 {

 arrival(msg);

 msgServiced = gmsg;

 simtime_t serviceTime = startService(msgServiced);

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 else

 {

 arrival(msg);

 queue.insert(msg);

 }

}

Algorithm 4-2: External cluster switch connection (ESwitch) for store-and-forward flow

control mechanism

 // External cluster

#include "efifo.h"

#include <math.h>

#include "gensinkMsg_m.h"

void AbstracteFifo::handleMessage(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 simtime_t d = simTime()-msg->getTimestamp();

 if (gmsg!=NULL){

Norhazlina Hamid

63

 if (gmsg->getRouted()==0)

 {

 endService(msg, 0);

 return;

 }

 gmsg->setRouted(0);

 }

 if (msg==endServiceMsg)

 {

 if (queue.empty())

 {

 msgServiced = NULL;

 }

 else

 {

 msgServiced = (gensinkMsg *) queue.pop();

 simtime_t serviceTime = startService(msgServiced);

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 }

 else if (!msgServiced)

 {

 arrival(msg);

 msgServiced = gmsg;

 simtime_t serviceTime = startService(msgServiced);

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 else

 {

 arrival(msg);

 queue.insert(msg);

 }

}

The generated message has the probability, 𝑃𝑜, to be directed to the external-cluster

network nodes, and the probability, (1-𝑃), of being evenly distributed to all

internal-cluster network nodes. In the simulation, when the number of source and

destination address is equal, the messages will be routed to an internal cluster by the

internal routing module; otherwise the messages are exited to an external cluster by

the external routing module, as presented in Algorithm 4-3.The average amount of

time that a message spends waiting in each queue in the architecture estimates the

message latency based on an M/G/1 queuing network model, as described in section

3.4 above. Lastly, each message is time-stamped after its generation, and the message

Norhazlina Hamid

64

completion time is defined by a message-sink module on each node in order to

compute the statistics.

Algorithm 4-3: Message probability in the internal cluster and external cluster

if ((int)(src/num_nodes) == (int)(dest/num_nodes)){

// internal-cluster

ev << "Send to internal Cluster" << endl;

gmsg->setKind(0);

if (gate("out",0)->getTransmissionChannel()->isBusy())

sendDelayed(gmsg, gate("out",0)->getTransmissionChannel()-

>getTransmissionFinishTime()-simTime(),"out",0);

else

send(gmsg,"out",0);

 }

 else

 {

 // external-cluster

 ev << "Send to external Cluster" << endl;

 gmsg->setKind(1);

if(gate("out",1)->getTransmissionChannel()->isBusy())

 {

sendDelayed(gmsg, gate("out",1)->getTransmissionChannel()-

>getTransmissionFinishTime()-simTime(),"out",1);

 }

 else

 {

 send(gmsg,"out",1);

 }

 }

4.5 The Analytical Model

The analytical model comprises a set of equations describing the performance of the

cluster to support the simulation analysis (Fengguang et al., 2009). Analytical models

are constructs to gain an understanding of the current activity of the system, to

measure performance and analyse the behaviour of the workloads in a multi-core

cluster architecture (Caliri, 2000).The analytical model was created to validate the

results of simulation experiments using the Matlab application (Attaway, 2013). Some

modification was made to the equations to comply with the MCMCA design.

Norhazlina Hamid

65

4.5.1 Preliminaries

This section explains in detail the implementation of the analytical model to compute

the communication latency of the interconnection networks in MCMCA. The analytical

model also needs to define simulation inputs as preliminaries to other equations. The

first phase involves computing ρ in equation 4.5, where 𝜌 is the number of processors

in each cluster and 𝑛𝑐 is the number of cores on each processor, which is the new

parameter in the calculation. Here 𝑛𝑡 is the number of ‘trees’ in the MCN, while C is the

number of clusters and m is the number of ports (Geyong et al., 2009).

𝑛𝑡 =
(𝑙𝑜𝑔2 𝐶) − 1

(𝑙𝑜𝑔2𝑚) − 1
 [4.10]

The messages enter an internal cluster or an external cluster based on the probability

𝑃. The probability of an outgoing request 𝑃𝑜 represents the messages generated by the

source nodes that are sent to an external-cluster network, while messages injected

from a source node with the probability 𝑃𝑖 enter an internal-cluster network. Both can

be computed with equations 4.6 and 4.7.

To traverse in the network, each message may use a different number of channel

links to reach its destination. The transmission time for internal-cluster and

external-cluster networks can therefore be considered as a 2f-channel with an

f-channel in the source node and an f-channel in the destination node (Xuan-Yi et al.,

2004). The probability that a message reaches its destination in MCMCA, 𝑃(𝑓, 𝑛𝑐), can

be computed by:

𝑃(𝑓, 𝑛𝑐) =

{

 (
𝑚
2 − 1) (

𝑚
2)

𝑓−1

2 (
𝑚
2)

𝑛𝑐
− 1

1 ≤ 𝑓 < 𝑛𝑐

(𝑚 − 1) (
𝑚
2)

𝑓−1

2 (
𝑚
2)

𝑛𝑐
− 1

𝑓 = 𝑛𝑐

 [4.11]

𝑃(𝑓, 𝑛𝑐) = 𝑃(ℎ, 𝑛𝑡) = 𝑃(𝑗, 𝑛) [4.12]

4.5.2 Average Message Latency of an Internal-Cluster Network

The communication latency in an inter-cluster network includes messages travelling in

an intra-chip network (AC), an inter-chip network (EC), and an intra-cluster network

(ACN). The calculation involves average waiting time at the source node in section

4.5.2a), average transmission time for a message to cross the networks in section

Norhazlina Hamid

66

4.5.2b), and average time for the last packet of the message to reach its destination in

section 4.5.2c).

a) Average Waiting Time at the Source Node

In an internal-cluster network, the total arrival rate is 𝜆𝑖 and each message travels an

average distance to cross the network (B. Javadi, Khorsandi & Akbari, 2005). Thus,

every channel in an internal-cluster will receive messages at a rate of 𝑊𝑖, where  is the

time taken for a packet of the message to transmit on a switch-to-switch connection as

given by equation 4.8.

𝑊𝑖 =
(𝛽𝑖)

2𝜆𝑖

2(1 − 𝛽𝑖 𝜆𝑖)
 [4.13]

𝜆𝑖 = (1 − 𝑃) (
1

𝜆
) [4.14]

b) Average Transmission Time for a Message to Cross the Networks

Since this architecture applies store-and-forward flow control, blocking does not

happen (Dally & Towles, 2004). This determined that the average network latency is

equal to the transmission time of a packet to the next switch. Thus, the average

transmission time in internal-cluster network is:

𝑇𝑖 = 𝛼𝑖 [4.15]

c) Average Time for the Last Packet of the Message to Reach its Destination

Averaging over all possible cores that can be destinations for a packet in the

internal-cluster (Sharifi et al., 2009), the average time for the last packet to reach its

destination in the internal-cluster 𝑅𝑖 is as follows:

𝑅𝑖 =∑∑[𝑃
(𝑓, 𝑛𝑐)

𝑃
(𝑗, 𝑛)

(∑ 𝛽𝑖 + 𝛼𝑖

𝑆𝑆𝑖−1

𝑠=1

)]

𝑛

𝑗=1

𝑛𝑐

𝑓=1

 [4.16]

Finally, the equation for message latency in the internal-cluster communication

networks can be expressed as:

∑̅𝐿𝑖 = 𝑊𝑖 + 𝑇𝑖 + 𝑅𝑖 [4.17]

Norhazlina Hamid

67

4.5.3 Average Message Latency of an External-Cluster Network

An external-cluster network involves an inter-cluster network and a multi-cluster

network. Latency in the external cluster will be determined by the same entity as in an

internal-cluster network. An external message will need to cross more communication

networks to reach its destination in another cluster.

a) Average Waiting Time at the Source Node

Waiting time on an external-cluster network can be determined by the network channel

which follows the M/G/1 queueing network, as mentioned in section 3.4. Messages

generated by the source nodes are sent to the external cluster with the probability of

an outgoing request 𝑃𝑜, where 𝜆𝑒 is the message arrival rate. Based on equation 4.13,

the waiting time in the external-cluster network (𝑊𝑒) can be computed by:

𝑊𝑒 =
 (𝛽𝑒)

2𝜆𝑒
2(1 − 𝛽𝑒𝜆𝑒)

 [4.18]

𝜆𝑒 = 2 (
1

𝜆
)𝑃 [4.19]

b) Average Transmission Time for a Message to Cross the Networks

The analysis in equation 4.15 also applies to external-cluster network. Since the

probability of blocking is zero, the transmission time is:

𝑇𝑒 = 𝛼𝑒 [4.20]

c) Average Time for the Last Packet of the Message to Reach its Destination

The average latency for the last packet to reach its destination in the external cluster

(Sharifi et al., 2009) can be computed by:

𝑅𝑒 =∑∑[𝑃(𝑗, 𝑛) 𝑃(ℎ, 𝑛𝑡)(∑ 𝛽𝑒 + 𝛼𝑒

𝑆𝑆𝑒−1

𝑠=1

)]

𝑛𝑡

ℎ=1

𝑛

𝑗=1

 [4.21]

d) Average Waiting Time at Transfer Switches

External-cluster messages need to cross transfer switches during their journey across

the network. The transfer switches act as simple buffers to combine traffic from/to one

Norhazlina Hamid

68

cluster to/from other clusters (Dally & Towles, 2004). The waiting time at these buffers

𝑊𝑠𝑤, with 𝜆𝑠𝑤 as the message arrival rate, can be computed as:

𝑊𝑠𝑤 =
(𝛽𝑒)

2𝜆𝑠𝑤
2(1 − 𝛽𝑒𝜆𝑠𝑤)

 [4.22]

𝜆𝑠𝑤 = 𝑃 (
1

𝜆
) 𝜌 [4.23]

Therefore, the equation for message latency in external-cluster communication

networks can be expressed as:

∑̅𝐿𝑒 = 𝑊𝑒 + 𝑇𝑒 + 𝑅𝑒 + 2𝑊𝑠𝑤 [4.24]

4.5.4 Average Message Latency of MCMCA

Using equations 4.17 and 4.24, the average message latency of communication

networks in the multi-core multi-cluster architecture can be obtained by the sum of the

message latency in internal-cluster and external-cluster situations as follows:

∑̅𝐿 = ∑̅𝐿𝑖 (1 − 𝑃) + ∑̅𝐿𝑒 (𝑃) [4.25]

4.5.5 Implementation of the Analytical Model

Algorithm 4-5 presents the implementation of the analytical model to compute the

communication latency of interconnection networks in MCMCA.

Algorithm 4-4 and Algorithm 4-5 presents the implementation of the analytical model

to compute the communication latency of interconnection networks in MCMCA.

Algorithm 4-4: Process flow in calculating the communication latency of

interconnection networks in MCMCA

Input Parameters:

Number of clusters C, parameter of m-port n-tree, message length M, number of

cores nc, number of nodes N and lambda
𝟏

𝝀
.

1: Calculate probability of entering/outgoing messages in the cluster 𝑃𝑜 , number of

processors in each cluster 𝜌, and number of trees in the MCN 𝑛𝑡 by using

equations 4.6, 4.5 and 4.10.

2: Calculate arrival rate in internal-cluster 𝜆𝑖, external-cluster 𝜆𝑒 and transfer switch

Norhazlina Hamid

69

𝜆𝑠𝑤 by using equations 4.14, 4.19 and 4.23.

3: Calculate the probability of the message crossing 2 channels, 𝑃(𝑗, 𝑛) and

𝑃(𝑓, 𝑛𝑐), by using equations 4.11 and 4.12.

4: Calculate the time taken for a packet of the message to transmit on a node to a

switch or vice versa 𝛼𝑖𝑒, and the time taken for a packet of the message to

transmit on a switch to switch 𝛽𝑖𝑒 for the internal and external cluster using

equations 4.8 and 4.9.

5: Calculate average latency in the internal cluster:

a. Calculate 𝑊𝑖, the waiting times at the source node based on equation 4.13.

b. Calculate 𝑅𝑖, the time for the last packet of the message reach its destination

using equation 4.16.

6: Calculate average latency in the external cluster:

a. Calculate 𝑊𝑒 using equation 4.18

b. Calculate 𝑅𝑒 using equation 4.21

c. Calculate 𝑊𝑠𝑤, the waiting time at the transfer switch using equation 4.22.

7: Calculate the message latency in the internal cluster and the external cluster

using equations 4.17 and 4.24.

8: Calculate ∑̅𝐿, the average message latency of interconnection networks in

MCMCA, using equation 4.25.

Algorithm 4-5: Pseudocode of process flow in calculating the communication latency of

interconnection networks in MCMCA using MATLAB based on Store-and-Forward flow

control

clear all

clc

n_core=2; % number of core(s)

C = 8;

m = 8;

n = 2;

M = 256;

Lm = 1;

Norhazlina Hamid

70

lambda=5000;

lambda=1/lambda;

pp=(m/2)^n; %number of processor per node

NP=2*pp; %number of processors in each cluster

NP=NP*n_core;

N=(NP/n_core)*C;

PO=(N-NP)/(N-1);

PI=1-PO;

lambdaI1=PI*lambdaG;

anetI = 0.02;

aswI = 0.01;

BnetI = 500;

tcnI=(0.5*anetI)+(M*Lm*1/BnetI);

tcsI=aswI+(M*Lm*1/BnetI);

WI1=lambdaI1*tcsI*tcsI/(2*(1-lambdaI1*tcsI));

DI=tcnI;

for j=1:n-1;

 P(j,n) = (((m/2)-1)*((m/2)^(j-1)))/(NP-1)

End

for j=n;

 P(j,n) = ((m-1)*((m/2)^(j-1)))/(NP-1)

end

for f=1:n_core-1;

 Pnc(f,n_core) = (((m/2)-1)*((m/2)^(j-1)))/((2*((m/2)^n_core))-1)

End

for f=n_core;

 Pnc(f,n_core) = ((m-1)*((m/2)^(j-1)))/((2*((m/2)^n_core))-1)

end

davgICN=(((n*m)-(2*n)-1)*(pp)+1)/(((m/2)-1)*(pp-0.5));

RI=(davgICN-1)*tcsI+DI;

EC=0;

for f=1:n_core;

Norhazlina Hamid

71

 EC=EC+Pnc(f,n_core)*RI;

End

%external cluster

nc=log(C/2)/log(m/2);

pc=(m/2)^nc;

lambdaE1=2*PO*lambdaG;

lambdaI2=((NP/n_core)*PO*lambdaG);

davgECN=davgICN;

davgICN2=(((nc*m)-(2*nc)-1)*(pc)+1)/(((m/2)-1)*(pc-0.5));

anetE = 0.050;

aswE = 0.02;

BnetE = 300;

tcsE= aswE+(M*Lm*1/BnetE);

tcnE=(0.5*anetE)+(M*Lm*1/BnetE);

WE1=lambdaE1*tcsE*tcsE/(2*(1-lambdaE1*tcsE));

DE=tcnE;

for j=1:n-1;

 P(j,n) = (((m/2)-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1)

End

for j=n;

 P(j,n) = ((m-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1)

end

RE=((davgECN+davgICN2)-1)*tcsE+DE;

WCD=lambdaI2*tcsE*tcsE/(2*(1-lambdaI2*tcsE));

TE1=WE1+RE+(2*WCD);

TI = PI*TI1;

TE = PO*TE1;

TMC=PI*TI1+PO*TE1;

Norhazlina Hamid

72

4.6 Performance Evaluation (SQ4)

This section presents the results for the Multi-core Multi-cluster Architecture simulation

model based on store-and-forward flow control, and discusses their implication. These

results will show the impact of the store-and-forward flow control mechanism in

improving communication latency by answering sub-research question SQ4.

The latency and bandwidth experiments were carried out on a single-core

processor, a dual-core processor and a quad-core processor. Analysis of the results as

presented in section 4.3 provides validation of the simulation results.

 Both simulation and analytical models are divided into internal-cluster and

external-cluster results. The communication latency in internal-cluster networks

includes messages travelling in the intra-chip network (AC), inter-chip network (EC) and

intra-cluster network (ACN), while messages travelling in external-cluster networks

communicate via two interconnection networks: the inter-cluster network (ECN) and

multi-cluster network (MCN). Both clusters were determined by four factors:

1. Average waiting time at the source node;

2. Average transmission delay for a message to cross the networks;

3. Average time for the last packet of the message to reach its destination;

4. Average waiting time at transfer switch (external cluster only).

The simulation experiments were performed with various combinations of parameters

by using the interconnection network parameters given in Table 4-2 with simulation

input I from Table 4-3.

Table 4-2: Interconnection Networks Parameter I

Parameter Internal cluster External cluster

Network latency 0.01s 0.02s

Switch latency 0.01s 0.01s

Network Bandwidth I 1000 b/s 500 b/s

Network Bandwidth II 800 b/s 600 b/s

Table 4-3: Simulation Input I

Items Message length (M) 8K

No. of cores (nc) 1, 2, 4

No. of cluster (C) 8

No. of m-port n-tree 8, 2

Norhazlina Hamid

73

4.6.1 Latency and Throughput Performance on MCMCA

The ‘average message latency’ is defined as the average amount of time elapsed from

the generation of a message until the last packet reaches the destination node. The

‘transmission time’ is the network cycle time taken by a single packet to travel from

one node to another node in the simulator. The ‘throughput’ is the rate at which traffic

is delivered to the destination. When traffic is less than saturation level, the throughput

is equal to the traffic generation rate.

 To investigate the latency effect on MCMCA, the simulation experiments involved a

single-core processor, a dual-core processor and a quad-core processor for

comparison. To form the latency curve, a total of 10 different message generation

rates, 𝜆𝑔, were used for each core, and the accuracy of each result was validated by the

analytical model. For the investigation of network throughput, the performance with 8

KB message length per traffic rate was graphed.

Figure 4-3: Message latency and throughput results based on store-and-forward flow

control mechanism with M=8 KB using Network Bandwidth I

Norhazlina Hamid

74

Figure 4-4: Message latency and throughput results based on store-and-forward flow

control mechanism with M=8 KB using Network Bandwidth II

a) Discussion

Figure 4-3 and Figure 4-4 show the latency performance results of the interconnection

network for single-core clusters and multi-core clusters. The results demonstrate that,

with more than 1 core, the architecture can achieve lower communication latency. The

probability of packet transmission in the internal cluster increased 51-76% with 2 and 4

cores in each processor compared with the single-core processor. This result shows

that more packets can be transmitted at the same traffic rate, which will save waiting in

a queue.

 At the same time, a multi-core cluster is able to extend network throughput. The

throughput of the network tends to increase as the number of cores is increased. With

the dual-core processor, the experiments showed throughput extending over

single-core by a significant 50%. With the quad-core processor, it extends the

throughput by 75%. The improvement in throughput is due to more message

transmission in light traffic. Even with a different network bandwidth, low latency and

high throughput are achieved.

Norhazlina Hamid

75

Both simulation experiments have been validated by analytical model. The

consistency of the mathematical calculations with the simulation results shows that the

simulation is a practical and cost-effective tool to measure the performance of

interconnection networks in multi-core cluster architecture.

4.6.2 The impact on cluster size

These simulation experiments were designed to get more insight into the impact of the

communication latency on the cluster size. The results reflected in Figure 4-5 based on

the interconnection network parameters in Table 4-2, were compared with a higher

network latency and a smaller bandwidth setup in the simulation experiments for

Figure 4-6 and Table 4-4.

Table 4-4: Interconnection Networks Parameter II

Parameter Internal-cluster External-cluster

Network latency 0.02s 0.01s

Switch latency 0.01s 0.05s

Network Bandwidth 800 b/s 600 b/s

Figure 4-5: Simulation results of the impact on the message latency with various

number of clusters based on Network Parameter I

Norhazlina Hamid

76

Figure 4-6: Simulation results of the impact on the message latency with numbers of

clusters based on Network Parameter II

a) Discussion

Figure 4-5 and Figure 4-6 depict the simulation results and analytical analysis with 1, 2

and 4 cores in various cluster sizes. An experiment with a cluster size of five (8, 16,

32, 64, 128) with 3 cores was evaluated. The same message generation rate, 0.002 s,

was used to maintain the uniformity of the results. The X-axis denotes the cluster size,

and the Y axis the average message latency. The smallest size used in this experiment

was an 8-cluster and the largest size was a 128-cluster.

The average message latency increased as the cluster size increased and all cluster

sizes experienced almost the same latency rate. The saturation of the throughput also

increased as number of clusters increased. The results also indicate that, even with a

larger cluster size (16, 32, 64 and 128), MCMCA can save more transmission time and

can finish the same tasks at a lower traffic rate.

These experiments are important, as they reveal that the MCMCA can be used with

various cluster sizes, including the traditional single-core cluster. With MCMCA, the

capacity of the resources increases, so that more packets can be transmitted while

experiencing lower latency.

Norhazlina Hamid

77

4.6.3 The impact on message length and scalability

In this experiment, to examine the potential scalability in the cluster architecture,

different message lengths were run, as reflected in Table 4-5 and Table 4-6.

Table 4-5: Simulation Input II

Items Quantity

No. of cluster (C) 8, 16, 32, 64, 128

No. of cores (nc) 1, 2, 4

Message generation rate (λg) 0.002s

Message Length (M) 8K

No. of m-port n-tree 4, 2

Table 4-6: Simulation Input III

Items Quantity

No. of cores (nc) 1, 2, 4

Message generation rate (λg) 0.001s

Message Length (M/bytes) 128, 256, 512, 1K, 2K, 4K, 8K, 16K

No. of cluster, m-port n-tree 8, 8, 2

Figure 4-7: Simulation results of the impact on the message latency with various

message lengths based on Network Parameter I

Norhazlina Hamid

78

Figure 4-8: Simulation results of the impact on the message latency with various

message lengths based on Network Parameter II

a) Discussion

Figure 4-7 and Figure 4-8 show the average message latency based on various

message lengths. The results reflected in Figure 4-7 were for an experiment performed

for an 8-cluster network parameter shown in Table 4-2, while the results in Figure 4-8

were obtained with the same cluster size but at a higher bandwidth value in network

parameter II shown in Table 4-4. The X-axis represents the message length while the

Y-axis denotes average message latency. The experimental message lengths ranged

from 128 B to 16 KB.

With the same message generation rate, 0.001 s, both figures demonstrate that

the traffic started to saturate the network at a message size of 8 KB. A larger

throughput was obtained for 2-core and 4-core processors by 42-51% for network

parameter I and 21-27% for network parameter II, compared to the single-core

processor. Even when the message lengths were simulated using different bandwidths,

the latency increased as the message lengths increased. With smaller message lengths

(128 B, 256 B, 512 B) the message latency increments for all cores were very small

(7-20%) and the latency rate was similar. The significant differences started to occur at

a message length of 1 KB and became obvious at message lengths larger than 1 KB.

This indicates that the architecture is scalable with different sizes of message. Based

on this experiment, the figures also reveal that the architecture can scale well under

various configurations.

Norhazlina Hamid

79

4.7 Summary

A performance model is an essential tool to predict the communication latency

behaviour of a cluster system. It is used to analyse the details of the cluster with

various design optimization issues. This chapter has described a comprehensive

performance evaluation and analysis of Multi-core Multi-cluster Architecture (MCMCA)

using several configurations based on a store-and-forward flow control mechanism to

answer research question RQ2. A novel simulation model of MCMCA was developed to

investigate the interconnection network performance and various simulation results

are compared. For the store-and-forward flow control mechanism, the simulation

experiments with MCMCA affirm its ability to improve latency and throughput beyond

that of a traditional cluster.

Several interesting observations from the experimental results give insights

into both application and communication software developers by answering

sub-research question SQ4. The latency results suggest that multi-core processors can

improve network performance by 51%-76% compared to single-core processors. This

indicates that optimizing all levels of interconnection network is important in this

architecture. As the evaluation is based on store-and-forward flow control, the

probability of blocking is zero, which contributes to higher saturation throughput.

Other simulation experiments were conducted with various sizes of cluster. The

architecture can scale well with small to larger sizes of cluster while achieving lower

latency and higher throughput. The impact of the architecture on message length was

also tested. The results have reveals that small latency happens with smaller messages

size but the latency increase with the larger message length. With the same message

generation rate, 0.001s, both figures demonstrated that the traffic started to saturate

the network at 8K size of messages, with 2-core and 4-core processors having a larger

throughput compared to single-core processor. The experiments also demonstrated

that MCMCA can scale well compared to traditional single-core cluster.

The comparison between the analytical model results and those produced by the

simulation experiments has shown that the derived analytical model possesses a good

basis for predicting the communication delay of interconnection network performance

in the Multi-Core Multi Cluster Architecture (MCMCA).

The next chapter will focus on extending the architecture by applying the blocking

mechanism which uses a wormhole flow control mechanism to solve the contention

issue in the interconnection network.

Norhazlina Hamid

80

Norhazlina Hamid

81

Chapter 5 The Performance Model using

Wormhole Flow Control Mechanism

5.1 Introduction

Performance models in cluster architecture based on single-cluster based on wormhole

flow control mechanisms have been widely reported (Alzeidi et al., 2008; Geyong et

al., 2009; Bahman Javadi et al., 2008b; Sarbazi-Azad et al., 2001; Yulei et al., 2012).

Various issues have been described and solutions have been suggested but none of the

research captures the interconnection network performance issue of multi-core multi-

cluster architecture (MCMCA).

 The contribution of this chapter is to investigate the interconnection network

performance of MCMCA in harnessing the power of multi-core clusters to addresses

research question RQ2 and sub-research question SQ4. The simulation experiment is

based on wormhole flow control by involving different numbers of cores. The validity

of the simulation model is demonstrated by comparing the results of the analytical

model to those obtained by simulation experiments. With a large message and large

cluster involved, the simulation experiments were performed by using the Iridis

Compute Cluster (Admin, 2013), of the University of Southampton’s High Performance

Computing (HPC) facility.

The baseline simulation results demonstrated that our simulation model results,

with analysis, show less than 1% difference in light traffic compared to the previous

model, which showed a 3%-8% difference. The similarity of the results confirms that the

MCMCA simulation model is a good basis for measuring the communication latency for

a large cluster. Compared to store-and-forward flow control mechanism, the simulation

experiments confirmed its ability to improve latency, but it is not able to match

throughput performance due to blocking problems. The simulation experiments were

extended to evaluate the impact of the interconnection network performance on

scalability and cluster size.

This chapter investigates the modelling and simulation of interconnection network

performance based on wormhole flow control mechanism. Section 5.4 presents the

development of simulation models for a wormhole flow control mechanism by

modifying the store-and-forward simulation model to allow the blocking mechanism.

The blocking mechanism is represented by the Arbiter module. Section 5.5 outlines the

analytical calculation to validate the simulation results and section 5.6 presents the

simulation performance results.

Norhazlina Hamid

82

5.2 Wormhole Flow Control Mechanism

‘Wormhole flow control’ has increased in popularity in cluster systems due to its low

buffering (Alzeidi et al., 2008). Wormhole forwards a packet as soon as the header is

received, and channel and buffers allocated to flits are acquired without waiting for the

entire packet to be received. It works by dividing packets into a sequence of fixed-size

units called ‘flits’, with channel and buffers allocated to flits. When a flit cannot acquire

a buffer, blocking may occur. Wormhole flow control makes far more efficient use of

buffer space, although it will increase some throughput (Dally & Towles, 2004).

5.3 Assumptions and Notations

Assumptions and notations used for the analysis are the same as shown in Chapter 4,

in Table 4-1, with the additional notation reflected in Table 5-1 for wormhole flow

control analysis.

Table 5-1: Notations used in MCMCA for Wormhole Flow Control

Abbr. Description

𝜑𝑖

𝜑𝑒

𝜑𝑖𝑐

Channel arrival rate in ICN (s)

Channel arrival rate in ECN (s)

Channel arrival rate in MCN (s)

𝜉 Blocking probability

𝜃

𝑊(𝑠, 𝑗)

𝑊𝑠(𝑗, ℎ)

Required coefficient to calculate the channel rate of the

network

Average time for a message to wait for a channel in internal

cluster

Average time for a message to wait for a channel in external

cluster

5.4 The Simulation Model

5.4.1 Simulation Structure

Simulation models of MCMCA have been developed using OMNeT++, as described in

section 3.6.1. The model is built at run time to form a topology that represents the

geometric structure and the communication links between the modules, as presented

in section 2.9.1. The simulation can behave with different inputs and parameters, such

as the number of cores per node, number of clusters, number of messages to be

generated, message length (M) and inter-arrival time.

Norhazlina Hamid

83

 The simulation modules represent hardware or a software entity that is capable of

receiving messages from itself or from other modules. The modules are declared by

specifying their attributes and ports by which a message to arrives and leaves.

Generally, the MCMCA simulation model based on wormhole flow control mechanism

was built from seven modules. These modules were programmed in C++ and

assembled into larger components and models using a high-level language, the

network description (NED). The same modules as described in section 4.4.1 were used

to build the simulation model based on a wormhole flow control mechanism with

Arbiter as a new module for this.

1. Network Topology module – this develops the building blocks of the fat-tree

topology, including cores, nodes and clusters.

2. Network Interface module – this contains the interface of module types in fat-tree

topology. Cores, nodes, clusters, switch, channel and the interconnection network

are declared in this module, and connections between them are established.

3. Communication Switch module – this acts as the connection for each switch and

router in the model, and it will determine how a message is transmitted along a

path that has been selected by the routing algorithm.

4. Routing module – this determines the path, and schedules the routing algorithms

for the messages/packets in all communication networks based on FIFO

(First-In-First-Out); also it represents a single server queue that has the same

service rate for each message/packet.

5. Generator module – messages/packets are generated by this module following the

assumption that the message destinations are uniformly distributed.

6. Sink module – this will destroy the packets after each generation is completed, and

will gather event information for statistics.

7. Arbiter module - this contains a ‘round robin’ loop for examining waiting

messages. This module implements blocking functions in wormhole flow control.

As mentioned in an earlier section, wormhole forwards a packet as soon as the header

is received, and the channel and buffers allocated to flits are acquired without waiting

for the entire packet to be received. When a flit cannot acquire a buffer, blocking may

occur. To simulate the blocking mechanism, the ‘Arbiter’ module was designed;

whereby the flits were blocked from entering the network when the requested port was

busy.

The traffic is configured by setting the destination and packet-arrival time

parameters for each source. The destination is randomly distributed using the built-in

OMNeT++ random number generation function, as mentioned in section 2.9.2e). The

packet-arrival times are exponential, distributed according to a uniform traffic pattern.

Norhazlina Hamid

84

The simulation also provides a set of statistical measurements collected by the

sink module, generator module and routing module. The sink module collects latency

and throughput at the packet and flit levels. The generator module collects from the

source waiting time in order to identify the saturation point of the architecture. The

routing module collects acquisition latencies from network transmission time, the time

for a message to cross a network.

5.4.2 The Experimental Setup

The same simulation setup is used in this experiment as is presented in section 4.4.3.

The experiment was designed to run based on the number of cores as the main input,

with various combinations of message length, cluster size and traffic inputs. In each

simulation experiment, the first 10,000 messages were discarded as belonging to the

warm-up phase to make sure that the simulation reached a steady state. The total

number of 100,000 messages were gathered to compute the message latency. These

messages were split into 10 batches with the size of every batch being 10,000

messages. Message latency is measured from when the first flit of the packet is created

to when its last flit is ejected at the destination node. The latency includes source

queuing waiting time and network transmission time. The flit is destroyed after each

generation is completed, to gather event information for statistics. Since each sample

in the ‘batch means’ method is averaged over many of the original samples, the

variance between batch means is greatly reduced. This decreases the standard

deviation of the performance metrics and leads to greater confidence in the

performance results.

5.5 The Analytical Model

5.5.1 Preliminaries

This section explains the implementation of the analytical model for computing the

communication latency of the interconnection networks in MCMCA based on the

wormhole flow control mechanism. The first phase is to compute ρ, 𝑛𝑐 and 𝑛𝑡 where 𝜌

represents the number of processors in each cluster and 𝑛𝑐 the numbers of cores on

each processor. Likewise, 𝑛𝑡 is the number of trees in the MCN while C is the number

of clusters and m is the number of ports.

𝜌 = 2𝑛𝑐 (
𝑚

2
)
2

 [5.1]

𝑛𝑡 =
(𝑙𝑜𝑔2 𝐶) − 1

(𝑙𝑜𝑔2𝑚) − 1
 [5.2]

Norhazlina Hamid

85

The messages enter the internal cluster and external cluster based on the probability 𝑃.

The probability of outgoing requests 𝑃𝑜 represents the messages generated by the

source nodes that are sent to the external cluster while messages injected from a

source node with the probability (1 − 𝑃) enter an internal-cluster network.

𝑃𝑜 =
𝑁 − 𝜌

𝑁 − 1
 [5.3]

Here, 𝛼 is the time taken by a packet of the message to transmit from a node to a

switch connection (or vice versa), while 𝛽 is the time taken by a packet of the message

to transmit on a switch-to-switch connection; 𝑀 is the message length, 𝛼𝑛𝑒𝑡 and 𝛼𝑠𝑤

are the network and switch latencies, while 𝛽𝑛𝑒𝑡 is the transmission time of one byte.

𝛼𝑖𝑒 = 0.5 𝛼𝑛𝑒𝑡 + 𝑀
1

𝛽𝑛𝑒𝑡
 [5.4]

𝛽𝑖𝑒 = 𝛼𝑠𝑤 +𝑀
1

𝛽𝑛𝑒𝑡
 [5.5]

5.5.2 Average Message Latency of an Internal-Cluster Network

The communication latency in an inter-cluster network includes messages travelling in

an intra-chip network (AC), an inter-chip network (EC) and an intra-cluster network

(ACN). In an inter-cluster network, the total arrival rate is 𝜆𝑖 (Shahhoseini et al., 2000)

and each message travels an average distance to cross the network, with every channel

receiving messages at a rate of:

𝜑𝑖 = 𝜃𝜆𝑖 [5.6]

𝜆𝑖 = (
1

𝜆
) (1 − 𝑃) [5.7]

The required coefficient (Bahman Javadi et al., 2008a) to calculate the channel rate of

the network is:

𝜃 =
(𝑛𝑚 − 2𝑛 − 1) (

𝑚
2)

𝑛
+ 1

4𝑛 (
𝑚
2 − 1) ((

𝑚
2)

𝑛
−
1
2)

 [5.8]

Each message may use a different number of channel links to reach its destination.

Since this architecture applies to a multi-core processor, the total transmission time

will be based on the numbers of cores on the processors. Therefore, the average

transmission time in internal-cluster and external-cluster networks can be considered

Norhazlina Hamid

86

as using a 2j-channel with a j-channel in the source node and a j-channel in the

destination node, so that:

 𝑇𝑖 =∑ (𝑃(𝑗,𝑛)𝑇(𝑗)𝑛𝑐)
𝑛

𝑗=1
 [5.9]

In an m-port n-tree, the probability of a message travelling 2j-channels to reach its

destination is 𝑃(𝑗,𝑛). The probability of a message journey to reach its destination

(Xuan-Yi et al., 2004) can be computed by:

𝑃(𝑗,𝑛) =

{

 (
𝑚
2
− 1) (

𝑚
2
)
𝑗−1

2 (
𝑚
2)

𝑛
− 1

1 ≤ 𝑗 < 𝑛

(𝑚 − 1) (
𝑚
2
)
𝑗−1

2 (
𝑚
2
)
𝑛
− 1

𝑗 = 𝑛

 [5.10]

a) Average Transmission Time for a Message to Cross the Networks

The received message rate in each channel can be defined by dividing the total channel

rates by the number of channels in the internal cluster (Dally & Towles, 2004). The

average amount of time for a message to wait for a channel with the blocking

probability is 𝜉 = 𝜑𝑖𝑇𝑠,𝑗. Since each message travels on average channels to cross the

network, every channel receives messages at a rate 𝜑𝑖, as in equation 5.6. The value of

blocking probability 𝑇𝑠,𝑗 is derived from a Markov Chain (Sommereder, 2011).

𝜉 = 𝜑𝑖𝑇(𝑠,𝑗) [5.11]

The destination stage 𝐾 − 1 is always able to receive a packet and the transmission

time in the internal cluster may increase since the channel would be idle when the

following stage is busy. The average amount of time that a packet waits to acquire a

channel in the internal cluster with blocking probability, 𝑊(𝑠,𝑗)𝑖
 is given by:

𝑊(𝑠,𝑗)𝑖
=
1

2
𝜑𝑖𝑇𝑠,𝑗

2 , 0 ≤ 𝑠 < 𝐾 − 1 [5.12]

Since the transmission time of a message at stage s is equal to the message transfer

time and waiting time at subsequent stages in a channel (Bahman Javadi et al., 2008b),

with 𝑇(0,𝑗) = 𝑇(𝑗), it can be classified by:

Norhazlina Hamid

87

𝑇(𝑠,𝑗) = {
∑ 𝑊(𝑙,𝑗) +𝑀𝛽𝑖

𝐾−1

𝑙=𝑠+1

0 ≤ 𝑠 ≤ 𝐾 − 2

𝑀𝛼𝑖 𝑠 = 𝐾 − 1

 [5.13]

b) Average Waiting Time at the Source Node

Due to the probability of blocking happening in the network, the distribution of

message latency becomes general. Therefore, a channel at source node is following

M/G/1 queueing regime (Sommereder, 2011). The waiting time of a message 𝑊𝑖 before

entering the network with a 𝜆𝑖 message arrival rate can be calculated as:

𝑊𝑖 =
𝜆𝑖(𝑇𝑖)

2 (1 +
𝑇𝑖 − (𝑀𝛽𝑖)

2

(𝑇𝑖)
2)

2(1 − 𝜆𝑖𝑇𝑖)

[5.14]

c) Average Time for the Last Flit’s Tail of the Message to Reach its Destination

The average time for the flit’s tail to reach its destination in the internal-cluster 𝑅𝑖, can

be found as (Sharifi et al., 2009):

𝑅𝑖 =∑∑[

𝑃(𝑓,𝑛𝑐)𝑃(𝑗,𝑛)

(∑ 𝛽𝑖 + 𝛼𝑖

𝐾𝑖−1

𝑠=1

)]

𝑛

𝑗=1

𝑛𝑐

𝑓=1

 [5.15]

Lastly, the equations for message latency in the internal-cluster communication

networks can be expressed as:

∑̅𝐿𝑖 = 𝑊𝑖 + 𝑇𝑖 + 𝑅𝑖 [5.16]

5.5.3 Average Message Latency of an External-Cluster Network

Messages travelling in an external cluster communicate via two interconnection

networks, the inter-cluster network (ECN) and the multi-cluster network (MCN) to get to

their destinations in the other cluster.

a) Average Transmission Time for a Message to Cross the Networks

Similarly to internal-cluster network and based on equation 5.9, the average

transmission time for an external cluster is:

𝑇𝑒 =∑∑(𝑃(𝑗,𝑛) 𝑃(ℎ,𝑛𝑡) 𝑇(𝑗,ℎ))

𝑛𝑡

ℎ=1

𝑛

𝑗=1

 [5.17]

Norhazlina Hamid

88

𝑃(𝑗,𝑛) = 𝑃(ℎ,𝑛𝑡) = 𝑃(𝑓,𝑛𝑐) [5.18]

The channel rate for external messages is:

𝜑𝑒 = 𝜃𝜆𝑒 [5.19]

𝜑𝑖𝑐 = 𝜃𝜆𝑖𝑐 [5.20]

Based on equation 5.12, the average time for an external message to wait for a

channel at stage s with the channel message rate 𝜑 is be given by:

𝑊𝑠(𝑗,ℎ) =
1

2
𝜑(𝑇𝑠(𝑗,ℎ))

2
 [5.21]

𝜑 = {
𝜑𝑖𝑐 𝑗 ≤ 𝑠 < 𝑗 + 2ℎ − 1
𝜑𝑒 𝑜𝑡ℎ𝑒𝑟

 [5.22]

Similar to equation 5.13, the transmission time of a message at stage s in

external-cluster, with 𝑇0(𝑗,ℎ) = 𝑇(𝑗,ℎ), can be classified by:

𝑇𝑠(𝑗,ℎ) = {
∑ 𝑊𝑙,(𝑗,ℎ) +𝑀𝛽𝑒

𝐾−1

𝑙=𝑠+1

0 ≤ 𝑠 ≤ 𝐾 − 2

𝑀𝛼𝑒 𝑠 = 𝐾 − 1

 [5.23]

where 𝑊𝑠,(𝑗,ℎ) is the blocking time that a message has to wait for a channel at stage s in

external-cluster networks and 𝛼𝑒 is the time taken by a packet of the message to

transmit from a node to a switch or switch-to-node as in equation 5.4.

b) Average Waiting Time at the Source Node

Messages generated by the source nodes are sent to the external cluster with the

outgoing request probability 𝑃 and 𝜆𝑒 as the message arrival rate following an M/G/1

queueing regime. Based on equation 5.14, the waiting time in the external-cluster

network 𝑊𝑒 can be computed by:

𝑊𝑒 =
𝜆𝑒(𝑇𝑒)

2 (1 +
𝑇𝑒 − (𝑀𝛽𝑒)

2

(𝑇𝑒)
2)

2(1 − 𝜆𝑒𝑇𝑒)

[5.24]

𝜆𝑒 = 2 (
1

𝜆
)𝑃 [5.25]

Norhazlina Hamid

89

c) Average Waiting Time at Transfer Switches

External-cluster messages need to cross transfer switches during their journeys across

the network. The transfer switches act as simple buffers to combine traffic from/to one

cluster to/from other clusters. The waiting time at these buffers 𝑊𝑠𝑤 with 𝜆𝑖𝑐 as the

message arrival rate (Dally & Towles, 2004) can be computed as:

𝑊𝑠𝑤 =
𝜆𝑖𝑐(𝑀𝛽𝑒)

2

2(1 − 𝜆𝑖𝑐𝑀𝛽𝑒)
 [5.26]

𝜆𝑖𝑐 = 𝑁𝑃 (
1

𝜆
)𝑃 [5.27]

d) Average Time for the Last Flit’s Tail of the Message to Reach its Destination

The total average latency for the last flit’s tail to reach its destination in the external

cluster is based on equation 5.15 and can be computed by:

𝑅𝑒 =∑∑[𝑃(𝑗,𝑛)𝑃(ℎ,𝑛𝑡) (∑ 𝛽𝑒 + 𝛼𝑒

𝑆𝑆𝑒−1

𝑠=1

)]

𝑛𝑡

ℎ=1

𝑛

𝑗=1

 [5.28]

The equation for message latency in the external-cluster communication networks can

therefore be expressed as:

∑̅𝐿𝑒 = 𝑊𝑒 + 𝑇𝑒 + 𝑅𝑒 + 2𝑊𝑠𝑤 [5.29]

5.5.4 Average Message Latency of MCMCA

From equations 5.16 and 5.29, the average message latency of communication

networks in MCMCA can be obtained by the sum of the message latencies in

internal-cluster and external-cluster networks as follows:

∑̅𝐿 = ∑̅𝐿𝑖 (1 − 𝑃) + ∑̅𝐿𝑒 (𝑃) [5.30]

5.5.5 Implementation of the Analytical Model

Algorithm 5-1 and Algorithm 5-2 presents the implementation of the analytical model

to compute the communication latency of interconnection networks in MCMCA based

on wormhole flow control.

Norhazlina Hamid

90

Algorithm 5-1: Process flow in calculating the communication latency of

interconnection networks in MCMCA based on a wormhole flow-control mechanism

Input Parameters:

Number of clusters C, parameter of m-port n-tree, message length M, number of

cores nc, number of nodes N and lambda
𝟏

𝝀
.

1: Calculate probability of entering/outgoing messages in the cluster 𝑃𝑜 , number of

processors in each cluster 𝜌, and number of trees in the MCN 𝑛𝑡 by using

equations 5.3, 5.1 and 5.2.

2: Calculate arrival rate in the internal cluster 𝜆𝑖, external cluster 𝜆𝑒 and transfer

switch 𝜆𝑖𝑐 by using equations 5.7, 5.25 and 5.27.

3: Calculate the arrival rate on a channel in internal cluster 𝜑𝑖, external-cluster 𝜑𝑒

and transfer switch 𝜑𝑖𝑐 by using equations 5.6, 5.19 and 5.20.

4: Compute the required coefficient to calculate the channel rate, 𝜃, with equation

5.8.

5: Calculate the probability of message crossing 2 channel, 𝑃(𝑗,𝑛) and 𝑃(𝑓,𝑛𝑐) by

using equations 5.10 and 5.18.

6: Calculate the time taken for a packet of the message to transmit on a node to a

switch or vice versa 𝛼𝑖𝑒, and the time taken for a packet of the message to

transmit on a switch to switch 𝛽𝑖𝑒 for the internal and external cluster by

equations 5.4 and 5.5.

7: Calculate average latency in an internal cluster:

a. Compute 𝑇𝑖, the transmission time in the network equation 5.9

b. Compute 𝜉, the blocking probability equation 5.11

c. Compute 𝑊(𝑠,𝑗)𝑖
, the amount of time for a message to wait for a channel h

equation 5.12

d. Calculate 𝑊𝑖, the waiting times at the source node equation 5.14

e. Calculate 𝑅𝑖, the time for the last packet of the message reach its

destination equation 5.15.

8: Calculate average latency in the external cluster using the indicated equations:

a. Compute 𝑇𝑒, equation 5.17

b. Compute 𝜉, equation 5.11

c. Compute 𝑊𝑠(𝑗,ℎ), equation 5.21

Norhazlina Hamid

91

d. Calculate 𝑊𝑒, equation 5.24

e. Calculate 𝑊𝑠𝑤, the waiting time at transfer switches equation 5.26

f. Calculate 𝑅𝑒, equation 5.28.

9: Calculate the average message latency in internal-cluster networks and average

message latency in external-cluster networks using equations 5.16 and 5.29.

10: Calculate ∑̅𝐿, the average message latency of interconnection networks in

MCMCA using equation 5.30.

Algorithm 5-2: Pseudocode of process flow in calculating the communication latency of

interconnection networks in MCMCA using MATLAB based on wormhole flow control

clear all

clc

n_core=4; % number of core(s)

C = 8;

m = 8;

n = 2;

M = 32;

Lm = 256;

lambda=500;

lambdaG=1/lambda;

pp=(m/2)^n; %number of processor per node

NP=2*pp; %number of processors in each cluster

NP=NP*n_core;

N=NP/n_core*C;

PO=(N-NP)/(N-1);

PI=1-PO;

lambdaI1=PI*lambdaG;

davgICN=(((n*m)-(2*n)-1)*(pp)+1)/(((m/2)-1)*(pp-0.5));

teta = ((n*m-(2*n)-1)*pp+1)/((4*n)*(m/2-1)*(pp-1/2));

eta = teta*lambdaI1;

anetI = 0.01;

aswI = 0.01;

BnetI = 1000;

tcnI=(0.5*anetI)+(Lm*1/BnetI);

tcsI=aswI+(Lm*1/BnetI);

Norhazlina Hamid

92

for j=1:n-1;

 P(j,n) = (((m/2)-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1)

end

for j=n;

 P(j,n) = ((m-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1)

end

for f=1:n_core

 if f==n_core

 Pnc(f,n_core) = ((m-1)*((m/2)^(f-1)))/((2*((m/2)^n_core))-1);

 break

 else

 Pnc(f,n_core) = (((m/2)-1)*((m/2)^(f-1)))/((2*((m/2)^n_core))-

1);

 end

end

Wsj=0;

for j=1:n

 SS=2*j-1;

 for s=SS:-1:1

 if s==SS

 D(s,j)=M*tcnI;

 W(s,j)=1/2*eta*(D(s,j).^2);

 else

 for l=SS:-1:s+1

 Wsj=Wsj+W(l,j);

 end

 D(s,j)=Wsj+(M*tcsI);

 if l-1>0

 W(l-1,j)=1/2*eta*(D(s,j)).^2;

 else

 break

 end

 Wsj=0;

 end

 end

end

DD(1)=M*tcnI;

DD(2:n)=D(1,2:n);

DI=0;

for j=1:n

 DI=DI+P(j,n)*DD(j)*n_core;

end

WI1=lambdaI1*(DI*DI)*(1+((DI-M*tcsI)^2)/(DI*DI))/(2*(1-

(lambdaI1*DI)));

Norhazlina Hamid

93

f=1;

RI=((davgICN-2)*tcsI+tcnI);

TI1=WI1+DI+RI;

% ---- external cluster -----

dc=log(C/2)/log(m/2);

pc=(m/2)^dc;

h=1;

Nch=4*n*pp;

Nchnc=4*n*pc;

lambdaE1=2*PO*lambdaG;

lambdaI2=(NP/n_core*PO*lambdaG);

davgECN=davgICN;

davgICN2=(((dc*m)-(2*dc)-1)*(pc)+1)/(((m/2)-1)*(pc-0.5));

tetaI2 = ((dc*m-(2*dc)-1)*pc+1)/((4*dc)*(m/2-1)*(pc-1/2));

etaE1= teta*lambdaE1;

etaI2= tetaI2*lambdaI2;

anetE = 0.02;

aswE = 0.01;

BnetE = 500;

tcsE= aswE+(Lm*1/BnetE);

tcnE=(0.5*anetE)+(Lm*1/BnetE);

for j=1:n-1;

 P(j,n) = (((m/2)-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1)

end

for j=n;

 P(j,n) = ((m-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1)

end

for h=1:dc-1;

 P(h,dc) = (((m/2)-1)*((m/2)^(h-1)))/((2*((m/2)^dc))-1)

end

for h=dc;

 P(h,dc) = ((m-1)*((m/2)^(h-1)))/((2*((m/2)^dc))-1)

end

Norhazlina Hamid

94

Wsjh=0;

for j=1:n

 for h=1:dc

 SE=2*(j+h)-1;

 SS=SE;

 for s=SE-1:-1:1

 if s==SE-1

 DDE(s,j,h)=M*tcnE;

 else

 for l=s+1:SS

 if l<j+1

 W(l)=1/2*etaI2*(DDE(l,j,h))^2;

 else

 W(l)=1/2*etaE1*(DDE(l,j,h))^2;

 end

 Wsjh=Wsjh+W(l);

 end

 DDE(s,j,h)=Wsjh+(M*tcsE);

 end

 SS=SS-1;

 end

 end

 if j==1

 WW1=1/2*etaI2*(DDE(s,j,h))^2;

 else

 WW1=1/2*etaE1*(DDE(s,j,h))^2;

 end

 DEE(j,h)=M*tcsE+WW1+Wsjh;

 Wsjh=0;

end

DE=0;

for j=1:n

 DE=DE+P(j,n)*DEE(j,h)*P(h,dc);

end

WE1=lambdaE1*(DE^2)*(1+((DE-M*tcnE)^2)/(DE*DE))/(2*(1-lambdaE1*DE));

RE=((davgECN+davgICN2)-2)*tcsE+tcnE;

WCD=lambdaI2*((M*tcsE)*(M*tcsE))/(2*(1-lambdaI2*M*tcsE));

TE1=WE1+DE+RE+(2*WCD);

TotalTI=PI*TI1;

TotalTE=PO*TE1;

TMC=(PI*TI1)+(PO*TE1);

Norhazlina Hamid

95

5.6 Performance Evaluation (SQ4)

This section presents the results and discussion for the MCMCA simulation model

based on worm-hole flow control. The simulation experiment was to test the

sub-research question SQ4. The simulation experiments and analytical model

calculations were performed, and the results for three numbers of cores were

compared.

 The simulation experiments were run using the interconnection network

parameters as given in Table 5-2 with input parameters in

Table 5-3.

Table 5-2: Interconnection Networks Parameters

Parameter Internal-cluster External-cluster

Network latency 0.01s 0.02s

Switch latency 0.01s 0.01s

Network Bandwidth 1000 b/s 500 b/s

Table 5-3: Input Parameters

Items Flit length (F)

256bytes

Flit length (F)

512bytes

No. Of cores (nc) 1, 2, 4

No. Of cluster (C) 8

No. Of m-port n-tree 8, 2

Message Length (M) 32 flits

5.6.1 Baseline experiment on MCMCA

The results of the baseline experiment are given for single-core cluster architecture, as

depicted in Figure 5-1. Simulation and analysis revealed that, when compared, the

results obtained from MCMCA with 1-core closely match the results from the model of

multi-cluster architecture presented by Javadi et al. (2006) as given in Table 5-4.

 The author claimed that his analytical model and simulation model in average

differed by less than 3-8% under conditions of light traffic. The MCMCA simulation

model outperformed the earlier model, in that the difference between the simulation

model and analytical model was less than 1%. The similarity of the results confirms

that the simulation model is a good basis for measuring the communication latency for

a large-scale cluster, and can be extended to multi-core processor.

Norhazlina Hamid

96

Table 5-4: Baseline results comparison between MCMCA with 1-core with multi-cluster

model presented by Javadi et al. (2006)

Model Simulation Model Analytical Model Different

Average Message

Latency with F=256

127.33831 127.35218 0.01387

Average Message

Latency with F=512

218.08425

218.11161

0.02736

Figure 5-1: MCMCA model with C=8, M=32 flits, F=256 bytes based on Wormhole Flow

Control

5.6.2 Latency and throughput on MCMCA

Three different numbers of cores in a processor were analysed. Figure 5-2 depicts the

simulation and analytical model results with a flit size equal to 256 bytes, while Figure

5-4 depicts the results with a flit size equal to 512 bytes. The simulation parameters

are based on Table 5-2 and

Table 5-3.

Norhazlina Hamid

97

Figure 5-2: Message latency and throughput simulation results based on Wormhole

Flow Control Mechanism with M=32F, F=256 bytes

Figure 5-3: Message latency and throughput simulation results compared to

analytical calculation results based on Wormhole Flow Control with M=32 flits, F=256

bytes

Norhazlina Hamid

98

Figure 5-4: Message latency and throughput simulation results based on Wormhole

Flow Control Mechanism with M=32 flits, F=512 bytes

Figure 5-5: Message latency and throughput simulation results compared to

analytical calculation results based on Wormhole Flow Control with M=32 flits, F=512

bytes

Norhazlina Hamid

99

a) Discussion

The results showed that, as the traffic rate increases, the average communication

latency increases as the messages have to wait for resources before travelling into a

network. Results based on 4 cores show that there higher latency occurs at lower

traffic volumes, since more messages need to be served in the internal cluster. The

results also demonstrated that the architecture, with different numbers of cores, can

achieve lower communication latency of the interconnection networks at the same

traffic rate. However, as the traffic rate increased, higher latency occurred due to

longer blocking times in the wormhole flow control mechanism. Packets are frequently

blocked because the channel is held by another packet, even when there are buffers

available.

 The similarity between the analytical results and those produced from the

simulation experiments as in Figure 5-3 for M=8K and Figure 5-5 for M=16K, suggests

that the derived simulation model possesses a good basis for predicting the

communication delay of interconnection network performance of the Multi-Core

Multi-Cluster Architecture (MCMCA).

5.6.3 The Impact on cluster size

The accuracy of the simulation model has been validated as being a cost-effective tool

to investigate the interconnection network performance in MCMCA. It can thus be used

to get an insight into the impact of cluster size on maximising network performance.

 A set of simulation experiments were conducted using the simulation input in

Table 5-5.

Table 5-5: Simulation Input for cluster sizes

Items Quantity

No. of cluster (C) 8, 16, 32, 64, 128

No. of cores (nc) 1, 2, 4

Message generation rate (λg) 0.001s, 0.002s

Message Length (M) 18K, 16K

No. of m-port n-tree 4, 2

Norhazlina Hamid

100

Figure 5-6: Message latency predicted by the simulation model with M=32 flits, F=256

bytes and λg=0.001

Figure 5-7: Message latency predicted by the simulation model with M=32 flits, F=256

bytes and λg=0.002

Norhazlina Hamid

101

Figure 5-8: Message latency predicted by the simulation model with M=32 flits, F=512

bytes and λg=0.001

Figure 5-9: Comparison of message latency with M=32 flits, F= 256 and 512 bytes

predicted by the simulation model using λg=0.001

Norhazlina Hamid

102

a) Discussion

An experiment was constructed with five sizes of cluster, C= 8, 16, 32, 64, 128, and

three core sizes, nc = 1, 2, 4. The experiment was run with two message generation

rates, λg= 0.001 s and 0.002 s, and two message lengths, M = 8KB and 16KB. The

probability (𝑃) assumed was 0.89 for the internal cluster and 0.11 for the external

cluster. From the resulting figures, we can deduce that, as the size of clusters

increases, the network performance improves, since the message latency decreases,

which also increases the maximum network throughput. However, it seems that the

larger clusters, 64 and 128, gave only small improvements in throughput. Even though

the latency for an 8-cluster with 4-cores is a bit higher due to blocking, the latency is

almost similar for larger clusters. Furthermore, the improvement caused by the

trade-off between cluster size and the number of cores can relieve the negative effects

of the blocking mechanism on network performance.

 These results demonstrated that the architecture can be used to investigate the

interconnection network performance of MCMCA for small to large cluster size. The

performance results are also consistent with the results for the simulation model based

on the store-and-forward flow control mechanism described in section 4.6.2. However,

it is important to balance cluster size with the number of cores involved within the

limited space to maximise network performance.

5.6.4 The impact on message length and scalability

Testing the various impacts on message length will give insights into scalability. For

testing the model, seven message lengths (M/bytes) were involved in an eight

multi-core cluster system, as in Table 5-6, with the numbers of cores being 1, 2 and 4.

To make this experiment comparable with others, the same message length has also

been tested in larger cluster sizes: 32 multi-core cluster systems with 4, 8 and 16

cores. The same message generation rate (λg) was used to maintain the validity of the

results.

Table 5-6: Simulation Input for scalability

Items 8-cluster 32-cluster

No. of cores (nc) 1, 2, 4 4, 8, 16

No. of m-port n-tree 8, 2

Message generation rate (λg) 0.001s

Message Length (M/bytes) 128, 256, 512, 1K, 2K, 4K, 8K

Norhazlina Hamid

103

Figure 5-10: Simulation results of the impact on the message latency with various

message lengths based on Number of cluster = 8

Figure 5-11: Simulation results of the impact on the message latency with various

message lengths based on Number of cluster = 32

Norhazlina Hamid

104

a) Discussion

For all message lengths, a simulation experiment with 2-core for an 8-cluster and

8-core for a 32-cluster outperforms the other core sizes especially for longer message

lengths, as shown in Figure 5-10 and Figure 5-11. Higher latency occurs for larger

numbers of cores in light traffic due to task allocation between cores and the blocking

mechanism. Based on this analysis, the maximum network throughput for an 8-cluster

with 1-core is higher due to the reduced message latency involved. Based on all

message lengths, the larger number of cores, 2-core and 4-core, surpasses single-core

performance by 4-10% under a uniform traffic pattern.

 However, with longer message lengths, there is a small improvement in

throughput. This is due to the fact that, when a packet is blocked, all the data flit

continues to hold onto its buffer. Thus, the larger the message length, the more

contention is found in channels and buffers.

 This experiment suggested that longer message lengths have a significant impact

on network performance, and the architecture is capable of scaling well with various

message lengths.

5.7 Summary

Multi-core multi-cluster architectures (MCMCA) have a tremendous potential for the

future of computing. However, there exist some issues that can affect the performance

of the architecture and limit the gained advantages. This chapter presented a new

simulation model to investigate the performance of interconnection networks in

MCMCA, based on wormhole flow control mechanism (RQ2). Three sets of experiments

were designed to gain an insight into the architecture’s capability by answering

sub-research question SQ4. The simulation results were validated by analytical model

calculation which demonstrated a similar result.

 The first simulation experiment was conducted to investigate MCMCA performance

based on latency and network throughput. The results showed that a wormhole flow

control mechanism is able to improve latency dramatically over a store-and-forward

flow control mechanism. However, the store-and-forward flow control fares better in

term of throughput, with a higher saturation point. While wormhole flow control

performs better for light traffic, it does not achieve optimal throughput due to the

probability of blocking while traversing the network. The simulation experiments also

affirm the advantages of a wormhole flow control mechanism. Since packets are

transferred using a smaller unit called ‘flit’, more flits can be transmitted in the same

channel, thus minimising the latency.

Norhazlina Hamid

105

Another simulation experiment was performed to get more insight into the

architecture’s impact on cluster size and message length, so as to reveal potential

scalability. The use of a multi-core processor improves the latency even for larger

cluster sizes and larger message lengths, with higher throughput performance.

However, due to the blocking issue, the wormhole flow control mechanism was unable

to achieve optimal throughput performance. Furthermore, the experiments indicated

the importance of balancing the number of cores in each cluster with cluster size, so

as to maximise the overall architecture performance.

The performance evaluation indicated that the architecture is able to measure the

performance of multi-core clusters under various parameters and system

configurations. The resulting performance evaluation can be an alternative to enable

system designers to build cluster applications.

Norhazlina Hamid

106

Norhazlina Hamid

107

Chapter 6 Statistical Analysis

6.1 Introduction

The Statistical Package for the Social Sciences (SPSS) was used to analyse the

experimental results. SPSS is a software for statistical analysis and its provides

essential statistical analysis tools for every step of the analytical process (Field, 2013).

The main aim was to determine whether multi-core multi-cluster simulation results

were better than traditional cluster. The Shapiro-Wilk (S-W) test of normality was used

to determine whether or not the experiment results follow a normal distribution. It is

also suitable for a small to medium number of samples; in this case there were 10

samples for each experiment (Field, 2000).

The results of the simulation experiment focused on latency, as described in

section 4.6.1 for store-and-forward flow control mechanism and in section 5.6.2 for a

wormhole flow control mechanism. The S-W test depends on the normal distribution of

experimental results. The first analysis was undertaken to compare the experimental

results of the two flow control mechanisms. If the results were normally distributed,

then the parametric t-test was used to compare the two flow control mechanisms, and

if the results were not normally distributed, then the non-parametric Mann-Whitney test

was applied to compare the results of the two flow control mechanisms.

The second analysis compared the experimental results obtained for the different

number of cores. If the results followed a normal distribution, a one-way ANOVA test

was conducted to determine whether there was a significant difference between the

results. If the results did not follow a normal distribution, then the non-parametric

Friedman’s test was applied to compare the results for significant difference.

Section 6.2 describes the normality testing of the experimental results. The

comparison of the two flow control mechanisms is presented in section 6.3, followed

by the comparison of three core sizes in section 6.4. The results and their analysis are

summarised in section 6.5.

6.2 Analysis of Experimental Results

The Shapiro-Wilk (S-W) tests were used to test the assumption that the experimental

results are derived from a normally-distributed population. A typical use of the S-W

tests is to check assumptions of normality required by other statistical tests to be used

later for the experiment results. In other words, S-W tests the null hypothesis that “the

results come from a normally-distributed population”. The hypothesis is therefore that

Norhazlina Hamid

108

the data come from a population that is not normally distributed. Consequently, if the

results of the test are significant (p<0.05), rejecting the null hypothesis means

rejecting the assumption of normality for the population distribution. In this case, the

population consisted of the results obtained in the simulation experiments. In this

study, the data were derived from the results obtained from the simulation

experiments based on Store-and-Forward flow control and Wormhole flow control

mechanisms.

6.2.1 Normality test

a) Descriptive Statistic

Table 6-1 and Table 6-2 provide a summary of message latency results for

store-and-forward flow control mechanism and wormhole flow control mechanism. The

following tables show the summary of ten traffic rate including mean, median, mode,

standard deviation, minimum and maximum latency per time unit.

Table 6-1: Descriptive Results for Store-and-Forward Flow Control

Store-and-Forward 1-Core (s) 2-Core (s) 4-Core (s)

N 10 10 10

Mean 249.168 109.864 69.699

Median 143.028 105.443 70.165

Mode 88.917 80.475 63.801

Std. Dev 209.816 23.920 3.747

Minimum 88.917 80.475 63.801

Maximum 698.637 143.300 73.895

Table 6-2: Descriptive Results for Wormhole Flow Control

Wormhole 1-Core (s) 2-Core (s) 4-Core (s)

N 10 10 10

Mean 127.338 102.639 65.652

Median 84.471 64.833 48.271

Mode 19.971 20.281 27.613

Std. Dev 122.047 109.018 42.932

Minimum 19.971 21.933 30.036

Maximum 400.628 379.939 160.106

In these simulation experiments, a total of 100,000 messages were used to gather

statistics. In these experiments, 100,000 messages were divided into 10 batches,

where the size of each batch was 10,000 messages. Results for each traffic rate were

derived from simulation with N being the average of the simulation run where each N

Norhazlina Hamid

109

represents 10,000 messages. The curves produced in each graph are from 10 traffic

rates.

 Normality test are sensitive to the size of the sample: with a large sample even

small deviations from normality will be reported as significant.

Table 6-3: SPSS Output for S-W tests of normality using Store-and-Forward Flow Control

Mechanism

Shapiro-Wilk

Statistic df Sig.

core1 .789 10 .011

core2 .909 10 .271

core4 .910 10 .283

Table 6-4: SPSS Output for S-W tests of normality using Wormhole Flow Control

Mechanism

Shapiro-Wilk

Statistic df Sig.

core1 .848 10 .055

core2 .739 10 .003

core4 .815 10 .022

Table 6-3 and Table 6-4 show the SPSS output of the S-W tests for both flow control

mechanism. For test output using Store-and-Forward flow control, the p-value for

1-core is smaller than 0.05, indicating a not-normally distributed data. Although the

p-values for 2-core and 4-core are greater than 0.05 (i.e. normally distributed)

parametric test (e.g. independent sample t test and one-way repeated measure ANOVA)

cannot be used because all groups of comparison must be normally distributed.

Therefore, the analysis will use non-parametric test (e.g. Mann Whitney and Friedman

tests). SPSS output of the S-W test for Wormhole flow control indicate that 2-core and

4-core are not normally distributed. Therefore, the analysis based on Wormhole flow

control mechanism will also use non-parametric test (e.g. Mann Whitney and Friedman

tests).

b) Skewness and Histograms

Skewness is a measure of the asymmetry of a distribution. A perfectly normal

distribution is symmetric and has a skewness value of 0. A distribution with a

significant positive skewness has a long right tail and a significant negative skewness

has a long left tail. As a guideline, skewness values with more than twice a standard

error are taken to indicate a departure from symmetry.

Norhazlina Hamid

110

This test was conducted on both the store-and-forward (SF) and wormhole (WH)

flow control mechanisms.

Table 6-5: Descriptive Statistics for Skewness with Store-and-forward flow control

 N Skewness

Final test score Statistic Statistic Std. Error

1-core 10 1.429 0.687

2-core 10 0.208 0.687

4-core 10 -0.397 0.687

Table 6-6: Descriptive Statistics for Skewness with Wormhole flow control

 N Skewness

Final test score Statistic Statistic Std. Error

1-core 10 1.417 0.687

2-core 10 2.160 0.687

4-core 10 1.485 0.687

 The SPSS analysis for both flow control mechanisms reported a statistic for

standard error for the skewness. The result was greater than ±1.96 when either score

was divided by its standard error. This suggests that the results were not normally

distributed with respect to that statistic. An SPSS output for skewness tests from

experimental results is given in Table 6-5 and Table 6-6. Skewness for wormhole flow

control mechanisms is positive, indicating that the results are slightly right-skewed and

peaked compared to a normal distribution. But with store-and-forward flow control,

4-core gives negatives result, indicating that the results are slightly left-skewed.

Applying the rule of thumb of dividing each value by its standard error, SF gives

1-core=2.062, 2-core=0.003 and 4-core=-0.578. While WH gives 1-core=2.080,

2-core=3.144 and 4-core=2.162 as a measure of skewness. Most of the results are

greater than ±1.96 limits, suggesting that the result is not normal. This is confirmed

by visual inspection of the histogram of the same results for Store-and-Forward flow

control mechanism shown in Figure 6-1 for 1-core, Figure 6-3 for 2-core and Figure 6-5

for 4-core. The histogram for Wormhole flow control mechanism is shown in Figure 6-2

for 1-core, Figure 6-4 for 2-core and Figure 6-6 for 4-core.

Norhazlina Hamid

111

Figure 6-1: Histogram with distribution

curve plotted for store-and-forward flow

control mechanism with 1-core

Figure 6-2: Histogram with distribution

curve plotted for wormhole flow control

mechanism with 1-core

Figure 6-3: Histogram with distribution

curve plotted for store-and-forward flow

control mechanism with 2-core

Figure 6-4: Histogram with distribution

curve plotted for wormhole flow control

mechanism with 2-core

Norhazlina Hamid

112

Figure 6-5: Histogram with distribution

curve plotted for store-and-forward flow

control mechanism with 4-core

Figure 6-6: Histogram with distribution

curve plotted for wormhole flow control

mechanism with 4-core

6.3 Mean Differences between Mechanisms

Since there are two flow control mechanisms, store-and-forward (SF) and wormhole

(WH), involved in the simulations, the Mann-Whitney test was applied to detect any

statistically significant difference between the results. The Mann-Whitney test is used in

analyses in which there is two conditions and different subjects have been used in each

condition, but the assumptions of parametric testing are not tenable (Field, 2000).

 The purpose of this test was to assess the interconnection performance by

comparing message latency results between the two flow control mechanisms. It

investigated which flow control mechanism yielded the best results for the latency

evaluation metric.

 Twenty traffic rates (N) were used in all: 10 traffic rates were based on SF and

another 10 traffic rates were representing WH. Two flow controls are defined as two

mechanism in the analysis (1=SF, and 2=WH).

Norhazlina Hamid

113

Table 6-7: The comparison of flow control mechanism performance using Mann-

Whitney test

Mechanism N Median Interquartile range U Z p

1-core SF 10 143.0282 98.2132 – 380.4279

WH 10 84.4709 31.3061 – 198.9897 28.000 -1.663 0.096

Total 20

2-core sf 10 105.4425 86.5303 – 134.1366

wh 10 49.8460 27.7618 – 69.8574 1.000 -3.704 <0.001

Total 20

4-core SF 10 70.1651 65.9904 – 73.2761

WH 10 35.7715 30.5565 – 38.3209 0.000 -3.780 <0.001

Total 20

Figure 6-7: Error bar chart of average message latency between store-and-forward flow

control and wormhole flow control

6.3.1 Discussion

The comparison of flow control mechanism performance using Mann-Whitney test are

shown in Table 6-7. This test was conducted to examine whether the latency increase

between the cores. A U of zero indicates the greatest possible difference between the

two flow control mechanisms. Z-approximation of U is calculated and used to assess

Norhazlina Hamid

114

statistical significance. For this experiment, a calculated z larger than ±1.96 can be

considered statistically significant. It can be concluded that, with p-value is below 0.05,

there is a statistically significance difference between the message latency of SF flow

control and WH flow control mechanisms.

 A Mann-Whitney U is used when there are fewer than 20 cases in each group. A

Mann-Whitney U test indicated that the message latency of Store-and forward flow

control with 1-core were significantly higher than those of the Wormhole flow control

(N=10, U=28.000, z = -1.663, p=0.096, two-tailed). However, this test also indicated

that there was no significant difference between mechanisms in the message latency

for 2-core and 4-core (p<0.001) where for 2-core with N=10, U=1.000, z = -3.704,

p<0.001, two-tailed, and 4-core with N=10, U=0.000, z = -3.780, p<0.001, two-tailed.

The clustered bar graph in Figure 6-7 illustrates the differences between the

message latency results for both flow control mechanism in this test. The

Store-and-Forward flow control outnumbers the Wormhole flow control in all message

latency results. This graph also shows that the two distributions are similarly shaped.

The graph clearly illustrates how SF flow control tends to have much larger latency

than WH flow control. However, the throughput saturation point of SF flow control is

larger than WH flow control indicated that more packets can be transmitted into the

network in the light traffic.

Thus, it can be concluded that there is a change in the latency as the number of

cores increase when applying Store-and-Forward flow control. Whereas, there is almost

no statistically significant changes in the latency when then number of cores increase

when applying Wormhole flow control. However, Store-and-forward flow control is

easier to implement since there is no blocking mechanism happen in the transmission.

Although the latency increase, but with more cores, it will increase the performance.

The results indicated that both flow control mechanisms when applied in the

MCMCA, the performance increased with two or more cores. The test demonstrated

that the wormhole mechanism produces less latency than the store-and-forward flow

control mechanism.

6.4 Mean Differences between Processor Core

Performance

The following test was applied to discern any difference in the performance for the

three sizes of processor core. The independent variable in this test is the traffic rate

while core sizes constitute the dependent variable. The test for a difference in the true

means of message latency used the Friedman test with a significance level of =0.01.

Norhazlina Hamid

115

The Friedman test allows for the analysis of repeated-measures data for two or more

conditions or to matched-subjects data which are matched in pairs, triplets or in some

greater number (Field, 2013).

 The test aimed to investigate in whether each core is produced as more latency

than the other cores. For this test, analyses will evaluates whether message latency

differ significantly between three number of cores. Twenty traffic rates were used in

all: 10 traffic rates were based on Store-and-Forward flow control mechanism and

another 10 traffic rates were representing Wormhole flow control mechanism.

Table 6-8: Comparison between processor core performance with two flow control

mechanism

Processor

cores
N Median Interquartile range

X
2

p

1-core 20 121.044 71.949 – 255.311 25.900 0.000002

2-core 20 81.228 47.165 – 107.743

4-core 20 51.571 35.335 – 70.525

Table 6-9: Pairwise comparison between processor core performance for two flow

control mechanism

 core2 - core1 core4 - core2 core4 - core1

Z -3.883 -3.621 -3.733

Asymp. Sig. (2-

tailed)
<0.01 <0.01 <0.01

Table 6-10: Comparison between processor core performance with Store-and-Forward

flow control mechanism

Processor

cores
N Median Interquartile range

X
2

p

1-core SF 10 143.0282 98.2132 – 380.4279 20.000 <0.01

2-core SF 10 105.4425 86.5303 – 134.1366

4-core SF 10 70.1651 65.9904 – 73.2761

Table 6-11: Pairwise comparison between processor core performance with Store-and-

Forward flow control mechanism

 core2 - core1 core4 - core2 core4 - core1

Z -2.803
c

 -2.803
c

 -2.803
c

Asymp. Sig. (2-tailed) .005 .005 .005

Norhazlina Hamid

116

Table 6-12: Comparison between processor core performance with Wormhole flow

control mechanism

Processor

cores
N Median Interquartile range

X
2

p

1-core WH 10 84.4709 31.3061 – 198.9897 7.800 0.020

2-core WH
10

49.8460 27.7618 – 69.8574

4-core WH
10

35.7715 30.5565 – 38.3209

Table 6-13: Pairwise comparison between processor core performance with Wormhole

flow control mechanism

 core2 - core1 core4 - core2 core4 - core1

Z -2.701
c

 -1.988
c

 -2.293
c

Asymp. Sig. (2-tailed) .007 .047 .022

6.4.1 Discussion

Table 6-8 and Table 6-9 showed the comparison results for two flow control

mechanism, Store-and-forward flow control (SF) and Wormhole flow control (WH). The

table provides basic descriptive statistics for the three number of cores. N is the

number of traffic rate in the research. Three post-hoc analyses with Wilcoxon pairwise

comparison test were conducted to test if each mechanism was statistically

significantly different from others (Allen & Bennett, 2010). If the result was

significantly difference, the Bonferroni adjustment will be used to reduce the chances

of obtaining false-positive results when multiple pair wise tests are performed on a

single set of data (Field, 2013).

 Friedman test were used to compare the performance of three results based on

three different number of cores. Friedman test were carried out in two steps. The first

step was to compare the processor performance regardless of the mechanisms. The

second step was carried out to examine the difference of processor performance

according to the flow control mechanisms.

 For the first step, the results indicate that there are statistical differences of

processor performance regardless of the mechanism involved (N=20, X
2

=25.900,

p<0.000002). The Bonferroni adjustment is needed to maintain an alpha rate of 0.05

over multiple comparisons (Allen & Bennett, 2010). It requires dividing the alpha level

(0.05) by the number of comparisons being made (3 number of cores). Here,

0.05/3=0.017 and a comparison can be considered statistically significant if p is less

than 0.017.

Norhazlina Hamid

117

 Follow up pairwise comparisons with the Wilcoxon test and a Bonferroni adjusted 

of 0.017 indicated that the 2-core was perceived as significantly produce more latency

than 1-core (z=-3.883, p<0.001). There was also significant difference between 4-core

and 1-core performance (z=-3.733, p<0.001), whereas the different between the 4-core

and 2-core performance was clearly significant (z=-3.621, p<0.001).

 Table 6-10 represents the results for the store-and-forward (SF) flow control

mechanism while

Table 6-12 concerns the wormhole (WH) flow control mechanism. This test is to

determine if message latency changed significantly with the number of cores based on

two flow control mechanism.

 For the second step, Friedman test were carried out in order to compare the

processor core performance according to the flow control mechanisms involved. For

the SF flow control mechanism, there was a statistical difference of processor core

performance (N=10, X
2

=20.000, p<0.000045).

 Follow up pairwise comparisons in Table 6-11 with the Wilcoxon test and a

Bonferroni adjusted  of 0.017 indicated that for SF flow control, there were difference

between all processor cores performance (z=-2.803, p<0.005). Hence there exists

enough evidence to conclude that there is a difference in the mean message latency for

the three core sizes in interconnection performance based on SF flow control.

 On the other hand, applied to the results for WH, with N=10, Friedman's chi-square

has a value of 7.800 and a p-value <0.020 is less than 0.05. It was clear that there was

a significant difference between message latency for the three cores. Hence, there is

enough evidence that message latency results for the three core sizes are different.

This is due to small latency occurs in the light traffic.

 Follow up pairwise comparisons in Table 6-13 with the Wilcoxon test and a

Bonferroni adjusted  of 0.017 for WH flow control, the difference between the

rankings of the processor core with 2-core and 1-core is statistically significant

(p=0.007); the difference between the rankings of 4-core and 1-core is approaching

significance (p=0.022); and the difference between rankings of the 4-core and 2-core is

clearly non-significant (p=0.047).

 It can be concluded that the network performance improved as the number of

cores increase. However, there is no relationship between the latency and the number

of cores.

6.5 Summary

Norhazlina Hamid

118

This chapter explained the approach used to analyse the experimental results provided

in this thesis, which argues that simulation can be an effective method of investigating

research problems and evaluating proposed solutions. The analysis was performed by

using SPSS with two specific analyses. The normality test showed that both of the flow

control simulation results indicated p-value for 1-core (SF), 2-core and 4-core (WH) is

less than 0.05, indicating a not-normally distributed data. Although the p-values for

other cores are greater than 0.05 (i.e. normally distributed) parametric test (e.g.

independent sample t test and one-way repeated measure ANOVA) cannot be used

because all groups of comparison must be normally distributed. Therefore, non-

parametric test (e.g. Mann Whitney and Friedman tests) were applied.

 The first analysis was to investigate the interconnection performance by

comparing message latency results between the two flow control mechanisms by using

the Mann-Whitney test. A Mann-Whitney U test indicated that the message latency of

Store-and forward flow control with 1-core were significantly higher than those of the

Wormhole flow control (N=10, U=28.000, z = -1.663, p=0.096, two-tailed). However,

this test also indicated that there was no significant difference between mechanisms in

the message latency for 2-core and 4-core (p<0.001) where for 2-core with N=10,

U=1.000, z = -3.704, p<0.001, two-tailed, and 4-core with N=10, U=0.000, z = -3.780,

p<0.001, two-tailed. This concluded that that there is a change in the latency as the

number of cores increase when applying Store-and-Forward flow control. Whereas,

there is almost no statistically significant changes in the latency when then number of

cores increase when applying Wormhole flow control. Although the latency increase,

but with more cores, it will increase the performance.

 The second analysis was performed to test the significance of the differences

between the processor cores performance. The Friedman test was conducted and the

results indicate that there are statistical differences of processor performance

regardless of the mechanism involved (N=20, X
2

=25.900, p<0.000002). Follow up

pairwise comparisons for both mechanism with 1-core, 2-core and 4-core, the Wilcoxon

test were conducted and a Bonferroni adjusted  of 0.017 indicated that the 2-core was

perceived as significantly produce more latency than 1-core (z=-3.883, p<0.001). There

was also significant difference between 4-core and 1-core performance (z=-3.733,

p<0.001), whereas the different between the 4-core and 2-core performance was

clearly significant (z=-3.621, p<0.001).

 The Friedman test confirmed that there was a significant improvement in

processor performance from 1-core towards 4-core. It can be concluded that the

network performance improved as the number of cores increase.

Norhazlina Hamid

119

 The next chapter presents the conclusion of the thesis and its contribution to the

research. It will also discuss future research directions to arrive at alternative solutions

to overcoming the limitations in the cluster system.

Chapter 7 Conclusions, Contributions

and Future Work

This chapter begins by providing conclusions arising out of the research described,

and outlining the contribution made. Possible directions for future work are then

suggested. Concluding remarks are given at the end.

7.1 Conclusions

Clusters are now playing a major role in solving large-scale computing application

problems, as they meet the need for faster and more reliable systems, especially as

they are often built using commodity-off-the-shelf (COTS) hardware components and

commonly-used software. The advances made in these technologies are making

clusters an appealing solution for cost-effective parallel computing and have emerged

as mainstream parallel platforms for high-performance, high-throughput and

high-availability computing. However, various limitations to the available cluster

system, which is further constrained by a single-core processor, are associated with

enabling new architecture. This thesis addresses the limitations by providing a new

multi-core multi-cluster architecture, based on collaborative architecture using

multi-core clusters and multi clusters. The proposed architecture was developed for

five interconnection networks, while the key contribution of this thesis has been the

development of multi-core multi-cluster architecture. A brief summary of the aims and

contributions of each chapter is outlined below, with additional unaddressed points.

 Chapter 2 described the motivation for using clusters as well as the technologies

available for building a new cluster architecture. Cluster computing has emerged as a

result of the convergence of several trends, including the availability of inexpensive

high-performance microprocessors and high-speed networks, the development of

standard software tools for high performance parallel and distributed computing, and

the increasing need of computing power for computational science and commercial

applications. It is clear that high-speed networks for cluster computing are important

to support the needs of better performance. The rapid change in interconnection

network technology provides a new opportunity for a researcher to improve the

Norhazlina Hamid

120

performance of cluster computing. Although much progress has been made in the

development of low-latency protocols and new standard architectures, it creates

interesting new challenges. The capability of clusters to deliver high performance and

availability on a single platform is empowering many existing and emerging

applications, and making clusters the platform of choice.

Several research issues are discussed in multi-core cluster and interconnection

networks which contribute to a new architecture. The various issues presented in

Chapter 2 show that the disadvantages of the single-core cluster moved researchers to

focus on multi-core clusters. Multi-core clusters solve various concerns by dividing the

workload between different cores, which speeds up performance. Chapter 2 also

presented a background for the simulation model structure, which includes network

topology, flow control mechanisms and routing algorithms. These are important

components of message passing and communication in an interconnection network.

Chapter 3 presented the new architecture, known as Multi-core multi-cluster

Architecture (MCMCA), built up of numbers of clusters where each cluster is composed

of a number of nodes. Each node of a multi-core cluster has a number of processors,

each with two or more cores with their own cache. Cores on the same chip share the

local memory. The interconnection network connects the cluster nodes. By integrating

multi-core processors and multiple clusters, its purpose is to provide an alternative

architecture for the interconnection networks that improves the performance of the

interconnection network by ensuring greater throughput and lower latency.

 The research methodology described in Chapter 3 involved simulation

development and experiment. The simulation models were built using the OMNeT++

network simulation tool, and baseline measures for the MCMCA were presented. A

series of simulation experiments under various configurations and design parameters

were performed. The results showed that the simulation model can be extended to

investigate the performance of a multi-core cluster system based on multi-cluster

architecture. Performance evaluation focused on communication latency and network

throughput.

 Chapter 4 demonstrated the performance evaluation of the interconnection

network based on a store-and-forward flow control mechanism. The performance of

single-core cluster and multi-core cluster architectures were compared by means of

simulation experiments and an analytical model was used to validate the simulation

results. Three simulation experiments were designed to demonstrate the MCMCA

ability to predict interconnection network performance. The latency results suggested

that, compared to single-core processor, a multi-core processor can improve the

network performance by 51%-76%. This indicates that optimizing all levels of the

Norhazlina Hamid

121

interconnection network is important in this architecture. Another observation was that

the architecture can achieve lower latency and higher throughput as the number of

cores increases.

 The experiments also suggested that, compared to a single-core cluster, MCMCA

can scale well from small (8-cluster) to large clusters (16-cluster to 128-cluster) while

achieving low latency and high throughput. The impact of the architecture on message

length reveals that small latency occurs with smaller message lengths (128 B to 512 B)

but that latency increases with large message length (1 KB to 16 KB). The comparison

of results between the analytical approach and those produced by the simulation

experiments suggests that the analytical model provides a good basis for predicting

the communication delay in interconnection network performance of the Multi-Core

Multi Cluster Architecture (MCMCA).

Chapter 5 presented a simulation model based on the wormhole flow control

mechanism. Three sets of experiments were designed to get an insight into the

architectural capability. For the baseline experiment, the MCMCA simulation model

outperformed the previous model where the difference between simulation model and

the analytical model results was less than 1%. The first simulation experiment was

conducted to investigate MCMCA performance based on latency and network

throughput. The latency results suggested that as the traffic rate increases, the

average communication latency increases, as the messages have to wait for resources

before travelling into a network. In light traffic, higher latency occurs for larger

numbers of cores due to task allocation between cores and a blocking mechanism.

However, compared to the store-and-forward flow control mechanism, the wormhole

flow control mechanism is able dramatically to improve latency, since packets are

transferred using smaller units called flits: more flits can be transmitted in the same

channel, thus minimising the latency.

Another simulation experiment was performed to gain more insight into the

impact of the architecture on cluster size and message length, so to reveal potential

scalability. Based on various message lengths, it was observed that a larger number of

cores overtakes single-core performance by 4%-10% more under a uniform traffic

pattern. However, due to the blocking issue, the wormhole flow control mechanism

was unable to achieve optimal throughput performance. The resulting performance

evaluation suggests an alternative for system designers building cluster applications.

In Chapter 6 presented the statistical analysis. Two statistical analysis were

conducted to compare the experimental results based on store-and-forward and

wormhole flow control mechanisms. The normality test showed that both of the flow

control simulation results indicated p-value for 1-core (SF), 2-core and 4-core (WH) is

Norhazlina Hamid

122

less than 0.05, indicating a not-normally distributed data. Although the p-values for

other cores are greater than 0.05, parametric test cannot be used because all groups

of comparison must be normally distributed. Therefore, non-parametric test (e.g. Mann

Whitney and Friedman tests) were applied. The first analysis was to investigate the

interconnection performance by comparing message latency results between the two

flow control mechanisms by using the Mann-Whitney test. The finding indicated that

the message latency of Store-and forward flow control with 1-core were significantly

higher than those of the Wormhole flow control (p=0.096). However, this test also

indicated that there was no significant difference between mechanisms in the message

latency for 2-core and 4-core (p<0.001). This concluded that there is a change in the

latency as the number of cores increase when applying Store-and-Forward flow control.

Whereas, there is almost no statistically significant changes in the latency when then

number of cores increase when applying Wormhole flow control.

The second analysis was performed to test the significance of the differences

between the processor cores performance. The Friedman test was conducted and the

results indicate that there are statistical differences of processor performance

regardless of the mechanism involved (p<0.000002). The Friedman test confirmed that

there was a significant improvement in processor performance from 1-core towards

4-core. It can be concluded that the network performance improved as the number of

cores increase.

These analyses are important because they suggest that the simulation model can

be an effective method to produced precise results in investigating research problems

and evaluating proposed solutions in clusters system.

7.2 Research Contributions

The work described in this thesis was aimed at designing a high performance and

scalable architecture for multi-core systems. The main contribution of this research is

in developing a novel multi-core multi-cluster architecture (MCMCA) to improve

interconnection network performance. In addition, this thesis develops a new

simulation model based on two different flow control mechanisms and provides a

method of testing message latency effects on system performance, the impact on

cluster size and potential scalability.

 Overall, this thesis contributes to innovative cluster architecture design and

development to investigate the performance of interconnection networks in multi-core

multi-cluster architecture. The major contributions of this thesis are thus:

1. Multi-core Multi-cluster Architecture (MCMCA): The design and development

of a novel architecture to investigate the performance of interconnection

Norhazlina Hamid

123

network in multi-core multi-cluster. The new architecture involved five

communication networks compared to three in the existing multi-core cluster

architecture. The performance measurements focused on overall

communication latency within the simulation model, and the simulation results

were analysed for comparison with the published results for existing cluster

architectures. The research reported in this thesis incorporated multi-cluster

architecture for a more scalable approach, and this is the first investigation into

incorporating this.

2. MCMCA Performance Model based on Store-and-Forward Flow Control

Mechanism: The development and evaluation of a new simulation model to

investigate the performance of an interconnection network based on a

store-and-forward flow control mechanism.

3. MCMCA Performance Model based on Wormhole Flow Control Mechanism:

The development and evaluation of a new simulation model to investigate the

performance of an interconnection network based on a wormhole flow control

mechanism.

4. Validation of the Models: The validity and accuracy of the model were

demonstrated by comparing the results obtained by simulation experiment

results with those obtained by an analytical model.

7.3 Future Research Directions

The research reported in this thesis has successfully addressed the research questions

outlined in Chapter 1, section 1.2. However, there is a comprehensive application area

with complex underlying details which could not possibly be covered entirely in this

thesis. Thus, the future work in this area was suggested by: (a) the limitations of the

research; (b) specific extensions of this research.

7.3.1 Limitations of the Research

Simulation studies are not without their limitations. Improvements can be made in

future studies in the following areas.

a) Energy Efficiency

Multi-core processors are designed to adhere to reasonable power consumption and

heat dissipation. Burger (2005) states that multi-core processors allow systems to put

more processing power in a smaller package that uses less power and generates less

heat for the computational power derived. Multi-core processors can result in

Norhazlina Hamid

124

significant power savings and performance improvements if the applications are

mapped to cores judiciously (Geer, 2007). To reduce unnecessary power consumption

and reduce the heat, the design model must run the multiple cores at a lower

frequency to ensure heat dissipation is distributed across the processor (Shainer et al.,

2013). Thus, there is a need to design the cores, the memory and the interconnection

network to prevent energy inefficiency.

 The main idea of this study was to design a comprehensive multi-core architecture

which included energy efficient aspects. However, due to problems during the

development of the simulation model, the MCMCA focused on the performance of the

interconnection network and scalability issues as focus, leaving other aspects as

interesting future directions.

b) Fault-tolerance and Resilience Architectures

Fault tolerance is the ability of the network to perform in the presence of one or more

faults (Dally & Towles, 2004). With the development of the multi-core cluster system,

more processors can be implemented on a single chip. Typically, a modern cluster

system is deployed in a highly distributed manner, with communication between nodes

becoming a critical part of the system architecture. This means that some form of fault

tolerance of this communication network is required in order to achieve satisfactory

system availability. An analysis conducted by Schroeder & Gibson (2010) showed that

22 different HPC systems exhibited failure rates ranging from 20 to more than 1000

per year on average. Their results also show that failure rate will continue to increase

with system size. This demonstrates that it is important to consider the use of fault

tolerance and resilience as a requirement for cluster systems. It is also important to

understand the effectiveness of differing fault tolerances for MCMCA.

 As chip cost is increasing, multi-core cluster design is a solution for enhancing

system performance. Thus, cluster systems are in need of a high level of fault

tolerance without substantial loss of overall performance. Several studies have

investigated the fault tolerance by using analytical models (Requena, Requena,

Rodriguez & Marin, 2009; Varghese et al., 2010). However, there are few studies on

simulation modelling of fault tolerance and resilience in multi-core clusters. This issue

requires further investigation and will be suggested for future work.

c) Cache Coherence

The shift towards multi-core clusters will rely on parallel software to achieve continuing

exponential performance. Although processors logically access the shared memory,

cache hierarchies are crucial to achieve fast performance. Since each core has its own

cache, the copy of the data in that cache may not always be the most up-to-date

Norhazlina Hamid

125

version and may produce invalid results. The design of the memory module with a

cache will enable most of the shared variables to be accessed from a fast memory

(cache) and only a small fraction of the shared variables from the slow main memory,

thus leading to a small average memory access time (Rauber & Runger, 2010).

 Cache size has become important for improving processor and network

performance of a cluster system. Research in Das (2008) compared the network

performance of different cache sizes with two widely used metrics, cache hit ratio and

cache average access delay. As the cache size increases, cache hit ratio improves

network performance and access delay decreases. However, the performance of large

size caches may be severely constrained by the interconnection network

(Muralimanohar & Balasubramonian, 2007). The main focus in this work is exploring

various techniques to accelerate cache access that take advantage of a low bandwidth

and low latency network.

 For MCMCA, working within the cache become trickier since data is not only

transferred between a core and memory, but also between cores. Building a cache

coherence cluster system provided a flexible infrastructure to expand the systems in

size and function (Liqun, Muralimanohar, Ramani, Balasubramonian & Carter, 2006).

However, this flexibility comes at cost in performance such as substantial increase in

memory latency when multiple cores share a cache. To gain more insight on the impact

of cache size on network performance by the MCMCA needs a specific study, outside

the scope of this work.

7.3.2 Specific Extensions

To take this research forward, numerous extensions are possible. This section

highlights some of the areas for future research.

a) Extension to Non-Uniform Traffic

Future work should develop a simulation model for MCMCA based on a non-uniform

traffic pattern. This should accommodate the traffic generated by real-world

applications, which could provide communication network performance results so that

comparisons may be made between different models of the MCMCA. The approach

taken and the accuracy of the simulation outcome should provide a good basis for

predicting the performance behaviour of MCMCA in both uniform and non-uniform

traffic patterns.

b) Extension to Modern Interconnects

There are numbers of modern interconnections which offer high performance with rich

features. Modern interconnects such as QsNetII and InfiniBand are very attractive for

Norhazlina Hamid

126

large-scale system design. It will be interesting to exploit such modern features to

extend this architecture in the future.

7.4 Concluding Remarks

The expected outcome of the research reported here was to produce a novel

architecture and simulation to measure and improve interconnection network

performance in the implementation of the multi-core multi-cluster architecture.

Analytical methodology provided validation for the simulation results.

 The approach taken and the accuracy of the simulation and analysis make it an

attractive tool for predicting the performance behaviour of multi core multi cluster

architecture. The research has already resulted in international conference and journal

publications as mentioned in Chapter 1, section 1.3.

 Ultimately this research will benefit not only cluster architecture, but also high

performance computing architecture including cloud computing. More research into

high performance computing, especially cloud computing, may now be based on

cluster architecture to solve its limitations, especially in satisfying peak workload

performance (Chang, Walters & Wills, 2013; Kosinska, Kosinski & Zielinski, 2010;

Moreno-Vozmediano, Montero & Llorente, 2011). The research reported here should

also provide an alternative platform for high performance computing that will yield

several benefits, such as high availability, fault tolerance and infrastructure cost

reduction.

Norhazlina Hamid

127

Appendix 2-A

As mentioned in 2.9.2e), a random number generator (RNG) is a program written for

use in probability and statistics applications when large quantities of random digits are

needed (Dally & Towles, 2004). Mersenne Twister is the random number generator

employed by OMNeT++ (Varga, 2011), used to distribute the message destinations in

the simulation model.

d) Mersenne Twister RNG

OMNeT++ primarily uses Mersenne Twister for random number generation. It uses the

MT19937 RNG developed by Makoto Matsumoto and Takuji Nishimura in 1997 which

has a cycle length of 219937 − 1 (Matloff, 2008). The Mersenne Twister has passed

numerous tests for randomness and is distributed uniformly in 623 dimensions,

generating an output which is free of long-term correlations (Jagannatam, 2008). It is

considered to be fast as it avoids multiplications and divisions by using the advantages

of caches and pipelines.

 A configurable number of random numbers are provided to the simulation. Global

random number streams are mapped to OMNeT++’s module which allows the use of

variance reduction techniques without the need to change the configuration in the

simulation model (Varga & Hornig, 2008). While seeding is automatic, auto-assigned

using the run number, it is also possible to use manually-selected seeds. The

simulation requires as many seeds as the number of global RNG streams configured.

Due to the practically infinite cycle length of Mersenne Twister, overlapping of RNG

streams is not an issue.

e) Seeding the Mersenne Twister RNG

Seeding is the procedure of setting the initial states of the RNG, so that it will produce

a stream of random numbers (Wehrle et al., 2010). The RNG class implements support

for seeding. Seed sets can be specified in the initialization section or for each run of

OMNeT++. Mersenne Twister has such a long cycle that there is no need for seed

generation because chances are very small that any two seeds produce overlapping

streams (Matloff, 2008).

f) Chi-square Goodness of Fit Test

This is a non-parametric test used to find out how the observed value is significantly

different from the expected value. In Chi-Square test, the term goodness of fit is used

to compare the observed sample distribution with the expected probability

distribution. This test also determines how well theoretical distribution (such as normal

Norhazlina Hamid

128

or Poisson) fits the empirical distribution. In this test, sample data is divided into

intervals. Then the numbers that fall into each interval are compared with the expected

numbers in each interval. The formula for the statistic is:

 2 =∑
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

A high value of  2 implies a poor fit between the observed and expected value, so the

upper tail of the distribution is used for most hypothesis testing for goodness of fit. To

determine whether the traffic generation rates are random, the null and alternative

hypotheses are as follows:

𝐻0: Traffic generation rates are random

𝐻1: Traffic generation rates are not random

Chi-Square 0.001

Degrees of Freedom 9

p-value 1.0

Table 1: Chi-Square goodness of fit test

Table 1 shows the test statistics and p-value. Since the p-value = 1.0 >0.05, the null

hypotheses was not rejected. At the =0.05 level of significance, there was not enough

evidence to reject the null hypotheses, thus, the RNG fitted the theory that the traffic

generation rates are random.

Norhazlina Hamid

129

Appendix 3-A

MCMCA Simulation Model

a) Module Designs and Structure Diagram

The model behaviour built into each Network Description (NED) file will be captured in

C++ files as code and can be edited in the Integrated Development Environment

(Varga, 2011). Each NED file has its own C++ module source. Unlike many formats of

deterministic discrete event simulation, the model is built at run-time to form a

topology that represents the geometric structure and the communication links between

the modules.

 The topology and the communication links between the modules are represented

by the NED file. Six module files have been built to describe the simulation model.

Figure 1 shows the structure diagram of the module designs in MCMCA simulation

model.

1. Network Topology file – this file describes the building blocks of the fat-tree

topology, including cores, nodes and clusters.

2. Network Interface file – this file contains the interface of module types in fat-tree

topology. Cores, nodes, clusters, switches, channels and the communication

network are declared in this file and connections between them are established.

3. Communication Switch – this file acts as the connection for each switch and router

in the model and it will determine how a message is transmitted along a path that

has been selected by the routing algorithm.

4. Routing file – this file determines the path and schedules the routing algorithms for

the packets in all communication networks based on FIFO (First-In-First-Out). It

represents a single server queue that has the same service rate for each packet.

5. Message-Generator file – packets are generated by this file following the

assumption that the message destinations are uniformly distributed.

6. Message-Sink file – this file will destroy the packets after each generation is

completed and will gather event information for statistics.

To illustrate the architecture, a model of the architecture is developed with the

simulation program. The simulation model applies fat-tree topology that describes the

geometric structure used for the arrangement of switches and communication links to

connect the processors. Two levels of communication switch represent the intra-chip

(AC) and inter-chip (EC), while each node in the tree represents the processor. The

Norhazlina Hamid

130

dotted line represents the route taken by a packet from source to destination. Figure 2

illustrates the packet travelling path in the OMNeT++ simulation model.

Communication
switch allocate

resources
(switch.cc)

Packet
arrives

destination

Routing Module
(fifo.cc)

Generator
generate packet

(gen.cc)

Distribute packet
based on probability

External
cluster

(efifo.cc)

Internal
cluster

(infifo.cc)

Packet sink
(sink.cc)

Figure 1: Structure diagram of simulation models

A packet travelling from source node to destination node will go up through internal

switches of the tree until it finds the Nearest Common Ancestor (NCA) and then is

transmitted down to the destination node. In this algorithm, each packet experiences

two phases, an ascending phase to get a NCA, followed by a descending phase. For

Norhazlina Hamid

131

example, a packet is to be sent from node 0:A to node 4:E and the switch connected to

the source node is SW010. The packet will travel up in ascending phase to the NCA

through switch SW001 and then go down in descending phase through switch SW012

until it reaches the destination node 4:E. More examples are shown in Table 1.

SW001

0 1 2 3

2 3

SW013

0 1

G HFEBA DC

2 3

SW012

0 1

2 3

SW010

0 1

2 3

SW011

0 1

SW002

0 1 2 3

0 1 2 3 64 5 7

Key:

Inter-Chip (EC)

Intra-Chip (AC)

Processor

Switch Level 1

Switch Level 2

Figure 2: Illustration of packet travelling path in the simulation model

Table 1: Examples of routing algorithms

Source Destination Switch In_port Out_port

Communication

Network

0:A 4:E 010 0 2 Intra-chip (AC)

 001 0 2 Inter-chip (EC)

 012 2 0 Intra-chip (AC)

2:C 3:D 011 0 1 Intra-chip (AC)

5:F 7:H 012 1 3 Intra-chip (AC)

 002 2 3 Inter-chip (EC)

 013 3 1 Intra-chip (AC)

Norhazlina Hamid

132

b) Simulation Code

The topology and the communication links between the modules are represented by

the network description, NED. The codes of the six modules were built to describe the

simulation model, as follows.

a) Network Topology module

package mcsf;

//--

// File: fattreenetwork.ned

//--

module Node like IPNode

{

 parameters:

 int m;

 int n;

 int C;

 int address;

 @display("i=block/circle;is=vs");

 gates:

 input in[];

 output out[];

 submodules:

 gen: Generator {

 parameters:

 address = address;

 num_ports = m;

 num_trees = n;

 num_clusters = C;

 @display("p=100,50;i=gen");

 gates:

 out[2];

 }

 sink: Sink {

 parameters:

 address = address;

 @display("p=135,120;i=sink");

 gates:

 in[2];

 }

 connections:

 // to source queue to inject to the network

 gen.out[0] --> out[0];

 gen.out[1] --> out[1];

 in[0] --> sink.in[0];

 in[1] --> sink.in[1];

}

// NetworkSwitch --

//

module I_NetworkSwitch like ISwitch //ICN

Norhazlina Hamid

133

{

 parameters:

 int m;

 int n;

 int C;

 int service_time;

 int cross_delay;

 int route_delay;

 int net_level;

 int address;

 gates:

 input in[];

 output out[];

 submodules:

 fifo[m]: inFifo {

 parameters:

 service_time = service_time;

 gates:

 in[2];

 out[2];

 }

 crsbar: CrossBar {

 parameters:

 cross_delay = cross_delay;

 gates:

 in[m];

 out[m];

 }

 rte: Router {

 parameters:

 num_ports = m;

 num_trees = n;

 num_clusters = C;

 route_delay = route_delay;

 net_level = net_level;

 address = address;

 gates:

 in[m];

 out[m];

 }

 connections:

 for i=0..m-1 {

 in[i] --> fifo[i].in[0];

 fifo[i].out[0] --> rte.in[i];

 rte.out[i] --> fifo[i].in[1];

 fifo[i].out[1] --> crsbar.in[i];

 crsbar.out[i] --> out[i];

 }

}

Norhazlina Hamid

134

module E_NetworkSwitch like ISwitch

{

 parameters:

 int m;

 int n;

 int C;

 int service_time;

 int cross_delay;

 int route_delay;

 int net_level;

 int address;

 gates:

 input in[];

 output out[];

 submodules:

 fifo[m]: inFifo {

 parameters:

 service_time = service_time;

 gates:

 in[2];

 out[2];

 }

 efifo: eFifo {

 parameters:

 service_time = service_time;

 gates:

 in[2];

 out[2];

 }

 crsbar: CrossBar {

 parameters:

 cross_delay = cross_delay;

 gates:

 in[m+1];

 out[m+1];

 }

 rte: Router {

 parameters:

 num_ports = m;

 num_trees = n;

 num_clusters = C;

 route_delay = route_delay;

 net_level = net_level;

 address = address;

 gates:

 in[m+1];

 out[m+1];

 }

 connections:

 for i=0..m-1 {

 in[i] --> fifo[i].in[0];

 fifo[i].out[0] --> rte.in[i];

 rte.out[i] --> fifo[i].in[1];

 fifo[i].out[1] --> crsbar.in[i];

 crsbar.out[i] --> out[i];

 }

 in[m] --> efifo.in[0];

Norhazlina Hamid

135

 efifo.out[0] --> rte.in[m];

 rte.out[m] --> efifo.in[1];

 efifo.out[1] --> crsbar.in[m];

 crsbar.out[m] --> out[m];

}

module Merger like IMerg

{

 parameters:

 int m;

 int n;

 int C;

 int service_time;

 int address;

 gates:

 input in[];

 output out[];

 submodules:

 fifo_up: Fifo {

 parameters:

 service_time = service_time;

 gates:

 in[(2*n-1)*(m/2)^(n-1)];

 out[1];

 }

 fifo_down: Fifo {

 parameters:

 service_time = service_time;

 gates:

 in[1];

 out[(2*n-1)*(m/2)^(n-1)];

 }

 connections:

 for i=0..(2*n-1)*(m/2)^(n-1)-1 {

 in[i] --> fifo_up.in[i];

 fifo_down.out[i] --> out[i];

 }

 in[(2*n-1)*(m/2)^(n-1)] --> fifo_down.in[0];

 fifo_up.out[0] --> out[(2*n-1)*(m/2)^(n-1)];

}

// Multi-Cluster System --

network FatTreeNetwork extends FatTree

{

 parameters:

 C = 8;

 m = 8;

 n = 2;

 nodetype = "Node";

 I_swtype = "I_NetworkSwitch";

 E_swtype = "E_NetworkSwitch";

 mergtype = "Merger";

}

Norhazlina Hamid

136

b) Network Interface module

//--

// File: fattreeinterface.ned

// The m-port n-tree topology

//--

package mcsf;

moduleinterface IPNode

{

 parameters:

 int m;

 int n;

 int C;

 int address;

 gates:

 input in[];

 output out[];

}

moduleinterface ISwitch

{

 parameters:

 int m;

 int n;

 int C;

 int service_time;

 int cross_delay;

 int route_delay;

 int net_level;

 int address;

 gates:

 input in[];

 output out[];

}

moduleinterface IMerg

{

 parameters:

 int m;

 int n;

 int C;

 int service_time;

 int address;

 gates:

 input in[];

 output out[];

}

//declare simple

simple PNode like IPNode

{

 parameters:

Norhazlina Hamid

137

 int m;

 int n;

 int C;

 int address;

 gates:

 input in[];

 output out[];

}

simple Switch like ISwitch

{

 parameters:

 int m;

 int n;

 int C;

 int service_time;

 int cross_delay;

 int route_delay;

 int net_level;

 int address;

 gates:

 input in[];

 output out[];

}

simple Merg like IMerg

{

 parameters:

 int m;

 int n;

 int C;

 int service_time;

 int address;

 gates:

 input in[];

 output out[];

}

// Definition of physical channel (NET1)

channel physical_n_net1 extends ned.DatarateChannel

{

 parameters:

 delay = 0.01s;

 datarate = 1000bps;

}

channel physical_net1 extends ned.DatarateChannel

{

 parameters:

 delay = 0.01s;

 datarate = 1000bps;

}

// Definition of physical channel (NET2)

Norhazlina Hamid

138

channel phyNnet2 extends ned.DatarateChannel

{

 parameters:

 delay = 0.01s;

 datarate = 1000bps;

}

channel phynet2 extends ned.DatarateChannel

{

 parameters:

 delay = 0.01s;

 datarate = 1000bps;

}

// Definition of physical channel (NET3)

channel phyNnet3 extends ned.DatarateChannel

{

 parameters:

 delay = 0.02s;

 datarate = 500bps;

}

channel phynet3 extends ned.DatarateChannel

{

 parameters:

 delay = 0.01s;

 datarate = 500bps;

}

channel phyNnet4 extends ned.DatarateChannel

{

 parameters:

}

// M-port, N-tree

module FatTree

{

 parameters:

 int m;

 int n;

 int C;

 string nodetype;

 string I_swtype;

 string E_swtype;

 string mergtype;

 @display("bgb=1000,1000;bgp=10,20");

 submodules:

 node[(C*2)*(m/2)^n]: <nodetype> like IPNode {

 parameters:

 m = m;

 n = n;

 C = C;

Norhazlina Hamid

139

 address = index;

 @display("p=100,300,row,50;i=comp_s");

 gates:

 out[2];

 in[2];

 }

 sw_ICN1[(C*(2*n-1))*(m/2)^(n-1)]: <I_swtype> like ISwitch {

 parameters:

 m = m;

 n = n;

 C = C;

 service_time = 0.0;

 cross_delay = 0;

 route_delay = 0;

 net_level = 0;

 address = index;

 @display("p=80,120,matrix,8,80,-80;i=queue");

 gates:

 out[m];

 in[m];

 }

 sw_ECN1[(C*(2*n-1))*(m/2)^(n-1)]: <E_swtype> like ISwitch {

 parameters:

 m = m;

 n = n;

 C = C;

 service_time = 0;

 cross_delay = 0;

 route_delay = 0;

 net_level = 1;

 address = index;

 @display("p=80,400,matrix,8,80,80;i=queue");

 gates:

 out[m+1];

 in[m+1];

 }

 sw_ICN2[(2*floor((log(C)-log(2))/(log(m)-log(2)))-

1)*(m/2)^(floor((log(C)-log(2))/(log(m)-log(2)))-1)]: <I_swtype> like

ISwitch {

 parameters:

 m = m;

 n = n;

 C = C;

 service_time = 0;

 cross_delay = 0;

 route_delay = 0;

 net_level = 2;

 address = index;

 @display("p=80,750,matrix,8,80,80;i=queue");

 gates:

 out[m];

Norhazlina Hamid

140

 in[m];

 }

 merg[C]: <mergtype> like IMerg {

 parameters:

 m = m;

 n = n;

 C = C;

 service_time = 0;

 address = index;

 @display("p=80,600,matrix,8,80,80");

 gates:

 out[(2*n-1)*(m/2)^(n-1)+1];

 in[(2*n-1)*(m/2)^(n-1)+1];

 }

 connections:

 // *** for ICN1 and ECN1

 // connect processing node with leaf switches

 for j=0..C-1, for i=0..2*(m/2)^n-1 {

 // ICN1

 node[j*(2*(m/2)^n)+i].in[0] <-- phyNnet2 <--

sw_ICN1[i/(m/2)+(j*(2*n-1))*(m/2)^(n-1)].out[i%(m/2)] if n>1;

 node[j*(2*(m/2)^n)+i].out[0] --> phyNnet2 -->

sw_ICN1[i/(m/2)+(j*(2*n-1))*(m/2)^(n-1)].in[i%(m/2)] if n>1;

 //ECN1

 node[j*(2*(m/2)^n)+i].in[1] <-- phyNnet3 <--

sw_ECN1[i/(m/2)+(j*(2*n-1))*(m/2)^(n-1)].out[i%(m/2)] if n>1;

 node[j*(2*(m/2)^n)+i].out[1] --> phyNnet3 -->

sw_ECN1[i/(m/2)+(j*(2*n-1))*(m/2)^(n-1)].in[i%(m/2)] if n>1;

 // if n==1 (M-port 1-Tree)

 //ICN1

 node[j*m+i].in[0] <-- phyNnet2 <-- sw_ICN1[j].out[i] if

n==1;

 node[j*m+i].out[0] --> phyNnet2 --> sw_ICN1[j].in[i] if

n==1;

 //ECN1

 node[j*m+i].in[1] <-- phyNnet3 <-- sw_ECN1[j].out[i] if

n==1;

 node[j*m+i].out[1] --> phyNnet3 --> sw_ECN1[j].in[i] if

n==1;

 }

 //connect internal (not root switch) switches with each other

 for h=0..C-1, for i=0..(n==1 ? -1 : (2*n-4)*(m/2)^(n-1)-1),

for j=0..(n==1 ? -1 : m/2-1), for k=i/(2*(m/2)^(n-

1))+1..i/(2*(m/2)^(n-1))+1, for w=((2*n-1)*(m/2)^(n-1))..((2*n-

1)*(m/2)^(n-1)), for q=((m/2)^(k-1))..((m/2)^(k-1)) {

 sw_ICN1[i+h*w].in[j+m/2] <-- phynet2 <-- sw_ICN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q];

Norhazlina Hamid

141

 sw_ICN1[i+h*w].out[j+m/2] --> phynet2 --> sw_ICN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q];

 sw_ECN1[i+h*w].in[j+m/2] <-- phynet3 <-- sw_ECN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q];

 sw_ECN1[i+h*w].out[j+m/2] --> phynet3 --> sw_ECN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q];

 }

 //connect root switches with sub trees

 for h=0..C-1, for i=(n==1 ? 0 : (2*n-4)*(m/2)^(n-1))..(n==1 ?

-1 : (2*n-3)*(m/2)^(n-1)-1), for j=0..(n==1 ? -1 : m/2-1), for

k=i/(2*(m/2)^(n-1))+1..i/(2*(m/2)^(n-1))+1, for w=((2*n-1)*(m/2)^(n-

1))..((2*n-1)*(m/2)^(n-1)), for q=((m/2)^(k-1))..((m/2)^(k-1)) {

 //ICN1

 sw_ICN1[i+h*w].in[j+m/2] <-- phynet2 <-- sw_ICN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q];

 sw_ICN1[i+h*w].out[j+m/2] --> phynet2 --> sw_ICN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q];

 sw_ICN1[(i+(m/2)^(n-1))+h*w].in[j+m/2] <-- phynet2 <--

sw_ICN1[((((i-i%(m/2)^k)+2*(m/2)^(n-

1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q+m/2];

 sw_ICN1[(i+(m/2)^(n-1))+h*w].out[j+m/2] --> phynet2 -->

sw_ICN1[((((i-i%(m/2)^k)+2*(m/2)^(n-

1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q+m/2];

 //ECN1

 sw_ECN1[i+h*w].in[j+m/2] <-- phynet3 <-- sw_ECN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q];

 sw_ECN1[i+h*w].out[j+m/2] --> phynet3 --> sw_ECN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q];

 sw_ECN1[(i+(m/2)^(n-1))+h*w].in[j+m/2] <-- phynet3 <--

sw_ECN1[((((i-i%(m/2)^k)+2*(m/2)^(n-

1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q+m/2];

 sw_ECN1[(i+(m/2)^(n-1))+h*w].out[j+m/2] --> phynet3 -->

sw_ECN1[((((i-i%(m/2)^k)+2*(m/2)^(n-

1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q+m/2];

 }

 //*** for Merger

 //ECN to merger

 for h=0..C-1, for i=0..(n==1 ? 0 : (2*n-1)*(m/2)^(n-1)-1) {

 sw_ECN1[i+h*((2*n-1)*(m/2)^(n-1))].out[m] --> phyNnet4 --

>merg[h].in[i];

 sw_ECN1[i+h*((2*n-1)*(m/2)^(n-1))].in[m] <-- phyNnet4 <--

merg[h].out[i];

 }

 // *** for ICN2

Norhazlina Hamid

142

 // connection to ICN2

 for Cn=floor((log(C)-log(2))/(log(m)-log(2)))..floor((log(C)-

log(2))/(log(m)-log(2))), for i=0..2*(m/2)^Cn-1 {

 // ICN2

 merg[i].in[(2*n-1)*(m/2)^(n-1)] <-- phynet3 <--

sw_ICN2[i/(m/2)].out[i%(m/2)] if Cn>1;

 merg[i].out[(2*n-1)*(m/2)^(n-1)] --> phynet3 -->

sw_ICN2[i/(m/2)].in[i%(m/2)] if Cn>1;

 // if Cn==1 (M-port 1-Tree)

 //ICN2

 merg[i].in[(2*n-1)*(m/2)^(n-1)] <-- phynet3 <--

sw_ICN2[0].out[i] if Cn==1;

 merg[i].out[(2*n-1)*(m/2)^(n-1)] --> phynet3 -->

sw_ICN2[0].in[i] if Cn==1;

 }

 //connect internal (not root switch) switches with each other

 for Cn=floor((log(C)-log(2))/(log(m)-log(2)))..floor((log(C)-

log(2))/(log(m)-log(2))), for i=0..(Cn==1 ? -1 : (2*Cn-4)*(m/2)^(Cn-

1)-1), for j=0..(Cn==1 ? -1 : m/2-1), for k=i/(2*(m/2)^(Cn-

1))+1..i/(2*(m/2)^(Cn-1))+1, for q=((m/2)^(k-1))..((m/2)^(k-1)) {

 sw_ICN2[i].in[j+m/2] <-- phynet3 <-- sw_ICN2[(((i-

i%(m/2)^k)+2*(m/2)^(Cn-1))+(m/2)*(i%q))+j].out[(i%(m/2)^k)/q];

 sw_ICN2[i].out[j+m/2] --> phynet3 --> sw_ICN2[(((i-

i%(m/2)^k)+2*(m/2)^(Cn-1))+(m/2)*(i%q))+j].in[(i%(m/2)^k)/q];

 }

 //connect root switches with sub trees

 for Cn=floor((log(C)-log(2))/(log(m)-log(2)))..floor((log(C)-

log(2))/(log(m)-log(2))), for i=(Cn==1 ? 0 : (2*Cn-4)*(m/2)^(Cn-

1))..(Cn==1 ? -1 : (2*Cn-3)*(m/2)^(Cn-1)-1), for j=0..(Cn==1 ? -1 :

m/2-1), for k=i/(2*(m/2)^(Cn-1))+1..i/(2*(m/2)^(Cn-1))+1, for

q=((m/2)^(k-1))..((m/2)^(k-1)) {

 //ICN2

 sw_ICN2[i].in[j+m/2] <-- phynet3 <-- sw_ICN2[(((i-

i%(m/2)^k)+2*(m/2)^(Cn-1))+(m/2)*(i%q))+j].out[(i%(m/2)^k)/q];

 sw_ICN2[i].out[j+m/2] --> phynet3 --> sw_ICN2[(((i-

i%(m/2)^k)+2*(m/2)^(Cn-1))+(m/2)*(i%q))+j].in[(i%(m/2)^k)/q];

 sw_ICN2[i+(m/2)^(Cn-1)].in[j+m/2] <-- phynet3 <--

sw_ICN2[(((i-i%(m/2)^k)+2*(m/2)^(Cn-

1))+(m/2)*(i%q))+j].out[(i%(m/2)^k)/q+m/2];

 sw_ICN2[i+(m/2)^(Cn-1)].out[j+m/2] --> phynet3 -->

sw_ICN2[(((i-i%(m/2)^k)+2*(m/2)^(Cn-

1))+(m/2)*(i%q))+j].in[(i%(m/2)^k)/q+m/2];

 }

}

Norhazlina Hamid

143

c) Routing modules

a. Routing module Fifo

//---

// file: fifo1.cc

// (part of Fifo1 - an OMNeT++ demo simulation)

//---

#include "fifo.h"

#include <math.h>

#include "gensinkMsg_m.h"

void FF1AbstractFifo::initialize()

{

 msgServiced = NULL;

 endServiceMsg = new cMessage("end-service");

 cModule *parent;

 parent = getParentModule();

 int i = parent->getIndex();

 ev << "index= "<< i << endl;

}

void FF1AbstractFifo::handleMessage(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 gensinkMsg *msgServiced = dynamic_cast<gensinkMsg *>(msg);

 if(gmsg!=NULL){

 src_ix = gmsg->getSrc();

 des_ix = gmsg->getDest();

 if (gmsg->getKind()==1)

 NCA_NO[src_ix][des_ix] = 0;

 Else

 NCA_NO[src_ix][des_ix] = gmsg->getNCA();

 ev << "Merger: NCA of msg " << msg->getName() << " is : "

<< NCA_NO[src_ix][des_ix] << endl;

 }

 if (msg==endServiceMsg)

 {

 src_ix = msgServiced->getSrc();

 des_ix = msgServiced->getDest();

 out_ix = NCA_NO[src_ix][des_ix];

 endService(msgServiced ,out_ix);

 if (queue.empty())

Norhazlina Hamid

144

 {

 msgServiced = NULL;

 }

 else

 {

 opp_warning("FF1AbstractFifo::handleMessage: Src3");

 msgServiced = (gensinkMsg *) queue.pop();

 simtime_t serviceTime = startService(msgServiced);

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 }

 else if (!msgServiced)

 {

 arrival(msg);

 msgServiced = gmsg;

 simtime_t serviceTime = startService(msgServiced)

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 else

 {

 arrival(msg);

 queue.insert(msg);

 }

}

void FF1AbstractFifo::finish()

{

 int j;

 cModule *parent = getParentModule();

 int i = parent->getIndex();

 int s = parent->size();

}

//--

Define_Module(Fifo);

simtime_t Fifo::startService(cMessage *msg)

{

 ev << "Starting service of " << msg->getName() << endl;

 return par("service_time");

}

void Fifo::endService(cMessage *msg, int ix)

{

 send(msg, "out", ix);

}

Norhazlina Hamid

145

b. Routing module infifo for Internal Cluster

//---

// file: infifo.cc

#include "infifo.h"

#include <math.h>

#include "gensinkMsg_m.h"

void FF1AbstractinFifo::initialize()

{

 msgServiced = NULL;

 endServiceMsg = new cMessage("end-service");

 intCountEntry = 0;

}

void FF1AbstractinFifo::handleMessage(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 }

 simtime_t d = simTime()-msg->getTimestamp();

 if (gmsg!=NULL){

 if (gmsg->getRouted()==0) {

 ev << "Unrouted header flit; send to router" << endl;

 endService(msg, 0);

 return;

 }

 gmsg->setRouted(0);

 }

 if (msg==endServiceMsg)

 {

 endService(msgServiced ,1);

 if (queue.empty())

 {

 msgServiced = NULL;

 }

 else

 {

 msgServiced = (gensinkMsg *) queue.pop();

 simtime_t serviceTime = startService(msgServiced);

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 }

 else if (!msgServiced)

 {

 arrival(msg);

 msgServiced = gmsg;

 simtime_t serviceTime = startService(msgServiced);

Norhazlina Hamid

146

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 else

 {

 arrival(msg);

 queue.insert(msg);

 }

}

//--

Define_Module(inFifo);

simtime_t inFifo::startService(cMessage *msg)

{

 ev << "Starting service of " << msg->getName() << endl;

 return par("service_time");

}

void inFifo::endService(cMessage *msg, int ix)

{

 send(msg, "out", ix);

}

c. Routing Module efifo for External Cluster

//---

// file: efifo.cc

#include "efifo.h"

#include <math.h>

#include "gensinkMsg_m.h"

void FF1AbstracteFifo::initialize()

{

 msgServiced = NULL;

 endServiceMsg = new cMessage("end-service");

}

void FF1AbstracteFifo::handleMessage(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 simtime_t d = simTime()-msg->getTimestamp();

 if (gmsg!=NULL){

 if (gmsg->getRouted()==0){

 ev << "Unrouted header flit; send to router" << endl;

 endService(msg, 0);

Norhazlina Hamid

147

 return;

 }

 gmsg->setRouted(0);

 }

 if (msg==endServiceMsg)

 {

 endService(msgServiced ,1);

 if (queue.empty())

 {

 msgServiced = NULL;

 }

 else

 {

 msgServiced = (gensinkMsg *) queue.pop();

 simtime_t serviceTime = startService(msgServiced);

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 }

 else if (!msgServiced)

 {

 arrival(msg);

 msgServiced = gmsg;

 simtime_t serviceTime = startService(msgServiced);

 scheduleAt(simTime()+serviceTime, endServiceMsg);

 }

 else

 {

 arrival(msg);

 queue.insert(msg);

 }

}

//--

Define_Module(eFifo);

simtime_t eFifo::startService(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 ev << "Starting service of " << gmsg->getName() << endl;

 return par("service_time");

}

void eFifo::endService(cMessage *msg, int ix)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 send(gmsg, "out", ix);

}

Norhazlina Hamid

148

d) Communication Switch module

//---

// file: switch.cc

//---

#include "switch.h"

#include <math.h>

#include "omnetpp.h"

#include "gensinkMsg_m.h"

void FF1AbstractCB::initialize()

{

 int cross_delay = par("cross_delay");

}

void FF1AbstractCB::handleMessage(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

if (gmsg)

 out_port = gmsg->getOut_port();

 ev << "CrossBar: Cross msg to port: " << out_port << endl;

 if(gate("out",out_port)->getTransmissionChannel()!=NULL)

 {

 if(gate("out",out_port)->getTransmissionChannel()->isBusy())

 {

 sendDelayed(gmsg,gate("out",out_port)-

>getTransmissionChannel()->getTransmissionFinishTime()-

simTime(),"out",out_port);

 }

 else

 {

 send(gmsg,"out", out_port);

 }

 }

}

Define_Module(CrossBar);

simtime_t CrossBar::startService(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 ev << "Starting service of " << gmsg->getName() << endl;

 return par("service_time");

}

void CrossBar::endService(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 int dest, src ,n;

 dest = gmsg->par("dest");

 src = gmsg->par("src");

 dest = dest - (dest/n)*n;

 ev << "Completed service of " << gmsg->getName() << " in ICN1,send

to port: "<< dest << endl;

 send(gmsg, "out", dest);

}

Norhazlina Hamid

149

e) Message-Generator module

// File: gen.cc

//

// Implementation of simple module types

//---

#include <stdio.h>

#include <math.h>

#include <sys/time.h>

#include <string.h>

#include "omnetpp.h"

#include "gen.h"

#include "gensinkMsg_m.h"

// Turn on code that prints debug messages

#define TRACE_MSG

// Module registration:

Define_Module(Generator);

double Latency[ARY_SIZE][BATCH_NO];

int BATCH_SIZE;

void Generator::initialize()

{

 msg_cnt = 0;

 batch_no = 0;

 measurment = false;

 num_messages_measur = par("num_messages");

 msg_length = par("msg_length");

 fp_length = par("fp_length");

 my_address = par("address");

 ia_time = par("ia_time").doubleValue();

 m = par("num_ports");

 n = par ("num_trees");

 C = par ("num_clusters");

 num_nodes = 2*(int)pow(m/2, n);

 parent = getParentModule();

 ix = parent->getIndex();

 if (ix==0)

 ev << "Number of Nodes: " << C*num_nodes << endl;

 dix = ix /num_nodes;

 if (dix<C/2)

 fi[dix] = 1.0;

 else

 fi[dix] = 1.0;

 ev << "Pr index: " << ix << ",fi: " << 1/fi[dix] << endl;

 BATCH_SIZE = num_messages_measur/BATCH_NO;

 num_messages_warm = WARM_UP*BATCH_SIZE;

 num_messages_drain=DRAIN*BATCH_SIZE;

 sendMessageEvent = new cMessage("sendMessageEvent");

 scheduleAt(0.0, sendMessageEvent);

Norhazlina Hamid

150

}

//

// Activities of the simple modules

//

void Generator::handleMessage(cMessage *msg)

{

 int dest = intrand(C*num_nodes);

 if (dest == my_address)

 {

 scheduleAt(simTime(), sendMessageEvent);

 return;

 }

 sprintf(msgname, "%d-->%d", my_address,dest);

 // generate packet

 gensinkMsg *gmsg = new gensinkMsg(msgname);

 gmsg->setSrc(my_address);

 gmsg->setDest(dest);

 gmsg->setNum_nodes(num_nodes);

 gmsg->setRouted(0);

 if (measurment)

 gmsg->setBatch_no(batch_no);

 gmsg->setLevel(n-1);

 gmsg->setOut_port(-1);

 gmsg->setBitLength(fp_length*msg_length);

 gmsg->setTimestamp();

 ev << "Generate data packet\n";

#ifdef TRACE_MSG

 ev.printf("gen[%d]: Generated new msg: '%s ' by node:

%d\n",my_address, gmsg->getName(),ix);

#endif

 ev << "Send packet to Source Queue (Channel)" << endl;

 if ((int)(my_address/num_nodes) == (int)(dest/num_nodes)){

 // internal

 ev << "Send to internal Cluster" << endl;

 gmsg->setKind(0);

 if (gate("out",0)->getTransmissionChannel()->isBusy())

 sendDelayed(gmsg, gate("out",0)-

>getTransmissionChannel()->getTransmissionFinishTime()-

simTime(),"out",0);

 else

 send(gmsg,"out",0);

 }

 else{

 // external

 ev << "Send to external Cluster" << endl;

 gmsg->setKind(1);

 if(gate("out",1)->getTransmissionChannel()->isBusy())

 {

 sendDelayed(gmsg, gate("out",1)->getTransmissionChannel()-

>getTransmissionFinishTime()-simTime(),"out",1);

 }

 else

Norhazlina Hamid

151

 {

 send(gmsg,"out",1);

 }

 }

 msg_cnt++;

 if (msg_cnt>=num_messages_warm)

 measurment = true;

 if (msg_cnt>=num_messages_measur+num_messages_warm)

 measurment = false;

 if (msg_cnt>=(batch_no+2)*BATCH_SIZE && measurment)

 batch_no++;

 if (msg_cnt <

num_messages_warm+num_messages_measur+num_messages_drain)

scheduleAt(simTime()+(double)exponential((double)ia_time*fi[dix]),

sendMessageEvent);

}

void Generator::finish()

{

 int m = par("num_ports");

 int n = par ("num_trees");

 int C = par ("num_clusters");

 int i;

 double iicnt,eecnt,in,en;

}

}

f) Message-Sink module

// File: sink.cc

//

// Implementation of simple module types

//---

#include <stdio.h>

#include <math.h>

#include <sys/time.h>

#include <string.h>

#include "omnetpp.h"

#include "sink.h"

#include "gensinkMsg_m.h"

#define TRACE_MSG

// Module registration:

Define_Module(Sink);

void Sink::initialize()

{

 parent = getParentModule();

 i = parent->getIndex();

 s = parent->size();

 j = 0;

 Latency[i][j] = 0;

 sinked_msg_cnt = 0;

Norhazlina Hamid

152

}

void Sink::handleMessage(cMessage *msg)

{

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg);

 simtime_t d = simTime()-msg->getTimestamp();

 if (gmsg!=NULL){

 j = gmsg->getBatch_no();

 sinked_msg_cnt++;

 if (j<0 || j>BATCH_NO)

 error("error in batch_no: %simTime",gmsg->getBatch_no());

 qstats[j].collect(d);

 }

 if ((int)par("address")!= gmsg->getDest()){

 error ("error in destination, my addr:%d !=

dest:%d",(int)par("address"),gmsg->getDest());

 }

 // message no longer needed

 delete msg;

}

void Sink::finish()

{

 cModule *parent = getParentModule();

 double avg_latency[BATCH_NO];

 double latency1;

 int j,k;

 int ix = parent->getIndex();

 int s = parent->size();

 for(j=0; j<BATCH_NO; j++){

 Latency[ix][j]= qstats[j].getMean();

 }

msg_cnt = 0;

 for(j=0; j<BATCH_NO; j++)

 msg_cnt+= qstats[j].getCount();

 if (ix==s-1){

 for(j=0; j<BATCH_NO; j++){

 avg_latency[j] = 0;

 for (k=0; k<s; k++)

 avg_latency[j]+= Latency[k][j];

 avg_latency[j] = avg_latency[j]/s;

 ev << "Avg Latency: " << avg_latency[j] << " Batch: " <<j<<

endl;

 }

// count avg latency

 latency1 = 0;

 for(j=0; j<BATCH_NO; j++)

 latency1+= avg_latency[j];

 latency1 = latency1/(BATCH_NO);

 ev << "Total Avg Latency (BATCH): " << latency1 << endl;

 recordScalar("TotalAvgLatency", latency1);

 }

Norhazlina Hamid

153

c) Simulation Test Plan

In order to illustrate the feasibility and the accuracy of the simulation model, four sets

of experiments were conducted and compared with previous research, using several

system configurations.

1. Baseline Experiments

Baseline experiment involved experiments with a single-core cluster and multi-core

cluster. The experiments were conducted using the MCMCA simulation model, and

the MCMCA analytical model for model validation compared to Javadi’s model

(Javadi et al., 2006) using the same interconnection network parameters from their

paper.

a) Experiments with a Single-core Cluster

This section presents the results of experiments based on Javadi’s model (Javadi et

al., 2006) conducted on single-core clusters based on the interconnection network

parameters listed in Table 2 and model cases in Table 3.

Table 2: Interconnection network parameters

Parameter Internal-cluster External-cluster

Network latency 0.01 s 0.02 s

Switch latency 0.01 s 0.01 s

Network Bandwidth 1000 bits/s 500 bits/s

Table 3: Model cases for single-core clusters

C,m,n Message Length (M) Flit length (F)

8,8,2 32 flits 256 bytes

8,8,2 32 flits 512 bytes

8,8,2 64 flits 256 bytes

8,8,2 64 flits 512 bytes

b) Experiments with Multi-core Clusters

To test the validity of the simulation of the MCMCA, a simulation experiment was

performed based on model cases in Table 4. Two different flow control

mechanisms, store-and-forward and wormhole, were used to verify the

simulation model.

Norhazlina Hamid

154

Table 4: Model cases for multi-core clusters

Items Quantity

No. of cores nc 1, 2, 4

Message Length M and Flit Length F 32 flits, 256 bytes

No. of clusters, m-port, n-tree 8, 8, 2

2. Latency and Throughput Performance Experiments on MCMCA

a) Store-and-Forward Flow Control

 To investigate the latency effect on MCMCA, the simulation experiments involved a

single-core processor, a dual-core processor and a quad-core processor. To form

the latency curve, a total of 10 different message generation rates 𝜆𝑔 were used for

each core, and the accuracy of each result was validated by the analytical

calculation. The simulation experiments were performed with various combinations

of parameters by using the interconnection network parameter I given in Table 5

with simulation input I from Table 6.

Table 5: Interconnection Networks Parameter I

Parameter Internal cluster External cluster

Network latency 0.01 s 0.02 s

Switch latency 0.01 s 0.01 s

Network Bandwidth I 1000 bits/s 500 bits/s

Network Bandwidth II 800 bits/s 600 bits/s

Table 6: Simulation Input I

Items Message length M 8KB

No. of cores nc 1, 2, 4

No. of cluster C 8

No. of m-port n-tree 8, 2

b) Wormhole Flow Control

Three different numbers of cores in a processor were analysed. The simulation

parameters are based on Table 7 and Table 8.

Table 7: Interconnection Networks Parameters

Parameter Internal-cluster External-cluster

Network latency 0.01 s 0.02 s

Switch latency 0.01 s 0.01 s

Network Bandwidth 1000 bits/s 500 bits/s

Norhazlina Hamid

155

Table 8: Input Parameters

Items Flit length F

256 bytes

Flit length F

512 bytes

No. Of cores nc 1, 2, 4

No. Of cluster C 8

No. Of m-port n-tree 8, 2

Message Length M 32 flits

3. The Impact on Cluster Size Experiments

a) Store-and-Forward Flow Control

These simulation experiments were designed to get more insight into the impact of

the communication latency on the cluster size. The results are based on the

interconnection network parameters in Table 9, and were compared with a higher

network latency and a smaller bandwidth setup in the simulation experiments in

Table 10.

Table 9: Interconnection Networks Parameter I

Parameter Internal cluster External cluster

Network latency 0.01 s 0.02 s

Switch latency 0.01 s 0.01 s

Network Bandwidth I 1000 bits/s 500 bits/s

Table 10: Interconnection Networks Parameter II

Parameter Internal-cluster External-cluster

Network latency 0.02 s 0.01 s

Switch latency 0.01 s 0.05 s

Network Bandwidth 800 bits/s 600 bits/s

b) Wormhole Flow Control

The accuracy of the simulation model has been validated as being a cost-effective

tool to investigate the interconnection network performance in MCMCA. It can thus

be used to get an insight into the impact of cluster size on maximising network

performance. A set of simulation experiments were conducted using the

simulation input in Table 11.

Table 11: Simulation Input for cluster sizes

Items Quantity

No. of cluster C 8, 16, 32, 64, 128

No. of cores nc 1, 2, 4

Message generation rate λg 0.001 s, 0.002 s

Message Length M 18 KB, 16 KB

No. of m-port n-tree 4, 2

Norhazlina Hamid

156

4. The Impact on Message Length and Scalability Experiments

a) Store-and-Forward Flow Control

In this experiment, to examine the potential scalability in the cluster architecture,

different message lengths were run, as reflected in Table 12 and Table 13.

Table 12: Simulation Input II

Items Quantity

No. of cluster C 8, 16, 32, 64, 128

No. of cores nc 1, 2, 4

Message generation rate λg 0.002 s

Message Length M 8 KB

No. of m-port n-tree 4, 2

Table 13: Simulation Input III

Items Quantity

No. of cores nc 1, 2, 4

Message generation rate λg 0.001 s

Message Length M/bytes 128 B, 256 B, 512 B, 1 KB, 2 KB,

4 KB, 8 KB, 16 KB

No. of cluster, m-port n-tree 8, 8, 2

b) Wormhole Flow Control

Testing the various impacts on message length gave insights into scalability. Seven

message lengths (M/bytes) were involved in an eight multi-core cluster system, as

in Table 14, with the numbers of cores being 1, 2 and 4. To make this experiment

comparable with others, the same message length was also been tested in larger

cluster sizes: 32 multi-core cluster systems with 4, 8 and 16 cores. The same

message generation rate λg was used to maintain the validity of the results.

Table 14: Simulation Input for scalability

Items 8-cluster 32-cluster

No. of cores nc 1, 2, 4 4, 8, 16

No. of m-port n-tree 8, 2

Message generation rate λg 0.001 s

Message Length M/bytes 128 B, 256 B, 512 B, 1 KB, 2 KB, 4 KB, 8 KB

Norhazlina Hamid

157

Appendix 3-B

Figure 1 shows the OMNeT++ Integrated Development Environment (IDE) and

workspace to run the simulations. The IDE is based on the Eclipse platform, and

extends it with new editors, views, wizards, and additional functionality. OMNeT++

adds functionality for creating and configuring models (NED and ini files), performing

batch executions, and analyzing simulation results, while Eclipse provides C++ editing

and other optional features such as UML modelling, bugtracker integration and

database access through various open-source and commercial plug-ins.

The NED Editor can edit NED files both graphically and in text mode, the user

switching between the two modes at any time, using the tabs at the bottom of the

editor window. The list of NED modules are previewed on the left side of the

workspace.

Figure 1: The OMNeT++ Integrated Development Environment and workspace

At the start of each execution, the simulator reads the initialisation file omnetpp.ini

(see Figure 2) that tells the program which network file is to be simulated. Several

networks can be listed in the same simulation program. omnetpp.ini will pass the

parameters to the models, for example, it explicitly specifies seeds for the random

number generators. The parameters are defined in the Network Topology Module

(FattreeNetwork.ned) shown in Figure 3. In this initialisation file, the parameters of the

model, such as Number of clusters C, parameter of m-port n-tree, message length M,

Norhazlina Hamid

158

number of cores nc, number of nodes N and lambda
𝟏

𝝀
, are specified. The simulation

can also be run with different initialisation inputs and all the values can be stored in an

initialisation file containing settings that control how the simulation is executed.

Figure 2: omnetpp.ini file source

Figure 3: Network Topology Module

Norhazlina Hamid

159

To run the simulation from the IDE, Run Configurations is selected from the menu

(Figure 4). OMNeT++ simulations can be run under different user interfaces. Currently

the following user interfaces are supported:

 Tkenv: the traditional, Tcl/Tk-based graphical user interface

 Qtenv: the new, Qt-based graphical user interface

 Cmdenv: command-line user interface for batch execution

 By default, Tkenv will be used if both runtime environments are present. The user

interface may be selected by adding the user-interface=Cmdenv (or =Tkenv) option

to the initialisation file, or by specifying -u Cmdenv or -u Tkenv to the command line.

If both the configuration option and the command line option are present, the

command line option takes precedence. The Run button is used to start the simulation,

and the topology of m-port n-tree will be formed, as shown in Figure 5.

Figure 4: The Run Configurations Menu to start the simulation

Norhazlina Hamid

160

Figure 5: The network topology m-port n-tree

After initialising the input parameters, the display shows how the messages hop from

module to module following the routing algorithm (see Figure 5). The

Message-Generator file will partition each message into a sequence of packets first,

before being generated at each tree-node, following the assumptions that the message

destinations are uniformly distributed by using a uniform random number generator.

In order to get the message to its destination, a packet will access the processor

through a chip, and a chip can contain one or more processors. Processor n will divide

the packets into the number of cores. If processor n is busy, it will pass the packets to

another processor in the same chip within the same node first, before determining, via

the communication network, if other processors in other chips can process the

packets. Packets will access the processors, chips and nodes in its cluster first, before

accessing other clusters via the communication network.

 The main windows toolbar displays the simulated time (Red box in Figure 6). The

simulated time is virtual time and is not based on the actual elapsed time that the

program takes to execute. For this research, the simulation time is the propagation

delay on the connections.

Norhazlina Hamid

161

Figure 6: Simulation running environment

Figure 7: The simulation events status window

The routing file will determine the path the packets will follow in the network from the

source to the destination in the simulation events status window (Red box in Figure 7).

Based on the path given, the packets will hop on the communication switch to get

through the communication network. If there is a situation where more than one

packet needs to use the same route, the communication switch will determine which

packet can go through first or whether the packet needs to be queued (buffered) until

the route is available. Each packet is time-stamped after its generation and the

message completion time is defined in the Message-Sink module on each tree-node to

compute message latency. The Message-Sink file receives a message, tests the packet

Norhazlina Hamid

162

type, prints a message and then deletes the packet before gathering the statistics for

every event in the simulation for analysis of the results.

Figure 8: Inputs page of the simulation events

Messages about the events and the type of messages generated and received are

displayed in another window. Simulation results are recorded into output scalar

files that actually hold statistics results as well, and output vector files. The usual file

extension for scalar files is .sca, and for vector files .vec, as shown in Figure 8. The

eventlog file is created automatically during a simulation run upon explicit request,

configurable in the ini file. The resulting file can be viewed in the IDE using the

Sequence Chart and the Eventlog Table, or can be processed by the command line

Eventlog Tool. The result produced by the simulation is the average message latency

based on traffic generation rate, which has been defined earlier in the initialisation file.

Norhazlina Hamid

163

Appendix 4-A

In order to illustrate the feasibility and the accuracy of the simulation model, a set of

experiments were conducted using several system configurations, as listed in Table 1

and Table 2, to illustrate the individual behaviour of selected analytical model

calculations. Two different flow control mechanisms were used to investigate the

impact on interconnection network performance.

Table 1: Simulation input

Items Quantity

No. of cores nc 1

Message Length M and Flit Length F 32 flits, 256 bytes

No. of cluster, m-port n-tree 8, 8, 2

Table 2: Interconnection network parameters

Parameter Internal-cluster External-cluster

Network latency 0.01 s 0.02 s

Switch latency 0.01 s 0.01 s

Network Bandwidth 1000 bits/s 500 bits/s

a) Average Waiting Time at the Source Node in Internal Cluster

Average waiting time at the source node in internal-cluster is the average time the

packets will be in a queue while waiting to be transmitted into the network. It can

be computed by:

𝑊𝑖 =
(𝛽𝑖)

2𝜆𝑖

2(1 − 𝛽𝑖 𝜆𝑖)

 Where 𝛽𝑖 = 8.202 and 𝜆𝑖 = 0.000122

Norhazlina Hamid

164

Figure 1: Average Waiting Time at the Source Node in Internal-Cluster

Figure 1 shows the average waiting time at the source node in an internal-cluster,

based on two different flow controls: store-and-forward flow control and wormhole

flow control. As the traffic generation rates increases, the load allocation time

increases, which can affect the pipelining of the router. The zero-load latency tends to

increase and may slightly decrease the saturation throughput in the internal-cluster

because of the additional time required to allocate the task into a number of cores.

The zero-load latency assumption is that a packet has never contended for network

resources with other packets which applied to store-and-forward flow control. It gives a

lower bound on the average latency of a packet through the network. Compared to

wormhole flow control, the average message latency is higher because multiple

messages can be in transmission and attempt to use the same network link at the

same time. If this problem occurs, some of the messages must be blocked while other

messages are allowed to proceed, which affects the performance.

Norhazlina Hamid

165

b) Average Waiting Time at the Source Node in Internal Cluster

Approximations of packet latency, to predict the average amount of time that a

packet spends waiting in each queue in the external-cluster, is given by:

𝑊𝑒 =
 (𝛽𝑒)

2𝜆𝑒
2(1 − 𝛽𝑒𝜆𝑒)

 Where 𝛽𝑒 = 16.394 and 𝜆𝑒 = 0.0018

Figure 2: Average Waiting Time at the Source Node in External-Cluster

For the same traffic rate, both flow control mechanisms achieve lower latency in light

traffic, but the latency increases massively with wormhole flow control due to blocking

probability happening in transmission, as shown in Figure 2. The results show that

both flow controls perform better in light traffic, but wormhole flow control does not

achieve optimal performance throughput compared to store-and-forward flow control.

Norhazlina Hamid

166

References

Abad, P., Puente, V., & Gregorio, J. A. (2012). Balancing Performance and Cost in CMP

Interconnection Networks. IEEE Transactions on Parallel and Distributed

Systems, 23(3), 452-459. doi: 10.1109/tpds.2011.173

Abawajy, J. H., & Dandamudi, S. P. (2003, 1-4 Dec. 2003). Parallel job scheduling on

Multi-cluster Computing Systems. Paper presented at the Proceedings of the

IEEE International Conference on Cluster Computing, (CLUSTER'03), Hong Kong.

Abdelgadir, A. T., Pathan, A.-S. K., & Ahmed, M. (2011). On the Performance of MPI-

OpenMP on a 12 nodes Multi-core Cluster In Algorithms and Architectures for

Parallel Processing (pp. 225-234): Springer Berlin Heidelberg.

Admin. (1999). IBM Cluster Systems. Drive performance while reducing energy and

space with integrated cluster solutions. Retrieved Mei 2012, from http://www-

03.ibm.com/systems/clusters/

Admin. (2013). The Iridis Compute Cluster. Retrieved Nov 2013, from

http://www.southampton.ac.uk/isolutions/computing/hpc/iridis/

Admin. (2014). Top500 Supercomputer Sites. Retrieved 04/11/2014, from

http://www.top500.org/lists/2014/06/

Akhter, S., & Roberts, J. (2006). Multi-Core Programming (Vol. 33). Hillsboro: Intel

Press.

Al-Babtain, B. M., Al-Kanderi, F. J., Al-Fahad, M. F., & Ahmad, I. (2013). A Survey on

Amdahl's Law Extension in Multicore Architectures. International Journal of

New Computer Architectures and their Applications (IJNCAA), 3(3), 30-46.

Allen, P., & Bennett, K. (2010). PASW statistics by SPSS: A practical guide, version 18.0.

Melbourne: Cengage Learning Australia.

Alzeidi, N., Khonsari, A., Ould-Khaoua, M., & Mackenzie, L. (2007). A new approach to

model virtual channels in interconnection networks. Journal of Computer and

System Sciences, 73(8), 1121-1130. doi: 10.1016/j.jcss.2007.02.002

Alzeidi, N., Ould-Khaoua, M., & Khonsari, A. (2008). A new general method to compute

virtual channels occupancy probabilities in wormhole networks. Journal of

Computer and System Sciences, 74(6), 1033-1042. doi:

10.1016/j.jcss.2007.07.006

Attaway, S. (2013). MATLAB (Butterworth-Heinemann Ed. 3rd ed.). United States:

Elsevier Inc.

Baker, M., Apon, A., Buyya, R., & Jin, H. (2000). Cluster Computing and Applications.

36.

Baker, M., & Buyya, R. (1999a). Cluster Computing at a Glance. School of Computer

Science and Software Engineering, Monash University, Melbourne, Australia:

Prentice Hall.

Baker, M., & Buyya, R. (1999b). Cluster computing: the commodity supercomputer.

29(6), 551-576.

http://www-03.ibm.com/systems/clusters/
http://www-03.ibm.com/systems/clusters/
http://www.southampton.ac.uk/isolutions/computing/hpc/iridis/
http://www.top500.org/lists/2014/06/

Norhazlina Hamid

167

Balci, O. (1994, 11-14 Dec. 1994). Validation, verification, and testing techniques

throughout the life cycle of a simulation study. Paper presented at the

Proceedings of the Winter Simulation Conference

Baldassari, J. D., Kopec, C. L., Leshay, E. S., Truszkowski, W., & Finkel, D. (2005, 4-7

April 2005). Autonomic Cluster Management System (ACMS): A Demonstration

of Autonomic Principles at Work. Paper presented at the 12th IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems,

(ECBS '05).

Banks, C. (2008). What Is Modeling and Simulation? Principles of Modeling and

Simulation (pp. 3-24): John Wiley & Sons, Inc.

Banks, J. (1998). Handbook of Simulation: Principles, Methodology, Advances,

Applications and Practice

Bethel, E. W., & Howison, M. (2012). Multi-core and many-core shared-memory parallel

raycasting volume rendering optimization and tuning. International Journal of

High Performance Computing Applications, 26(4), 399-412. doi:

10.1177/1094342012440466

Brakmo, L. S., & Peterson, L. L. (1996). Experiences with network simulation. Paper

presented at the Proceedings of the 1996 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems, Philadelphia,

Pennsylvania, United States.

Burger, T. W. (2005). Intel Multi-Core Processors: Quick Reference Guide. from

https://software.intel.com/en-us/articles/intel-multi-core-processors-quick-

reference-guide

Buyya, R., Hai, J., & Cortes, T. (2002). Cluster Computing. 18, 5-8.

Caliri, G. V. (2000). Introduction to Analytical Modeling. Paper presented at the

Proceedings of the 26th International Computer Measurement Group

Conference, Orlando, FL, USA.

Carson, J. S., II. (2005, 4-7 Dec. 2005). Introduction to modeling and simulation. Paper

presented at the Proceedings of the 36th conference on Winter simulation

Winter Simulation Conference.

Chan, S., Ling, T., & Aubanel, E. (2012). The impact of heterogeneous multi-core

clusters on graph partitioning: an empirical study. Cluster Computing, 15(3),

281-302. doi: 10.1007/s10586-012-0229-4

Chang, V., Walters, R., & Wills, G. (2013). Cloud Storage and Bioinformatics in a Private

Cloud Deployment: Lessons for Data Intensive Research Cloud Computing and

Services Science (Vol. 367, pp. 245-264): Springer International Publishing.

Creel, M., & Goffe, W. L. (2007). Multi-core CPUs, Clusters, and Grid Computing: a

Tutorial. 36.

Dally, W. J., & Towles, B. P. (2004). Principles and practices of interconnection

networks: Elsevier.

Das, A. (2008). NETWORKING 2008: Ad Hoc and Sensor Networks, Wireless Networks,

Next Generation Internet: Springer.

https://software.intel.com/en-us/articles/intel-multi-core-processors-quick-reference-guide
https://software.intel.com/en-us/articles/intel-multi-core-processors-quick-reference-guide

Norhazlina Hamid

168

Deng, J. D., & Purvis, M. K. (2011). Multi-core application performance optimization

using a constrained tandem queueing model. Journal of Network and Computer

Applications, 34(6), 1990-1996. doi:

http://dx.doi.org/10.1016/j.jnca.2011.07.004

Donald, J., & Martonosi, M. (2006). An Efficient, Practical Parallelization Methodology

for Multicore Architecture Simulation. Computer Architecture Letters, 5(2), 14-

14. doi: 10.1109/l-ca.2006.14

Fengguang, S., Moore, S., & Dongarra, J. (2009, Aug. 31 2009-Sept. 4 2009). Analytical

modeling and optimization for affinity based thread scheduling on multicore

systems. Paper presented at the IEEE International Conference on Cluster

Computing and Workshops (CLUSTER '09)

Field, A. P. (2000). Discovering Statistics using SPSS for Windows: Advanced Techniques

for the Beginner. London: Sage.

Field, A. P. (2013). Discovering Statistics using IBM SPSS Statistics. London: Sage.

Furhad, H., Haque, M. A., Kim, C.-H., & Kim, J.-M. (2013). An Analysis of Reducing

Communication Delay in Network-on-Chip Interconnect Architecture. Wireless

Personal Communications, 1-17. doi: 10.1007/s11277-013-1257-y

Geer, D. (2005). Industry Trends: Chip Makers Turn to Multicore Processors, 38, 11-13.

Geer, D. (2007). For Programmers, Multicore Chips Mean Multiple Challenges.

Computer, 40(9), 17-19. doi: 10.1109/mc.2007.311

Geyong, M., Yulei, W., Ould-Khaoua, M., Hao, Y., & Keqiu, L. (2009, Nov. 30 2009-Dec.

4 2009). Performance Modelling and Analysis of Interconnection Networks with

Spatio-Temporal Bursty Traffic. Paper presented at the Proceedings of IEEE

Global Telecommunication Conference (GLOBECOM 2009), Honolulu.

Gomez, A., Bermudez, A., & Casado, R. (2011). A Deadlock-Free Dynamic

Reconfiguration Scheme for Source Routing Networks Using Close Up*/Down*

Graphs. IEEE Transactions on Parallel and Distributed Systems, 22(10), 1641-

1652. doi: 10.1109/tpds.2011.79

Gomez, C., Gilabert, F., Gomez, M. E., Lopez, P., & Duato, J. (2007, 26-30 March 2007).

Deterministic versus Adaptive Routing in Fat-Trees. Paper presented at the IEEE

International on Parallel and Distributed Processing Symposium (IPDPS 2007).

Goscinski, A., Hobbs, M., & Silcock, J. (2001). A Cluster Operating System Supporting

Parallel Computing. Cluster Computing, 4(2), 145-156. doi:

10.1023/a:1011473016546

Gramsamer, F. (2003). Scalable Flow Control for Interconnection Networks. (Doctor of

Tecnical Sciences), Swiss Federal Institute of Technology Zurich.

Haddad, I. (2006). The HAS Architecture: A Highly Available and Scalable Cluster

Architecture for Web Servers. (PhD), Concordia University, Library and Archives

Canada.

Hamid, N., Walters, R., & Wills, G. (2015a). An architecture for measuring network

performance in multi-core multi-cluster architecture (MCMCA). International

Journal of Computer Theory and Engineering, 7(1), 57-61.

http://dx.doi.org/10.1016/j.jnca.2011.07.004

Norhazlina Hamid

169

Hamid, N., Walters, R., & Wills, G. (2015b, 21-23 April 2015). Interconnection network

performance of multi-core cluster architectures. Paper presented at the

International Conference on Computer, Communications, and Control

Technology (I4CT 2015), Kuching, Sarawak.

Hamid, N., Walters, R., & Wills, G. (2015c). Performance evaluation of multi-core multi-

cluster architecture (MCMCA). In V. Chang, R. J. Walters & G. Wills (Eds.),

Delivery and Adoption of Cloud Computing Services in Contemporary

Organizations. Hershey, US: IGI Global.

Hamid, N., Walters, R. J., & Wills, G. B. (2014, 03 - 05 Apr 2014). Performance

evaluation of multi-core multi-cluster architecture (MCMCA). Paper presented at

the Proceedings of the Emerging Software as a Service and Analytics, Barcelona,

ES.

Holt, W. M. (2016, Jan. 31 2016-Feb. 4 2016). 1.1 Moore's law: A path going forward.

Paper presented at the IEEE International Solid-State Circuits Conference (ISSCC

2016).

Hope, L., & Lam, E. (n.d.). A Review of Applications of Cluster Computing. World, 1-10.

Ichikawa, S., & Kawai, Y. (2008, 19-21 Nov. 2008). Constructing execution-time

estimation models from diverse processing elements of heterogeneous clusters.

Paper presented at the Proceedings of the IEEE Region 10 Conference (TENCON

2008).

Ichikawa, S., & Takagi, S. (2009, 16-19 March 2009). Estimating the Optimal

Configuration of a Multi-Core Cluster: A Preliminary Study. Paper presented at

the Proceedings of the International Conference on Complex, Intelligent and

Software Intensive Systems (CISIS '09)

Intel. (1997). Moore's Law and Intel Innovation.

http://www.intel.com/about/companyinfo/museum/exhibits/moore.htm?wapk

w=moore+laws

Intel. (2015). 50 Years of Moore's Law. http://www.intel.in/content/www/in/en/silicon-

innovations/moores-law-technology.html

Jagannatam, A. (2008). Mersenne Twister–A Pseudo Random Number Generator and its

variants. George Mason University, Department of Electrical and Computer

Engineering.

Javadi, Akbari, M. K., & Abawajy, J. H. (2006). A performance model for analysis of

heterogeneous multi-cluster systems. Parallel Computing, 32(11–12), 831-851.

doi: 10.1016/j.parco.2006.09.006

Javadi, B., Abawajy, J. H., & Akbari, M. K. (2006). Modeling and analysis of

heterogeneous loosely-coupled distributed systems Technical Report TR C06/1.

Australia, : School of Information Technology, Deakin University.

Javadi, B., Abawajy, J. H., & Akbari, M. K. (2008a). A comprehensive analytical model of

interconnection networks in large-scale cluster systems. Concurrency and

Computation: Practice and Experience, 20(1), 75-97. doi: 10.1002/cpe.1222

Javadi, B., Abawajy, J. H., & Akbari, M. K. (2008b). Performance modeling and analysis

of heterogeneous meta-computing systems interconnection networks.

http://www.intel.com/about/companyinfo/museum/exhibits/moore.htm?wapkw=moore+laws
http://www.intel.com/about/companyinfo/museum/exhibits/moore.htm?wapkw=moore+laws
http://www.intel.in/content/www/in/en/silicon-innovations/moores-law-technology.html
http://www.intel.in/content/www/in/en/silicon-innovations/moores-law-technology.html

Norhazlina Hamid

170

Computers & Electrical Engineering, 34(6), 488-502. doi:

http://dx.doi.org/10.1016/j.compeleceng.2007.09.007

Javadi, B., Akbari, M. K., & Abawajy, J. H. (2005, 14-17 June 2005). Performance

analysis of heterogeneous multi-cluster systems. Paper presented at the

International Conference on Parallel Processing Workshops(ICPP 2005), Oslo,

Norway.

Javadi, B., Akbari, M. K., Abawajy, J. H., & Nahavandi, S. (2006, 20-23 Dec. 2006). Multi-

Cluster Computing Interconnection Network Performance Modeling and

Analysis. Paper presented at the International Conference on Advanced

Computing and Communications (ADCOM 2006).

Javadi, B., Khorsandi, S., & Akbari, M. K. (2005). Study of a Cluster-Based Parallel

System Through Analytical Modeling and Simulation Computational Science and

Its Applications–ICCSA 2005 (pp. 1262-1271): Springer Berlin / Heidelberg.

Jia, W., Xiangzhan, Y., & Jun, Y. (2009, 28-29 Dec. 2009). Research on Network

Simulation Abstract Technology Based on Simplicity Theory. Paper presented at

the International Conference on Wireless Networks and Information Systems

(WNIS '09).

Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., & Chapman, B. (2011). High

performance computing using MPI and OpenMP on multi-core parallel systems.

Parallel Computing, 37(9), 562-575. doi:

http://dx.doi.org/10.1016/j.parco.2011.02.002

Jingjing, W., Ponomarev, D., & Abu-Ghazaleh, N. (2012, 15-19 July 2012). Performance

Analysis of a Multithreaded PDES Simulator on Multicore Clusters. Paper

presented at the ACM/IEEE/SCS 26th Workshop on Principles of Advanced and

Distributed Simulation (PADS 2012)

Kaplan, J. A., & Nelson, M. L. (1994). A Comparison of Queueing, Cluster and

Distributed Computing Systems. NASA Langley Technical Report Server.

Karmakar, N. (2011). Multi-core Architecture The New Trend in Processor Making (pp.

44): North Maharashrta University, India.

Khanyile, N., Tapamo, J.-R., & Dube, E. (2012). An analytic model for predicting the

performance of distributed applications on multicore clusters. IAENG

International Journal of Computer Science, 39(3), 312-320.

Khosravi, A., Khorsandi, S., & Akbari, M. K. (2011, 23-24 Feb. 2011). Hyper node torus:

A new interconnection network for high speed packet processors. Paper

presented at the International Symposium on Computer Networks and

Distributed Systems (CNDS 2011).

Kim, H., & Bond, R. (2009). Multicore Software Technologies. Signal Processing

Magazine, IEEE, 26(6), 80-89.

Koibuchi, M., Akiya, J., Watanabe, K., & Amano, H. (2003, 6-9 Oct. 2003). Descending

layers routing: a deadlock-free deterministic routing using virtual channels in

system area networks with irregular topologies. Paper presented at the

Proceedings of the International Conference on Parallel Processing

Koibuchi, M., Jouraku, A., & Amano, H. (2002). The impact of path selection algorithm

of adaptive routing for implementing deterministic routing Proceedings of the

http://dx.doi.org/10.1016/j.compeleceng.2007.09.007
http://dx.doi.org/10.1016/j.parco.2011.02.002

Norhazlina Hamid

171

International Conference on Parallel and Distributed Processing Techniques and

Applications (pp. 1431-1437).

Koibuchi, M., Watanabe, K., Kono, K., Akiya, J., & Amano, H. (2003, 1-4 Dec. 2003).

Performance evaluation of routing algorithms in RHiNET-2 cluster. Paper

presented at the Proceedings of the International Conference on Cluster

Computing

Koibuchi, M., Watanabe, T., Minamihata, A., Nakao, M., Hiroyasu, T., Matsutani, H., &

Amano, H. (2011, Nov. 30 2011-Dec. 2 2011). Performance Evaluation of

Power-Aware Multi-tree Ethernet for HPC Interconnects. Paper presented at the

Second International Conference on Networking and Computing (ICNC 2011).

Kosinska, J., Kosinski, J., & Zielinski, K. (2010, 20-25 Sept. 2010). The Concept of

Application Clustering in Cloud Computing Environments: The Need for

Extending the Capabilities of Virtual Networks. Paper presented at the

Proceedings of the Fifth International Multi-Conference on Computing in the

Global Information Technology (ICCGI).

Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to Parallel

Computing. Canada: The Benjamin/Cummings Publishing Company, Inc.

Leangsuksun, C., Liu, T., Liu, Y., Scott, S., Libby, R., & Haddad, I. (2005). Highly

Reliable Linux HPC Clusters: Self-Awareness Approach

Parallel and Distributed Processing and Applications. In J. Cao, L. Yang, M. Guo & F. Lau

(Eds.), (Vol. 3358, pp. 217-222): Springer Berlin / Heidelberg.

Lei, C., Hartono, A., & Panda, D. K. (2006, 25-28 Sept. 2006). Designing High

Performance and Scalable MPI Intra-node Communication Support for Clusters.

Paper presented at the Proceedings of the IEEE International Conference on

Cluster Computing.

Lei, C., Qi, G., & Panda, D. K. (2007, 14-17 May 2007). Understanding the Impact of

Multi-Core Architecture in Cluster Computing: A Case Study with Intel Dual-Core

System. Paper presented at the Seventh IEEE International Symposium on

Cluster Computing and the Grid (CCGRID 2007).

Lin-Dong, L., De-Yu, Q., Qiang, C., & Jin-Xin, R. (2014, 28-30 Nov. 2014). Efficient

Scheduling Mechanism for Performance-Heterogeneous Multi-core Processor.

Paper presented at the 5th International Conference on Digital Home (ICDH

2014)

Lin, X. (2003). An Efficient Communication Scheme for Fat-Tree Topology on Infiniband

Networks. (M.Sc), Feng Chia University Taiwan.

Liqun, C., Muralimanohar, N., Ramani, K., Balasubramonian, R., & Carter, J. B. (2006, 0-

0 0). Interconnect-Aware Coherence Protocols for Chip Multiprocessors. Paper

presented at the 33rd International Symposium on Computer Architecture (ISCA

'06).

Maria, A. (1997, 7-10 Dec 1997). Introduction To Modeling And Simulation. Paper

presented at the Proceedings of the 1997 Winter Simulation Conference.

Matloff, N. (2008). A Discrete-Event Simulation Course Based on the SimPy Language.

http://heather.cs.ucdavis.edu/∼matloff/simcourse.html

http://heather.cs.ucdavis.edu/∼matloff/simcourse.html

Norhazlina Hamid

172

Mehta, S., Sulatan, N., & Kwak, K. S. (2010). Network and System Simulation Tools for

Next Generation Networks: a Case Study, Modelling, Simulation and

Identification. In A. M. (Ed.) (Ed.), Modelling, Simulation and Identification.

InTech.

Mei, C., Zheng, G., Gioachin, F., & Kal, L. V. (2010). Optimizing a parallel runtime

system for multicore clusters: a case study. Paper presented at the Proceedings

of the 2010 TeraGrid Conference, Pittsburgh, Pennsylvania.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Vol. 86, pp.

114-117.

Moreno-Vozmediano, R., Montero, R. S., & Llorente, I. M. (2011). Multicloud

Deployment of Computing Clusters for Loosely Coupled MTC Applications. IEEE

Transactions on Parallel and Distributed Systems, 22(6), 924-930. doi:

10.1109/TPDS.2010.186

Muralimanohar, N., & Balasubramonian, R. (2007). Interconnect design considerations

for large NUCA caches. SIGARCH Computer Architecture News, 35(2), 369-380.

doi: 10.1145/1273440.1250708

Pan, J. (2008). A Survey of Network Simulation Tools : Current Status and Future

Developments. 1-13.

Pase, D. M., & Eckl, M. A. (2005). A Comparison of Single-Core and Dual-Core Opteron

Processor Performance for HPC I. Corporation (Ed.) (pp. 13).

Peh, L. S. (2001). Flow Control and Microarchitectural Mechanism for Extending the

Performance of Interconnection Networks. (PhD Thesis), Stanford University.

Pourreza, H., & Graham, P. (2007, 13-16 May 2007). On the Programming Impact of

Multi-Core, Multi-Processor Nodes in MPI Clusters. Paper presented at the 21st

International Symposium on High Performance Computing Systems and

Applications (HPCS 2007)

Prisacari, B., Rodriguez, G., Minkenberg, C., & Hoefler, T. (2013). Bandwidth-optimal

all-to-all exchanges in fat tree networks. Paper presented at the Proceedings of

the 27th international ACM conference on International conference on

supercomputing, Eugene, Oregon, USA.

Qian, Y. (2010). Design and Evaluation of Effiecient Collective Communications on

Modern Interconnects and Multi-core Clusters.

Ranadive, A., Kesavan, M., Gavrilovska, A., & Schwan, K. (2008). Performance

implications of virtualizing multicore cluster machines. Paper presented at the

Proceedings of the 2nd workshop on System-level virtualization for high

performance computing, Glasgow, Scotland.

Rauber, T., & Runger, G. (2010). Parallel Programming for Multicore and Cluster

Systems: Springer.

Rechistov, G., Ivanov, A., Shishpor, P., & Pentkovski, V. (2012). Simulation and

Performance Study of Large Scale Computer Cluster Configuration: Combined

Multi-level Approach. Procedia Computer Science, 9(0), 774-783. doi:

http://dx.doi.org/10.1016/j.procs.2012.04.083

http://dx.doi.org/10.1016/j.procs.2012.04.083

Norhazlina Hamid

173

Requena, C. G., Requena, M. E. G., Rodriguez, P. J. L., & Marin, J. F. D. (2009). FTEI: A

Dynamic Fault-Tolerant Routing Methodology for Fat Trees with Exclusion

Intervals. IEEE Transactions on Parallel and Distributed Systems, 20(6), 802-

817. doi: 10.1109/TPDS.2008.130

Robinson, S. (2004). Simulation: The Practice of Model Development and Use. England:

John Wiley & Sons, Ltd.

Rouse, M. (2006). Definition of a processor and a node. Retrieved 02 August, 2012

Roy, P. V. (2008). The Challenges and Opportunities of Multiple Processors: Why Multi-

Core Processors are Easy and Internet is Hard. Position statement, in ICMC, 2.

Sadashiv, N., & Kumar, S. M. D. (2011). Cluster, grid and cloud computing: A detailed

comparison. Paper presented at the Proceedings of the 6th International

Conference on Computer Science & Education (ICCSE).

Sadeghi, M., & Barati, M. (2012, 3-5 July 2012). Performance analysis of Poisson and

Exponential distribution queuing model in Local Area Network. Paper presented

at the Proceedings of the International Conference on Computer and

Communication Engineering (ICCCE).

Sancho, J. C., Robles, A., & Duato, J. (2004). An effective methodology to improve the

performance of the up*/down* routing algorithm. IEEE Transactions on Parallel

and Distributed Systems, 15(8), 740-754. doi: 10.1109/tpds.2004.28

Sarbazi-Azad, H., Ould-Khaoua, M., & Mackenzie, L. M. (2001). An accurate analytical

model of adaptive wormhole routing in k-ary n-cubes interconnection networks.

Performance Evaluation, 43(2–3), 165-179. doi: 10.1016/s0166-

5316(00)00049-3

Sarbazi-Azad, H., Ould-Khaoua, M., & Zomaya, A. Y. (2005). Design and performance of

networks for super-, cluster-, and grid-computing: Part i. Parallel Distributed

Computing, 65(10), 1119-1122.

Sargent, R. G. (2011, 11-14 Dec. 2011). Verification and validation of simulation

models. Paper presented at the Proceedings of the 2011 Winter Simulation

Conference (WSC).

Sargent, R. G. (2013). Verification and validation of simulation models. Journal of

simulation, 7(1), 12-24.

Schauer, B. (2008). Multicore Processors-A Necessity. ProQuest, 14.

Schlesinger, S. (1979). Terminology for model credibility. SIMULATION, 32(3), 103-104.

doi: 10.1177/003754977903200304

Schroeder, B., & Gibson, G. (2010). A Large-Scale Study of Failures in High-Performance

Computing Systems. IEEE Transactions on Dependable and Secure Computing,

7(4), 337-350. doi: 10.1109/TDSC.2009.4

Schroeder, M. D., Birrell, A. D., Burrows, M., Murray, H., Needham, R. M., Rodeheffer, T.

L., . . . Thacker, C. P. (1991). Autonet: a high-speed, self-configuring local area

network using point-to-point links. IEEE Journal on Selected Areas in

Communications, 9(8), 1318-1335. doi: 10.1109/49.105178

Norhazlina Hamid

174

Shahhoseini, H. S., Naderi, M., & Buyya, R. (2000, 14-17 May 2000). Shared memory

multistage clustering structure, an efficient structure for massively parallel

processing systems. Paper presented at the Proceedings of the Fourth

International Conference/Exhibition on High Performance Computing in the

Asia-Pacific Region.

Shainer, G., Lui, P., Hilgeman, M., Layton, J., Stevens, C., Stemple, W., . . . Kresse, G.

(2013). Maximizing Application Performance in a Multi-core, NUMA-Aware

Compute Cluster by Multi-level Tuning Supercomputing (Vol. 7905, pp. 226-

238): Springer Berlin Heidelberg.

Shannon, R. E. (1977). Simulation modeling and methodology. SIGSIM Simul. Dig., 8(3),

33-38. doi: 10.1145/1102766.1102770

Sharifi, H., Akbari, M. K., & Javadi, B. (2009). An Analytical Model of Communication

Networks in Multi-cluster Systems in the Presence of Non-uniform Traffic. Paper

presented at the International Conference on Computational Science and

Engineering (CSE '09).

Silva, J. M. N., Drummond, L., & Boeres, C. (2010, 27-30 Oct. 2010). On Modelling

Multicore Clusters. Paper presented at the Proceedings of the 22nd

International Symposium on Computer Architecture and High Performance

Computing Workshops (SBAC-PADW).

Sommereder, M. (2011). Modelling of Queueing Systems with Markov Chains: An

Introduction to Basic and Advanced Modelling Techniques: BoD–Books on

Demand.

Soryani, M., Analoui, M., & Zarrinchian, G. (2013). Improving inter-node

communications in multi-core clusters using a contention-free process mapping

algorithm. The Journal of Supercomputing, 1-26. doi: 10.1007/s11227-013-

0918-7

Srinivas, V. V., & Ramasubramaniam, N. (2011). Understanding the Performance of

Multi-core Platforms. In V. Das, J. Stephen & Y. Chaba (Eds.), Computer

Networks and Information Technologies (Vol. 142, pp. 22-26): Springer Berlin

Heidelberg.

Sterling, T., Apon, A., & Baker, M. (2000). Cluster Computing White Paper. Cluster

Computing, (December).

Sterling, T. L. (2002). Beowulf Cluster Computing with Windows Computers, M. Press

(Ed.) (pp. 445).

Stevens, R. (1986). Understanding Computers. Oxford: Oxford University Press.

Sullivan, D. R., Lewis, T. G., & Cook, C. R. (1988). Computing Today: Microcomputer

Concepts and Application. USA: Houghton Mifflin Company.

Tanenbaum, A. S. (1996). Computer Networks. USA: A Simon & Schuster Company.

Varga. (2011). OMNeT ++ User Manual Version 4.2.2.

http://www.omnetpp.org/doc/omnetpp/Manual.pdf

Varga, & Hornig, R. (2008). An overview of the OMNeT++ simulation environment.

Paper presented at the Proceedings of the 1st international conference on

http://www.omnetpp.org/doc/omnetpp/Manual.pdf

Norhazlina Hamid

175

Simulation tools and techniques for communications, networks and systems &

workshops, Marseille, France.

Varga, A. (2001). OMNeT++. Retrieved October 2012

Varghese, B., McKee, G., & Alexandrov, V. (2010). Implementing intelligent cores using

processor virtualization for fault tolerance. Procedia Computer Science, 1(1),

2197-2205. doi: http://dx.doi.org/10.1016/j.procs.2010.04.246

Wehrle, K., Gunes, M., & Gross, J. (2010). Modeling and Tools for Network Simulation K.

Wehrle, M. Gunes & J. Gross (Eds.), Retrieved from

http://www.scribd.com/doc/88271950/89/Cluster-Computing-Support

Weingartner, E., vom Lehn, H., & Wehrle, K. (2009). A Performance Comparison of

Recent Network Simulators. Paper presented at the IEEE International

Conference on Communications (ICC '09).

Willis, N., & Kerridge, J. (1983). Introduction to Computer Architecture. UK: Pitman

Publishing.

Wu, X., & Taylor, V. (2013). Performance modeling of hybrid MPI/OpenMP scientific

applications on large-scale multicore supercomputers. Journal of Computer and

System Sciences(0). doi: http://dx.doi.org/10.1016/j.jcss.2013.02.005

Xuan-Yi, L., Yeh-Ching, C., & Tai-Yi, H. (2004, 26-30 April 2004). A multiple LID routing

scheme for fat-tree-based InfiniBand networks. Paper presented at the

Proceedings of the 18th International Parallel and Distributed Processing

Symposium

Yeo, C., Buyya, R., Pourreza, H., Eskicioglu, R., Graham, P., & Sommers, F. (2006).

Cluster Computing: High-Performance, High-Availability, and High-Throughput

Processing on a Network of Computers. In A. Zomaya (Ed.), Handbook of

Nature-Inspired and Innovative Computing (pp. 521-551): Springer US.

Yulei, W., Geyong, M., Keqiu, L., & Javadi, B. (2012). Modeling and Analysis of

Communication Networks in Multicluster Systems under Spatio-Temporal Bursty

Traffic. IEEE Transactions on Parallel and Distributed Systems, 23(5), 902-912.

doi: 10.1109/tpds.2011.198

http://dx.doi.org/10.1016/j.procs.2010.04.246
http://www.scribd.com/doc/88271950/89/Cluster-Computing-Support
http://dx.doi.org/10.1016/j.jcss.2013.02.005

