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In High Performance Computing (HPC) system design and deployment there is an 

increasing trend towards networked parallel systems such as cluster computing 

systems. Cluster computing is typically built from a group of workstations connected 

by high-speed networks to form a single high-availability system. One of the driving 

forces behind high-performance clusters is the advent of multi-core clusters. The aim 

of the research reported here is to design a new architecture for large-scale multi-core 

cluster computing systems and to investigate the interconnection network 

performance of the new architecture. 

 Since the overall performance of cluster computing systems always depends on the 

efficiency of its communication networks, performance analysis of the interconnection 

networks is vital. A general problem in the network may arise from the fact that 

multiple messages can be in transmission at the same time, using the same network 

links. 

 The contribution of this thesis is to develop a new architecture known as Multi-core 

Multi-cluster Architecture (MCMCA), composed of numbers of clusters where each 

cluster is a multi-core processor. Next, a simulation model is built to investigate the 

interconnection network performance of the new architecture, and the results are 

presented. The main performance metrics to be simulated are the latency and network 

throughput. The model is then used to evaluate the impact on scalability and cluster 

size of the interconnection network performance. Finally, analytical model including 

statistical analysis are used to validate the simulation results under various working 

conditions. 

 The analysis indicates that, from single-core to multi-core, there is a significant 

improvement in processor performance. To judge from the latency results, compared 
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to single-core cluster a multi-core cluster can improve the network performance. 

Another observation is that the architecture can achieve lower latency and higher 

throughput as the number of cores increases. The experiments also demonstrated that 

a multi-core cluster can scale better than a single-core cluster. The results comparison 

between the analytical model and those produced from the simulation experiments has 

shown that the derived simulation model provides a good basis for predicting the 

communication delay of the interconnection network performance of the Multi-Core 

Multi-Cluster Architecture (MCMCA). 
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Definitions and Abbreviations 

 

Analytical 

Model 

A set of equations describing the performance of the cluster to 

support the simulation analysis. 

Average 

message 

latency 

The average amount of time elapsed from the generation of a 

message until the last packet reaches the destination node. 

Bandwidth The capacity of a network connection for supporting data transfers. 

Blocking A network is blocking if it cannot handle all switch requests that are 

a permutation of the inputs and outputs. 

Buffered flow 

control 

Store a packet in a buffer, preventing the waste of channel bandwidth 

caused by dropping or misrouting packets. 

Bufferless flow 

control 

Uses no buffering and simply allocates channel and bandwidth to 

competing packets. 

Chip A complex and tiny modules that store computer memory or provide 

logic circuitry for processors. 

Clock cycle The time measured between two adjacent pulses of the oscillator and 

sets the tempo of the computer processor. 

Clock rates An indicator of the processor’s speed and typically refers to the 

frequency. 

Cluster 

computing 

A form of computing in which a group of computers are linked 

together to act like a single entity. 

Channel 

bandwidth 

Transports messages between nodes and buffers, such as registers 

and memories, which allow messages to be held temporarily at the 

nodes. 

Communication The exchange of data between a source and a destination receiver in 

interconnection networks architecture. 

Computer 

cluster  

A group of computers connected to each other by fast local area 

networks which work together to form a single computer. 

Computer A piece of electronic equipment which, when given some data, will 

process that data in some pre-defined way to produce the required 

results (Willis & Kerridge, 1983). 

A complete system, composed of many interacting parts while 

computer systems are made of hardware and software (Sullivan, 

Lewis & Cook, 1988). 

Computer 

system network 

Essential elements for the computer network system to function 

include multiple servers, terminals, printers, network links, software, 

users, and support systems, including maintenance and repair, 

training, and spare parts. 

Contention Occurs when two or more messages want to use the same shared 

resource in the network.  

Control state  Tracks the resources allocated to the packet within the node and the 

state of the packet’s traversal across the node. 

Core A complete computational engine (Burger, 2005). 
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Deadlock Occurs when resources are waiting on another set of resources to 

complete a work cycle. 

Deterministic 

routing 

The path a packet takes is only a function of its source and 

destination. 

Flit Flow control digits are the basic units of bandwidth and storage 

allocation used by most flow control mechanisms. 

Flow control Determines how a network’s resources – such as channel bandwidth, 

buffer capacity and control state – are allocated to messages as they 

progress along their route in the network. 

Frequency The number of waves that pass a fixed place in a given amount of 

time. 

Hardware Parts of a computer that we can see and touch and the most 

important piece of hardware is a tiny rectangular chip inside our 

computer called the central processing unit (CPU), or microprocessor 

(Karmakar, 2011). 

High 

Performance 

Computing 

(HPC) 

Any computational activity requiring more than a single computer to 

execute a task. 

Homogeneous 

network 

A computer network composed of computers using similar 

configurations. 

Interconnection 

Network 

A physical connection between the different components of a parallel 

system. 

Microprocessor A computer that has been made on a single chip of silicon about 4 to 

6 millimetres square and ½ millimetre thick, and contains a minimum 

of a few thousand transistors (Stevens, 1986). 

Model A model is a representation of an actual system (J. Banks, 1998) or 

process (Carson, 2005). 

Modelling The process of identifying and abstracting relevant entities and 

relationships from a system under study.  

Model 

validation 

Substantiating that a computerized model, within its domain of 

applicability, behaves with satisfactory accuracy consistent with the 

intended application of the model. 

Model 

verification 

Ensuring that the computer program of the computerized model and 

its implementation are correct. 

MCMCA 

Simulation 

Model 

A descriptive model to investigate the performance of multi-core 

cluster system using simulation model. 

Message  A logically contiguous group of bits that are delivered from a source 

node to a destination node. 

Message 

Passing 

Interface (MPI) 

A library specification and standard for message-passing between 

multiple computers running a parallel program across distributed 

memory. 

Multi-cluster A multiple cluster system that is connected via the cluster 

interconnection networks where each cluster system/node has 

multiple processors (Shahhoseini, Naderi & Buyya, 2000). 
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Multi-core 

processor 

A single processor with two processing cores which means to place 

two or more processing cores on the same chip (Burger, 2005). 

Multi-core 

cluster 

A cluster where all the nodes in the cluster have multi-core 

processors. 

Multi-core 

multi-cluster 

An architecture built up of numbers of clusters where each cluster is 

composed of numbers of nodes consist a number of processors in a 

single chip, each with two or more cores. 

Network  Characterised by the media it uses to carry messages, the way the 

network links devices and the expansiveness of the network. 

Network latency A delay that happens as data packets transmits from one point to 

another over a network. 

Node Consists a multiple processor chip. 

Operating 

system (OS) 

Software that manages the computer and the devices connected to it, 

for example Windows or Linux. 

Packet  The basic unit of routing and sequencing. 

Personal 

Computer (PC) 

A computer that is designed to be used by one person. 

Processor The logic circuitry that responds to and processes the basic 

instructions that drive a computer; in the simplest terms, the 

computer’s brain (Rouse, 2006). 

Poisson 

distribution 

A probability distribution which expresses the probability of a 

number of procedures occurring in a fixed phase of time. 

Random 

number 

generator  

A program written for and used in probability and statistics 

applications when large quantities of random digits are needed. 

Routing 

algorithm 

Determines the path to be used for data transmission. 

Scalability An ability to radically change the size of something in order to meet 

the additional requirements of a resource. 

Simulation An imitation of a system as it progresses through time (Robinson, 

2004) and contains a set of entities and relationships to fulfill a 

certain purpose (Wehrle, Gunes & Gross, 2010). 

Simulation 

model 

The process of creating and analysing a digital prototype of a 

physical model to predict its performance in the real world. 

Single-core 

processor 

A processor with only one processing core. 

Single-core 

cluster 

A cluster consists of numbers of single-core processor. 

Single-core 

multi-cluster 

An architecture built up of numbers of clusters where each cluster is 

composed of numbers of nodes that consist a number of single-core 

processors. 

Software The instruction or programs that tell the hardware what to do. 

Store-and-

forward flow 

control 

A packet switching mechanism whereby the message to be 

transmitted is partitioned into a sequence of packets. 
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Supercomputers Large mainframes used primarily for the analysis of scientific and 

engineering problems (Sullivan et al., 1988). 

System A construct or collection of different elements such as people, 

machines, resources, that together produce results not obtainable by 

the elements alone. 

Throughput  The rate at which traffic is delivered to the destination. 

Topology The interconnection structure used to connect different processors 

or processors and memory modules. 

Transistor A semiconducting device that switches and amplifies electronic 

signal. 

Transmission 

time  

The network cycle time taken by a single packet to travel from one 

node to another node in the simulator. 

Up*/Down* 

routing 

An assignment of direction (up or down) to network channels where 

a spanning tree whose node (also called ‘vertex’) corresponds to a 

switch in the network, based on building a ‘breadth-first search’ (BFS) 

spanning tree used in Autonet (M. D. Schroeder et al., 1991) 

Workstations Type of computer that requires a moderate amount of computing 

power and relatively high quality graphics capabilities. 

Wormhole flow 

control 

A packet switching mechanism that works by dividing packets into a 

sequence of fixed-size units called ‘flits’, with channel and buffers 

allocated to flits. 
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Chapter 1 Introduction 

The emergence of High Performance Computing (HPC), including Cluster computing, 

has improved the availability of high performance computers and high speed network 

technologies. High performance in this context is defined as a computational activity 

requiring more than a single computer to execute a task (Qian, 2010). The main target 

of HPC is better performance in computing and one of the aims is to leverage cluster 

computing to solve advanced computation problems (Hope & Lam, n.d.). Cluster 

computing is playing a major role in solving large-scale computing application 

problems as they need faster and more reliable systems, especially as they are often 

built using commodity-off-the-shelf (COTS) hardware components and commonly-used 

software (Hamid, Walters & Wills, 2015c). 

 The exponential growth in computing performance quickly led to more 

sophisticated computing platforms. This rapid growth increased the demand for faster 

computing performance: every new enhancement in processors leads to greater 

performance demands (Jin et al., 2011). Moore’s Law predicted that the number of 

transistors on a processor would double approximately every two years, providing 

regular leaps in computing power (Moore, 1965). Over more than four decades, this 

has driven the impressive growth in computer speed and accessibility. However, 

Moore’s Law has begun to show signs of failing, being replaced by the emergence of 

multi-core processors, which involves placing two or more processing cores within the 

same processor (Burger, 2005). This allows the processor to perform more work within 

a given clock cycle. 

 With the emergence of high-speed networks, High Performance Computing (HPC) 

has adopted network-based computing clusters as cost-effective platforms to achieve 

high performance, which has led the trend towards cluster systems with multi-cores: 

the multi-core cluster (Wu & Taylor, 2013). The multi-core cluster becomes more 

powerful due to the combination of faster processors, faster memory and faster 

interconnection (Bethel & Howison, 2012). 

1.1 Research Motivation 

Processor performance is often associated with high processor clock frequencies and 

increasing power dissipation. Every new performance enhancement in processors leads 

to greater performance demands. The demand for increasing performance continues 

and as single-core processors reach their physical limits of possible complexity and 
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speed, the movement towards multi-core processors begins. A multi-core processor 

means one processor with two or more complete computational engines (cores) within 

a single processor to enhance performance, reduce power consumption and permit 

simultaneous processing of multiple tasks (Al-Babtain, Al-Kanderi, Al-Fahad & Ahmad, 

2013). Multi-core processors represent a major trend over the past decade and allow 

faster execution of applications by taking advantage of parallelism. 

 The Top 500 Supercomputer List published in June 2014 (Admin, 2014) showed 

that multi-core processors have been widely deployed in clusters of parallel computing, 

and more than 95% of the systems are using dual-core or quad-core processors. 

Another trend is reflected in the advances in multi-core processor technology that 

makes multi-core processors an excellent choice to use in clustered nodes (Soryani, 

Analoui & Zarrinchian, 2013). Many studies (Fengguang, Moore & Dongarra, 2009; 

Ichikawa & Takagi, 2009; Lei, Hartono & Panda, 2006; Ranadive, Kesavan, Gavrilovska 

& Schwan, 2008) have been carried out to improve the performance of multi-core 

clusters but few clearly distinguish a key issue: that of the performance of the 

interconnection networks. The existing multi-core cluster architectures are therefore 

unable to capture the potential performance and the characteristics of the traffic of the 

interconnection networks within the implementation of a multi-core cluster 

architecture. The cluster interconnection network is nonetheless critical for delivering 

efficiency and scalability for the applications, as it needs to handle the networking 

requirements of each processor core (Dally & Towles, 2004; Shainer et al., 2013). Even 

so, existing multi-core cluster architectures do not address the potential performance 

issues of the interconnection networks within multi-core clusters. 

 In a multi-core cluster architecture, multiple computing nodes are connected via 

the cluster interconnection network. The implementation of the architecture typically 

imposes higher latency for communication between processors located on different 

nodes compared with the processors located on the same nodes.  

 Apart from addressing the above concern, this thesis will expand the multi-core 

cluster architecture to a more scalable approach by applying multi-cluster architecture. 

Existing studies (Abdelgadir, Pathan & Ahmed, 2011) have found that having a good 

network bandwidth and a faster network will produce a better performance in relation 

to the scalability of the clusters. The conventional approach to improving cluster 

throughput is to add more processors, but there is a limit to the scalability of this 

approach: the infrastructure cannot provide effective memory access to unlimited 

numbers of processors and the interconnection network(s) become saturated 

(Shahhoseini et al., 2000). This thesis will identify the potential scalability of the 

multi-core cluster and will expand the architecture by employing a multi-cluster 
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architecture. The combination of multi-core cluster and multi-cluster architecture 

presents a novel architecture known as Multi-core Multi-cluster Architecture (MCMCA). 

The research described here is motivated by the fact that it is considered to be the first 

investigation of interconnection network performance of multi-core multi-cluster 

architecture.  

 Multi-core clusters allow for the faster execution of applications by taking 

advantage of the ability to work on multiple cores simultaneously. Several performance 

models of cluster systems have been proposed in (Alzeidi, Ould-Khaoua & Khonsari, 

2008; Geyong, Yulei, Ould-Khaoua, Hao & Keqiu, 2009; Bahman Javadi, Abawajy & 

Akbari, 2008b; Sarbazi-Azad, Ould-Khaoua & Mackenzie, 2001; Yulei, Geyong, Keqiu & 

Javadi, 2012), but the evaluations are confined to a single-core processor in a cluster. 

In order to take advantage of a multi-core processor in a cluster system, it is important 

to have an in-depth understanding of the characteristics of multi-core clusters and 

their impact on application performance and behaviour. 

 This research also develops novel simulation models for predicting and 

investigating the MCMCA interconnection network performance. The main performance 

metrics to be simulated are the latency, network throughput and bandwidth. Latency is 

the time required for a packet to travel from a source node to a destination node; 

network throughput is the rate at which the networks sends or receives data, and 

bandwidths refers to the maximum rate at which a packet can be transferred. The 

model is then used to evaluate the impact of performance metrics on scalability and 

cluster size. 

1.2 Research Objectives 

The thesis objectives are to investigate and evaluate the interconnection network 

performance of multi-core multi-cluster architecture (MCMCA). The main research 

question is: 

RQ1: What is an appropriate architecture to investigate the communication 

latency of multi-core processors in multi-cluster? 

Hence, this RQ1 addresses the following sub-research questions: 

SQ1: What are the appropriate characteristics to be considered in designing cluster 

architecture? 

SQ2: What is an appropriate simulation model to investigate interconnection network 

performance? 

SQ3: How well does the MCMCA simulation model analyse cluster performance? 
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RQ2: What is an appropriate flow control mechanism for communication latency 

modelling of the Multi-core Multi-cluster Architecture (MCMCA)? 

Hence, this RQ2 addresses the following sub-research questions: 

SQ4: What is the impact of the flow control mechanism in improving communication 

latency? 

 

In order to achieve this goal, three research hypotheses are tested: 

Hypotheses H1: Employing a multi-core processor in multi-cluster architecture will 

improve the performance of a cluster system. 

Hypotheses H2: The proposed simulation model can be used to investigate the 

interconnection network performance in MCMCA. 

Hypotheses H3: The common flow control mechanism can be employed to evaluate the 

impact of MCMCA on interconnection network performance 

 

1.3 Published Papers 

The research undertaken in this thesis has contributed in part or full to the following 

publications: 

1. Hamid, N., Walters, R. J. and Wills, G. B. (2014), Performance evaluation of 

multi-core multi-cluster architecture, presented at Emerging Software as a 

Service and Analytics, Barcelona, ES,03 - 05 Apr 2014. Scitepress9pp, 46-54. 

 

2. Hamid, N., Walters, R. J. and Wills, G. B. (2014), Analytical Calculation of Multi-

Core Multi-Cluster Architecture (MCMCA), presented at International Conference 

of Postgraduate in Education, Melaka, Malaysia, 17 – 18 Dec 2014. 

 

3. Hamid, N., Walters, R. J. and Wills, G. B. (2015), An Architecture for Measuring 

Network Performance in Multi-Core Multi-Cluster Architecture (MCMCA). 

In, International Journal of Computer Theory and Engineering vol. 7, no. 1, pp. 

57-61, February 2015. 

 

4. Hamid, N., Walters, R. J. and Wills, G. B. (2015), Performance evaluation of 

multi-core multi-cluster architecture (MCMCA). In, Chang, Victor, Walters, 

Robert John and Wills, Gary (eds.) Delivery and Adoption of Cloud Computing 

Services in Contemporary Organizations. Hershey, US, IGI Global. 
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5. Hamid, N., Walters, R. J. and Wills, G. B. (2015), An analytical model of multi-

core multi-cluster architecture (MCMCA). In Open Journal of Cloud Computing 

(OJCC), 2, (1), 1-12. 

 

6. Hamid, N., Walters, R. J. and Wills, G. B. (2015), Simulation and Mathematical 

Analysis of Multi-core Cluster Architecture, presented at 17
th

 International 

Conference on Computer Modelling and Simulation (UKSim2015), Cambridge, 

United Kingdom, 27-29 March 2015. 

 

7. Hamid, N., Walters, R. J. and Wills, G. B. (2015), Interconnection Network 

Performance of Multi-core Cluster Architecture, presented at 2
nd

 International 

Conference on Computer, Communication and Control Technology (I4CT), 

Sarawak, Malaysia, 21-23 April 2015.  

 

8. Hamid, N., Walters, R. J. and Wills, G. B. (2015), “Understanding the Impact of 

the Interconnection Network Performance of Multi-core Cluster Architectures,” 

presented at 4
th

 International Conference on Computer Technology and Science 

(ICCTS), Bandar Seri Begawan, Brunei, 01-02 June 2015. 

 

9. Hamid, N, Walters, R. J. and Wills, G. B., “Understanding the Impact of the 

Interconnection Network Performance of Multi-core Cluster Architectures,” 

Journal of Computers, vol. 11, no. 2, pp. 132-139, 2016.  

 

1.4 Thesis Structure 

This thesis is divided into seven chapters. This first chapter provides an overview of 

the research motivation, the research hypotheses and the research questions. The rest 

is organised as follows: 

Chapter 2 presents a review of the literature on related research domains: multi core 

clusters. This chapter specifically highlights the importance of particular research 

topics and shows how they benefit the main contribution. This chapter also provides 

some background to modelling and simulation, including the simulation model 

structure. 

Chapter 3 introduces the new Multi-core Multi-cluster Architecture (MCMCA) and its 

interconnection network. The research methodology involved with baseline 

experimental results is also covered in this chapter. 

Chapter 4 presents the new simulation model with an analytical model as a validation 

for the simulation results based on a store-and-forward flow control mechanism. 
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Chapter 5 presents the new simulation model with an analytical model as a validation 

to the simulation results based on a wormhole flow control mechanism. 

Chapter 6 discusses the statistical analysis and findings of the performance model.  

Chapter 7 draws conclusions from the reported results, research limitations and also 

suggests a future direction for this research. 

  



Norhazlina Hamid   

7 

 

Chapter 2 Literature Review 

2.1 Introduction 

In the early days of personal computing, personal computers (PCs) were stand-alone 

devices with single-user operating systems.  User interaction occurred via text-based 

interfaces and only one program would run at a time. Over time, however, the 

exponential growth in computing performance quickly led to a more sophisticated 

computing platform.  

 This chapter provides a background to the multi-core cluster that employs the 

characteristics of cluster computing and multi-core processors. Accordingly, this 

chapter starts in section 2.2 with an introduction to computers and processors, 

followed by an introduction to multi-core processing in section 2.3. This is followed in 

section 2.4 by an introduction to cluster computing. Since the multi-core cluster is a 

relatively new architecture (Wu & Taylor, 2013), it is important to have an in-depth 

understanding of the application behaviours and trends in order to obtain optimal 

performance. Thus section 2.5 provides reviews of the single-core cluster, to be 

compared with the multi-core cluster in section 2.6. Section 2.7 introduces the 

structure of multi-cluster architecture and section 2.8 introduces the differences 

between message, packet and flits. The background of the simulation model structure 

is presented in section 2.9 as an overview of the development of the new simulation 

model. 

 This chapter aims to clarify the apparent ambiguity by comparing multi-core 

clusters with traditional single-core clusters. Challenges and issues are identified, 

demonstrating why this study focuses on the issue of an interconnection network in a 

multi-core cluster.  

2.2 Computers and Processors 

A computer is a piece of electronic equipment which, when given some data, will 

process that data in some pre-defined way to produce the required results (Willis & 

Kerridge, 1983). Willis and Kerridge also state that a ‘computer system’ is a computer 

with software that makes the system more flexible in solving many different types of 

problem. A ‘personal computer’ (PC) is a computer system that is designed to be used 

by one person.  

 Every computer system has hardware components that perform four basic 

functions: input, output, processing and storage. In their book, Sullivan et al. (1988) 
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define a computer as a complete system composed of many interacting parts, while 

‘computer systems’ are composed of hardware and software. ‘Hardware’ refers to the 

parts of a computer that we can see and touch, and the most important piece of 

hardware is the tiny rectangular chip inside the computer called the central processing 

unit (CPU), or microprocessor (Karmakar, 2011). Other hardware items are the monitor, 

keyboard, mouse, printer and devices such as a webcam. ‘Software’ refers to the 

instructions or programs that tell the hardware what to do (Kim & Bond, 2009). The 

operating system (OS) – for example Windows or Linux – is software that manages the 

computer and the devices connected to it. ‘Workstations’ refer to a type of computer 

that requires a moderate amount of computing power and relatively high-quality 

graphics capabilities, while ‘supercomputers’ are large ‘mainframes’, used primarily for 

the analysis of scientific and engineering problems (Sullivan et al., 1988). ‘Mainframes’ 

are very large computers that are built to perform complex and critical applications. 

 The ‘processor’ is the logic circuitry that responds to and processes the basic 

instructions that drive a computer; in the simplest terms, it is the computer’s brain 

(Rouse, 2006). It is the part that translates instructions and performs calculations. 

Stevens (1986) mentioned that the term ‘processor’ has generally replaced the term 

‘central processing unit’ (CPU), and the processor in a personal computer, or one 

embedded in a small device, is often called a ‘microprocessor’. A microprocessor is a 

computer processor that has been made on a single chip of silicon about 4 to 6 

millimetres square and ½ millimetre thick, and contains a minimum of a few thousand 

transistors (Stevens, 1986). A transistor is a semiconducting device that switches and 

amplifies electronic signal, which is also an essential component in CPU (Intel, 1997). 

Stevens also points out that most of the chips called microprocessors are not complete 

computers, but rather the central processing units (CPUs) of computers. Personal 

computer systems are usually built from CPU-only chips and the term ‘microprocessor’ 

is therefore applied to any chip that contains a whole CPU. Each generation of 

processors has grown smaller and faster, dissipating more heat and consuming more 

power (Schauer, 2008). 

 Processors were originally developed with only one core, as in Figure 2-1. A ‘core’ 

is a complete computational engine or the processing element in a processor 

(Varghese, McKee & Alexandrov, 2010). ‘Single-core’ denotes only one processing 

element within a single processor, and a ‘multi-core’ processor combines two or more 

processing elements in a single processor, on a single chip or multiple chips (Roy, 

2008). A single-core processor can perform one task at a time whereas a multi-core 

processor can divide the work between two or more ‘execution cores’, allowing more 

work to be done within a given clock cycle (Burger, 2005). A ‘clock cycle’ is the time 

measured between two adjacent pulses of the oscillator and sets the tempo of the 
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computer processor. Thus a ‘dual-core’ processor contains two cores (such as the Intel 

Core Duo), a ‘quad-core’ processor contains four cores (e.g. AMD Phenom II X4) and a 

‘hexa-core’ processor contains six cores (e.g. Intel Core i7 Extreme Edition 980X). 

Chip

Memory

Node 0

Core

Cache

 

Figure 2-1: Basic design of single-core processor 

2.3 Multi-core Processors 

In 1965, Gordon Moore made his famous observation, the so-called ’Moore’s Law’, 

which predicted that the number of transistors per integrated circuit would double 

every year and that the speed would double every two years (Intel, 1997). Over more 

than four decades, this has driven the impressive growth in computer speed and 

accessibility.  

 In the past, the trend was to increase a processor’s speed to get better 

performance. Transistor size had been reduced to increase the number of transistors 

that could be applied to processor functions and reduce the distance that signals must 

travel (Schauer, 2008). This allowed processor clock rates to soar. However, Lei, Qi and 

Panda (2007) have pointed out that nowadays it has become more difficult to speed up 

processors by increasing frequency. Frequency describes the number of waves that 

pass a fixed place in a given amount of time or the processor’s speed (Stevens, 1986). 

As processor frequencies increase, the amount of heat produced by the processor 

increases (Pase & Eckl, 2005). The solution is to reduce the transistor size – because 

smaller transistors can operate at lower voltages, and this allows the processor to 

produce less heat. Unfortunately, David Geer (2005) demonstrated that, as a transistor 

gets smaller, it will be less able to block the flow of electrons. Also, smaller transistors 

keep using electricity even when they aren’t switching, which wastes the power. 

However, transistors can’t shrink forever, and chip manufacturers have struggled to 

cap power usage and heat generation which slow the processor performance (Chan, 

Ling & Aubanel, 2012). For these reasons, computer engineers are building a processor 
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with more processing cores, which means placing two or more processing cores on the 

same chip (Burger, 2005). 

  Multi-core processors are the solution to the deficiencies of single-core 

processors, as they increase bandwidth while decreasing power consumption (Burger, 

2005). Multi-core processors have been developed to adhere to reasonable power 

consumption and heat dissipation. By dividing the workload among different cores, 

multi-core processors can speed up application performance by running at lower 

frequencies while minimising heat generation and the use of power (Lei et al., 2007). 

Multi-core processors do not necessarily run as fast as the highest-performing 

single-core models, but they improve overall performance by handling more work in 

parallel (Geer, 2005). Basic design of a multi-core processor is seen in Figure 2-2. 

Core Core

Cache Cache

Dual-Core Chip

Memory

Core Core

Cache Cache

Dual-Core Chip

Memory

Node 0

Processor 0 Processor 1

 

Figure 2-2: Basic design of multi-core processor 

 Despite such huge performance potential, many issues remain unsolved and need 

further attention – such as high-latency communication in interconnection networks 

(Rauber & Runger, 2010). Communication in this work refers to the exchange of data 

between a source and a destination receiver in interconnection networks architecture. 

Multiple cores on a single processor give rise to some problems and challenges, as 

follows (Hamid et al., 2015c; Karmakar, 2011; Lei et al., 2007; Schauer, 2008; Soryani 

et al., 2013): 

 Interconnection networks: A faster network means a lower latency in network 

communication and memory transactions. Extra memory will be useless if the 

amount of time required for the memory request does not improve.  



Norhazlina Hamid   

11 

 

 Power and temperature: To reduce unnecessary power consumption and lessen 

the heat, the design model must run the multiple cores at a lower frequency. It 

must also ensure heat dissipation is distributed across the processor while 

being careful not to form any hot spots. 

 Cache coherence: Since each core has its own cache, the copy of the data in 

that cache may not always be the most up-to-date version. This may produce 

invalid results. 

 Multi-threading: Programmers have to write applications with subroutines able 

to be run on different cores. This is to ensure that the full advantage of 

multi-core capabilities can be exploited. 

 Improved memory system: Larger caches sizes are needed for multi-threaded 

multi-core processors. 

 Parallel programming: Programmers need to learn how to write parallel 

programs that can be split up and be run concurrently on multiple cores. 

 Starvation: If a program is not developed correctly for use in a multi-core 

processor, one or more cores may be starved for data. The thread would simply 

run in one of the cores while the other cores sit idle. 

 Homogeneous vs heterogeneous cores: Homogeneous cores have the same 

cache sizes, equivalent frequencies, functions, etc., while each core in a 

heterogeneous system may have a different function, frequency, memory model 

etc. 

2.3.1 Moore’s ‘Law’ Changes with Multi-core Processor 

For years, Moore’s ‘Law’ has been the one of the guiding principles of computer 

architecture. Instead of increasing clock speeds, which allows software to automatically 

run faster, chip manufacturers have been increasing the number of cores on a single 

chip (Bethel & Howison, 2012). Multicore or many cores, again embodying Moore’s 

‘Law’, has become one of the important technologies in the electronic chip industry. It 

is foreseeable that hundreds of cores on a single chip will appear in the future (Holt, 

2016). With the continuously increasing number of cores, it is important to fully 

harness the abundant computing resources with programming models that are still 

easy-to-use (Bethel & Howison, 2012). It is more difficult to speed up processors 

nowadays by increasing frequency. 

 The prevalence of multi-core processors beyond quad-cores forms the building 

block of high performance computing architectures (Chan et al., 2012). Multi-core 

processors have started to put pressure on the application development and 

programming language development. Taking advantage of multi-core processors 

requires that software is able to split the work among cores. The software must be 
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designed to support parallelism to use multi-core processors and to avoid stagnant 

performance (Lin-Dong, De-Yu, Qiang & Jin-Xin, 2014). Exploiting parallelism as the 

number of cores grows is a challenge (Donald & Martonosi, 2006). Thus, switching to 

multi-core processors chips grows the technological frontier asymmetrically by 

benefiting parallelized software. 

 Even after 50 years, Moore’s ‘Law’ still leaves an impact and benefits in many ways 

(Intel, 2015). For the technological impact, Moore’s observation transformed 

computing into a pervasive and affordable necessity. The technologies also created 

two important keys to technology development, performance and cost. Processing 

power has been increased and energy efficiency improved at a lower cost by applying 

multi-core processor technology, which has had an economic impact in the chip 

industry. These drivers have set the pace for innovation and development, but more 

research is being conducted into computing performance to investigate how the 

impact of multi-core processor compares to Moore’s ‘Law’ prediction. 

2.4 Cluster Computing 

Cluster computing is a form of computing in which a group of computers are linked 

together to act like a single entity (Baker & Buyya, 1999a). Cluster computing was first 

developed in the 1960s by IBM (Admin, 1999) as an alternative way of connecting large 

mainframes to provide a more cost effective form of commercial parallelism (Buyya, 

Hai & Cortes, 2002). However, cluster computing only gained momentum after the 

convergence in the 1980s of high performance microprocessors, high-speed networks 

and standard tools for high performance distributed computing. The recent advances 

in these technologies are making clusters an appealing solution for cost-effective 

parallel computing, and have emerged as mainstream parallel platforms for high-

performance, high-throughput and high-availability computing. 

A computer cluster can be defined as “a collection of individual computers” 

(Baldassari, Kopec, Leshay, Truszkowski & Finkel, 2005) “connected to each other by 

fast local area networks” (Baker & Buyya, 1999b) which “work together to form a single 

computer” (Baker, Apon, Buyya & Jin, 2000). A computer cluster works as one to 

execute intensive computation that would be not feasible on a single computer. Each 

individual computer in a cluster represents a computer node. Computer nodes are 

capable of full independent operation and are employed individually for stand-alone 

workloads and applications (T. Sterling, Apon & Baker, 2000). The nodes may 

incorporate a single processor or multiple processors with memories and operating 

systems (Hamid, Walters & Wills, 2014). The key components of a cluster include 

multiple stand-alone computers (PCs, workstations or SMPs), high-performance 



Norhazlina Hamid   

13 

 

interconnects, parallel programming environments and applications (Baker & Buyya, 

1999b). The typical architecture of a cluster is shown in Figure 2-3. 

 

Figure 2-3: Cluster architecture (reproduced from (Baker et al., 2000) 

There are many kinds of computer cluster, ranging from some which employ the 

world’s largest computers to collections of personal computers. Clustering was among 

the first computer system architecture techniques to achieve significant improvements 

in overall performance, user access bandwidth and reliability (T. L. Sterling, 2002). In 

their 2002 paper, Buyya, Hai and Cortes described cluster computing as a fusion of the 

fields of parallel, high-performance, distributed, and high-availability computing. 

Despite the definition and stated key components, there are a number of important 

cluster features (Baker et al., 2000; Buyya et al., 2002; Goscinski, Hobbs & Silcock, 

2001) that need to be noted, such as: 

 Clusters are generally localized within a room or building. 

 Clusters have a single administration. 

 Clusters primarily focus only on compute-intensive problems and HPC. 

 Clusters are typically homogeneous, based on a single processor and operating 

system. 

 Clusters are static in nature, with fixed sets of processors and resources, 

A cluster is deployed to increase performance and availability, and clusters are more 

cost-effective than a single computer. However, for all the benefits, there are 

challenges in cluster computing, as follows (Sadashiv & Kumar, 2011; Srinivas & 

Ramasubramaniam, 2011): 
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 Middleware: the need for a software environment that provides an illusion of a 

single system image, rather than a collection of independent computers. 

 Program: applications that run on the clusters must be explicitly written so as 

to incorporate the division of tasks between nodes. 

 Elasticity: providing a capability to adapt to changing potential requirements, 

for example the variance in real-time response time when the number of service 

requests changes dramatically. 

 Scalability: an ability to scale up in order to meet the additional requirements of 

a resource. This can affect the performance of the system. 

2.4.1 Cluster Interconnection Networks 

An interconnection network is a physical connection between the different components 

of a parallel system, and it can be used with a multi-core cluster system. A network is 

characterised by the media it uses to carry messages, the way the network links 

devices, and the expansiveness size of the network (Sullivan et al., 1988). In multi-core 

cluster systems, the interconnection network is used to connect the nodes to each 

other (Peh, 2001) and is used to connect the processors to the memory modules. In a 

network, a node is a connection point, either a redistribution point or an end point for 

data transmissions (Rouse, 2006).  

 The main task of the interconnection network is to transfer messages from a 

specific processor to a specific destination, which can be another processor or a 

memory module (Gramsamer, 2003). The objective for the interconnection network is 

to perform the message transfer correctly as quickly as possible, even if several 

messages have to be transferred at the same time (Rauber & Runger, 2010). 

Interconnection networks are an attractive alternative to dedicated wiring because they 

allow limited wiring resources to be shared by several low-duty-factor signals (Dally & 

Towles, 2004).  

 Interconnection networks are critical in achieving high performance in clusters 

(Shainer et al., 2013). While ideal networks support both high bandwidth and low 

latency, there often exists a trade-off between these two parameters (Dally & Towles, 

2004). In this work, bandwidth represents the capacity of a network connection to 

support data transfers while latency is a delay that happens when data packets are 

transmitted from one point to another over a network. High network bandwidth with 

low network latency often refers to better performance (Tanenbaum, 1996). For 

example, a network that offers low bandwidth tends to keep the network resources 

busy, often causing contention for the resources, which will increase the latency of the 

messages. Contention will occur when two or more messages want to use the same 

shared resource in the network. With a good combination of network topology, routing 
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technique and flow control mechanism, this problem can be minimised (Dally & 

Towles, 2004). 

 Clusters need to incorporate a high performance interconnection network to 

support low latency and high bandwidth communication between cluster nodes. Slow 

interconnection networks had always been a critical performance bottleneck for cluster 

computing (Baker et al., 2000). Cluster interconnection networks enable messages to 

be transferred through a combination of hardware and software support between 

logical elements distributed among a set of separate processor nodes within a cluster 

(T. Sterling, Apon & Baker, 2000). The nodes in a cluster communicate over high-speed 

networks using a standard networking protocol such as TCP/IP or a low-level protocol. 

Some interconnect technologies used in high-performance computers include Gigabit 

Ethernet (Koibuchi et al., 2011), Myrinet (Petrini, Frachtenberg, Hoisie & Coll, 2003) 

and QsNet (Qian, 2010). Each interconnect provides a different level of 

programmability, raw performance and integration with the operating system. 

 Interconnection networks exhibit a wide range of communication behaviours and 

impose diverse requirements on the underlying communication architecture. Some 

problems require the high bandwidth and low latency found only in earlier parallel 

processing systems, and may not be well suited to clusters (Buyya et al., 2002). As the 

network performance attributes improve, the range of problems that can be effectively 

handled also expands. With the emergence of the multi-core cluster, it is increasingly 

important to understand the capabilities and potential performance of interconnection 

networks for clusters. 

2.5 Single-core Clusters  

A traditional cluster with single processor nodes is shown in Figure 2-4. A single 

processor is a processor which contains only one core. The most important 

characteristic of such a cluster is its uniformity, where each node is identical to every 

other node. Each node has its own dedicated memory and cache as well as its own 

path to the interconnection network. A cache is a place to store active data temporarily 

in computing to shorten access times, reduce latency and improve application 

performance (Karmakar, 2011). Based on a common algorithm such as the Message 

Passing Interface (MPI), any cluster with single processor nodes is equally good for 

running any process independently (Yeo et al., 2006). MPI is a library specification and 

standard for message-passing between multiple computers running a parallel program 

across distributed memory. 
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Figure 2-4: Illustration of a Single-core cluster basic structure 

 The performance of a single-core cluster depends on its processor frequency 

(Karmakar, 2011). Adding more single-core processors to the same chip would, in 

theory, result in twice the performance, although in practice the actual speed of each 

core is slower than the fastest single-core processor (Burger, 2005). This is due to 

latency in every communication level of the interconnection network in the cluster. 

2.6 Multi-core Clusters 

The convergence of high-speed networks in high performance computing has 

introduced network-based computing systems, i.e. clusters of multiprocessors. Earlier 

clusters were equipped with multiple single-core processors. The industry has 

therefore adopted the development of a chip with multiprocessors, or multi-cores, to 

overcome single-core cluster issues (Admin, 2014). The trade-off that must now be 

made is that each processor core is slower than a single-core processor (Hamid et al., 

2015c). But two or more cores in a chip together may be able to provide greater 

throughput, even though the individual cores are slower (Geer, 2005). Each generation 

of multi-cores will thus likely increase the number of cores and decrease processing 

time. 

 The multi-core cluster is a cluster with multi-core processor nodes, as shown in 

Figure 2-5. Each cluster node has multiple processors, each of which contains multiple 

cores. With such cluster nodes, both the memory and the connection to the 

interconnection network are now shared.  
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Figure 2-5: Illustration of Multi-core Clusters basic structure 

 Multi-core clusters typically have a hierarchical memory structure, where cores 

from the same processor share caches (Fengguang et al., 2009). On the other hand, 

cores belonging to distinct processors built from the same node share the main 

memory and cores belonging to different nodes do not share any memory. High 

performance can be achieved when executing parallel applications with tasks being 

allocated to the cores according to the application communication pattern and 

environment characteristics (Silva, Drummond & Boeres, 2010). Tasks that 

communicate more frequently should be allocated to the same node so as to avoid 

remote communication. However, depending on the amount of task computation and 

data to be processed, the allocation of multiple tasks to the same processor can 

constitute a bottleneck due to the resources being shared by the processor cores 

(Soryani et al., 2013). 

 In a multi-core cluster, there are three levels of communication in a multi-core 

processor (Lei et al., 2007), as shown in Figure 2-6. The communication between two 

cores on the same processors is referred to as ‘intra-chip communication’. The 

communication across chip but within a node is referred to as ‘inter-chip’ and the 

communication between two processors on different nodes is referred to as ‘inter-

node’ (Chan et al., 2012). 
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Figure 2-6: Communication level in Multi-core cluster 

Message passing in multi-core clusters is more complicated due to the use of 

different interconnection networks for communication, depending on which cores are 

involved. This is because of the overhead cost in moving data between cores which 

involve multiple interconnection networks (Pourreza & Graham, 2007). Data movement 

between two cores in the same processor is faster than between those in different 

processors in the same nodes, which is significantly faster than moving data between 

cores in different cluster nodes (Hamid, Walters & Wills, 2015a). It demonstrates that a 

multi-core cluster with a good interconnection network will lead to better network 

performance than would a traditional cluster. 

2.6.1 The Advantages of a Multi-core Cluster 

A multi-core cluster has a lot of advantages, and nowadays more software is being 

designed to run with multiple threads. Burger (2005) also states multi-core technology 

allows systems to run tasks in parallel that previously would have required multiple 

processors, and multi-core clusters are more easily scalable and can put more 

processing power in a smaller package that uses less power and generates less heat 

for the computational power derived. As it gains in popularity, the multi-core cluster 

will provide greater advantages in speed, scalability and flexibility (Creel & Goffe, 

2007; Geer, 2005). 
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A multi-core cluster can be used to run two programs side by side and when an 

intensive program is running, such as an audio visual scan, video conversion or CD 

ripping, another core can be utilised to run the browser to check e-mail, scanning for 

viruses or using another application (Burger, 2005). A multi-core cluster shows its 

capabilities when using a program that can utilise more than one core, called 

parallelisation, to improve the program’s efficiency (Karmakar, 2011). Programs such 

as graphic software and games can run multiple instructions at the same time and 

deliver faster, smoother results (Creel & Goffe, 2007). 

2.6.2 Research Challenges 

a) Interconnection Network Performance 

Earlier research around multi-core clusters has uncovered a wide variety of issues 

regarding the network architecture and the limitation of its performance. That focused 

on multi-core clusters has raised many issues about how to reduce execution time by 

adding more processors to minimise the communication between nodes. However, 

while such issues are important, the view of this researcher is that each study misses 

key issues raised by other studies. Although minimising the communication between 

nodes may reduce the execution time, it does not guarantee optimal execution time 

(Ichikawa & Takagi, 2009). B. Javadi, Akbari, Abawajy & Nahavandi (2006), for instance, 

state that it always depends on the effectiveness of its interconnection network to 

determine the overall performance of a cluster system. 

 Performance models in cluster architecture based on single-core clusters have 

been widely reported (Alzeidi, Khonsari, Ould-Khaoua & Mackenzie, 2007; Furhad, 

Haque, Kim & Kim, 2013; Geyong et al., 2009; Bahman Javadi, Abawajy & Akbari, 

2008a; Khosravi, Khorsandi & Akbari, 2011; Sarbazi-Azad, Ould-Khaoua & Zomaya, 

2005). Although various issues have been resolved, the evaluations cannot capture the 

communication capacities in individual processors. In order to take advantage of 

multi-core processors in a cluster system, it is important to have an in-depth 

understanding of the characteristics of multi-core clusters and their impact on 

application performance and behaviour. 

 Over time, architectures based on multi-core clusters have been proposed to 

predict and evaluate network communication performance (Abad, Puente & Gregorio, 

2012; Jingjing, Ponomarev & Abu-Ghazaleh, 2012; Khanyile, Tapamo & Dube, 2012; Lei 

et al., 2007; Mei, Zheng, Gioachin & Kal, 2010; Shainer et al., 2013; Soryani et al., 

2013). Previous work on modelling either concentrated on inter-node communication 

networks or focused on high performance multi-core architecture design without 

considering the effect of interconnection networks on the performance. Although 

various issues have been resolved, only a few distinguish the key issue of the 
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performance of interconnection networks. The existing models are therefore unable to 

evaluate the potential communication performance of the interconnection networks 

within the implementation of multi-core cluster architecture. 

b) The Scalability of The Network 

Scalability in this work refers to the ability of a cluster architecture and its 

interconnection network to handle an increasing amount of work and the ability to use 

additional resources with a predictable increase in performance (Sadashiv & Kumar, 

2011). The ability of a cluster is not only to function well in the rescaled situation, but 

to take full advantage of it. Cluster architecture can scale to very large systems, with 

hundreds or even thousands of machines being networked to suit the application 

needs. In fact, the entire Internet can be viewed as one truly huge cluster (Leangsuksun 

et al., 2005). In this research, the scalability of the new architecture will be examined 

from small (8-cluster) to large (128-cluster), with up to 4-core processors in each 

cluster. It will also take advantage of the various message lengths to predict the 

potential performance in term of latency and throughput. 

 It is always important to examine scalability when evaluating clusters. Abdelgadir, 

Pathan and Ahmed (2011) found that having a good network bandwidth and a faster 

network will produce better performance in relation to the scalability of the clusters. 

The conventional approach to improving cluster throughput is to add more processors, 

but there is a limit to the scalability of this approach; the infrastructure cannot provide 

effective memory access to unlimited numbers of processors, and the interconnection 

networks become saturated (Shahhoseini et al., 2000). The interconnection networks in 

a cluster system need to be plan with the capacity to meet growing demand of services 

so that it can handle the expected workloads (Haddad, 2006). Therefore, it is 

important to address network scalability issue in a new architecture to maintain high 

network performance.  

 The new architecture will be examined for scalability potential from 1-core to 

4-core processor, cluster size from 8 to 128 number of clusters and 128 bytes to 16 

KB of message length. The experiments have been conducted and the results have 

been produced in Chapter 4 and Chapter 5.  

2.7 Multi-cluster Architectures 

A ‘multi-cluster architecture’ is a system of clusters connected with the cluster 

interconnection networks, where each cluster system/node has multiple processors. 

Multi-clusters were introduced to address the main concern of a basic cluster system of 

limited service capacity of its common resources, something that causes an increase in 
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the waiting time of the processor as the number of processors increases (Rechistov, 

Ivanov, Shishpor & Pentkovski, 2012). Using more powerful common resources is the 

conventional method for decreasing waiting time, but the capacity for servicing 

resources – such as effective memory access time and the interconnection network 

bandwidth – is saturated by the technology and the structures (Shahhoseini et al., 

2000). To overcome the problems, advances in computational and communication 

technologies has made it economically possible to combine multiple clusters to 

develop a large-scale system known as a ‘multi-cluster system’ (Abawajy & Dandamudi, 

2003). 

2.8 Message, Packet and Flits 

A message may be defined as a logically contiguous group of bits that are delivered 

from a source node to a destination node (Dally & Towles, 2004). Because messages 

may be arbitrarily long, resources are not directly allocated to messages, and 

messages may be divided into one or more packets. A packet is the basic unit of 

routing and sequencing, and a ‘control state’ is allocated to a packet. ‘Flits’, or flow 

control digits, are the basic units of bandwidth and storage allocation used by most 

flow control mechanisms (Bahman Javadi et al., 2008a). Figure 2-7 illustrates the 

partitioning of a message, packet and flit. 

 

Figure 2-7: An illustration of the subdivision of a message into packets and of packets 

into flits (reproduced from (Dally & Towles, 2004)) 

2.9 Modelling and Simulation 

Modelling is defined as the process of identifying and abstracting relevant entities and 

relationships from a system under study (Wehrle et al., 2010). It is a process of 

producing a close approximation to the real system which represents the construction 

and working method of a system of interest (Maria, 1997). A model is thus a 

representation of an actual system (J. Banks, 1998) or process (Carson, 2005). 
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 Simulation is defined as an imitation of a system as it progresses through time 

(Robinson, 2004), and contains a set of entities and relationships to fulfil a certain 

purpose (Wehrle et al., 2010). Simulation modelling is the process of creating and 

analysing a digital prototype of a physical model to predict its performance in the real 

world. A ‘system’ is a construct or collection of different elements – such as people, 

machines and resources – that together produce results not obtainable by the elements 

alone (C. Banks, 2008). 

 Simulation is needed to predict the performance of systems that are subject to 

variability, for example in its interconnections and its complexity. With simulation it is 

possible to predict system performance, to compare alternative system designs and to 

determine the effect of alternative policies on system performance. 

2.9.1 Modelling and Simulation Techniques 

Whether the model and the simulation implementing it accurately represent the real 

system can be checked with two techniques, model verification and model validation. 

Model verification is defined as “ensuring that the computer program of the 

computerized model and its implementation are correct” (Sargent, 2013). Model 

validation is “substantiating that a computerized model, within its domain of 

applicability, behaves with satisfactory accuracy, consistent with the intended 

application of the model” (Schlesinger, 1979). Model validation deals with building the 

right model. 

 Development of modelling and simulation involves human actions and 

knowledge-intensive activities, in which errors, uncertainties, and inadequacies are 

inevitable, leading to quality deficiencies in models and simulation results (Sargent, 

2011). Verification and validation focus on assessing the accuracy of an application 

with respect to its objectives (Shannon, 1977), and is intended to ensure that only 

correct and suitable models and simulation results are used in practice. Credibility of 

simulation results not only depends on model correctness, but is also significantly 

influenced by accurate formulation of the problem (Balci, 1994). Therefore, validation, 

verification and testing techniques must be employed throughout the life cycle of the 

study, which is the methodology used in this work. 

 This thesis will discuss an MCMCA simulation model verification by predicting new 

behaviours for a multi-core cluster architecture. An analytical model using 

mathematical calculations is used to validate the simulation results and the testing will 

be demonstrated in Chapters 4 and 5. Numerous sets of experimental conditions are 

designed to test the applicability of the simulation model. The outputs from various 

sets of experimental conditions are graphed to determine whether the simulation 
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model behaviour is comparable with the analytical model. This is intended to answer 

all the Research Questions and Sub-research Questions listed in section 1.2. 

2.9.2 Simulation Model Structure 

The main structure in the simulation model is its interconnection network. An 

interconnection network is a connection between two or more computer networks via 

network devices such as routers and switches, so as to exchange traffic back and forth 

and guide traffic across the complete network to its destination (Tanenbaum, 1996). 

The main task of the interconnection network is to transfer messages from a specific 

processor to a specific destination, which can be another processor or a memory 

(Gramsamer, 2003). Routers will determine the route for a packet based on a routing 

algorithm, and transmit it from the source to its destination on a node of another 

network. While routers connect the networks, switches create a network by filtering 

and forward packets between networks. 

 To achieve the performance specifications in multi-core cluster system, a 

comprehensive design of network architecture within technology constraints is 

essential by implementing the network topology, routing algorithm and flow control 

mechanism. These three components will be a basis in developing a simulation model. 

a) Network Topology 

Topology describes the interconnection structure used to connect different processors 

or processors and memory modules. It can be characterised as static or dynamic 

interconnection (Kumar, Grama, Gupta & Karypis, 1994). Static interconnection 

networks are also called ‘direct’ networks or ‘point-to-point’ networks, while dynamic 

interconnection networks are called ‘indirect’ networks. Direct networks connect nodes 

directly with each other by fixed physical links, while indirect networks connect nodes 

indirectly via switches and links. Some include a ‘bus’ network, a ‘crossbar’ network, a 

‘butterfly’ network ‘or ‘fat-tree’ network (Kumar et al., 1994; Tanenbaum, 1996). 

 The common topologies that are used for interconnection networks are shared bus 

and crossbar switches (Prisacari, Rodriguez, Minkenberg & Hoefler, 2013). However, 

shared bus and crossbar switches do not scale well with the growth of the processor 

numbers (Khosravi et al., 2011). Many network topologies have thus been proposed for 

clusters, of which fat-tree topologies are among the most popular (Furhad et al., 2013). 

‘Fat-tree’ derives from a popular class multistage interconnection network, 

‘Butterfly-Fat-tree’ (Xuan-Yi, Yeh-Ching & Tai-Yi, 2004). In Fat-tree, as in Figure 2-8, 

each node in the tree is represented by a set of coordinates (level, position), where 

‘level’ denotes the level in the tree and ‘position’ denotes the location, using right to 

left ordering. The vertical levels are numbered from zero, starting at the leaves. The 
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‘leaves’ in the trees correspond to nodes, and the upper levels represent routers. Fat-

tree topology can be scalable with more processing nodes, and the regularity of the 

processing node connection can also be exploited to develop more efficient parallel 

algorithms (Lin, 2003).  

 

Figure 2-8: An 8-port 2-tree constructed by proposed algorithm 

 There can be many possible paths that a message could take through the network 

topology to reach its destination, and this will be determined by the routing algorithm, 

discussed in the next section. 

b) Routing Algorithm 

The routing algorithm determines the path to be used for data transmission, and a 

good routing algorithm balances the load uniformly regardless of the offered traffic 

pattern (Rauber & Runger, 2010). There are three main routing techniques: 

deterministic, oblivious and adaptive. Deterministic routing always sends the packet in 

the shortest direction; oblivious routing randomly picks a direction for each packet, 

while the adaptive routing technique sends the packet in the direction for which the 

local channel has the lowest load. While adaptive routing changes the path of packets 

dynamically, deterministic routing determines a path statically. 

 Deterministic routing has the following advantages (C. Gomez, Gilabert, Gomez, 

Lopez & Duato, 2007; Koibuchi, Watanabe, Kono, Akiya & Amano, 2003):  

(1) It guarantees the FIFO packet delivery, which is required with several message 

passing libraries.  

(2) It makes the detection and tracing of misrouted packets much easier than 

adaptive routing, since there is a pre-determined path between each pair of 

hosts. 

 Some routing algorithms for cluster networks have been proposed (Koibuchi, 

Jouraku & Amano, 2002; Koibuchi, Watanabe, et al., 2003; Sancho, Robles & Duato, 



Norhazlina Hamid   

25 

 

2004) but, in general, these routing algorithms are designed for irregular topologies. 

For regular topologies like fat-trees, most cluster networks adopt a deterministic 

routing algorithm (Bahman  Javadi, Abawajy & Akbari, 2006). 

 The deterministic routing algorithm performs the balance traffic distribution and it 

will extinguish the switch contention problem (Bahman Javadi et al., 2008b). In 

deterministic routing, a message traverses a fixed path between source and 

destination, which simplifies the implementation, avoids a message deadlock and 

guarantees an in-order delivery (Yulei et al., 2012). Gomez et al., (2011) show that 

deterministic routing can achieve a similar, and in some scenarios an even higher, level 

of performance than adaptive routing in the fat-tree network topology. 

 Routing is carefully designed to avoid deadlocks. A deadlock occurs in an 

interconnection network when a group of packets is unable to make progress because 

they are waiting on one another to release a resource; usually this is a buffer or 

channel (Dally & Towles, 2004). The simplest deadlock-free deterministic routing used 

in cluster networks is Up*/Down* routing (Sancho et al., 2004; M. D. Schroeder et al., 

1991).  

 ‘Up*/Down* routing’ is based on an assignment of direction (up or down) to 

network channels where a spanning tree whose node (also called ‘vertex’) corresponds 

to a switch in the network, based on building a ‘breadth-first search’ (BFS) spanning 

tree used in Autonet (M. D. Schroeder et al., 1991). Based on this spanning tree, the 

’up’ end of each link is defined as: 

(1) The end whose switch is closer to the root in the spanning tree, 

(2) The end whose switch has the lower identifier, if both ends are at switches 

at the same tree level. 

A deadlock occurs when flow control holding resources are waiting on another set of 

resources to complete a work cycle. To avoid deadlocks while still allowing all links to 

be used, this routing scheme uses the following Up*/Down* rule: a legal route must 

traverse zero or more links in the up direction followed by zero or more links in the 

down direction (Sancho et al., 2004). Thus the Up*/Down* rule prohibits any packet 

transfer from the down direction to the up direction. The Up*/Down* rule can never 

cause a deadlock because of the ordering imposed by the spanning tree, and no 

deadlock-producing loops are possible (M. D. Schroeder et al., 1991). It also 

guarantees deadlock-free routing since no cycles are formed among paths with the 

above rule while still allowing all hosts to be reached (Koibuchi, Akiya, Watanabe & 

Amano, 2003). Although Up*/Down* routing was originally an adaptive routing, it can 

be implemented as a deterministic routing by choosing a single path from several 

alternative paths (Koibuchi et al., 2002).   
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c) Flow-Control Mechanisms 

Flow control determines how a network’s resources – such as channel bandwidth, 

buffer capacity and control state – are allocated to messages as they progress along 

their route in the network (Gramsamer, 2003). Channel bandwidth transports 

messages between nodes and buffers – such as registers and memories, which allow 

messages to be held temporarily at the nodes – are storage-implemented within the 

nodes. The ‘control state’ tracks the resources allocated to the packet within the node 

and the state of the packet’s traversal across the node (Dally & Towles, 2004).  

 The fact that multiple messages can be in transmission and attempt to use the 

same network link at the same time will cause a problem in the network. If this 

problem occurs, some of the message transmission must be blocked while other 

messages are allowed to proceed (Kumar et al., 1994).  

 A good flow control forwards packets with minimum delay and avoids deadlocks. 

Flow control can be divided into two methods: bufferless and buffered (Rauber & 

Runger, 2010). ‘Bufferless’ flow control uses no buffering and simply allocates channel 

and bandwidth to competing packets, while ‘buffered’ flow control can store a packet 

in a buffer, preventing the waste of ‘channel bandwidth caused by dropping or 

misrouting packets.  

d) Poisson Distributions 

Poisson distribution expresses the probability of a number of occurrances in a fixed 

interval, and these happen independently of the time and with a known average speed 

(Sadeghi & Barati, 2012). The term can also be used for the number of events in other 

specified intervals such as distance, area, or volume. A Poisson distribution is a 

discrete distribution and focuses only on the discrete occurrences over some interval. 

(The Poisson distribution is characterized here by lambda (λ), the inter-arrival time in 

the interconnection network). 

e) Random Number Generators (RNGs) 

A random number generator (RNG) is a program written for and used in probability and 

statistics applications when a large volume of random digits are needed (Dally & 

Towles, 2004). RNGs are widely used in number of applications, particularly in 

simulation. These programs produce endless strings of single-digit numbers, usually in 

base 10, known as the decimal system. When large samples of random numbers are 

taken, each 10 digits in the set [0,1,2,3,4,5,6,7,8,9] occurs with equal frequency, even 

though they are not evenly distributed in the sequence. ‘Mersenne Twister’ is the 

random number generator employed by OMNeT++, used to distribute the message 

destinations in the simulation model in this thesis. The details of the tests of the 



Norhazlina Hamid   

27 

 

random number generator to establish its fitness for purpose is provided in Appendix 

2-A. 

2.10 Summary 

This chapter described the motivation, as reflected in the literature, for using clusters 

as well as the technologies available for building a new cluster architecture. Much 

emphasis is placed on using commodity-based hardware and software components to 

achieve high performance and scalability, and at the same time to keep the ratio of 

price versus performance low. Cluster computing has emerged as a result of the 

convergence of several trends, including the availability of inexpensive 

high-performance microprocessors and high-speed networks, the development of 

standard software tools for high performance parallel and distributed computing, and 

the increasing need of computing power for computational science and commercial 

applications. Clusters have evolved through web servers and e-commerce, to support 

applications ranging from supercomputing and mission-critical software, to 

high-performance database applications.  

It is clear that high-speed networks for cluster computing are important in order 

to support the needs of better performance. The rapid changes in interconnection 

network technology have provided a new opportunity to improve the performance of 

cluster computing. Although much progress has been made in the development of 

low-latency protocols and new standard architecture, it creates interesting new 

challenges. The capability of clusters to deliver high performance and availability on a 

single platform is empowering many existing and emerging applications and making 

clusters the platform of choice. 

This chapter also presented the background to a simulation model structure 

which includes network topology, flow control mechanism and routing algorithms. 

These are important components of message-passing and communication in 

interconnection networks. Once a topology is ready, routing will pick a route that gets 

the messages to their destinations. Routing algorithms establish the path between the 

source and the destination of a message. Flow control determines how a network’s 

resources are allocated to messages as they progress along their route in the network. 

 Several research issues are discussed in the context of multi-core clusters and 

interconnection networks which contribute to a new architecture. The various issues 

presented in this chapter show that disadvantages of a single-core cluster moved the 

present researchers to focus on multi-core clusters. This is the reason why this thesis 

will focus on designing a new architecture of interconnection network in a multi-core 

cluster. 
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  This thesis will apply store-and-forward flow control mechanisms and wormhole 

flow control mechanisms to evaluate the performance of interconnection networks in a 

multi-core cluster architecture. The research will focused on buffered flow control, with 

store-and-forward flow control representing packet-buffer flow control and wormhole 

flow control, indicating flit-buffer flow control, in order to determine the allocation of 

the network’s resources. Since a packet is a part of a message, in this thesis ‘message’ 

and ‘packet’ will be used interchangeably. 

 Multi-core clusters resolve the various concerns by dividing the workload between 

different cores to speed up performance. Multi-core clusters also provide a scalable 

performance computing solution, and use the aggregated power of computing nodes 

to form a high-performance solution for parallel applications. This thesis will tackle the 

challenge to incorporate multi-cluster and multi-core cluster into a novel architecture 

known as Multi-core Multi-cluster Architecture (MCMCA). The incorporate entities in 

MCMCA are shown in Figure 2-9. 

 

Figure 2-9: The incorporate entities in MCMCA 

 The next chapter presents the new architecture proposed to tackle the 

performance issue discussed in the literature. 
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computing 
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Chapter 3 The New Architecture 

3.1 Introduction 

Chapter 2 introduced the concept and characteristics of cluster computing and 

multi-core processors to address cluster performance by networking. The need for a 

new architecture was highlighted. 

This chapter presents the Multi-core Multi-cluster Architecture (MCMCA) as a new 

structure to improve cluster performance with low latency. This is the first published 

investigation of interconnection network performance of MCMCA by simulation. This 

chapter aims to answer the following research question:  

RQ1: What is an appropriate architecture to investigate the communication 

latency of multi-core processors in multi-cluster? 

Hence, the following sub-research questions will be addressed: 

SQ1: What are the appropriate characteristics to be considered in designing a 

cluster architecture? 

SQ2: What is an appropriate simulation model to investigate interconnection 

network performance? 

SQ3: How well does the MCMCA simulation model analyse cluster performance? 

Section 3.2 presents the new architecture, with the design of a modified queueing 

network. Section 3.3 provides architectural detail to be considered in cluster design, 

followed in section 3.4 by a queueing network model and, in section 3.5, a flow 

diagram, all focusing on a new structure of interconnection network to achieve low 

latency and high bandwidth. Finally, the methodologies which will be used for the 

performance analysis are discussed in section 3.6, while section 3.7 discusses the 

feasibility of an MCMCA simulation model by comparing the baseline results with 

previous research. 

3.2 Multi-core Multi-cluster Architecture (MCMCA) 

This new architecture is introduced in Figure 3-1. The structure of MCMCA is derived 

from a Multi-Stage Clustering System (MSCS) (Shahhoseini et al., 2000) which is based 

on a basic cluster using single-core nodes. The MCMCA for its part is built up of 

numbers of clusters where each cluster is composed of numbers of nodes, the 

numbers of which are determined at run time. Each node of a multi-core cluster has 

more than one processor.  Cores on the same chip share local memory, but have their 

own cache. The interconnection network connects the cluster nodes. 
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Figure 3-1: Overview of the proposed Multi-Core Multi-Cluster Architecture (MCMCA) 
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3.3 Appropriate characteristics for cluster 

architecture design 

To answer research question RQ1 and sub-research question SQ1, a systematic review 

was conducted of existing literature. The characteristics for designing cluster 

architecture were investigated from 1999 onwards in the area of high performance 

computing. 

 With the emergence of multi-core clusters, each core will run at least one process 

with multiple interconnection networks to several other processes. This will put 

immense pressure on the interconnection network. Nonetheless, interconnection 

networks are critical in achieving high performance in clusters (Shainer et al., 2013). 

While ideal networks support both high bandwidth and low latency, there often exists a 

trade-off between these two parameters. For example, a network that supports high 

bandwidth tends to keep the network resources busy, often causing contention for the 

resources which will increase the latency of the messages. Contention occurs when two 

or more messages want to use the same shared resource in the network. When a 

packet has to travel from one interconnection network to another to get to its 

destination, many problems such as contention and blocking can arise, and this may 

contribute to communication latency of the interconnection network. 

 The performance of a cluster system depends on the communication latency of its 

interconnection network. The research conjecture is that, by employing a multi-core 

processor in a multi-cluster architecture, it is possible to achieve a lower latency and a 

faster transmission than is possible with a single-core processor. There are five 

interconnection networks in MCMCA. 

 Two of them are commonly found in any multi-core cluster architecture; the 

intra-chip network (AC) and the inter-chip network (EC). 

 The three new interconnection networks introduced in this research are the 

intra-cluster network (ACN), the inter-cluster network (ECN), and the 

multi-cluster network (MCN). 

3.3.1 Intra-Chip network (AC) 

The communication between two processor cores on the same chip is the intra-chip 

network (AC), as shown in  

Figure 3-2. Messages are divided into a number of cores by the AC, as shown by arrow 

1 and arrow 2, which act as connectors between two or more processor cores on the 
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same chip. In theory, dividing the messages into a number of cores  results in more 

than twice the performance with lower communication delay (Furhad et al., 2013).  

Intra-Chip (AC)

Inter-Chip (EC)

1

Core n
(A)

Core n+1
(B)

Node n

Chip n

Intra-Cluster Network (ACN)

Cluster n

Chip n+1

Intra-Chip (AC)

Node n+1

Chip n Chip n+1

Inter-Chip (EC)

2

Intra-Chip (AC)

Core n

Intra-Chip (AC)

Core nCore n

 

Figure 3-2: Communication for message passing between two processor cores on the 

same chip 

3.3.2 Inter-Chip network (EC) 

Figure 3-3 shows an inter-chip network (EC) for communicating across processors in 

different chips but still within the same node. Messages travelling to different chips in 

the same node communicate from source A by arrow 1 via the intra-chip (AC) and 

arrow 2 via inter-chip (EC) to reach their destination B by arrow 3 via EC and by arrow 4 

via AC.  
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Core n Core n+1
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3
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Intra-Chip (AC) Intra-Chip (AC)

Node n+1

Chip n Chip n+1

Inter-Chip (EC)

Intra-Chip (AC)

Core nCore n
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Figure 3-3: Communication for message passing across processors in different chips, 

but within a node 
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3.3.3 Intra-Cluster Network (ACN) 

Intra-cluster network (ACN) is a network to connect nodes within a cluster. As depicted 

in Figure 3-4, messages that cross the nodes (arrow 3) to other nodes (arrow 4) in the 

same cluster are connected by ACN via intra-chip (AC) by arrow 1 and the inter-chip 

(EC) by arrow 2 to complete its journey by arrow 5 and 6. 
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2

Node n

Cluster n+1

Intra-Cluster Network (ACN)

4

Node n+1

Cluster n

Inter-Chip (EC)

1

Core n
(A)

Core n+1

Chip n

Intra-Chip (AC) Intra-Chip (AC)

Chip n+1

Core n

Intra-Chip (AC)

Chip n+1

Core n

6

Core n
(B)

Core n+1

Chip n

Intra-Chip (AC)

ACN

3

5

  

Figure 3-4: Communication routes for messages passing between processors on 

different nodes, but within the same cluster 

3.3.4 Inter-Cluster Network (ECN) and Multi-Cluster Network (MCN) 

The longest route for messages to travel involves ECN and MCN. As shown in Figure 

3-5, messages travelling from their source to their destination between clusters 

communicate via two interconnection networks, ECN and MCN, to reach other clusters.  

 An inter-cluster network (ECN) is used to transmit messages between clusters. The 

clusters are connected to each other via the multi-cluster network (MCN).  When the 

messages reach another cluster (arrow 5), they are connected by the ECN of the cluster 

before arriving at their destination. The same process will continue with the other 

clusters until all the packets exit the network. 
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Figure 3-5: Communication routes for transmitting messages between clusters 

3.4 The MCMCA Queueing Network Model 

Message-passing in MCMCA is embedded within the queueing network model 

approach, as shown in Figure 3-8. In interconnection networks, packets spend a lot of 

time waiting in queues before they are transmitted by a processor core to their 

destination. A source will generate packets at a rate of 

1

λ
 packets per second and they 

will be queued while waiting to be transmitted into the network. An interconnection 

network then removes the packets from the queue on a first-in-first-out (FIFO) basis 

and processes them with an average transmission time (Hamid, Walters & Wills, 

2015b). 

 Approximations of packet latency are based on a queueing network model so as to 

predict the average amount of time that a packet spends waiting in each queue in the 

architecture (Deng & Purvis, 2011). A queueing network consists of service centres (i.e. 

interconnection networks) and customers (i.e. packets). A service centre has one or 

more queues to hold jobs waiting for service. After being serviced, a job either moves 

to another service centre or exits the network (Kaplan & Nelson, 1994). Illustration of 

the equation in internal-cluster and external-cluster with graphs of their individual 

behaviour is shown in Appendix 4-A. 
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This work will consider the distribution of the transmission time upon reaching a 

high traffic density due to a packet’s arrival in an M/G/1 queueing network. Queueing 

networks with an M/G/1 Markovian queue model are used to analyse systems with a 

Poisson distribution transmission time (Sadeghi & Barati, 2012). The M/G/1 queueing 

network studies have been widely reported, which makes tractable the solution of 

modelling interconnection networks of MCMCA by simulation (Bahman Javadi et al., 

2008b; Sarbazi-Azad et al., 2001; Sharifi, Akbari & Javadi, 2009). In general, an M/G/1 

queuing network with arbitrary transmission time distribution has occupancy of – 

𝑊 =
(𝛽)2𝜆𝑖 

2(1 − 𝛽𝜆𝑖)
   

Where 

𝜆𝑖 = arrival rate 

𝛽 = average transmission time 

As discussed in section 2.5 above, a traditional cluster contains single processor nodes 

with one interconnection network, as shown in Figure 3-6. The messages passing 

between processors in single clusters are going through an intra-cluster network (ACN) 

which involves queues for messages to enter the network. Queuing networks for 

multi-core clusters are shown in Figure 3-7. Multi-core clusters were also included in 

single cluster architecture, but with multiple cores in a processor. With multiple cores 

in a chip, the combination may be able to provide greater throughput by reducing the 

queues in each processor (Geer, 2007). Basically, this will decrease the latency and 

improve the interconnection network performance. Compared to traditional clusters, 

multi-core clusters involved three interconnection networks. Chip communication 

consists of inter-chip networks (AC) and inter-chip networks (EC), while communication 

between processors in the single cluster is via intra-cluster networks (ACN).  

Intra-cluster 

(ACN)

Key:

ACN – Message passing between 

processors in the same cluster

Processor

 

Figure 3-6: Queuing network of single-core cluster 
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Figure 3-7: Queuing network of multi-core cluster 

Referring to the new architecture proposed in section 3.2, queuing networks for 

MCMCA is shown in Figure 3-8. As discussed in section 3.3, MCMCA involves five 

interconnection networks in a multi-cluster architecture. Each processor generates 

packets independently, following a uniformly-distributed Poisson process. Intra-cluster 

networks (ACN) represent the process in the same cluster and inter-cluster networks 

(ECN) represent the communication between clusters through a multi-cluster network 

(MCN). The output of ECN in another cluster is a feedback to the same processor. This 

queuing network demonstrated that a long waiting queue can be reduced with multi-

core processors, which will save transmission time. By incorporating multi-clusters, 

MCMCA has boundless service capacity of its common resources, which will contribute 

to reducing the waiting time of the processor. 

 

Figure 3-8: Queuing network of Multi-core Multi-cluster Architecture (MCMCA) 
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3.5 MCMCA Activity Diagrams 

A flow diagram detailing the work flow in a cluster node with a single-core is depicted 

in Figure 3-9, and a flow diagram representing the work flow in a cluster node with a 

multi-core processor is shown in Figure 3-10. After source generates a packet, that 

packet will access the processor through a node, where a node can contain one or 

more processors. If the first processor in the first node is idle, that processor will 

divide the task between a number of cores on the processor. If the first processor is 

busy, it will first pass the packet to another processor in the same node before 

distributing it to the other processors in other nodes. The target node will 

communicate with nodes through the interconnection network. 

  

 

Figure 3-9: Activity diagram of a packet traversing the cluster node of a single-core 

processor 
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Since the packet distribution in single-core cluster only contains single cores in a 

cluster node, it has go through a longer work cycle to complete the network 

transmission (Ichikawa & Kawai, 2008). This will consume more time, and more latency 

will be created. The new architecture overcomes these issues by employing multi-core 

processors, by which the task will be divided between a number of cores in each 

processor. More network transmissions can thus take place at the same time, which 

will save time and decrease the latency. 

 

Figure 3-10: Activity diagram of a packet traversing the cluster node of a multi-core 

processor 
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3.6 Simulation model to investigate interconnection 

network performance 

Simulation and analysis are the most popular tools to measure the performance of an 

interconnection network. Simulation provides accurate performance estimation but 

requires more time to generate results. For more accurate performance estimation, 

therefore, simulation is mostly performed to validate approximate results derived from 

analysis. This has been demonstrated by many analytical researchers in validating their 

model or results (Furhad et al., 2013; Khanyile et al., 2012; Shainer et al., 2013; 

Soryani et al., 2013). 

 Analysis provides approximate performance results with a minimum amount of 

effort and gives insight into how different factors affect performance. By deriving a set 

of equations, analysis can predict the performance of an entire network with different 

simultaneous configurations and parameters. However, analysis usually involves 

making a number of approximations that may affect the accuracy of results (Caliri, 

2000). 

Simulation is needed to predict the performance of systems that are subject to 

variability, for example in their interconnections and complexity. With simulation it is 

possible to predict system performance, to compare alternative system designs and to 

determine the effect of alternative policies on system performance (C. Banks, 2008). 

Maria (1997) stated that simulation is best used before an existing system is altered or 

a new system built, in order to reduce the chances of failure, to meet specifications, to 

eliminate unforeseen bottlenecks, to prevent under- or over-utilisation of resources, 

and to optimise system performance. To imitate or to produce a close approximation 

to the real system, a simulation model is thus the best choice. 

In the area of communication networks, simulation is a useful methodology since 

the behaviour of a network can be modelled by calculating the interaction between the 

different network components such as routers, channels or packets using 

mathematical formulas (Brakmo & Peterson, 1996). The simulation is modelled by 

capturing and playing back experimental observations from real networks (Jia, 

Xiangzhan & Jun, 2009). The data from simulation experiments and the behaviour of 

the network can then be observed and analysed in offline test experiments, using 

mathematical and statistical analyses. All kinds of environmental attributes can be 

modified in a controlled manner to see how the network behaves under different 

parameters or different configuration conditions. Network simulation can be used, 

together with different applications and services, to observe performance in networks 

(Pan, 2008).  
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 The next sections introduce the network simulation tool used in modelling the 

Multi-core Multi-cluster Architecture (MCMCA) in order to answer sub-research question 

SQ2:  

‘What is an appropriate simulation model to investigate interconnection network 

performance?’  

3.6.1 OMNeT++ Network Simulation Tool 

Network simulation tools are computer-assisted technologies applied in the simulation 

of networking algorithms or systems (Pan, 2008). Most network simulation tools apply 

discrete-event simulation (Mehta, Sulatan & Kwak, 2010). Discrete-event simulation 

manages events in time: the simulator reads the queue and triggers new events as 

each event is processed. An event is an instantaneous occurrence that changes the 

model’s state (Carson, 2005); examples include the arrival of a packet for each node in 

a cluster, and the service completion of a packet for the same node. Simulation models 

for MCMCA used discrete-event simulation and were developed using the OMNeT++ 

network simulation tool. 

 OMNeT++  is a C++-based discrete-event simulator which uses the process-

interaction approach and it has been publicly available since 1997 (A. Varga, 2001). It 

has been created with the simulation of distributed systems, parallel systems, 

communication networks and multiprocessors. OMNeT++ is an open-source discrete 

event simulation tool that can be used in the design and analysis of systems in which 

state changes are discrete (Jingjing, Ponomarev & Abu-Ghazaleh, 2012). It provides an 

open-source, modular, scalable, extendible and fully parameterizable framework for 

modeling multi-core multi-cluster architecture (MCMCA). 

a) The Comparison of Network Simulation Tools 

Network simulation tools have changed a lot in the past ten years (Varga & Hornig, 

2008). Comparison studies of network simulators have been conducted (Mehta et al., 

2010; Pan, 2008; Varga & Hornig, 2008; Weingartner, vom Lehn & Wehrle, 2009) which 

involved OMNeT++, MATLAB, ns-2, ns-3, OPNet and QualNet.  

 Table 3-1 examines the simulation packages most relevant for the analysis of 

telecommunication networks and compares them to OMNeT++. NS-2 is still the most 

widely used network simulator in academia, but OMNeT++ provides more 

infrastructures. OMNeT++ is also popular in academia and industry because of its 

extensibility, since it is also open-source. There is also plentiful online documentation 

and mailing lists for general discussion. Although NS-3 demonstrated the best overall 

performance, it still needs to improve its simulation credibility (Weingartner et al., 

2009), and OMNeT++ can be considered as a viable alternative. Although it is a 
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commercial product, OPNet has similar foundations to OMNeT++ and contains an 

extensive model library; also it provides several additional programs and GUI tools. 

The other two commercial products are QualNet, which emphasizes wireless 

simulations, and MATLAB, which needs several prerequisite components for its files to 

function normally. 

Table 3-1: A comparison of OMNeT++ with other simulation tools 

No Features\Tools OMNeT++ MATLAB ns-2 ns-3 OPNet QualNet 

1 Applicability for 

Network Simulation 

Yes Yes Yes Yes Yes Yes 

2 Interface C++ C++ C++ C++/ 

Phyton 

C or C++ Parsec 

(C-

Based) 

3 Traditional Models 

eg.TCP/IP, 

Ethernet), Wireless 

Support 

Yes No Yes Yes Yes Yes 

4 Parallelism MPI/PVM Yes No Yes Yes SMP/ 

Beowulf 

5 Free License Yes No Yes Yes No No 

6 Scalability Large Very 

Large 

Small Large Medium Very 

Large 

7 Documentation and 

user support 

Good Excellent Excellent Excellent Excellent Good 

8 Clustering Yes Yes n/a Yes Yes Yes 

9 Graphic User 

Interface (GUI) 

Yes Yes No No Yes Yes 

 

b) Model Structure of OMNeT++ 

An OMNeT++ model consists of modules that communicate with message-passing. The 

active modules are termed ‘simple’ modules; they are written in C++, using the 

simulation class library. Simple modules can be grouped into compound modules and 

so forth, and the number of hierarchy levels is unlimited. The whole model, called 

‘network’ in OMNeT++, is itself a compound module. Messages can be sent either via 

connections that span modules or directly to other modules. This is shown in Figure 

3-11: the boxes with heavy borders represent simple modules and boxes with thin 

borders represent compound modules, while the arrows connecting the small boxes 

represent connections and gates (Varga & Hornig, 2008). 
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Figure 3-11: Model Structure in OMNeT++ (Varga & Hornig, 2008) 

 Modules communicate with messages, which may contain arbitrary data. Simple 

modules send messages via gates, which are the input and output interfaces of 

modules. An input and output gate can be linked with a connection that was created 

within a single level of module hierarchy; within a compound module, corresponding 

gates of two sub-modules or a gate of the compound module can be connected. 

Modules can have parameters that are used to pass configuration data to simple 

modules and to help define module topology. The model structure (i.e. the modules 

and the interconnection) is described in OMNeT++’s topology description language, 

Network Description (NED). NED lets the user declare simple modules, and to connect 

and assemble them into compound modules.  

 The model behaviour built into each NED file will be captured in C++ files as a 

code. After the program is started, it will first read all NED files, and then read a 

configuration file. The simulation can also perform with different inputs and all the 

values can be stored in a .INI file, usually called ‘omnetpp.ini’, containing settings that 

control how the simulation is executed. 

 The output of the simulation is written into result files: output vector files, output 

scalar files or histograms. Statistical methods are used to elicit the relevant data and 

reach a conclusion with the result by drawing a chart. The details of the simulation 

models, structure diagrams, the code of each modules and tests plan is provided in 

Appendix 2-A 

As mentioned in 2.9.2e), a random number generator (RNG) is a program written for 

use in probability and statistics applications when large quantities of random digits are 

needed (Dally & Towles, 2004). Mersenne Twister is the random number generator 

employed by OMNeT++ (Varga, 2011), used to distribute the message destinations in 

the simulation model. 

a) Mersenne Twister RNG 

OMNeT++ primarily uses Mersenne Twister for random number generation. It uses the 

MT19937 RNG developed by Makoto Matsumoto and Takuji Nishimura in 1997 which 

has a cycle length of 219937 − 1 (Matloff, 2008). The Mersenne Twister has passed 
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numerous tests for randomness and is distributed uniformly in 623 dimensions, 

generating an output which is free of long-term correlations (Jagannatam, 2008). It is 

considered to be fast as it avoids multiplications and divisions by using the advantages 

of caches and pipelines. 

 A configurable number of random numbers are provided to the simulation. Global 

random number streams are mapped to OMNeT++’s module which allows the use of 

variance reduction techniques without the need to change the configuration in the 

simulation model (Varga & Hornig, 2008). While seeding is automatic, auto-assigned 

using the run number, it is also possible to use manually-selected seeds. The 

simulation requires as many seeds as the number of global RNG streams configured. 

Due to the practically infinite cycle length of Mersenne Twister, overlapping of RNG 

streams is not an issue. 

b) Seeding the Mersenne Twister RNG 

Seeding is the procedure of setting the initial states of the RNG, so that it will produce 

a stream of random numbers (Wehrle et al., 2010). The RNG class implements support 

for seeding. Seed sets can be specified in the initialization section or for each run of 

OMNeT++. Mersenne Twister has such a long cycle that there is no need for seed 

generation because chances are very small that any two seeds produce overlapping 

streams (Matloff, 2008). 

c) Chi-square Goodness of Fit Test 

This is a non-parametric test used to find out how the observed value is significantly 

different from the expected value. In Chi-Square test, the term goodness of fit is used 

to compare the observed sample distribution with the expected probability 

distribution. This test also determines how well theoretical distribution (such as normal 

or Poisson) fits the empirical distribution. In this test, sample data is divided into 

intervals. Then the numbers that fall into each interval are compared with the expected 

numbers in each interval. The formula for the statistic is: 

 

 2 =∑
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
 

 

A high value of  2 implies a poor fit between the observed and expected value, so the 

upper tail of the distribution is used for most hypothesis testing for goodness of fit. To 

determine whether the traffic generation rates are random, the null and alternative 

hypotheses are as follows: 

 



Norhazlina Hamid   

44 

 

𝐻0: Traffic generation rates are random  

𝐻1: Traffic generation rates are not random 

Chi-Square 0.001 

Degrees of Freedom 9 

p-value 1.0 

Table 1: Chi-Square goodness of fit test 

Table 1 shows the test statistics and p-value. Since the p-value = 1.0 >0.05, the null 

hypotheses was not rejected. At the =0.05 level of significance, there was not enough 

evidence to reject the null hypotheses, thus, the RNG fitted the theory that the traffic 

generation rates are random. 

 

 

 

 

 

Appendix 3-A.  

3.7 The MCMCA Simulation Model 

The MCMCA simulation model is a descriptive model for investigating the performance 

of a multi-core cluster system, using a simulation model to experiment with, evaluate 

and compare various configurations and design parameters. The simulation model is 

an imitation of a physical network architecture to predict its performance in the real 

world. To get more insight on the feasibility of the MCMCA simulation model, different 

designs were developed based on two flow controls, store-and-forward and wormhole. 

 In order to illustrate the feasibility and the accuracy of the simulation model, a set 

of baseline experiments were conducted and compared with previous research, using 

several system configurations. The details of the actual running of the simulations 

including screen shots of parameter entries, simulation progress and results is 

demonstrated in Appendix 3-B. The next section presents a baseline experiment 

conducted to answer sub-research question SQ3: 
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 ‘How well does the MCMCA simulation model analyse cluster performance?’ 

3.7.1 Experiments with a Single-core Cluster 

This section presents the results of experiments based on Bahman’s model (Javadi, 

Akbari & Abawajy, 2006) conducted on single-core clusters based on the 

interconnection network parameters listed in Table 3-2 and model cases in Table 3-3. 

Table 3-2: Interconnection network parameters 

Parameter Internal-cluster External-cluster 

Network latency 0.01s 0.02s 

Switch latency 0.01s 0.01s 

Network Bandwidth 1000 b/s 500 b/s 

Table 3-3: Model cases for single-core clusters 

C,m,n Message Length (M) Flit length (F) 

8,8,2 32 flits 256 bytes 

8,8,2 32 flits 512 bytes 

8,8,2 64 flits 256 bytes 

8,8,2 64 flits 512 bytes 

 

The results of the simulations with message length (M) = 32 flits are depicted in Figure 

3-12 and Figure 3-13, in which average message latencies are plotted against the 

traffic rate with the store-and-forward flow control mechanism. The figures 

demonstrate the analytical results plotted against those provided by the simulation 

results predicted by Bahman’s model (Javadi et al., 2006). The X-axis represents the 

traffic generation rate, while the Y-axis denotes the communication latency. The results 

in Figure 3-13 are derived from simulation of the new architecture using the same 

configuration and parameters as Bahman’s model. These figures reveal that the latency 

results obtained from the simulation closely match to those obtained from Bahman’s 

model. 
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Figure 3-12: Bahman's model for 8-cluster system with M=32 

 

Figure 3-13: MCMCA model with C=8, M=32 based on Store-and-Forward Flow Control 
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Figure 3-14: Bahman's model for 8-cluster system with M=64 

 

Figure 3-15: MCMCA model with C=8, M=64 based on Store-and-Forward Flow Control 
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Figure 3-15 shows the simulation results of the new architecture, MCMCA, for an 

8-cluster system with M=64 using the same configuration as in Table 3-2 and Table 3-3 

and as in Bahman’s model in Figure 3-14. As traffic increased, increased contention 

causes latency to increase as messages must wait for buffers and channels, but at low 

traffic latency zero-load latency is approached. The zero-load latency assumption is 

that a packet never has to contend for network resources with other packets. It gives a 

lower bound to the average latency of a packet through the network. These figures 

reveal that the latency results obtained from the MCMCA with 1-core closely matches 

those obtained from Bahman’s model. 

 These results show that there are inconsistencies when the analytical model and 

the simulation are under heavy traffic and start to saturate with less than 4-7% 

difference. However, under light traffic the analytical model differs from the simulation 

by less than 2%.  This is due to the approximations to simplify the development of the 

model in Bahman’s analytical model (Bahman Javadi et al., 2008a).   

In conclusion, experiments with different message lengths (M) demonstrated that 

the MCMCA architecture predicts the average message latency with a good degree of 

accuracy and can be extended to large-scale cluster architecture. 

3.7.2 Experiments with Multi-core Clusters 

To test the validity of the simulation of the MCMCA, a simulation experiment was 

performed based on model cases in Table 3-4. Two different flow control mechanism, 

store-and-forward and wormhole, are used to verify the simulation model. 

Table 3-4: Model cases for multi-core clusters 

Items Quantity 

No. of cores (nc) 1, 2, 4 

Message Length (M) and Flit Length (F) 32 flits, 256 bytes 

No. of cluster, m-port, n-tree 8, 8, 2 

Figure 3-16 depicts the average message latency vs. the traffic generation rate curve 

based on store-and-forward flow control, and Figure 3-17 shows the average message 

latency with the same traffic generation rate for the wormhole flow control with 

single-core and multi-core processors. As the traffic increases, the contention latency 

begins to dominate and the vertical asymptotes of the latency curves are determined 

by the saturation throughputs of the different flow control mechanisms. Both figures 

show that the traffic starts to saturate at about 50% of the traffic rate capacity with 

dual-core processors, but higher throughput is achieved with quad-core processors. 

These results confirmed that the simulation model of MCMCA architecture could 

predict the average message latency under various design issues. 
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Figure 3-16: MCMCA Simulation Results based on Store-and-Forward Flow Control 

 

Figure 3-17: MCMCA Simulation Results based on Wormhole Flow Control 
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3.8 Summary 

This chapter has presented a novel architecture as well as the simulation model for 

measuring the performance of interconnection networks in Multi-Core Multi Cluster 

Architecture (MCMCA), in order to answer research question RQ1 and sub-research 

question SQ1, SQ2 and SQ3. The architecture presented identifies the perceived core 

aspects of improving the network performance of multi-core clusters. This architecture 

will assist programmers in developing network applications with optimum network 

performance potential. By integrating multi-core processors and multi-clusters, the 

architecture’s purpose is to provide an alternative for interconnection networks that 

improves their performance. 

 The new architecture is intended to improve this performance by allowing higher 

throughput and minimising network latency. The new architecture can thus be 

evaluated by two metrics: latency and throughput. This chapter started with 

introducing the new architecture designed to overcome the interconnection issues 

discussed in the literature. The new structure of interconnection networks was 

intended to provide greater throughput by reducing the waiting time. 

Research methodology involved simulation development and experiment. The 

validation of the simulation model compared simulation experiments with various 

configurations and design parameters as conducted for Bahman’s model, to match the 

work reported in earlier papers. The new model was examined with two message 

lengths (M) to evaluate the performance under various workload conditions. The 

results showed that, based on the assumptions that the messages have to wait for 

resources before traversing into a network, as traffic rate increases, the average 

latency will increase, while at low traffic density, latency will approach zero-load 

latency. Simulation experiments have revealed that the results obtained from the 

multi-cluster simulations compare with previous models and are closely matched. 

These results have shown that the simulation model can be extended to investigate the 

performance of a multi-core cluster system based on multi-cluster architecture. The 

simulation models are general and applicable to predicting the performance of a 

multi-core cluster. 

 The next chapter presents the methodology and performance evaluation of this 

research, leading to the implementation and evaluation of the proposed new 

architecture. 
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Chapter 4 The Performance Model using 

Store-and-Forward Flow Control 

Mechanism 

4.1 Introduction 

Chapter 3 reviewed the various structure of high performance computing focusing on 

cluster systems and multi-core processors. New approaches are proposed to enhance 

the outcome of cluster systems in term of improving the performance and reducing the 

network latency with efficient interconnection networks. This chapter aim to examine 

through simulation and experiment in order to answer the research question RQ2: 

What is an appropriate flow control mechanism for communication latency 

modelling of the Multi-core Multi-cluster Architecture (MCMCA)? 

Hence, this RQ2 addresses the following sub-research questions SQ4: 

What is the impact of the flow control mechanism in improving communication 

latency? 

The development of the MCMCA simulation model started with a small 8-cluster 

system (C) comprising a single-core processor with one interconnection network. To 

build the MCMCA simulation model using OMNeT++, modifications were made by 

changing this small cluster into progressively larger clusters, C=16, 32, 64, 128, with 

multi-core processors. Since the simulation development involved complex and large 

scale computation, it consumed more time by ran longer than expected. The basic 

design of a large cluster with a single-core processor was completed as planned so that 

it was tested for baseline results, as mentioned in section 3.7. The simulation results 

were compared with earlier similar research with single cores and demonstrated a 

good degree of accuracy.  

The simulation results were validated with an analytical model using mathematical 

calculation, but inconsistencies became apparent when the analytical model and the 

simulation were under heavy traffic. Despite the small differences, the results 

demonstrated that the model can be extended to Multi-core Multi-cluster Architecture 

(MCMCA). 

 Another challenge in simulation development was the ability of the hardware to 

run the simulation execution. For each experiment, 10 traffic rates with 10 latency 

results were needed to form a single graph. Since the simulation involved larger 
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clusters with 10,000 messages for every traffic rate, using the normal high 

specification workstation, the simulation took about 1 hour to complete its cycle. This 

consumed around 10 to 12 hours to complete one full simulation experiment. The 

simulation was therefore ported to the ‘Iridis Compute Cluster’ (Admin, 2013), the 

University of Southampton’s High Performance Computing (HPC) facility. By 

comparison, the simulation took around 10 minutes to complete one traffic rate, and 

total of around 2 hours to complete one experiment. 

The main structure in the simulation model is its interconnection network. The 

simulation model was built at run time to form a topology based on a scalable fat-tree 

topology (Lin, 2003) that represents the geometric structure. As the simulation model 

setup is to send the packet in the shortest direction, this work will apply the 

‘Up*/Down*’ deterministic routing (A. Gomez et al., 2011), a deadlock-free 

deterministic routing for interaction between modules. In order to determine the 

allocation of the network’s resources, the research experiment focused on buffered 

flow control, with store-and-forward flow control representing packet-buffer flow 

control, and wormhole flow control indicating flit-buffer flow control. ‘Mersenne 

Twister’ is the random number generator employed by OMNeT++, used to distribute 

the message destinations in the simulation model. This thesis will also focus on 

Gigabit Ethernet, a high performance network technology, as it is synonymous with the 

cluster system. 

 The critical issue for network architecture is the impact of network latency on 

overall network performance. This chapter thus delves into an evaluation of the latency 

and throughput performance of networks constructed from the Multi-core-Multi-cluster 

Architecture (MCMCA) proposed in this thesis, with two flow control mechanisms: 

store-and-forward and wormhole.  

 However, to improve the performance of the interconnection networks, having a 

good flow control mechanism can minimise the delay and waiting time (Akhter & 

Roberts, 2006; Rauber & Runger, 2010). Evaluating the performance of interconnection 

networks using various flow control mechanism in Multi-core Multi-cluster Architecture 

(MCMCA) is therefore, important for predicting the performance potential. To this end, 

this chapter presents a new simulation model to investigate the performance of 

interconnection networks of a multi-core multi-cluster architecture based on a 

store-and-forward flow control mechanism. The performance of single-core cluster and 

multi-core cluster architectures are compared through simulation experiments and 

analytical model analysis is used to validate the simulation results. The main 

performance metrics to be simulated are latency and bandwidth. The model is then 
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used to evaluate the impact of interconnection network performance on scalability and 

cluster size. 

 The methodology guiding the simulations and evaluation is outlined in section 4.4, 

and the mathematical analysis to validate the simulation results is described in section 

4.5. Various performance evaluations are performed in section 4.6. 

4.2 Store-and-Forward Flow Control Mechanism 

‘Store-and-forward flow control’ is a packet switching mechanism whereby the 

message to be transmitted is partitioned into a sequence of packets (Rauber & Runger, 

2010). Each packet is sent separately to its destination according to routing 

information. Store-and-forward flow control allocates channel bandwidth and buffer 

resources to packets, and the resources are used by one packet at a time, as shown in 

Figure 4-1. Figure 4-1 contains 4 packets, a to d, which are completely transmitted 

across one channel before transmission across the next channel is started. With 

store-and-forward flow control, each node along a route waits until a packet has been 

completely received or stored and then forwards the packet to the next node. 
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Figure 4-1: Flow diagram of the Store-and-Forward flow control mechanism 

(reproduced from (Dally & Towles, 2004)) 

4.3 Assumptions and Notations 

4.3.1 Assumptions 

The simulation model and the analytical model were built on the basis of the following 

assumptions, which are used in similar studies (Bahman Javadi et al., 2008b; B. Javadi 

et al., 2006; Yulei et al., 2012):  

1. Each processor generates packets independently, following a Poisson distribution 

with a mean rate of lambda (λ), and inter-arrival times are exponentially 

distributed. 



Norhazlina Hamid   

54 

 

2. The destination of each message is any node in the system with uniform 

distribution. 

3. The numbers of processors and cores in all clusters are the same, and the cluster 

nodes are homogeneous. 

4. The communication switches are input-buffered, and each channel is associated 

with a single packet buffer. 

5. Message length is fixed. 

4.3.2 Notations 

The notations which are used in developing both models are presented in Table 4-1. 

Table 4-1: Notations used in MCMCA 

Abbr. Description 

AC 

EC 

ACN 

ECN 

MCN 

C 

M 

n 

nc 

M 

F 

N 

ρ 

nt 

𝜆𝑖 

𝜆𝑒 

𝜆𝑠𝑤 

SS 

 S 

𝛽 

𝛼 

𝑃 

𝑃(𝑓, 𝑛𝑐) 

𝛼𝑛𝑒𝑡 

𝛼𝑠𝑤 

𝛽𝑛𝑒𝑡 

Intra-chip Network 

Inter-chip Network 

Intra-cluster Network 

Inter-cluster Network 

Multi-cluster Network 

Number of clusters in the architecture 

Number of ports in m-port n-tree fat-tree topology 

Number of trees in m-port n-tree fat-tree topology 

Number of cores in each processor 

Message length (flit) 

Flit length (bytes) 

Number of nodes  

Number of processors in each cluster 

Number of trees in the MCN 

Arrival rate in ICN (s) 

Arrival rate in ECN (s) 

Arrival rate in MCN (s) 

Number of stages in the network 

Stage number 

Time to transfer packet/flit between two adjacent switches 

Time to transfer packet/flit between a switch and a node 

Probability for message exit from a cluster 

Probability of a message crossing 2f-link 

Network latency 

Switch latency 

Network bandwidth 
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𝑊𝑖 

𝑊𝑒 

𝑊𝑠𝑤 

𝑇𝑖 

𝑇𝑒 

𝑅𝑖 

𝑅𝑒 

∑̅𝐿𝑖 

∑̅𝐿𝑒 

∑̅𝐿 

Average waiting time in internal-cluster 

Average waiting time in external-cluster 

Average waiting time at transfer switches 

Average transmission time in internal-cluster 

Average transmission time in external-cluster 

Average time for the last packet/flit to reach its destination in 

the internal-cluster 

Average time for the last packet/flit to reach its destination in 

the external-cluster 

Average message latency in the internal-cluster 

Average message latency in the external-cluster 

Average message latency of interconnection networks in 

MCMCA 

 

  

4.4 Evaluation Methodology 

The simulation model and experiments were developed and performed using 

OMNeT++ Network Simulation Tool as mention in 3.6.1. This section gives details on 

simulation modules and experiment designs. 

4.4.1 Simulation Structures 

The topology and the communication links between the modules are represented by 

the network description, NED. Six modules were built to describe the simulation 

model, as follows: 

1. Network Topology module  

2. Network Interface module 

3. Communication Switch module  

4. Routing module  

5. Message-Generator module  

6. Message-Sink module  

a) The Network Topology Module 

This module develops the building blocks of the fat-tree topology, including cores, 

nodes and clusters. The simulation structure was mainly based on interconnection 

network properties: network topology, routing and switching strategies, and the flow 

control mechanism. 
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Interconnection networks are composed of a set of shared router nodes and 

channels, and the topology of the network refers to the arrangement of these nodes 

and channels. The ‘fat tree’ is an efficient network topology to provide high 

performance and low latency structures in cluster systems (Prisacari et al., 2013; Yulei 

et al., 2012). The literature in fat tree has been discussed in section 2.9.2a).  

A fat-tree topology is a complete ‘tree’ that gets thicker near the root. In this 

thesis, we employed an m-port n-tree to construct the MCMCA architecture. Moreover, 

the m-port n-tree topology is a full bisection bandwidth (Lin, 2003), which will 

eliminate contention and optimize a throughput. The network organized as a matrix of 

routers with n rows, and each network switch has m communication ports that are 

attached to other switches or processing nodes. The m-port n-tree consists of N 

processing nodes and 𝑆𝑤 communication switches (Xuan-Yi et al., 2004) which are 

given in the equation 

𝑁 = 2(
𝑚

2
)
2

 [4.1] 

𝑆𝑤 = 2𝑛 − 1(
𝑚

2
)
𝑛−1

 [4.2] 

The number of channels, 𝑁𝑐ℎ, in this topology were given by 

𝑁𝑐ℎ = 4𝑛 (
𝑚

2
)
𝑛

 [4.3] 

To achieve a low latency, the topology must maintain a small average distance between 

nodes. The distance between nodes is measured as, D, where messages need to 

traverse in number of channels and processing nodes on average to reach its 

destination. For n>1, the equation for distances between nodes (Xuan-Yi et al., 2004) is 

as follows: 

𝐷 =
(𝑛𝑚 − 2𝑛 − 1) (

𝑚
2)

𝑛

+ 1

((
𝑚
2) − 1) ((

𝑚
2)

𝑛

−
1
2)

  [4.4] 

All the equations above are preliminaries to the simulation input in the simulation 

experiment. 
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b) The Network Interface module 

This module contains the interface of module types in fat-tree topology. Cores, nodes, 

clusters, switch, channel and the interconnection network are declared in this module 

and connections between them are established. 

The number of clusters (C), number of processing nodes (N), m-port n-tree and 

message lengths (M) comprise the basic simulation input for each experiment. Number 

of processing nodes (N) is based on one processor in each node (Lin, 2003). However, 

for MCMCA, the number of processors in each cluster,  𝜌, is depends on number of 

core inputs (nc). To simulate the multi-core processors in MCMCA, the number of 

processors in a cluster will multiply with number of cores, where nc must be smaller or 

equal than number of clusters, 𝐶, following the Assumption 3; the numbers of 

processors and cores in all clusters are the same. The equation can be expressed as – 

𝜌 = 2𝑛𝑐 (
𝑚

2
)
2

,              𝑛𝑐 ≤ 𝐶  [4.5] 

Thus, the packets will be distributed into a designated number of cores throughout the 

complete cycle, with the same number of cluster nodes based on message probability 

by given equation (Shahhoseini et al., 2000).  

𝑃𝑜 =
𝑁 − 𝜌

𝑁 − 1
   [4.6] 

𝑃𝑖 = 1 − 𝑃𝑜 [4.7] 

c) The Message-Generator module 

This will follow the generation of messages at each node with a message-generator 

module based on the assumptions that the network traffic follows a uniform Poisson 

distribution (Sadeghi & Barati, 2012). Messages are divided into packets or flits, the 

assumption being that the message destinations are uniformly distributed. The 

message destination is distributed by P
o

, the probability for a message to exit from a 

cluster, and P
i

 , the probability of messages staying in a cluster, given by equations 4.6 

and 4.7. 

d) The Routing module 

A routing module determines the route taken by a packet from source node to 

destination node. This module determines the path and schedules the routing 

algorithms for the packets in all communication networks based on FIFO 
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(First-In-First-Out), and it represents a single server queue that provides the same 

service rate for each packet.  

Based on message probability expressed in equations 4.6 and 4.7, this module 

will determine total packet to be executed in internal-cluster and external-cluster. By 

theory, when number of cores in a cluster increase, more task can be done internally 

with less packets will be distributed to external-cluster. Therefore, lower latency and 

higher throughput can be achieved. 

The attractive properties of deterministic routing motivate the use of the 

Up*/Down* routing algorithm (Schroeder et al., 1991). ‘Up*/Down* routing’ is 

deadlock-free routing which is required to avoid deadlock occurrence in the 

architecture. In this routing algorithm, a message will experience two phases: an 

ascending phase to get to the nearest common ancestor (NCA), followed by a 

descending phase until the message reaches its destination. This routing algorithm is 

able to perform balanced traffic distribution. 

e) The Communication Switch module  

This module acts as the connection for each switch and router in the model, and it will 

determine how a message is transmitted along a path that has been selected by the 

routing algorithm. This module also acts as a flow control mechanism to allocate 

resources such as channel and buffer to the packets. Since this chapter describes an 

evaluation based on store-and-forward flow control, the blocking probability is zero. 

This makes the transmission time of a packet to the next switch equal to the 

transmission time on a node to a switch connection, 𝛼𝑖𝑒. This simulation adopts two 

types of connection: 𝛼 is the time taken for a packet of the message to transmit on a 

node–to-switch (or vice versa) connection, while  is the time taken for a packet of the 

message to transmit on a switch-to-switch connection (B. Javadi, Akbari & Abawajy, 

2005). 𝑀 is the message length, 𝛼𝑛𝑒𝑡 and 𝛼𝑠𝑤 are the network and switch latencies, 

and 𝛽𝑛𝑒𝑡 is the transmission time of one byte.  

 𝛼𝑖𝑒  = 0.5 𝛼𝑛𝑒𝑡 + 𝑀
1

𝛽𝑛𝑒𝑡
   [4.8] 

𝛽𝑖𝑒 =  𝛼𝑠𝑤 +𝑀
1

𝛽𝑛𝑒𝑡
  [4.9] 

f) The Message-Sink module 

This module will destroy the packets after each generation is completed and will 

gather event information for statistics. The sink module collects latency and 
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throughput at the packet and flit levels. The ‘batch mean method’ (Dally & Towles, 

2004) is used to collect the statistics of the network performance for each simulation 

experiment. This method provides an average over the total number of messages, 

which are divided into many batches, and statistics are accumulated for these batches. 

The use of the batch mean method to gather the statistics reduces the standard 

deviation of the measurement, which leads to higher confidence in the estimation. 

4.4.2 The Simulation Activity Diagram 

 

Figure 4-2 depicts the simulation activity diagram, showing the connection between 

the simulation modules. After the generator module start distributes the packet, the 

routing module will determine the path by which the packets traverse the network. The 

flow control mechanism will allocate a channel to the packet, and since the 

store-and-forward flow control is a buffer flow control, a buffer will be allocated to the 

packet as well. When the buffer is available to hold the packets, it will send a request 

to the communication switch for the output port. Once the passage is granted, the 

packet leaves for the crossbar switch and goes on to the next step. 

4.4.3 Simulation Experimental Setup 

This thesis focuses on the measuring of the steady-state performance of a network: the 

performance of a network with a stationary traffic source after it has reached 

steadiness. A network has reached ‘steadiness’ when its average queue lengths have 

reached their steady-state values. To measure steady-state performance, the simulation 

experiments were conducted in three phases: warm-up, measurement and drain (Dally 

& Towles, 2004). To minimise systematic errors, the first 10% of the messages are 

discarded as part of the ‘warm-up phase’ and the last 10% in the ‘drain phase’ were not 

used in the measurement, so as to provide enough time for all packets to reach their 

destination. ‘Warm-up’ is when the influence of the simulation initialisation is minimal. 

The network has  reached its steady state once the network is warmed up (Dally & 

Towles, 2004). This means that the statistics of the network are stationary and no 

longer change with time, which will determine an accurate estimation. 

Each simulation experiment was run until the network reached its steady state, 

meaning that a further increase in the simulation time did not change the statistical 

results. The communication between processors relies on a message passing between 

the source and its destination. The message passes over a channel that directly 

connects two processor cores and might have to pass through several processor cores 

based on the designate flow control before it reaches its destination, where each 
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communication involves a lot of latency. To generalise the simulation details in this 

section, ‘node’ will represent processor and core as well as itself. 
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Figure 4-2: Activity diagram of MCMCA simulation model 

 In these simulation experiments, a total of 100,000 messages were used to gather 

statistics. The first 10,000 messages were discarded, as they were assumed to occupy 

the warm-up phase before the simulation reached it steady state; and the last 10,000 

messages were discarded in the drain phase. In these experiments, 100,000 messages 

were divided into 10 batches, where the size of each batch was 10,000 messages.  

 As mentioned in section 4.4.1b), simulation inputs must be predetermined before 

each run. The simulation can behave with different inputs and specified parameters of 

the model, such as the number of cores (nc), number of clusters (C), number of 

messages to be generated (λg), message length (M) and inter-arrival time (λ). This will 

be followed by the generation of messages at each node by a message-generator 

module, based on the assumptions that the network traffic follows a uniform Poisson 

distribution (see section 2.9.2d) above). The addresses of the source node and 

destination node are randomly produced, based on the number of nodes and the 

number of switches. 

 Each simulation experiment started with the creation of the simulation structure 

based on fat-tree network topology by the network topology module. Each network 

switch has m communication ports that are connected with other switches or router or 

nodes with n level of tree. The switch connection is established by a communication 

switch module which will also transmit the messages based on the route selected by 

routing algorithm. The switch connection for an internal cluster is represented by 

‘ISwitch’, and by ‘ESwitch’ for an external cluster, as reflected in Algorithm 4-1 and 

Algorithm 4-2 below. 

Algorithm 4-1: Internal cluster switch connection (ISwitch) for store-and-forward flow 

control mechanism 

// Internal cluster 

 

void AbstractinFifo::handleMessage(cMessage *msg) 

{ 

    gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

     

    simtime_t d = simTime()-msg->getTimestamp(); 

 

    if (gmsg!=NULL){ 

         if (gmsg->getRouted()==0)  

             { 

  endService(msg, 0); 

  return; 
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     } 

       gmsg->setRouted(0); 

 

 } 

        if (msg==endServiceMsg) 

        { 

            endService( msgServiced ,1); 

            if (queue.empty()) 

            { 

                msgServiced = NULL; 

            } 

            else 

            { 

                msgServiced = (gensinkMsg *) queue.pop(); 

                simtime_t serviceTime = startService( msgServiced );  

                scheduleAt( simTime()+serviceTime, endServiceMsg ); 

            } 

        } 

        else if (!msgServiced) 

        { 

            arrival( msg ); 

            msgServiced = gmsg; 

            simtime_t serviceTime = startService( msgServiced );   

            scheduleAt( simTime()+serviceTime, endServiceMsg ); 

        } 

        else 

        { 

            arrival( msg ); 

            queue.insert( msg ); 

        }  

} 

 

Algorithm 4-2: External cluster switch connection (ESwitch) for store-and-forward flow 

control mechanism 

  // External cluster 

  

#include "efifo.h" 

#include <math.h> 

#include "gensinkMsg_m.h" 

 

void AbstracteFifo::handleMessage(cMessage *msg) 

{ 

    gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

     

    simtime_t d = simTime()-msg->getTimestamp(); 

 

 if (gmsg!=NULL){ 
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             if (gmsg->getRouted()==0) 

                  {  

  endService(msg, 0); 

  return; 

     } 

     gmsg->setRouted(0); 

 } 

        if (msg==endServiceMsg) 

        { 

            if (queue.empty()) 

            { 

                msgServiced = NULL; 

            } 

            else 

            { 

                msgServiced = (gensinkMsg *) queue.pop(); 

                simtime_t serviceTime = startService( msgServiced );   

                scheduleAt( simTime()+serviceTime, endServiceMsg ); 

            } 

        } 

        else if (!msgServiced) 

        { 

 

            arrival( msg ); 

            msgServiced = gmsg; 

             

            simtime_t serviceTime = startService( msgServiced );  

            scheduleAt( simTime()+serviceTime, endServiceMsg ); 

        } 

        else 

        { 

            arrival( msg ); 

            queue.insert( msg ); 

  

        }  

} 

 

The generated message has the probability, 𝑃𝑜, to be directed to the external-cluster 

network nodes, and the probability, (1-𝑃), of being evenly distributed to all 

internal-cluster network nodes. In the simulation, when the number of source and 

destination address is equal, the messages will be routed to an internal cluster by the 

internal routing module; otherwise the messages are exited to an external cluster by 

the external routing module, as presented in Algorithm 4-3.The average amount of 

time that a message spends waiting in each queue in the architecture estimates the 

message latency based on an M/G/1 queuing network model, as described in section 

3.4 above. Lastly, each message is time-stamped after its generation, and the message 
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completion time is defined by a message-sink module on each node in order to 

compute the statistics.  

Algorithm 4-3: Message probability in the internal cluster and external cluster 

if ((int)(src/num_nodes) == (int)(dest/num_nodes)){ 

// internal-cluster  

ev << "Send to internal Cluster" << endl; 

gmsg->setKind(0); 

 

if (gate("out",0)->getTransmissionChannel()->isBusy()) 

sendDelayed(gmsg, gate("out",0)->getTransmissionChannel()-

>getTransmissionFinishTime()-simTime(),"out",0); 

else 

send(gmsg,"out",0); 

      } 

 

  else 

                      { 

 

      // external-cluster 

                          ev << "Send to external Cluster" << endl; 

       gmsg->setKind(1); 

       

if(gate("out",1)->getTransmissionChannel()->isBusy()) 

 

      { 

sendDelayed(gmsg, gate("out",1)->getTransmissionChannel()-

>getTransmissionFinishTime()-simTime(),"out",1); 

  } 

  else 

  { 

      send(gmsg,"out",1); 

  } 

  } 

 

4.5 The Analytical Model 

The analytical model comprises a set of equations describing the performance of the 

cluster to support the simulation analysis (Fengguang et al., 2009). Analytical models 

are constructs to gain an understanding of the current activity of the system, to 

measure performance and analyse the behaviour of the workloads in a multi-core 

cluster architecture (Caliri, 2000).The analytical model was created to validate the 

results of simulation experiments using the Matlab application (Attaway, 2013). Some 

modification was made to the equations to comply with the MCMCA design. 
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4.5.1 Preliminaries 

This section explains in detail the implementation of the analytical model to compute 

the communication latency of the interconnection networks in MCMCA. The analytical 

model also needs to define simulation inputs as preliminaries to other equations. The 

first phase involves computing ρ in equation 4.5, where 𝜌 is the number of processors 

in each cluster and 𝑛𝑐 is the number of cores on each processor, which is the new 

parameter in the calculation. Here 𝑛𝑡 is the number of ‘trees’ in the MCN, while C is the 

number of clusters and m is the number of ports (Geyong et al., 2009).  

𝑛𝑡 =  
(𝑙𝑜𝑔2 𝐶) − 1

(𝑙𝑜𝑔2𝑚) − 1
  [4.10] 

The messages enter an internal cluster or an external cluster based on the probability 

𝑃.  The probability of an outgoing request 𝑃𝑜 represents the messages generated by the 

source nodes that are sent to an external-cluster network, while messages injected 

from a source node with the probability 𝑃𝑖  enter an internal-cluster network. Both can 

be computed with equations 4.6 and 4.7. 

To traverse in the network, each message may use a different number of channel 

links to reach its destination. The transmission time for internal-cluster and 

external-cluster networks can therefore be considered as a 2f-channel with an 

f-channel in the source node and an f-channel in the destination node (Xuan-Yi et al., 

2004). The probability that a message reaches its destination in MCMCA, 𝑃(𝑓, 𝑛𝑐), can 

be computed by: 

𝑃(𝑓, 𝑛𝑐) =

{
 
 
 

 
 
 (
𝑚
2 − 1) (

𝑚
2)

𝑓−1

2 (
𝑚
2)

𝑛𝑐
− 1

1 ≤ 𝑓 < 𝑛𝑐

(𝑚 − 1) (
𝑚
2)

𝑓−1

2 (
𝑚
2)

𝑛𝑐
− 1

𝑓 = 𝑛𝑐

   [4.11] 

𝑃(𝑓, 𝑛𝑐) = 𝑃(ℎ, 𝑛𝑡)  = 𝑃(𝑗, 𝑛) [4.12] 

4.5.2 Average Message Latency of an Internal-Cluster Network 

The communication latency in an inter-cluster network includes messages travelling in 

an intra-chip network (AC), an inter-chip network (EC), and an intra-cluster network 

(ACN). The calculation involves average waiting time at the source node in section 

4.5.2a), average transmission time for a message to cross the networks in section 



Norhazlina Hamid   

66 

 

4.5.2b), and average time for the last packet of the message to reach its destination in 

section 4.5.2c). 

a) Average Waiting Time at the Source Node 

In an internal-cluster network, the total arrival rate is 𝜆𝑖 and each message travels an 

average distance to cross the network (B. Javadi, Khorsandi & Akbari, 2005). Thus, 

every channel in an internal-cluster will receive messages at a rate of 𝑊𝑖, where  is the 

time taken for a packet of the message to transmit on a switch-to-switch connection as 

given by equation 4.8. 

𝑊𝑖 =
(𝛽𝑖)

2𝜆𝑖 

2(1 − 𝛽𝑖 𝜆𝑖)
  [4.13] 

𝜆𝑖 = (1 − 𝑃) (
1

𝜆
) [4.14] 

b) Average Transmission Time for a Message to Cross the Networks 

Since this architecture applies store-and-forward flow control, blocking does not 

happen (Dally & Towles, 2004). This determined that the average network latency is 

equal to the transmission time of a packet to the next switch. Thus, the average 

transmission time in internal-cluster network is: 

𝑇𝑖 = 𝛼𝑖 [4.15] 

c) Average Time for the Last Packet of the Message to Reach its Destination 

Averaging over all possible cores that can be destinations for a packet in the 

internal-cluster (Sharifi et al., 2009), the average time for the last packet to reach its 

destination in the internal-cluster 𝑅𝑖 is as follows: 

𝑅𝑖 =∑∑[𝑃
(𝑓, 𝑛𝑐) 

𝑃
(𝑗, 𝑛) 

( ∑ 𝛽𝑖 + 𝛼𝑖

𝑆𝑆𝑖−1

𝑠=1

)]

𝑛

𝑗=1

𝑛𝑐

𝑓=1

 [4.16] 

Finally, the equation for message latency in the internal-cluster communication 

networks can be expressed as: 

∑̅𝐿𝑖 = 𝑊𝑖 + 𝑇𝑖  + 𝑅𝑖 [4.17] 
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4.5.3 Average Message Latency of an External-Cluster Network 

An external-cluster network involves an inter-cluster network and a multi-cluster 

network. Latency in the external cluster will be determined by the same entity as in an 

internal-cluster network. An external message will need to cross more communication 

networks to reach its destination in another cluster.  

a) Average Waiting Time at the Source Node 

Waiting time on an external-cluster network can be determined by the network channel 

which follows the M/G/1 queueing network, as mentioned in section 3.4. Messages 

generated by the source nodes are sent to the external cluster with the probability of 

an outgoing request 𝑃𝑜, where 𝜆𝑒 is the message arrival rate. Based on equation 4.13, 

the waiting time in the external-cluster network (𝑊𝑒) can be computed by: 

𝑊𝑒 =
 (𝛽𝑒)

2𝜆𝑒
2(1 − 𝛽𝑒𝜆𝑒)

 [4.18] 

𝜆𝑒 =  2 (
1

𝜆
)𝑃 [4.19] 

b) Average Transmission Time for a Message to Cross the Networks 

The analysis in equation 4.15 also applies to external-cluster network. Since the 

probability of blocking is zero, the transmission time is: 

𝑇𝑒 = 𝛼𝑒 [4.20] 

c) Average Time for the Last Packet of the Message to Reach its Destination 

The average latency for the last packet to reach its destination in the external cluster 

(Sharifi et al., 2009) can be computed by: 

 

𝑅𝑒 =∑∑[𝑃(𝑗, 𝑛) 𝑃(ℎ, 𝑛𝑡)( ∑ 𝛽𝑒 + 𝛼𝑒

𝑆𝑆𝑒−1

𝑠=1

)]

𝑛𝑡

ℎ=1

 

𝑛

𝑗=1

 [4.21] 

d) Average Waiting Time at Transfer Switches 

External-cluster messages need to cross transfer switches during their journey across 

the network. The transfer switches act as simple buffers to combine traffic from/to one 
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cluster to/from other clusters (Dally & Towles, 2004). The waiting time at these buffers 

𝑊𝑠𝑤, with 𝜆𝑠𝑤 as the message arrival rate, can be computed as: 

𝑊𝑠𝑤 =
(𝛽𝑒)

2𝜆𝑠𝑤
2(1 − 𝛽𝑒𝜆𝑠𝑤)

   [4.22] 

𝜆𝑠𝑤 = 𝑃 (
1

𝜆
) 𝜌 [4.23] 

Therefore, the equation for message latency in external-cluster communication 

networks can be expressed as: 

∑̅𝐿𝑒 = 𝑊𝑒 + 𝑇𝑒  + 𝑅𝑒 + 2𝑊𝑠𝑤 [4.24] 

4.5.4 Average Message Latency of MCMCA 

Using equations 4.17 and 4.24, the average message latency of communication 

networks in the multi-core multi-cluster architecture can be obtained by the sum of the 

message latency in internal-cluster and external-cluster situations as follows: 

∑̅𝐿 =  ∑̅𝐿𝑖 (1  − 𝑃) + ∑̅𝐿𝑒 (𝑃) [4.25] 

4.5.5 Implementation of the Analytical Model 

Algorithm 4-5 presents the implementation of the analytical model to compute the 

communication latency of interconnection networks in MCMCA. 

Algorithm 4-4 and Algorithm 4-5 presents the implementation of the analytical model 

to compute the communication latency of interconnection networks in MCMCA. 

Algorithm 4-4: Process flow in calculating the communication latency of 

interconnection networks in MCMCA 

Input Parameters: 

Number of clusters C, parameter of m-port n-tree, message length M, number of 

cores nc, number of nodes N and lambda 
𝟏

𝝀
. 

1: Calculate probability of entering/outgoing messages in the cluster 𝑃𝑜 , number of 

processors in each cluster 𝜌, and number of trees in the MCN 𝑛𝑡 by using 

equations 4.6, 4.5 and 4.10. 

2: Calculate arrival rate in internal-cluster 𝜆𝑖, external-cluster 𝜆𝑒 and transfer switch 
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𝜆𝑠𝑤 by using equations 4.14, 4.19 and 4.23. 

3: Calculate the probability of the message crossing 2 channels, 𝑃(𝑗, 𝑛) and 

𝑃(𝑓, 𝑛𝑐), by using equations 4.11 and 4.12. 

4: Calculate the time taken for a packet of the message to transmit on a node to a 

switch or vice versa 𝛼𝑖𝑒, and the time taken for a packet of the message to 

transmit on a switch to switch 𝛽𝑖𝑒 for the internal and external cluster using 

equations 4.8 and 4.9. 

5: Calculate average latency in the internal cluster: 

a. Calculate 𝑊𝑖, the waiting times at the source node based on equation 4.13. 

b. Calculate 𝑅𝑖, the time for the last packet of the message reach its destination 

using equation 4.16. 

6: Calculate average latency in the external cluster: 

a. Calculate 𝑊𝑒 using equation 4.18 

b. Calculate 𝑅𝑒 using equation 4.21 

c. Calculate 𝑊𝑠𝑤, the waiting time at the transfer switch using equation 4.22. 

7: Calculate the message latency in the internal cluster and the external cluster 

using equations 4.17 and 4.24. 

8: Calculate ∑̅𝐿, the average message latency of interconnection networks in 

MCMCA, using equation 4.25. 

 

Algorithm 4-5: Pseudocode of process flow in calculating the communication latency of 

interconnection networks in MCMCA using MATLAB based on Store-and-Forward flow 

control 

clear all 

clc 

  

n_core=2;  % number of core(s) 

  

C = 8; 

m = 8; 

n = 2; 

M = 256; 

Lm = 1; 
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lambda=5000; 

lambda=1/lambda; 

  

pp=(m/2)^n; %number of processor per node 

NP=2*pp; %number of processors in each cluster 

NP=NP*n_core; 

N=(NP/n_core)*C; 

  

PO=(N-NP)/(N-1); 

PI=1-PO; 

  

lambdaI1=PI*lambdaG; 

  

anetI = 0.02; 

aswI = 0.01; 

BnetI = 500; 

  

tcnI=(0.5*anetI)+(M*Lm*1/BnetI); 

tcsI=aswI+(M*Lm*1/BnetI); 

  

WI1=lambdaI1*tcsI*tcsI/(2*(1-lambdaI1*tcsI)); 

  

DI=tcnI; 

  

for j=1:n-1; 

      P(j,n) = (((m/2)-1)*((m/2)^(j-1)))/(NP-1) 

End 

 

for j=n; 

      P(j,n) = ((m-1)*((m/2)^(j-1)))/(NP-1) 

end   

  

for f=1:n_core-1; 

    Pnc(f,n_core) = (((m/2)-1)*((m/2)^(j-1)))/((2*((m/2)^n_core))-1) 

End 

 

for f=n_core; 

    Pnc(f,n_core) = ((m-1)*((m/2)^(j-1)))/((2*((m/2)^n_core))-1) 

end  

  

davgICN=(((n*m)-(2*n)-1)*(pp)+1)/(((m/2)-1)*(pp-0.5)); 

  

RI=(davgICN-1)*tcsI+DI; 

  

EC=0; 

  

for f=1:n_core; 
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    EC=EC+Pnc(f,n_core)*RI; 

End 

 

%external cluster 

  

nc=log(C/2)/log(m/2); 

pc=(m/2)^nc; 

  

lambdaE1=2*PO*lambdaG; 

 

lambdaI2=((NP/n_core)*PO*lambdaG); 

  

davgECN=davgICN; 

 

davgICN2=(((nc*m)-(2*nc)-1)*(pc)+1)/(((m/2)-1)*(pc-0.5)); 

  

anetE = 0.050; 

aswE = 0.02; 

BnetE = 300; 

  

tcsE= aswE+(M*Lm*1/BnetE); 

 

tcnE=(0.5*anetE)+(M*Lm*1/BnetE); 

  

WE1=lambdaE1*tcsE*tcsE/(2*(1-lambdaE1*tcsE)); 

  

DE=tcnE; 

  

for j=1:n-1; 

    P(j,n) = (((m/2)-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1) 

End 

 

for j=n; 

    P(j,n) = ((m-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1) 

end  

  

RE=((davgECN+davgICN2)-1)*tcsE+DE; 

  

WCD=lambdaI2*tcsE*tcsE/(2*(1-lambdaI2*tcsE)); 

  

TE1=WE1+RE+(2*WCD); 

  

TI = PI*TI1; 

TE = PO*TE1; 

  

TMC=PI*TI1+PO*TE1; 
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4.6 Performance Evaluation (SQ4) 

This section presents the results for the Multi-core Multi-cluster Architecture simulation 

model based on store-and-forward flow control, and discusses their implication. These 

results will show the impact of the store-and-forward flow control mechanism in 

improving communication latency by answering sub-research question SQ4. 

The latency and bandwidth experiments were carried out on a single-core 

processor, a dual-core processor and a quad-core processor. Analysis of the results as 

presented in section 4.3 provides validation of the simulation results. 

 Both simulation and analytical models are divided into internal-cluster and 

external-cluster results. The communication latency in internal-cluster networks 

includes messages travelling in the intra-chip network (AC), inter-chip network (EC) and 

intra-cluster network (ACN), while messages travelling in external-cluster networks 

communicate via two interconnection networks: the inter-cluster network (ECN) and 

multi-cluster network (MCN). Both clusters were determined by four factors: 

1. Average waiting time at the source node; 

2. Average transmission delay for a message to cross the networks; 

3. Average time for the last packet of the message to reach its destination; 

4. Average waiting time at transfer switch (external cluster only). 

  

The simulation experiments were performed with various combinations of parameters 

by using the interconnection network parameters given in Table 4-2 with simulation 

input I from Table 4-3. 

Table 4-2: Interconnection Networks Parameter I 

Parameter Internal cluster External cluster 

Network latency 0.01s 0.02s 

Switch latency 0.01s 0.01s 

Network Bandwidth I 1000 b/s 500 b/s 

Network Bandwidth II 800 b/s 600 b/s 

 

Table 4-3: Simulation Input I 

Items Message length (M) 8K 

No. of cores (nc) 1, 2, 4 

No. of cluster (C) 8 

No. of m-port  n-tree 8, 2 
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4.6.1 Latency and Throughput Performance on MCMCA 

The ‘average message latency’ is defined as the average amount of time elapsed from 

the generation of a message until the last packet reaches the destination node. The 

‘transmission time’ is the network cycle time taken by a single packet to travel from 

one node to another node in the simulator. The ‘throughput’ is the rate at which traffic 

is delivered to the destination. When traffic is less than saturation level, the throughput 

is equal to the traffic generation rate. 

 To investigate the latency effect on MCMCA, the simulation experiments involved a 

single-core processor, a dual-core processor and a quad-core processor for 

comparison. To form the latency curve, a total of 10 different message generation 

rates, 𝜆𝑔, were used for each core, and the accuracy of each result was validated by the 

analytical model. For the investigation of network throughput, the performance with 8 

KB message length per traffic rate was graphed. 

 

Figure 4-3: Message latency and throughput results based on store-and-forward flow 

control mechanism with M=8 KB using Network Bandwidth I 
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Figure 4-4: Message latency and throughput results based on store-and-forward flow 

control mechanism with M=8 KB using Network Bandwidth II 

a) Discussion 

Figure 4-3 and Figure 4-4 show the latency performance results of the interconnection 

network for single-core clusters and multi-core clusters. The results demonstrate that, 

with more than 1 core, the architecture can achieve lower communication latency. The 

probability of packet transmission in the internal cluster increased 51-76% with 2 and 4 

cores in each processor compared with the single-core processor. This result shows 

that more packets can be transmitted at the same traffic rate, which will save waiting in 

a queue. 

 At the same time, a multi-core cluster is able to extend network throughput. The 

throughput of the network tends to increase as the number of cores is increased. With 

the dual-core processor, the experiments showed throughput extending over 

single-core by a significant 50%. With the quad-core processor, it extends the 

throughput by 75%. The improvement in throughput is due to more message 

transmission in light traffic. Even with a different network bandwidth, low latency and 

high throughput are achieved. 
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Both simulation experiments have been validated by analytical model. The 

consistency of the mathematical calculations with the simulation results shows that the 

simulation is a practical and cost-effective tool to measure the performance of 

interconnection networks in multi-core cluster architecture. 

4.6.2 The impact on cluster size 

These simulation experiments were designed to get more insight into the impact of the 

communication latency on the cluster size. The results reflected in Figure 4-5 based on 

the interconnection network parameters in Table 4-2, were compared with a higher 

network latency and a smaller bandwidth setup in the simulation experiments for 

Figure 4-6 and Table 4-4. 

Table 4-4: Interconnection Networks Parameter II 

Parameter Internal-cluster External-cluster 

Network latency 0.02s 0.01s 

Switch latency 0.01s 0.05s 

Network Bandwidth 800 b/s 600 b/s 

 

 

Figure 4-5: Simulation results of the impact on the message latency with various 

number of clusters based on Network Parameter I 
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Figure 4-6: Simulation results of the impact on the message latency with numbers of 

clusters based on Network Parameter II 

a) Discussion  

Figure 4-5 and Figure 4-6 depict the simulation results and analytical analysis with 1, 2 

and 4 cores in various cluster sizes. An experiment with a cluster size of five (8, 16, 

32, 64, 128) with 3 cores was evaluated. The same message generation rate, 0.002 s, 

was used to maintain the uniformity of the results. The X-axis denotes the cluster size, 

and the Y axis the average message latency. The smallest size used in this experiment 

was an 8-cluster and the largest size was a 128-cluster. 

The average message latency increased as the cluster size increased and all cluster 

sizes experienced almost the same latency rate. The saturation of the throughput also 

increased as number of clusters increased. The results also indicate that, even with a 

larger cluster size (16, 32, 64 and 128), MCMCA can save more transmission time and 

can finish the same tasks at a lower traffic rate.  

These experiments are important, as they reveal that the MCMCA can be used with 

various cluster sizes, including the traditional single-core cluster. With MCMCA, the 

capacity of the resources increases, so that more packets can be transmitted while 

experiencing lower latency. 
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4.6.3 The impact on message length and scalability 

In this experiment, to examine the potential scalability in the cluster architecture, 

different message lengths were run, as reflected in Table 4-5 and Table 4-6. 

Table 4-5: Simulation Input II 

Items Quantity 

No. of cluster (C) 8, 16, 32, 64, 128 

No. of cores (nc) 1, 2, 4 

Message generation rate (λg) 0.002s 

Message Length (M) 8K 

No. of m-port  n-tree 4, 2 

 

Table 4-6: Simulation Input III 

Items Quantity 

No. of cores (nc) 1, 2, 4 

Message generation rate (λg) 0.001s 

Message Length (M/bytes) 128, 256, 512, 1K, 2K, 4K, 8K, 16K 

No. of cluster, m-port  n-tree 8, 8, 2 

 

 

Figure 4-7: Simulation results of the impact on the message latency with various 

message lengths based on Network Parameter I 
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Figure 4-8: Simulation results of the impact on the message latency with various 

message lengths based on Network Parameter II 

a) Discussion 

Figure 4-7 and Figure 4-8 show the average message latency based on various 

message lengths. The results reflected in Figure 4-7 were for an experiment performed 

for an 8-cluster network parameter shown in Table 4-2, while the results in Figure 4-8 

were obtained with the same cluster size but at a higher bandwidth value in network 

parameter II shown in Table 4-4. The X-axis represents the message length while the 

Y-axis denotes average message latency. The experimental message lengths ranged 

from 128 B to 16 KB. 

With the same message generation rate, 0.001 s, both figures demonstrate that 

the traffic started to saturate the network at a message size of 8 KB. A larger 

throughput was obtained for 2-core and 4-core processors by 42-51% for network 

parameter I and 21-27% for network parameter II, compared to the single-core 

processor. Even when the message lengths were simulated using different bandwidths, 

the latency increased as the message lengths increased. With smaller message lengths 

(128 B, 256 B, 512 B) the message latency increments for all cores were very small 

(7-20%) and the latency rate was similar. The significant differences started to occur at 

a message length of 1 KB and became obvious at message lengths larger than 1 KB. 

This indicates that the architecture is scalable with different sizes of message. Based 

on this experiment, the figures also reveal that the architecture can scale well under 

various configurations. 
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4.7 Summary 

A performance model is an essential tool to predict the communication latency 

behaviour of a cluster system. It is used to analyse the details of the cluster with 

various design optimization issues. This chapter has described a comprehensive 

performance evaluation and analysis of Multi-core Multi-cluster Architecture (MCMCA) 

using several configurations based on a store-and-forward flow control mechanism to 

answer research question RQ2. A novel simulation model of MCMCA was developed to 

investigate the interconnection network performance and various simulation results 

are compared. For the store-and-forward flow control mechanism, the simulation 

experiments with MCMCA affirm its ability to improve latency and throughput beyond 

that of a traditional cluster.  

Several interesting observations from the experimental results give insights 

into both application and communication software developers by answering 

sub-research question SQ4. The latency results suggest that multi-core processors can 

improve network performance by 51%-76% compared to single-core processors. This 

indicates that optimizing all levels of interconnection network is important in this 

architecture. As the evaluation is based on store-and-forward flow control, the 

probability of blocking is zero, which contributes to higher saturation throughput. 

Other simulation experiments were conducted with various sizes of cluster. The 

architecture can scale well with small to larger sizes of cluster while achieving lower 

latency and higher throughput. The impact of the architecture on message length was 

also tested. The results have reveals that small latency happens with smaller messages 

size but the latency increase with the larger message length. With the same message 

generation rate, 0.001s, both figures demonstrated that the traffic started to saturate 

the network at 8K size of messages, with 2-core and 4-core processors having a larger 

throughput compared to single-core processor. The experiments also demonstrated 

that MCMCA can scale well compared to traditional single-core cluster. 

The comparison between the analytical model results and those produced by the 

simulation experiments has shown that the derived analytical model possesses a good 

basis for predicting the communication delay of interconnection network performance 

in the Multi-Core Multi Cluster Architecture (MCMCA).   

The next chapter will focus on extending the architecture by applying the blocking 

mechanism which uses a wormhole flow control mechanism to solve the contention 

issue in the interconnection network. 
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Chapter 5 The Performance Model using 

Wormhole Flow Control Mechanism 

5.1 Introduction 

Performance models in cluster architecture based on single-cluster based on wormhole 

flow control mechanisms have been widely reported  (Alzeidi et al., 2008; Geyong et 

al., 2009; Bahman Javadi et al., 2008b; Sarbazi-Azad et al., 2001; Yulei et al., 2012). 

Various issues have been described and solutions have been suggested but none of the 

research captures the interconnection network performance issue of multi-core multi-

cluster architecture (MCMCA). 

 The contribution of this chapter is to investigate the interconnection network 

performance of MCMCA in harnessing the power of multi-core clusters to addresses 

research question RQ2 and sub-research question SQ4. The simulation experiment is 

based on wormhole flow control by involving different numbers of cores. The validity 

of the simulation model is demonstrated by comparing the results of the analytical 

model to those obtained by simulation experiments. With a large message and large 

cluster involved, the simulation experiments were performed by using the Iridis 

Compute Cluster (Admin, 2013), of the University of Southampton’s High Performance 

Computing (HPC) facility. 

The baseline simulation results demonstrated that our simulation model results, 

with analysis, show less than 1% difference in light traffic compared to the previous 

model, which showed a 3%-8% difference. The similarity of the results confirms that the 

MCMCA simulation model is a good basis for measuring the communication latency for 

a large cluster. Compared to store-and-forward flow control mechanism, the simulation 

experiments confirmed its ability to improve latency, but it is not able to match 

throughput performance due to blocking problems. The simulation experiments were 

extended to evaluate the impact of the interconnection network performance on 

scalability and cluster size.  

This chapter investigates the modelling and simulation of interconnection network 

performance based on wormhole flow control mechanism. Section 5.4 presents the 

development of simulation models for a wormhole flow control mechanism by 

modifying the store-and-forward simulation model to allow the blocking mechanism. 

The blocking mechanism is represented by the Arbiter module. Section 5.5 outlines the 

analytical calculation to validate the simulation results and section 5.6 presents the 

simulation performance results. 
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5.2 Wormhole Flow Control Mechanism 

‘Wormhole flow control’ has increased in popularity in cluster systems due to its low 

buffering (Alzeidi et al., 2008). Wormhole forwards a packet as soon as the header is 

received, and channel and buffers allocated to flits are acquired without waiting for the 

entire packet to be received. It works by dividing packets into a sequence of fixed-size 

units called ‘flits’, with channel and buffers allocated to flits. When a flit cannot acquire 

a buffer, blocking may occur. Wormhole flow control makes far more efficient use of 

buffer space, although it will increase some throughput (Dally & Towles, 2004).  

5.3 Assumptions and Notations 

Assumptions and notations used for the analysis are the same as shown in Chapter 4, 

in Table 4-1, with the additional notation reflected in Table 5-1 for wormhole flow 

control analysis. 

Table 5-1: Notations used in MCMCA for Wormhole Flow Control 

Abbr. Description 

𝜑𝑖 

𝜑𝑒 

𝜑𝑖𝑐 

Channel arrival rate in ICN (s) 

Channel arrival rate in ECN (s) 

Channel arrival rate in MCN (s) 

𝜉 Blocking probability 

𝜃 

 

𝑊(𝑠, 𝑗) 

 

𝑊𝑠(𝑗, ℎ) 

 

Required coefficient to calculate the channel rate of the 

network 

Average time for a message to wait for a channel in internal 

cluster 

Average time for a message to wait for a channel in external 

cluster 

 

 

5.4 The Simulation Model 

5.4.1 Simulation Structure 

Simulation models of MCMCA have been developed using OMNeT++, as described in 

section 3.6.1. The model is built at run time to form a topology that represents the 

geometric structure and the communication links between the modules, as presented 

in section 2.9.1. The simulation can behave with different inputs and parameters, such 

as the number of cores per node, number of clusters, number of messages to be 

generated, message length (M) and inter-arrival time. 
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 The simulation modules represent hardware or a software entity that is capable of 

receiving messages from itself or from other modules. The modules are declared by 

specifying their attributes and ports by which a message to arrives and leaves. 

Generally, the MCMCA simulation model based on wormhole flow control mechanism 

was built from seven modules. These modules were programmed in C++ and 

assembled into larger components and models using a high-level language, the 

network description (NED). The same modules as described in section 4.4.1 were used 

to build the simulation model based on a wormhole flow control mechanism with 

Arbiter as a new module for this. 

1. Network Topology module – this develops the building blocks of the fat-tree 

topology, including cores, nodes and clusters. 

2. Network Interface module – this contains the interface of module types in fat-tree 

topology. Cores, nodes, clusters, switch, channel and the interconnection network 

are declared in this module, and connections between them are established. 

3. Communication Switch module – this acts as the connection for each switch and 

router in the model, and it will determine how a message is transmitted along a 

path that has been selected by the routing algorithm. 

4. Routing module – this determines the path, and schedules the routing algorithms 

for the messages/packets in all communication networks based on FIFO 

(First-In-First-Out); also it represents a single server queue that has the same 

service rate for each message/packet.  

5. Generator module – messages/packets are generated by this module following the 

assumption that the message destinations are uniformly distributed. 

6. Sink module – this will destroy the packets after each generation is completed, and 

will gather event information for statistics. 

7. Arbiter module - this contains a ‘round robin’ loop for examining waiting 

messages. This module implements blocking functions in wormhole flow control. 

As mentioned in an earlier section, wormhole forwards a packet as soon as the header 

is received, and the channel and buffers allocated to flits are acquired without waiting 

for the entire packet to be received. When a flit cannot acquire a buffer, blocking may 

occur. To simulate the blocking mechanism, the ‘Arbiter’ module was designed; 

whereby the flits were blocked from entering the network when the requested port was 

busy. 

The traffic is configured by setting the destination and packet-arrival time 

parameters for each source. The destination is randomly distributed using the built-in 

OMNeT++ random number generation function, as mentioned in section 2.9.2e). The 

packet-arrival times are exponential, distributed according to a uniform traffic pattern. 
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The simulation also provides a set of statistical measurements collected by the 

sink module, generator module and routing module. The sink module collects latency 

and throughput at the packet and flit levels. The generator module collects from the 

source waiting time in order to identify the saturation point of the architecture. The 

routing module collects acquisition latencies from network transmission time, the time 

for a message to cross a network. 

5.4.2 The Experimental Setup 

The same simulation setup is used in this experiment as is presented in section 4.4.3. 

The experiment was designed to run based on the number of cores as the main input, 

with various combinations of message length, cluster size and traffic inputs. In each 

simulation experiment, the first 10,000 messages were discarded as belonging to the 

warm-up phase to make sure that the simulation reached a steady state. The total 

number of 100,000 messages were gathered to compute the message latency. These 

messages were split into 10 batches with the size of every batch being 10,000 

messages. Message latency is measured from when the first flit of the packet is created 

to when its last flit is ejected at the destination node. The latency includes source 

queuing waiting time and network transmission time. The flit is destroyed after each 

generation is completed, to gather event information for statistics. Since each sample 

in the ‘batch means’ method is averaged over many of the original samples, the 

variance between batch means is greatly reduced. This decreases the standard 

deviation of the performance metrics and leads to greater confidence in the 

performance results. 

5.5 The Analytical Model 

5.5.1 Preliminaries 

This section explains the implementation of the analytical model for computing the 

communication latency of the interconnection networks in MCMCA based on the 

wormhole flow control mechanism. The first phase is to compute ρ, 𝑛𝑐 and 𝑛𝑡 where 𝜌 

represents the number of processors in each cluster and 𝑛𝑐 the numbers of cores on 

each processor. Likewise, 𝑛𝑡 is the number of trees in the MCN while C is the number 

of clusters and m is the number of ports. 

𝜌 = 2𝑛𝑐 (
𝑚

2
)
2

 [5.1] 

𝑛𝑡 =  
(𝑙𝑜𝑔2 𝐶) − 1

(𝑙𝑜𝑔2𝑚) − 1
 [5.2] 
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The messages enter the internal cluster and external cluster based on the probability 𝑃. 

The probability of outgoing requests 𝑃𝑜 represents the messages generated by the 

source nodes that are sent to the external cluster while messages injected from a 

source node with the probability (1 − 𝑃) enter an internal-cluster network. 

𝑃𝑜 =
𝑁 − 𝜌

𝑁 − 1
 [5.3] 

Here, 𝛼 is the time taken by a packet of the message to transmit from a node to a 

switch connection (or vice versa), while 𝛽 is the time taken by a packet of the message 

to transmit on a switch-to-switch connection; 𝑀 is the message length, 𝛼𝑛𝑒𝑡 and 𝛼𝑠𝑤 

are the network and switch latencies, while 𝛽𝑛𝑒𝑡 is the transmission time of one byte. 

𝛼𝑖𝑒  = 0.5 𝛼𝑛𝑒𝑡 + 𝑀
1

𝛽𝑛𝑒𝑡
   [5.4] 

𝛽𝑖𝑒 =  𝛼𝑠𝑤 +𝑀
1

𝛽𝑛𝑒𝑡
  [5.5] 

5.5.2 Average Message Latency of an Internal-Cluster Network 

The communication latency in an inter-cluster network includes messages travelling in 

an intra-chip network (AC), an inter-chip network (EC) and an intra-cluster network 

(ACN). In an inter-cluster network, the total arrival rate is 𝜆𝑖 (Shahhoseini et al., 2000) 

and each message travels an average distance to cross the network, with every channel 

receiving messages at a rate of: 

𝜑𝑖 = 𝜃𝜆𝑖 [5.6] 

𝜆𝑖 = (
1

𝜆
) (1 − 𝑃) [5.7] 

The required coefficient (Bahman Javadi et al., 2008a) to calculate the channel rate of 

the network is: 

𝜃 =
(𝑛𝑚 − 2𝑛 − 1) (

𝑚
2)

𝑛
+ 1

4𝑛 (
𝑚
2 − 1) ((

𝑚
2)

𝑛
−
1
2)

 [5.8] 

Each message may use a different number of channel links to reach its destination. 

Since this architecture applies to a multi-core processor, the total transmission time 

will be based on the numbers of cores on the processors. Therefore, the average 

transmission time in internal-cluster and external-cluster networks can be considered 
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as using a 2j-channel with a j-channel in the source node and a j-channel in the 

destination node, so that:  

 𝑇𝑖 =∑ (𝑃(𝑗,𝑛)𝑇(𝑗)𝑛𝑐)
𝑛

𝑗=1
 [5.9] 

In an m-port n-tree, the probability of a message travelling 2j-channels to reach its 

destination is 𝑃(𝑗,𝑛). The probability of a message journey to reach its destination 

(Xuan-Yi et al., 2004) can be computed by: 

𝑃(𝑗,𝑛) =

{
 
 
 

 
 
 (
𝑚
2
− 1) (

𝑚
2
)
𝑗−1

2 (
𝑚
2)

𝑛
− 1

1 ≤ 𝑗 < 𝑛

(𝑚 − 1) (
𝑚
2
)
𝑗−1

2 (
𝑚
2
)
𝑛
− 1

𝑗 = 𝑛

  [5.10] 

a) Average Transmission Time for a Message to Cross the Networks 

The received message rate in each channel can be defined by dividing the total channel 

rates by the number of channels in the internal cluster (Dally & Towles, 2004). The 

average amount of time for a message to wait for a channel with the blocking 

probability is 𝜉 =  𝜑𝑖𝑇𝑠,𝑗. Since each message travels on average channels to cross the 

network, every channel receives messages at a rate 𝜑𝑖, as in equation 5.6. The value of 

blocking probability 𝑇𝑠,𝑗 is derived from a Markov Chain (Sommereder, 2011).  

𝜉 =  𝜑𝑖𝑇(𝑠,𝑗) [5.11] 

The destination stage 𝐾 − 1 is always able to receive a packet and the transmission 

time in the internal cluster may increase since the channel would be idle when the 

following stage is busy. The average amount of time that a packet waits to acquire a 

channel in the internal cluster with blocking probability, 𝑊(𝑠,𝑗)𝑖
 is given by: 

𝑊(𝑠,𝑗)𝑖
=
1

2
𝜑𝑖𝑇𝑠,𝑗

2 ,    0 ≤ 𝑠 < 𝐾 − 1 [5.12] 

Since the transmission time of a message at stage s is equal to the message transfer 

time and waiting time at subsequent stages in a channel (Bahman Javadi et al., 2008b), 

with 𝑇(0,𝑗) = 𝑇(𝑗), it can be classified by: 
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𝑇(𝑠,𝑗) = {
∑ 𝑊(𝑙,𝑗) +𝑀𝛽𝑖  

𝐾−1

𝑙=𝑠+1

0 ≤ 𝑠 ≤ 𝐾 − 2
 

𝑀𝛼𝑖 𝑠 = 𝐾 − 1

 [5.13] 

b) Average Waiting Time at the Source Node 

Due to the probability of blocking happening in the network, the distribution of 

message latency becomes general. Therefore, a channel at source node is following 

M/G/1 queueing regime (Sommereder, 2011). The waiting time of a message 𝑊𝑖 before 

entering the network with a 𝜆𝑖 message arrival rate can be calculated as: 

𝑊𝑖 =
𝜆𝑖(𝑇𝑖)

2 (1 +
𝑇𝑖 − (𝑀𝛽𝑖)

2

(𝑇𝑖)
2 )

2(1 − 𝜆𝑖𝑇𝑖)
 

[5.14] 

c) Average Time for the Last Flit’s Tail of the Message to Reach its Destination 

The average time for the flit’s tail to reach its destination in the internal-cluster 𝑅𝑖, can 

be found as (Sharifi et al., 2009): 

𝑅𝑖 =∑∑[
 
𝑃(𝑓,𝑛𝑐)𝑃(𝑗,𝑛)  

(∑ 𝛽𝑖 + 𝛼𝑖

𝐾𝑖−1

𝑠=1

)]

𝑛

𝑗=1

𝑛𝑐

𝑓=1

 [5.15] 

Lastly, the equations for message latency in the internal-cluster communication 

networks can be expressed as: 

∑̅𝐿𝑖 = 𝑊𝑖 + 𝑇𝑖 + 𝑅𝑖 [5.16] 

5.5.3 Average Message Latency of an External-Cluster Network 

Messages travelling in an external cluster communicate via two interconnection 

networks, the inter-cluster network (ECN) and the multi-cluster network (MCN) to get to 

their destinations in the other cluster. 

a) Average Transmission Time for a Message to Cross the Networks 

Similarly to internal-cluster network and based on equation 5.9, the average 

transmission time for an external cluster is: 

𝑇𝑒 =∑∑(𝑃(𝑗,𝑛) 𝑃(ℎ,𝑛𝑡) 𝑇(𝑗,ℎ))

𝑛𝑡

ℎ=1

𝑛

𝑗=1

 [5.17] 
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𝑃(𝑗,𝑛) = 𝑃(ℎ,𝑛𝑡)  = 𝑃(𝑓,𝑛𝑐) [5.18] 

The channel rate for external messages is:   

𝜑𝑒 = 𝜃𝜆𝑒 [5.19] 

𝜑𝑖𝑐 = 𝜃𝜆𝑖𝑐 [5.20] 

Based on equation 5.12, the average time for an external message to wait for a 

channel at stage s with the channel message rate 𝜑 is be given by: 

𝑊𝑠(𝑗,ℎ) =
1

2
𝜑(𝑇𝑠(𝑗,ℎ))

2
 [5.21] 

𝜑 = {
𝜑𝑖𝑐 𝑗 ≤ 𝑠 < 𝑗 + 2ℎ − 1
𝜑𝑒 𝑜𝑡ℎ𝑒𝑟

 
  [5.22] 

Similar to equation 5.13, the transmission time of a message at stage s in 

external-cluster, with 𝑇0(𝑗,ℎ) = 𝑇(𝑗,ℎ), can be classified by: 

𝑇𝑠(𝑗,ℎ) = {
∑ 𝑊𝑙,(𝑗,ℎ) +𝑀𝛽𝑒  

𝐾−1

𝑙=𝑠+1

0 ≤ 𝑠 ≤ 𝐾 − 2

𝑀𝛼𝑒 𝑠 = 𝐾 − 1

 [5.23] 

where 𝑊𝑠,(𝑗,ℎ) is the blocking time that a message has to wait for a channel at stage s in 

external-cluster networks and 𝛼𝑒 is the time taken by a packet of the message to 

transmit from a node to a switch or switch-to-node as in equation 5.4. 

b) Average Waiting Time at the Source Node 

Messages generated by the source nodes are sent to the external cluster with the 

outgoing request probability 𝑃 and 𝜆𝑒 as the message arrival rate following an M/G/1 

queueing regime. Based on equation 5.14, the waiting time in the external-cluster 

network 𝑊𝑒 can be computed by: 

𝑊𝑒 =
𝜆𝑒(𝑇𝑒)

2 (1 +
𝑇𝑒 − (𝑀𝛽𝑒)

2

(𝑇𝑒)
2 )

2(1 − 𝜆𝑒𝑇𝑒)
 

[5.24] 

𝜆𝑒 =  2 (
1

𝜆
)𝑃 [5.25] 
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c) Average Waiting Time at Transfer Switches 

External-cluster messages need to cross transfer switches during their journeys across 

the network. The transfer switches act as simple buffers to combine traffic from/to one 

cluster to/from other clusters. The waiting time at these buffers 𝑊𝑠𝑤 with 𝜆𝑖𝑐 as the 

message arrival rate (Dally & Towles, 2004) can be computed as: 

𝑊𝑠𝑤 =
𝜆𝑖𝑐(𝑀𝛽𝑒)

2

2(1 − 𝜆𝑖𝑐𝑀𝛽𝑒)
 [5.26] 

𝜆𝑖𝑐 = 𝑁𝑃 (
1

𝜆
)𝑃 [5.27] 

d) Average Time for the Last Flit’s Tail of the Message to Reach its Destination 

The total average latency for the last flit’s tail to reach its destination in the external 

cluster is based on equation 5.15 and can be computed by: 

𝑅𝑒 =∑∑[𝑃(𝑗,𝑛)𝑃(ℎ,𝑛𝑡) ( ∑ 𝛽𝑒 + 𝛼𝑒

𝑆𝑆𝑒−1

𝑠=1

)]

𝑛𝑡

ℎ=1

𝑛

𝑗=1

 [5.28] 

 

The equation for message latency in the external-cluster communication networks can 

therefore be expressed as: 

∑̅𝐿𝑒 = 𝑊𝑒 + 𝑇𝑒  + 𝑅𝑒 + 2𝑊𝑠𝑤 [5.29] 

5.5.4 Average Message Latency of MCMCA 

From equations 5.16 and 5.29, the average message latency of communication 

networks in MCMCA can be obtained by the sum of the message latencies in 

internal-cluster and external-cluster networks as follows: 

∑̅𝐿 =  ∑̅𝐿𝑖 (1  − 𝑃) + ∑̅𝐿𝑒 (𝑃) [5.30] 

 

5.5.5 Implementation of the Analytical Model 

Algorithm 5-1 and Algorithm 5-2 presents the implementation of the analytical model 

to compute the communication latency of interconnection networks in MCMCA based 

on wormhole flow control. 



Norhazlina Hamid   

90 

 

Algorithm 5-1: Process flow in calculating the communication latency of 

interconnection networks in MCMCA based on a wormhole flow-control mechanism 

Input Parameters: 

Number of clusters C, parameter of m-port n-tree, message length M, number of 

cores nc, number of nodes N and lambda 
𝟏

𝝀
. 

1: Calculate probability of entering/outgoing messages in the cluster 𝑃𝑜 , number of 

processors in each cluster 𝜌, and number of trees in the MCN 𝑛𝑡 by using 

equations 5.3, 5.1 and 5.2. 

2: Calculate arrival rate in the internal cluster 𝜆𝑖, external cluster 𝜆𝑒 and transfer 

switch 𝜆𝑖𝑐 by using equations 5.7, 5.25 and 5.27. 

3: Calculate the arrival rate on a channel in internal cluster 𝜑𝑖, external-cluster 𝜑𝑒 

and transfer switch 𝜑𝑖𝑐 by using equations 5.6, 5.19 and 5.20. 

4: Compute the required coefficient to calculate the channel rate, 𝜃, with equation 

5.8. 

5: Calculate the probability of message crossing 2 channel, 𝑃(𝑗,𝑛) and 𝑃(𝑓,𝑛𝑐) by 

using equations 5.10 and 5.18. 

6: Calculate the time taken for a packet of the message to transmit on a node to a 

switch or vice versa 𝛼𝑖𝑒, and the time taken for a packet of the message to 

transmit on a switch to switch 𝛽𝑖𝑒 for the internal and external cluster by 

equations 5.4 and 5.5. 

7: Calculate average latency in an internal cluster: 

a. Compute 𝑇𝑖, the transmission time in the network equation 5.9 

b. Compute 𝜉, the blocking probability equation 5.11 

c. Compute 𝑊(𝑠,𝑗)𝑖
, the amount of time for a message to wait for a channel h 

equation 5.12 

d. Calculate 𝑊𝑖, the waiting times at the source node equation 5.14 

e. Calculate 𝑅𝑖, the time for the last packet of the message reach its 

destination equation 5.15. 

8: Calculate average latency in the external cluster using the indicated equations: 

a. Compute 𝑇𝑒, equation 5.17 

b. Compute 𝜉,  equation 5.11 

c. Compute 𝑊𝑠(𝑗,ℎ),  equation 5.21 
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d. Calculate 𝑊𝑒,  equation 5.24 

e. Calculate 𝑊𝑠𝑤, the waiting time at transfer switches equation 5.26 

f. Calculate 𝑅𝑒,  equation 5.28. 

9: Calculate the average message latency in internal-cluster networks and average 

message latency in external-cluster networks using equations 5.16 and 5.29. 

10: Calculate ∑̅𝐿, the average message latency of interconnection networks in 

MCMCA using equation 5.30. 

 

Algorithm 5-2: Pseudocode of process flow in calculating the communication latency of 

interconnection networks in MCMCA using MATLAB based on wormhole flow control 

clear all 

clc 

 

n_core=4;  % number of core(s) 

C = 8; 

m = 8; 

n = 2; 

M = 32; 

Lm = 256; 

  

lambda=500; 

lambdaG=1/lambda; 

pp=(m/2)^n; %number of processor per node 

NP=2*pp; %number of processors in each cluster 

NP=NP*n_core; 

N=NP/n_core*C; 

  

PO=(N-NP)/(N-1); 

PI=1-PO; 

  

lambdaI1=PI*lambdaG; 

  

davgICN=(((n*m)-(2*n)-1)*(pp)+1)/(((m/2)-1)*(pp-0.5)); 

teta = ((n*m-(2*n)-1)*pp+1)/((4*n)*(m/2-1)*(pp-1/2)); 

eta = teta*lambdaI1; 

  

anetI = 0.01; 

aswI = 0.01; 

BnetI = 1000; 

  

tcnI=(0.5*anetI)+(Lm*1/BnetI); 

tcsI=aswI+(Lm*1/BnetI); 
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for j=1:n-1; 

    P(j,n) = (((m/2)-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1) 

end 

for j=n; 

    P(j,n) = ((m-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1) 

end  

  

for f=1:n_core 

    if f==n_core 

        Pnc(f,n_core) = ((m-1)*((m/2)^(f-1)))/((2*((m/2)^n_core))-1); 

        break 

    else 

        Pnc(f,n_core) = (((m/2)-1)*((m/2)^(f-1)))/((2*((m/2)^n_core))-

1); 

    end 

end 

  

Wsj=0; 

  

for j=1:n 

    SS=2*j-1; 

    for s=SS:-1:1  

        if s==SS 

            D(s,j)=M*tcnI; 

            W(s,j)=1/2*eta*(D(s,j).^2); 

        else 

            for l=SS:-1:s+1 

                Wsj=Wsj+W(l,j); 

            end 

            D(s,j)=Wsj+(M*tcsI); 

            if l-1>0 

                W(l-1,j)=1/2*eta*(D(s,j)).^2; 

            else 

                break 

            end 

            Wsj=0; 

        end      

    end 

end 

  

DD(1)=M*tcnI; 

DD(2:n)=D(1,2:n); 

DI=0; 

  

for j=1:n 

    DI=DI+P(j,n)*DD(j)*n_core; 

end 

  

WI1=lambdaI1*(DI*DI)*(1+((DI-M*tcsI)^2)/(DI*DI))/(2*(1-

(lambdaI1*DI))); 
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f=1; 

  

RI=((davgICN-2)*tcsI+tcnI); 

  

TI1=WI1+DI+RI; 

  

% ---- external cluster ----- 

  

dc=log(C/2)/log(m/2); 

pc=(m/2)^dc; 

h=1; 

  

Nch=4*n*pp; 

Nchnc=4*n*pc; 

  

lambdaE1=2*PO*lambdaG; 

lambdaI2=(NP/n_core*PO*lambdaG); 

  

davgECN=davgICN; 

davgICN2=(((dc*m)-(2*dc)-1)*(pc)+1)/(((m/2)-1)*(pc-0.5)); 

  

tetaI2 = ((dc*m-(2*dc)-1)*pc+1)/((4*dc)*(m/2-1)*(pc-1/2)); 

 

etaE1=  teta*lambdaE1;  

etaI2= tetaI2*lambdaI2;  

  

anetE = 0.02; 

aswE = 0.01; 

BnetE = 500; 

  

tcsE= aswE+(Lm*1/BnetE); 

tcnE=(0.5*anetE)+(Lm*1/BnetE); 

  

for j=1:n-1; 

    P(j,n) = (((m/2)-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1) 

end 

for j=n; 

    P(j,n) = ((m-1)*((m/2)^(j-1)))/((2*((m/2)^n))-1) 

end   

   

for h=1:dc-1; 

        P(h,dc) = (((m/2)-1)*((m/2)^(h-1)))/((2*((m/2)^dc))-1) 

end 

for h=dc; 

        P(h,dc) = ((m-1)*((m/2)^(h-1)))/((2*((m/2)^dc))-1) 

end   
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Wsjh=0; 

  

for j=1:n 

    for h=1:dc 

        SE=2*(j+h)-1; 

        SS=SE; 

        for s=SE-1:-1:1 

            if s==SE-1 

                DDE(s,j,h)=M*tcnE; 

            else  

                for l=s+1:SS 

                    if l<j+1 

                        W(l)=1/2*etaI2*(DDE(l,j,h))^2; 

                    else  

                        W(l)=1/2*etaE1*(DDE(l,j,h))^2; 

                    end 

                    Wsjh=Wsjh+W(l); 

                end 

                DDE(s,j,h)=Wsjh+(M*tcsE); 

                 

            end 

            SS=SS-1;             

        end         

    end 

    if j==1 

        WW1=1/2*etaI2*(DDE(s,j,h))^2; 

    else 

        WW1=1/2*etaE1*(DDE(s,j,h))^2; 

    end 

    DEE(j,h)=M*tcsE+WW1+Wsjh; 

    Wsjh=0; 

end 

  

DE=0; 

for j=1:n 

    DE=DE+P(j,n)*DEE(j,h)*P(h,dc); 

end 

  

WE1=lambdaE1*(DE^2)*(1+((DE-M*tcnE)^2)/(DE*DE))/(2*(1-lambdaE1*DE)); 

RE=((davgECN+davgICN2)-2)*tcsE+tcnE; 

WCD=lambdaI2*((M*tcsE)*(M*tcsE))/(2*(1-lambdaI2*M*tcsE)); 

  

TE1=WE1+DE+RE+(2*WCD); 

TotalTI=PI*TI1; 

TotalTE=PO*TE1; 

TMC=(PI*TI1)+(PO*TE1); 
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5.6 Performance Evaluation (SQ4) 

This section presents the results and discussion for the MCMCA simulation model 

based on worm-hole flow control. The simulation experiment was to test the 

sub-research question SQ4. The simulation experiments and analytical model 

calculations were performed, and the results for three numbers of cores were 

compared. 

 The simulation experiments were run using the interconnection network 

parameters as given in Table 5-2 with input parameters in  

Table 5-3. 

 

Table 5-2: Interconnection Networks Parameters 

Parameter Internal-cluster External-cluster 

Network latency 0.01s 0.02s 

Switch latency 0.01s 0.01s 

Network Bandwidth 1000 b/s 500 b/s 

 

Table 5-3: Input Parameters 

Items Flit length (F) 

256bytes 

Flit length (F) 

512bytes 

No. Of cores (nc) 1, 2, 4 

No. Of cluster (C) 8 

No. Of m-port  n-tree 8, 2 

Message Length (M) 32 flits 

 

5.6.1 Baseline experiment on MCMCA 

The results of the baseline experiment are given for single-core cluster architecture, as 

depicted in Figure 5-1. Simulation and analysis revealed that, when compared, the 

results obtained from MCMCA with 1-core closely match the results from the model of 

multi-cluster architecture presented by Javadi et al. (2006) as given in Table 5-4.  

 The author claimed that his analytical model and simulation model in average 

differed by less than 3-8% under conditions of light traffic. The MCMCA simulation 

model outperformed the earlier model, in that the difference between the simulation 

model and analytical model was less than 1%. The similarity of the results confirms 

that the simulation model is a good basis for measuring the communication latency for 

a large-scale cluster, and can be extended to multi-core processor. 
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Table 5-4: Baseline results comparison between MCMCA with 1-core with multi-cluster 

model presented by Javadi et al. (2006) 

Model Simulation Model  Analytical Model Different 

Average Message 

Latency with F=256 

127.33831 127.35218 0.01387 

Average Message 

Latency with F=512 

218.08425 

 

218.11161 

 

0.02736 

 

 

Figure 5-1: MCMCA model with C=8, M=32 flits, F=256 bytes based on Wormhole Flow 

Control 

5.6.2 Latency and throughput on MCMCA 

Three different numbers of cores in a processor were analysed. Figure 5-2 depicts the 

simulation and analytical model results with a flit size equal to 256 bytes, while Figure 

5-4 depicts the results with a flit size equal to 512 bytes. The simulation parameters 

are based on Table 5-2 and  

Table 5-3. 
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Figure 5-2: Message latency and throughput simulation results based on Wormhole 

Flow Control Mechanism with M=32F, F=256 bytes 

 

Figure 5-3: Message latency and throughput simulation results compared to 

analytical calculation results based on Wormhole Flow Control with M=32 flits, F=256 

bytes 
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Figure 5-4: Message latency and throughput simulation results based on Wormhole 

Flow Control Mechanism with M=32 flits, F=512 bytes 

 

Figure 5-5: Message latency and throughput simulation results compared to 

analytical calculation results based on Wormhole Flow Control with M=32 flits, F=512 

bytes 
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a) Discussion 

The results showed that, as the traffic rate increases, the average communication 

latency increases as the messages have to wait for resources before travelling into a 

network. Results based on 4 cores show that there higher latency occurs at lower 

traffic volumes, since more messages need to be served in the internal cluster. The 

results also demonstrated that the architecture, with different numbers of cores, can 

achieve lower communication latency of the interconnection networks at the same 

traffic rate. However, as the traffic rate increased, higher latency occurred due to 

longer blocking times in the wormhole flow control mechanism. Packets are frequently 

blocked because the channel is held by another packet, even when there are buffers 

available. 

 The similarity between the analytical results and those produced from the 

simulation experiments as in Figure 5-3 for M=8K and Figure 5-5 for M=16K, suggests 

that the derived simulation model possesses a good basis for predicting the 

communication delay of interconnection network performance of the Multi-Core 

Multi-Cluster Architecture (MCMCA). 

5.6.3 The Impact on cluster size 

The accuracy of the simulation model has been validated as being a cost-effective tool 

to investigate the interconnection network performance in MCMCA. It can thus be used 

to get an insight into the impact of cluster size on maximising network performance.  

 A set of simulation experiments were conducted using the simulation input in 

Table 5-5. 

Table 5-5: Simulation Input for cluster sizes 

Items Quantity 

No. of cluster (C) 8, 16, 32, 64, 128 

No. of cores (nc) 1, 2, 4 

Message generation rate (λg) 0.001s, 0.002s 

Message Length (M) 18K, 16K 

No. of m-port  n-tree 4, 2 
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Figure 5-6: Message latency predicted by the simulation model with M=32 flits, F=256 

bytes and λg=0.001 

 

 

Figure 5-7: Message latency predicted by the simulation model with M=32 flits, F=256 

bytes and λg=0.002 
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Figure 5-8: Message latency predicted by the simulation model with M=32 flits, F=512 

bytes and λg=0.001 

 

 

Figure 5-9: Comparison of message latency with M=32 flits, F= 256 and 512 bytes 

predicted by the simulation model using λg=0.001 
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a) Discussion 

An experiment was constructed with five sizes of cluster, C= 8, 16, 32, 64, 128, and 

three core sizes, nc = 1, 2, 4. The experiment was run with two message generation 

rates, λg= 0.001 s and 0.002 s, and two message lengths, M = 8KB and 16KB. The 

probability (𝑃) assumed was 0.89 for the internal cluster and 0.11 for the external 

cluster. From the resulting figures, we can deduce that, as the size of clusters 

increases, the network performance improves, since the message latency decreases, 

which also increases the maximum network throughput. However, it seems that the 

larger clusters, 64 and 128, gave only small improvements in throughput. Even though 

the latency for an 8-cluster with 4-cores is a bit higher due to blocking, the latency is 

almost similar for larger clusters. Furthermore, the improvement caused by the 

trade-off between cluster size and the number of cores can relieve the negative effects 

of the blocking mechanism on network performance.  

 These results demonstrated that the architecture can be used to investigate the 

interconnection network performance of MCMCA for small to large cluster size. The 

performance results are also consistent with the results for the simulation model based 

on the store-and-forward flow control mechanism described in section 4.6.2.  However, 

it is important to balance cluster size with the number of cores involved within the 

limited space to maximise network performance. 

5.6.4 The impact on message length and scalability 

Testing the various impacts on message length will give insights into scalability. For 

testing the model, seven message lengths (M/bytes) were involved in an eight 

multi-core cluster system, as in Table 5-6, with the numbers of cores being 1, 2 and 4. 

To make this experiment comparable with others, the same message length has also 

been tested in larger cluster sizes: 32 multi-core cluster systems with 4, 8 and 16 

cores. The same message generation rate (λg) was used to maintain the validity of the 

results.  

Table 5-6: Simulation Input for scalability 

Items 8-cluster 32-cluster 

No. of cores (nc) 1, 2, 4 4, 8, 16 

No. of m-port  n-tree 8, 2 

Message generation rate (λg) 0.001s 

Message Length (M/bytes) 128, 256, 512, 1K, 2K, 4K, 8K 
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Figure 5-10: Simulation results of the impact on the message latency with various 

message lengths based on Number of cluster = 8 

 

Figure 5-11: Simulation results of the impact on the message latency with various 

message lengths based on Number of cluster = 32 
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a) Discussion 

For all message lengths, a simulation experiment with 2-core for an 8-cluster and 

8-core for a 32-cluster outperforms the other core sizes especially for longer message 

lengths, as shown in Figure 5-10 and Figure 5-11. Higher latency occurs for larger 

numbers of cores in light traffic due to task allocation between cores and the blocking 

mechanism. Based on this analysis, the maximum network throughput for an 8-cluster 

with 1-core is higher due to the reduced message latency involved. Based on all 

message lengths, the larger number of cores, 2-core and 4-core, surpasses single-core 

performance by 4-10% under a uniform traffic pattern. 

 However, with longer message lengths, there is a small improvement in 

throughput. This is due to the fact that, when a packet is blocked, all the data flit 

continues to hold onto its buffer. Thus, the larger the message length, the more 

contention is found in channels and buffers. 

 This experiment suggested that longer message lengths have a significant impact 

on network performance, and the architecture is capable of scaling well with various 

message lengths. 

5.7 Summary 

Multi-core multi-cluster architectures (MCMCA) have a tremendous potential for the 

future of computing. However, there exist some issues that can affect the performance 

of the architecture and limit the gained advantages. This chapter presented a new 

simulation model to investigate the performance of interconnection networks in 

MCMCA, based on wormhole flow control mechanism (RQ2). Three sets of experiments 

were designed to gain an insight into the architecture’s capability by answering 

sub-research question SQ4. The simulation results were validated by analytical model 

calculation which demonstrated a similar result. 

 The first simulation experiment was conducted to investigate MCMCA performance 

based on latency and network throughput. The results showed that a wormhole flow 

control mechanism is able to improve latency dramatically over a store-and-forward 

flow control mechanism. However, the store-and-forward flow control fares better in 

term of throughput, with a higher saturation point. While wormhole flow control 

performs better for light traffic, it does not achieve optimal throughput due to the 

probability of blocking while traversing the network. The simulation experiments also 

affirm the advantages of a wormhole flow control mechanism. Since packets are 

transferred using a smaller unit called ‘flit’, more flits can be transmitted in the same 

channel, thus minimising the latency. 
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Another simulation experiment was performed to get more insight into the 

architecture’s impact on cluster size and message length, so as to reveal potential 

scalability. The use of a multi-core processor improves the latency even for larger 

cluster sizes and larger message lengths, with higher throughput performance. 

However, due to the blocking issue, the wormhole flow control mechanism was unable 

to achieve optimal throughput performance. Furthermore, the experiments indicated 

the importance of balancing the number of cores in each cluster with cluster size, so 

as to maximise the overall architecture performance. 

The performance evaluation indicated that the architecture is able to measure the 

performance of multi-core clusters under various parameters and system 

configurations. The resulting performance evaluation can be an alternative to enable 

system designers to build cluster applications.  
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Chapter 6 Statistical Analysis 

6.1 Introduction 

The Statistical Package for the Social Sciences (SPSS) was used to analyse the 

experimental results. SPSS is a software for statistical analysis and its provides 

essential statistical analysis tools for every step of the analytical process (Field, 2013). 

The main aim was to determine whether multi-core multi-cluster simulation results 

were better than traditional cluster. The Shapiro-Wilk (S-W) test of normality was used 

to determine whether or not the experiment results follow a normal distribution. It is 

also suitable for a small to medium number of samples; in this case there were 10 

samples for each experiment (Field, 2000). 

The results of the simulation experiment focused on latency, as described in 

section 4.6.1 for store-and-forward flow control mechanism and in section 5.6.2 for a 

wormhole flow control mechanism. The S-W test depends on the normal distribution of 

experimental results. The first analysis was undertaken to compare the experimental 

results of the two flow control mechanisms. If the results were normally distributed, 

then the parametric t-test was used to compare the two flow control mechanisms, and 

if the results were not normally distributed, then the non-parametric Mann-Whitney test 

was applied to compare the results of the two flow control mechanisms. 

The second analysis compared the experimental results obtained for the different 

number of cores. If the results followed a normal distribution, a one-way ANOVA test 

was conducted to determine whether there was a significant difference between the 

results. If the results did not follow a normal distribution, then the non-parametric 

Friedman’s test was applied to compare the results for significant difference. 

Section 6.2 describes the normality testing of the experimental results. The 

comparison of the two flow control mechanisms is presented in section 6.3, followed 

by the comparison of three core sizes in section 6.4.  The results and their analysis are 

summarised in section 6.5.  

6.2 Analysis of Experimental Results 

The Shapiro-Wilk (S-W) tests were used to test the assumption that the experimental 

results are derived from a normally-distributed population. A typical use of the S-W 

tests is to check assumptions of normality required by other statistical tests to be used 

later for the experiment results. In other words, S-W tests the null hypothesis that “the 

results come from a normally-distributed population”. The hypothesis is therefore that 
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the data come from a population that is not normally distributed. Consequently, if the 

results of the test are significant (p<0.05), rejecting the null hypothesis means 

rejecting the assumption of normality for the population distribution. In this case, the 

population consisted of the results obtained in the simulation experiments. In this 

study, the data were derived from the results obtained from the simulation 

experiments based on Store-and-Forward flow control and Wormhole flow control 

mechanisms. 

6.2.1 Normality test 

a) Descriptive Statistic 

Table 6-1 and Table 6-2 provide a summary of message latency results for 

store-and-forward flow control mechanism and wormhole flow control mechanism. The 

following tables show the summary of ten traffic rate including mean, median, mode, 

standard deviation, minimum and maximum latency per time unit.  

Table 6-1: Descriptive Results for Store-and-Forward Flow Control 

Store-and-Forward 1-Core (s) 2-Core (s) 4-Core (s) 

N 10 10 10 

Mean 249.168 109.864 69.699 

Median 143.028 105.443 70.165 

Mode 88.917 80.475 63.801 

Std. Dev 209.816 23.920 3.747 

Minimum 88.917 80.475 63.801 

Maximum 698.637 143.300 73.895 

  

Table 6-2: Descriptive Results for Wormhole Flow Control 

Wormhole 1-Core (s) 2-Core (s) 4-Core (s) 

N  10 10 10 

Mean 127.338 102.639 65.652 

Median 84.471 64.833 48.271 

Mode 19.971 20.281 27.613 

Std. Dev 122.047 109.018 42.932 

Minimum 19.971 21.933 30.036 

Maximum 400.628 379.939 160.106 

 

In these simulation experiments, a total of 100,000 messages were used to gather 

statistics. In these experiments, 100,000 messages were divided into 10 batches, 

where the size of each batch was 10,000 messages. Results for each traffic rate were 

derived from simulation with N being the average of the simulation run where each N 
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represents 10,000 messages. The curves produced in each graph are from 10 traffic 

rates. 

 Normality test are sensitive to the size of the sample: with a large sample even 

small deviations from normality will be reported as significant.  

Table 6-3: SPSS Output for S-W tests of normality using Store-and-Forward Flow Control 

Mechanism 

 

Shapiro-Wilk 

Statistic df Sig. 

core1 .789 10 .011 

core2 .909 10 .271 

core4 .910 10 .283 

 

Table 6-4: SPSS Output for S-W tests of normality using Wormhole Flow Control 

Mechanism 

 

Shapiro-Wilk 

Statistic df Sig. 

core1 .848 10 .055 

core2 .739 10 .003 

core4 .815 10 .022 

 

Table 6-3 and Table 6-4 show the SPSS output of the S-W tests for both flow control 

mechanism. For test output using Store-and-Forward flow control, the p-value for 

1-core is smaller than 0.05, indicating a not-normally distributed data. Although the 

p-values for 2-core and 4-core are greater than 0.05 (i.e. normally distributed) 

parametric test (e.g. independent sample t test and one-way repeated measure ANOVA) 

cannot be used because all groups of comparison must be normally distributed. 

Therefore, the analysis will use non-parametric test (e.g. Mann Whitney and Friedman 

tests). SPSS output of the S-W test for Wormhole flow control indicate that 2-core and 

4-core are not normally distributed. Therefore, the analysis based on Wormhole flow 

control mechanism will also use non-parametric test (e.g. Mann Whitney and Friedman 

tests). 

b) Skewness and Histograms 

Skewness is a measure of the asymmetry of a distribution. A perfectly normal 

distribution is symmetric and has a skewness value of 0. A distribution with a 

significant positive skewness has a long right tail and a significant negative skewness 

has a long left tail. As a guideline, skewness values with more than twice a standard 

error are taken to indicate a departure from symmetry.  
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This test was conducted on both the store-and-forward (SF) and wormhole (WH) 

flow control mechanisms. 

Table 6-5: Descriptive Statistics for Skewness with Store-and-forward flow control 

 N Skewness 

Final test score Statistic Statistic Std. Error 

1-core 10 1.429 0.687 

2-core 10 0.208 0.687 

4-core 10 -0.397 0.687 

Table 6-6: Descriptive Statistics for Skewness with Wormhole flow control 

 N Skewness 

Final test score Statistic Statistic Std. Error 

1-core 10 1.417 0.687 

2-core 10 2.160 0.687 

4-core 10 1.485 0.687 

 

 The SPSS analysis for both flow control mechanisms reported a statistic for 

standard error for the skewness. The result was greater than ±1.96 when either score 

was divided by its standard error. This suggests that the results were not normally 

distributed with respect to that statistic. An SPSS output for skewness tests from 

experimental results is given in Table 6-5 and Table 6-6. Skewness for wormhole flow 

control mechanisms is positive, indicating that the results are slightly right-skewed and 

peaked compared to a normal distribution.  But with store-and-forward flow control, 

4-core gives negatives result, indicating that the results are slightly left-skewed. 

Applying the rule of thumb of dividing each value by its standard error, SF gives 

1-core=2.062, 2-core=0.003 and 4-core=-0.578. While WH gives 1-core=2.080, 

2-core=3.144 and 4-core=2.162 as a measure of skewness. Most of the results are 

greater than ±1.96 limits, suggesting that the result is not normal. This is confirmed 

by visual inspection of the histogram of the same results for Store-and-Forward flow 

control mechanism shown in Figure 6-1 for 1-core, Figure 6-3 for 2-core and Figure 6-5 

for 4-core. The histogram for Wormhole flow control mechanism is shown in Figure 6-2 

for 1-core, Figure 6-4 for 2-core and Figure 6-6 for 4-core. 
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Figure 6-1: Histogram with distribution 

curve plotted for store-and-forward flow 

control mechanism with 1-core 

Figure 6-2: Histogram with distribution 

curve plotted for wormhole flow control 

mechanism with 1-core 

  

Figure 6-3: Histogram with distribution 

curve plotted for store-and-forward flow 

control mechanism with 2-core 

Figure 6-4: Histogram with distribution 

curve plotted for wormhole flow control 

mechanism with 2-core 



Norhazlina Hamid   

112 

 

  

Figure 6-5: Histogram with distribution 

curve plotted for store-and-forward flow 

control mechanism with 4-core 

Figure 6-6: Histogram with distribution 

curve plotted for wormhole flow control 

mechanism with 4-core 

6.3 Mean Differences between Mechanisms 

Since there are two flow control mechanisms, store-and-forward (SF) and wormhole 

(WH), involved in the simulations, the Mann-Whitney test was applied to detect any 

statistically significant difference between the results. The Mann-Whitney test is used in 

analyses in which there is two conditions and different subjects have been used in each 

condition, but the assumptions of parametric testing are not tenable (Field, 2000). 

 The purpose of this test was to assess the interconnection performance by 

comparing message latency results between the two flow control mechanisms. It 

investigated which flow control mechanism yielded the best results for the latency 

evaluation metric.  

 Twenty traffic rates (N) were used in all: 10 traffic rates were based on SF and 

another 10 traffic rates were representing WH. Two flow controls are defined as two 

mechanism in the analysis (1=SF, and 2=WH). 
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Table 6-7: The comparison of flow control mechanism performance using Mann-

Whitney test 

    

Mechanism N Median Interquartile range U Z p 

1-core SF 10 143.0282 98.2132 – 380.4279     

WH 10 84.4709 31.3061 – 198.9897 28.000 -1.663 0.096 

Total 20      

2-core sf 10 105.4425 86.5303 – 134.1366    

wh 10 49.8460 27.7618 – 69.8574 1.000 -3.704 <0.001 

Total 20      

4-core SF 10 70.1651 65.9904 – 73.2761    

WH 10 35.7715 30.5565 – 38.3209 0.000 -3.780 <0.001 

Total 20      

 

 

Figure 6-7: Error bar chart of average message latency between store-and-forward flow 

control and wormhole flow control 

6.3.1 Discussion  

The comparison of flow control mechanism performance using Mann-Whitney test are 

shown in Table 6-7. This test was conducted to examine whether the latency increase 

between the cores. A U of zero indicates the greatest possible difference between the 

two flow control mechanisms. Z-approximation of U is calculated and used to assess 
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statistical significance. For this experiment, a calculated z larger than ±1.96 can be 

considered statistically significant. It can be concluded that, with p-value is below 0.05, 

there is a statistically significance difference between the message latency of SF flow 

control and WH flow control mechanisms. 

 A Mann-Whitney U is used when there are fewer than 20 cases in each group. A 

Mann-Whitney U test indicated that the message latency of Store-and forward flow 

control with 1-core were significantly higher than those of the Wormhole flow control 

(N=10, U=28.000, z = -1.663, p=0.096, two-tailed). However, this test also indicated 

that there was no significant difference between mechanisms in the message latency 

for 2-core and 4-core (p<0.001) where for 2-core with N=10, U=1.000, z = -3.704, 

p<0.001, two-tailed, and 4-core with N=10, U=0.000, z = -3.780, p<0.001, two-tailed. 

The clustered bar graph in Figure 6-7 illustrates the differences between the 

message latency results for both flow control mechanism in this test. The 

Store-and-Forward flow control outnumbers the Wormhole flow control in all message 

latency results. This graph also shows that the two distributions are similarly shaped. 

The graph clearly illustrates how SF flow control tends to have much larger latency 

than WH flow control. However, the throughput saturation point of SF flow control is 

larger than WH flow control indicated that more packets can be transmitted into the 

network in the light traffic. 

Thus, it can be concluded that there is a change in the latency as the number of 

cores increase when applying Store-and-Forward flow control. Whereas, there is almost 

no statistically significant changes in the latency when then number of cores increase 

when applying Wormhole flow control. However, Store-and-forward flow control is 

easier to implement since there is no blocking mechanism happen in the transmission. 

Although the latency increase, but with more cores, it will increase the performance.  

The results indicated that both flow control mechanisms when applied in the 

MCMCA, the performance increased with two or more cores. The test demonstrated 

that the wormhole mechanism produces less latency than the store-and-forward flow 

control mechanism. 

6.4 Mean Differences between Processor Core 

Performance 

The following test was applied to discern any difference in the performance for the 

three sizes of processor core. The independent variable in this test is the traffic rate 

while core sizes constitute the dependent variable. The test for a difference in the true 

means of message latency used the Friedman test with a significance level of =0.01. 
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The Friedman test allows for the analysis of repeated-measures data for two or more 

conditions or to matched-subjects data which are matched in pairs, triplets or in some 

greater number (Field, 2013).  

 The test aimed to investigate in whether each core is produced as more latency 

than the other cores. For this test, analyses will evaluates whether message latency 

differ significantly between three number of cores. Twenty traffic rates were used in 

all: 10 traffic rates were based on Store-and-Forward flow control mechanism and 

another 10 traffic rates were representing Wormhole flow control mechanism.  

Table 6-8: Comparison between processor core performance with two flow control 

mechanism 

Processor 

cores 
N Median Interquartile range 

X
2

 
p 

1-core  20 121.044 71.949 – 255.311 25.900 0.000002 

2-core  20 81.228 47.165 – 107.743 

4-core  20 51.571 35.335 – 70.525 

 

Table 6-9: Pairwise comparison between processor core performance for two flow 

control mechanism 

 core2 - core1 core4 - core2 core4 - core1 

Z -3.883 -3.621 -3.733 

Asymp. Sig. (2-

tailed) 
<0.01 <0.01 <0.01 

 

Table 6-10: Comparison between processor core performance with Store-and-Forward 

flow control mechanism 

Processor 

cores 
N Median Interquartile range 

X
2

 
p 

1-core SF 10 143.0282 98.2132 – 380.4279  20.000 <0.01 

2-core SF 10 105.4425 86.5303 – 134.1366 

4-core SF 10 70.1651 65.9904 – 73.2761 

 

Table 6-11: Pairwise comparison between processor core performance with Store-and-

Forward flow control mechanism 

 core2 - core1 core4 - core2 core4 - core1 

Z -2.803
c

 -2.803
c

 -2.803
c

 

Asymp. Sig. (2-tailed) .005 .005 .005 
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Table 6-12: Comparison between processor core performance with Wormhole flow 

control mechanism 

Processor 

cores 
N Median Interquartile range 

 

X
2

 
p 

1-core WH 10 84.4709 31.3061 – 198.9897 7.800 0.020 

2-core WH 
10 

49.8460 27.7618 – 69.8574 

4-core WH 
10 

35.7715 30.5565 – 38.3209 

 

Table 6-13: Pairwise comparison between processor core performance with Wormhole 

flow control mechanism 

 core2 - core1 core4 - core2 core4 - core1 

Z -2.701
c

 -1.988
c

 -2.293
c

 

Asymp. Sig. (2-tailed) .007 .047 .022 

 

6.4.1 Discussion 

Table 6-8 and Table 6-9 showed the comparison results for two flow control 

mechanism, Store-and-forward flow control (SF) and Wormhole flow control (WH). The 

table provides basic descriptive statistics for the three number of cores. N is the 

number of traffic rate in the research. Three post-hoc analyses with Wilcoxon pairwise 

comparison test were conducted to test if each mechanism was statistically 

significantly different from others (Allen & Bennett, 2010). If the result was 

significantly difference, the Bonferroni adjustment will be used to reduce the chances 

of obtaining false-positive results when multiple pair wise tests are performed on a 

single set of data (Field, 2013). 

 Friedman test were used to compare the performance of three results based on 

three different number of cores. Friedman test were carried out in two steps. The first 

step was to compare the processor performance regardless of the mechanisms. The 

second step was carried out to examine the difference of processor performance 

according to the flow control mechanisms.  

 For the first step, the results indicate that there are statistical differences of 

processor performance regardless of the mechanism involved (N=20, X
2

=25.900, 

p<0.000002). The Bonferroni adjustment is needed to maintain an alpha rate of 0.05 

over multiple comparisons (Allen & Bennett, 2010). It requires dividing the alpha level 

(0.05) by the number of comparisons being made (3 number of cores). Here, 

0.05/3=0.017 and a comparison can be considered statistically significant if p is less 

than 0.017. 
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 Follow up pairwise comparisons with the Wilcoxon test and a Bonferroni adjusted  

of 0.017 indicated that the 2-core was perceived as significantly produce more latency 

than 1-core (z=-3.883, p<0.001). There was also significant difference between 4-core 

and 1-core performance (z=-3.733, p<0.001), whereas the different between the 4-core 

and 2-core performance was clearly significant (z=-3.621, p<0.001). 

 Table 6-10 represents the results for the store-and-forward (SF) flow control 

mechanism while  

Table 6-12 concerns the wormhole (WH) flow control mechanism. This test is to 

determine if message latency changed significantly with the number of cores based on 

two flow control mechanism. 

 For the second step, Friedman test were carried out in order to compare the 

processor core performance according to the flow control mechanisms involved. For 

the SF flow control mechanism, there was a statistical difference of processor core 

performance (N=10, X
2

=20.000, p<0.000045). 

 Follow up pairwise comparisons in Table 6-11 with the Wilcoxon test and a 

Bonferroni adjusted  of 0.017 indicated that for SF flow control, there were difference 

between all processor cores performance (z=-2.803, p<0.005). Hence there exists 

enough evidence to conclude that there is a difference in the mean message latency for 

the three core sizes in interconnection performance based on SF flow control. 

 On the other hand, applied to the results for WH, with N=10, Friedman's chi-square 

has a value of 7.800 and a p-value <0.020 is less than 0.05. It was clear that there was 

a significant difference between message latency for the three cores.  Hence, there is 

enough evidence that message latency results for the three core sizes are different. 

This is due to small latency occurs in the light traffic. 

 Follow up pairwise comparisons in Table 6-13 with the Wilcoxon test and a 

Bonferroni adjusted  of 0.017 for WH flow control, the difference between the 

rankings of the processor core with 2-core and 1-core is statistically significant 

(p=0.007); the difference between the rankings of 4-core and 1-core is approaching 

significance (p=0.022); and the difference between rankings of the 4-core and 2-core is 

clearly non-significant (p=0.047). 

 It can be concluded that the network performance improved as the number of 

cores increase. However, there is no relationship between the latency and the number 

of cores. 

6.5 Summary 
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This chapter explained the approach used to analyse the experimental results provided 

in this thesis, which argues that simulation can be an effective method of investigating 

research problems and evaluating proposed solutions. The analysis was performed by 

using SPSS with two specific analyses. The normality test showed that both of the flow 

control simulation results indicated p-value for 1-core (SF), 2-core and 4-core (WH) is 

less than 0.05, indicating a not-normally distributed data. Although the p-values for 

other cores are greater than 0.05 (i.e. normally distributed) parametric test (e.g. 

independent sample t test and one-way repeated measure ANOVA) cannot be used 

because all groups of comparison must be normally distributed. Therefore, non-

parametric test (e.g. Mann Whitney and Friedman tests) were applied. 

 The first analysis was to investigate the interconnection performance by 

comparing message latency results between the two flow control mechanisms by using 

the Mann-Whitney test. A Mann-Whitney U test indicated that the message latency of 

Store-and forward flow control with 1-core were significantly higher than those of the 

Wormhole flow control (N=10, U=28.000, z = -1.663, p=0.096, two-tailed). However, 

this test also indicated that there was no significant difference between mechanisms in 

the message latency for 2-core and 4-core (p<0.001) where for 2-core with N=10, 

U=1.000, z = -3.704, p<0.001, two-tailed, and 4-core with N=10, U=0.000, z = -3.780, 

p<0.001, two-tailed. This concluded that that there is a change in the latency as the 

number of cores increase when applying Store-and-Forward flow control. Whereas, 

there is almost no statistically significant changes in the latency when then number of 

cores increase when applying Wormhole flow control. Although the latency increase, 

but with more cores, it will increase the performance.  

 The second analysis was performed to test the significance of the differences 

between the processor cores performance. The Friedman test was conducted and the 

results indicate that there are statistical differences of processor performance 

regardless of the mechanism involved (N=20, X
2

=25.900, p<0.000002). Follow up 

pairwise comparisons for both mechanism with 1-core, 2-core and 4-core, the Wilcoxon 

test were conducted and a Bonferroni adjusted  of 0.017 indicated that the 2-core was 

perceived as significantly produce more latency than 1-core (z=-3.883, p<0.001). There 

was also significant difference between 4-core and 1-core performance (z=-3.733, 

p<0.001), whereas the different between the 4-core and 2-core performance was 

clearly significant (z=-3.621, p<0.001). 

 The Friedman test confirmed that there was a significant improvement in 

processor performance from 1-core towards 4-core. It can be concluded that the 

network performance improved as the number of cores increase. 
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 The next chapter presents the conclusion of the thesis and its contribution to the 

research. It will also discuss future research directions to arrive at alternative solutions 

to overcoming the limitations in the cluster system. 

Chapter 7 Conclusions, Contributions 

and Future Work 

This chapter begins by providing conclusions arising out of the research described, 

and outlining the contribution made. Possible directions for future work are then 

suggested. Concluding remarks are given at the end. 

7.1 Conclusions 

Clusters are now playing a major role in solving large-scale computing application 

problems, as they meet the need for faster and more reliable systems, especially as 

they are often built using commodity-off-the-shelf (COTS) hardware components and 

commonly-used software. The advances made in these technologies are making 

clusters an appealing solution for cost-effective parallel computing and have emerged 

as mainstream parallel platforms for high-performance, high-throughput and 

high-availability computing. However, various limitations to the available cluster 

system, which is further constrained by a single-core processor, are associated with 

enabling new architecture. This thesis addresses the limitations by providing a new 

multi-core multi-cluster architecture, based on collaborative architecture using 

multi-core clusters and multi clusters. The proposed architecture was developed for 

five interconnection networks, while the key contribution of this thesis has been the 

development of multi-core multi-cluster architecture. A brief summary of the aims and 

contributions of each chapter is outlined below, with additional unaddressed points. 

 Chapter 2 described the motivation for using clusters as well as the technologies 

available for building a new cluster architecture. Cluster computing has emerged as a 

result of the convergence of several trends, including the availability of inexpensive 

high-performance microprocessors and high-speed networks, the development of 

standard software tools for high performance parallel and distributed computing, and 

the increasing need of computing power for computational science and commercial 

applications. It is clear that high-speed networks for cluster computing are important 

to support the needs of better performance. The rapid change in interconnection 

network technology provides a new opportunity for a researcher to improve the 
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performance of cluster computing.  Although much progress has been made in the 

development of low-latency protocols and new standard architectures, it creates 

interesting new challenges. The capability of clusters to deliver high performance and 

availability on a single platform is empowering many existing and emerging 

applications, and making clusters the platform of choice. 

Several research issues are discussed in multi-core cluster and interconnection 

networks which contribute to a new architecture. The various issues presented in 

Chapter 2 show that the disadvantages of the single-core cluster moved researchers to 

focus on multi-core clusters. Multi-core clusters solve various concerns by dividing the 

workload between different cores, which speeds up performance. Chapter 2 also 

presented a background for the simulation model structure, which includes network 

topology, flow control mechanisms and routing algorithms. These are important 

components of message passing and communication in an interconnection network. 

Chapter 3 presented the new architecture, known as Multi-core multi-cluster 

Architecture (MCMCA), built up of numbers of clusters where each cluster is composed 

of a number of nodes. Each node of a multi-core cluster has a number of processors, 

each with two or more cores with their own cache. Cores on the same chip share the 

local memory. The interconnection network connects the cluster nodes. By integrating 

multi-core processors and multiple clusters, its purpose is to provide an alternative 

architecture for the interconnection networks that improves the performance of the 

interconnection network by ensuring greater throughput and lower latency.  

 The research methodology described in Chapter 3 involved simulation 

development and experiment. The simulation models were built using the OMNeT++ 

network simulation tool, and baseline measures for the MCMCA were presented. A 

series of simulation experiments under various configurations and design parameters 

were performed. The results showed that the simulation model can be extended to 

investigate the performance of a multi-core cluster system based on multi-cluster 

architecture. Performance evaluation focused on communication latency and network 

throughput. 

 Chapter 4 demonstrated the performance evaluation of the interconnection 

network based on a store-and-forward flow control mechanism. The performance of 

single-core cluster and multi-core cluster architectures were compared by means of 

simulation experiments and an analytical model was used to validate the simulation 

results. Three simulation experiments were designed to demonstrate the MCMCA 

ability to predict interconnection network performance. The latency results suggested 

that, compared to single-core processor, a multi-core processor can improve the 

network performance by 51%-76%. This indicates that optimizing all levels of the 
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interconnection network is important in this architecture. Another observation was that 

the architecture can achieve lower latency and higher throughput as the number of 

cores increases.  

 The experiments also suggested that, compared to a single-core cluster, MCMCA 

can scale well from small (8-cluster) to large clusters (16-cluster to 128-cluster) while 

achieving low latency and high throughput. The impact of the architecture on message 

length reveals that small latency occurs with smaller message lengths (128 B to 512 B) 

but that latency increases with large message length (1 KB to 16 KB). The comparison 

of results between the analytical approach and those produced by the simulation 

experiments suggests that the analytical model provides a good basis for predicting 

the communication delay in interconnection network performance of the Multi-Core 

Multi Cluster Architecture (MCMCA). 

Chapter 5 presented a simulation model based on the wormhole flow control 

mechanism. Three sets of experiments were designed to get an insight into the 

architectural capability. For the baseline experiment, the MCMCA simulation model 

outperformed the previous model where the difference between simulation model and 

the analytical model results was less than 1%.  The first simulation experiment was 

conducted to investigate MCMCA performance based on latency and network 

throughput. The latency results suggested that as the traffic rate increases, the 

average communication latency increases, as the messages have to wait for resources 

before travelling into a network. In light traffic, higher latency occurs for larger 

numbers of cores due to task allocation between cores and a blocking mechanism. 

However, compared to the store-and-forward flow control mechanism, the wormhole 

flow control mechanism is able dramatically to improve latency, since packets are 

transferred using smaller units called flits: more flits can be transmitted in the same 

channel, thus minimising the latency.  

Another simulation experiment was performed to gain more insight into the 

impact of the architecture on cluster size and message length, so to reveal potential 

scalability.  Based on various message lengths, it was observed that a larger number of 

cores overtakes single-core performance by 4%-10% more under a uniform traffic 

pattern. However, due to the blocking issue, the wormhole flow control mechanism 

was unable to achieve optimal throughput performance. The resulting performance 

evaluation suggests an alternative for system designers building cluster applications.  

In Chapter 6 presented the statistical analysis. Two statistical analysis were 

conducted to compare the experimental results based on store-and-forward and 

wormhole flow control mechanisms. The normality test showed that both of the flow 

control simulation results indicated p-value for 1-core (SF), 2-core and 4-core (WH) is 
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less than 0.05, indicating a not-normally distributed data. Although the p-values for 

other cores are greater than 0.05, parametric test cannot be used because all groups 

of comparison must be normally distributed. Therefore, non-parametric test (e.g. Mann 

Whitney and Friedman tests) were applied. The first analysis was to investigate the 

interconnection performance by comparing message latency results between the two 

flow control mechanisms by using the Mann-Whitney test. The finding indicated that 

the message latency of Store-and forward flow control with 1-core were significantly 

higher than those of the Wormhole flow control (p=0.096). However, this test also 

indicated that there was no significant difference between mechanisms in the message 

latency for 2-core and 4-core (p<0.001). This concluded that there is a change in the 

latency as the number of cores increase when applying Store-and-Forward flow control. 

Whereas, there is almost no statistically significant changes in the latency when then 

number of cores increase when applying Wormhole flow control. 

The second analysis was performed to test the significance of the differences 

between the processor cores performance. The Friedman test was conducted and the 

results indicate that there are statistical differences of processor performance 

regardless of the mechanism involved (p<0.000002). The Friedman test confirmed that 

there was a significant improvement in processor performance from 1-core towards 

4-core. It can be concluded that the network performance improved as the number of 

cores increase. 

These analyses are important because they suggest that the simulation model can 

be an effective method to produced precise results in investigating research problems 

and evaluating proposed solutions in clusters system. 

7.2 Research Contributions 

The work described in this thesis was aimed at designing a high performance and 

scalable architecture for multi-core systems. The main contribution of this research is 

in developing a novel multi-core multi-cluster architecture (MCMCA) to improve 

interconnection network performance. In addition, this thesis develops a new 

simulation model based on two different flow control mechanisms and provides a 

method of testing message latency effects on system performance, the impact on 

cluster size and potential scalability.  

 Overall, this thesis contributes to innovative cluster architecture design and 

development to investigate the performance of interconnection networks in multi-core 

multi-cluster architecture. The major contributions of this thesis are thus: 

1. Multi-core Multi-cluster Architecture (MCMCA): The design and development 

of a novel architecture to investigate the performance of interconnection 
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network in multi-core multi-cluster. The new architecture involved five 

communication networks compared to three in the existing multi-core cluster 

architecture. The performance measurements focused on overall 

communication latency within the simulation model, and the simulation results 

were analysed for comparison with the published results for existing cluster 

architectures. The research reported in this thesis incorporated multi-cluster 

architecture for a more scalable approach, and this is the first investigation into 

incorporating this. 

 

2. MCMCA Performance Model based on Store-and-Forward Flow Control 

Mechanism: The development and evaluation of a new simulation model to 

investigate the performance of an interconnection network based on a 

store-and-forward flow control mechanism. 

 

3. MCMCA Performance Model based on Wormhole Flow Control Mechanism: 

The development and evaluation of a new simulation model to investigate the 

performance of an interconnection network based on a wormhole flow control 

mechanism. 

 

4. Validation of the Models:  The validity and accuracy of the model were 

demonstrated by comparing the results obtained by simulation experiment 

results with those obtained by an analytical model. 

7.3 Future Research Directions 

The research reported in this thesis has successfully addressed the research questions 

outlined in Chapter 1, section 1.2. However, there is a comprehensive application area 

with complex underlying details which could not possibly be covered entirely in this 

thesis. Thus, the future work in this area was suggested by: (a) the limitations of the 

research; (b) specific extensions of this research. 

7.3.1 Limitations of the Research 

Simulation studies are not without their limitations. Improvements can be made in 

future studies in the following areas. 

a) Energy Efficiency 

Multi-core processors are designed to adhere to reasonable power consumption and 

heat dissipation. Burger (2005) states that multi-core processors allow systems to put 

more processing power in a smaller package that uses less power and generates less 

heat for the computational power derived. Multi-core processors can result in 
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significant power savings and performance improvements if the applications are 

mapped to cores judiciously (Geer, 2007). To reduce unnecessary power consumption 

and reduce the heat, the design model must run the multiple cores at a lower 

frequency to ensure heat dissipation is distributed across the processor (Shainer et al., 

2013). Thus, there is a need to design the cores, the memory and the interconnection 

network to prevent energy inefficiency. 

 The main idea of this study was to design a comprehensive multi-core architecture 

which included energy efficient aspects. However, due to problems during the 

development of the simulation model, the MCMCA focused on the performance of the 

interconnection network and scalability issues as focus, leaving other aspects as 

interesting future directions. 

b) Fault-tolerance and Resilience Architectures 

Fault tolerance is the ability of the network to perform in the presence of one or more 

faults (Dally & Towles, 2004). With the development of the multi-core cluster system, 

more processors can be implemented on a single chip. Typically, a modern cluster 

system is deployed in a highly distributed manner, with communication between nodes 

becoming a critical part of the system architecture. This means that some form of fault 

tolerance of this communication network is required in order to achieve satisfactory 

system availability. An analysis conducted by Schroeder & Gibson (2010) showed that 

22 different HPC systems exhibited failure rates ranging from 20 to more than 1000 

per year on average. Their results also show that failure rate will continue to increase 

with system size. This demonstrates that it is important to consider the use of fault 

tolerance and resilience as a requirement for cluster systems. It is also important to 

understand the effectiveness of differing fault tolerances for MCMCA. 

 As chip cost is increasing, multi-core cluster design is a solution for enhancing 

system performance. Thus, cluster systems are in need of a high level of fault 

tolerance without substantial loss of overall performance. Several studies have 

investigated the fault tolerance by using analytical models (Requena, Requena, 

Rodriguez & Marin, 2009; Varghese et al., 2010). However, there are few studies on 

simulation modelling of fault tolerance and resilience in multi-core clusters. This issue 

requires further investigation and will be suggested for future work. 

c) Cache Coherence 

The shift towards multi-core clusters will rely on parallel software to achieve continuing 

exponential performance. Although processors logically access the shared memory, 

cache hierarchies are crucial to achieve fast performance. Since each core has its own 

cache, the copy of the data in that cache may not always be the most up-to-date 
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version and may produce invalid results. The design of the memory module with a 

cache will enable most of the shared variables to be accessed from a fast memory 

(cache) and only a small fraction of the shared variables from the slow main memory, 

thus leading to a small average memory access time (Rauber & Runger, 2010).  

 Cache size has become important for improving processor and network 

performance of a cluster system. Research in Das (2008) compared the network 

performance of different cache sizes with two widely used metrics, cache hit ratio and 

cache average access delay. As the cache size increases, cache hit ratio improves 

network performance and access delay decreases. However, the performance of large 

size caches may be severely constrained by the interconnection network 

(Muralimanohar & Balasubramonian, 2007). The main focus in this work is exploring 

various techniques to accelerate cache access that take advantage of a low bandwidth 

and low latency network. 

 For MCMCA, working within the cache become trickier since data is not only 

transferred between a core and memory, but also between cores. Building a cache 

coherence cluster system provided a flexible infrastructure to expand the systems in 

size and function (Liqun, Muralimanohar, Ramani, Balasubramonian & Carter, 2006). 

However, this flexibility comes at cost in performance such as substantial increase in 

memory latency when multiple cores share a cache. To gain more insight on the impact 

of cache size on network performance by the MCMCA needs a specific study, outside 

the scope of this work. 

7.3.2 Specific Extensions 

To take this research forward, numerous extensions are possible. This section 

highlights some of the areas for future research. 

a) Extension to Non-Uniform Traffic  

Future work should develop a simulation model for MCMCA based on a non-uniform 

traffic pattern. This should accommodate the traffic generated by real-world 

applications, which could provide communication network performance results so that   

comparisons may be made between different models of the MCMCA. The approach 

taken and the accuracy of the simulation outcome should provide a good basis for 

predicting the performance behaviour of MCMCA in both uniform and non-uniform 

traffic patterns.   

b) Extension to Modern Interconnects 

There are numbers of modern interconnections which offer high performance with rich 

features. Modern interconnects such as QsNetII and InfiniBand are very attractive for 
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large-scale system design. It will be interesting to exploit such modern features to 

extend this architecture in the future.  

 

7.4 Concluding Remarks 

The expected outcome of the research reported here was to produce a novel 

architecture and simulation to measure and improve interconnection network 

performance in the implementation of the multi-core multi-cluster architecture. 

Analytical methodology provided validation for the simulation results.  

 The approach taken and the accuracy of the simulation and analysis make it an 

attractive tool for predicting the performance behaviour of multi core multi cluster 

architecture. The research has already resulted in international conference and journal 

publications as mentioned in Chapter 1, section 1.3.  

 Ultimately this research will benefit not only cluster architecture, but also high 

performance computing architecture including cloud computing. More research into 

high performance computing, especially cloud computing, may now be based on 

cluster architecture to solve its limitations, especially in satisfying peak workload 

performance (Chang, Walters & Wills, 2013; Kosinska, Kosinski & Zielinski, 2010; 

Moreno-Vozmediano, Montero & Llorente, 2011). The research reported here should 

also provide an alternative platform for high performance computing that will yield 

several benefits, such as high availability, fault tolerance and infrastructure cost 

reduction.  



Norhazlina Hamid   

127 

 

Appendix 2-A 

As mentioned in 2.9.2e), a random number generator (RNG) is a program written for 

use in probability and statistics applications when large quantities of random digits are 

needed (Dally & Towles, 2004). Mersenne Twister is the random number generator 

employed by OMNeT++ (Varga, 2011), used to distribute the message destinations in 

the simulation model. 

d) Mersenne Twister RNG 

OMNeT++ primarily uses Mersenne Twister for random number generation. It uses the 

MT19937 RNG developed by Makoto Matsumoto and Takuji Nishimura in 1997 which 

has a cycle length of 219937 − 1 (Matloff, 2008). The Mersenne Twister has passed 

numerous tests for randomness and is distributed uniformly in 623 dimensions, 

generating an output which is free of long-term correlations (Jagannatam, 2008). It is 

considered to be fast as it avoids multiplications and divisions by using the advantages 

of caches and pipelines. 

 A configurable number of random numbers are provided to the simulation. Global 

random number streams are mapped to OMNeT++’s module which allows the use of 

variance reduction techniques without the need to change the configuration in the 

simulation model (Varga & Hornig, 2008). While seeding is automatic, auto-assigned 

using the run number, it is also possible to use manually-selected seeds. The 

simulation requires as many seeds as the number of global RNG streams configured. 

Due to the practically infinite cycle length of Mersenne Twister, overlapping of RNG 

streams is not an issue. 

e) Seeding the Mersenne Twister RNG 

Seeding is the procedure of setting the initial states of the RNG, so that it will produce 

a stream of random numbers (Wehrle et al., 2010). The RNG class implements support 

for seeding. Seed sets can be specified in the initialization section or for each run of 

OMNeT++. Mersenne Twister has such a long cycle that there is no need for seed 

generation because chances are very small that any two seeds produce overlapping 

streams (Matloff, 2008). 

f) Chi-square Goodness of Fit Test 

This is a non-parametric test used to find out how the observed value is significantly 

different from the expected value. In Chi-Square test, the term goodness of fit is used 

to compare the observed sample distribution with the expected probability 

distribution. This test also determines how well theoretical distribution (such as normal 
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or Poisson) fits the empirical distribution. In this test, sample data is divided into 

intervals. Then the numbers that fall into each interval are compared with the expected 

numbers in each interval. The formula for the statistic is: 

 

 2 =∑
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
 

 

A high value of  2 implies a poor fit between the observed and expected value, so the 

upper tail of the distribution is used for most hypothesis testing for goodness of fit. To 

determine whether the traffic generation rates are random, the null and alternative 

hypotheses are as follows: 

 

𝐻0: Traffic generation rates are random  

𝐻1: Traffic generation rates are not random 

Chi-Square 0.001 

Degrees of Freedom 9 

p-value 1.0 

Table 1: Chi-Square goodness of fit test 

Table 1 shows the test statistics and p-value. Since the p-value = 1.0 >0.05, the null 

hypotheses was not rejected. At the =0.05 level of significance, there was not enough 

evidence to reject the null hypotheses, thus, the RNG fitted the theory that the traffic 

generation rates are random. 
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Appendix 3-A 

MCMCA Simulation Model 

a) Module Designs and Structure Diagram 

The model behaviour built into each Network Description (NED) file will be captured in 

C++ files as code and can be edited in the Integrated Development Environment 

(Varga, 2011). Each NED file has its own C++ module source. Unlike many formats of 

deterministic discrete event simulation, the model is built at run-time to form a 

topology that represents the geometric structure and the communication links between 

the modules.  

 The topology and the communication links between the modules are represented 

by the NED file. Six module files have been built to describe the simulation model. 

Figure 1 shows the structure diagram of the module designs in MCMCA simulation 

model. 

1. Network Topology file – this file describes the building blocks of the fat-tree 

topology, including cores, nodes and clusters. 

2. Network Interface file – this file contains the interface of module types in fat-tree 

topology. Cores, nodes, clusters, switches, channels and the communication 

network are declared in this file and connections between them are established. 

3. Communication Switch – this file acts as the connection for each switch and router 

in the model and it will determine how a message is transmitted along a path that 

has been selected by the routing algorithm. 

4. Routing file – this file determines the path and schedules the routing algorithms for 

the packets in all communication networks based on FIFO (First-In-First-Out). It 

represents a single server queue that has the same service rate for each packet.  

5. Message-Generator file – packets are generated by this file following the 

assumption that the message destinations are uniformly distributed. 

6. Message-Sink file – this file will destroy the packets after each generation is 

completed and will gather event information for statistics. 

 

To illustrate the architecture, a model of the architecture is developed with the 

simulation program. The simulation model applies fat-tree topology that describes the 

geometric structure used for the arrangement of switches and communication links to 

connect the processors. Two levels of communication switch represent the intra-chip 

(AC) and inter-chip (EC), while each node in the tree represents the processor. The 
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dotted line represents the route taken by a packet from source to destination. Figure 2 

illustrates the packet travelling path in the OMNeT++ simulation model. 

 

Communication 
switch allocate 

resources
(switch.cc)

Packet 
arrives 

destination

Routing Module
(fifo.cc)

Generator 
generate packet 

(gen.cc)

Distribute packet 
based on probability

External 
cluster

(efifo.cc)

Internal 
cluster 

(infifo.cc)

Packet sink
(sink.cc)

 

Figure 1: Structure diagram of simulation models 

A packet travelling from source node to destination node will go up through internal 

switches of the tree until it finds the Nearest Common Ancestor (NCA) and then is 

transmitted down to the destination node. In this algorithm, each packet experiences 

two phases, an ascending phase to get a NCA, followed by a descending phase. For 
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example, a packet is to be sent from node 0:A to node 4:E and the switch connected to 

the source node is SW010. The packet will travel up in ascending phase to the NCA 

through switch SW001 and then go down in descending phase through switch SW012 

until it reaches the destination node 4:E. More examples are shown in Table 1. 

SW001

0         1         2         3

2                3

SW013

0                 1

G HFEBA DC

2                3

SW012

0                 1

2                3

SW010

0                 1

2                3

SW011

0                 1

SW002

0         1         2         3

0 1 2 3 64 5 7

Key:

Inter-Chip (EC)

Intra-Chip (AC)

Processor

Switch Level 1

Switch Level 2

 

Figure 2: Illustration of packet travelling path in the simulation model 

Table 1: Examples of routing algorithms 

Source Destination Switch In_port Out_port 

Communication 

Network 

0:A 4:E 010 0 2 Intra-chip (AC) 

  001 0 2 Inter-chip (EC) 

  012 2 0 Intra-chip (AC) 

2:C 3:D 011 0 1 Intra-chip (AC) 

5:F 7:H 012 1 3 Intra-chip (AC) 

  002 2 3 Inter-chip (EC) 

  013 3 1 Intra-chip (AC) 
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b) Simulation Code 

The topology and the communication links between the modules are represented by 

the network description, NED. The codes of the six modules were built to describe the 

simulation model, as follows. 

a) Network Topology module  

package mcsf; 

//-------------------------------------------------- 

// File: fattreenetwork.ned 

//-------------------------------------------------- 

 

module Node like IPNode 

{ 

    parameters: 

        int m; 

        int n; 

        int C; 

        int address; 

        @display("i=block/circle;is=vs"); 

          

    gates: 

        input in[]; 

        output out[]; 

         

    submodules: 

        gen: Generator { 

            parameters: 

                address = address; 

                num_ports = m; 

                num_trees = n; 

                num_clusters = C;               

                @display("p=100,50;i=gen"); 

    

            gates: 

                out[2]; 

        } 

        sink: Sink { 

            parameters: 

                address = address; 

                @display("p=135,120;i=sink"); 

 

            gates: 

                in[2]; 

        } 

    connections: 

        // to source queue to inject to the network 

        gen.out[0] --> out[0]; 

        gen.out[1] --> out[1]; 

        in[0] --> sink.in[0]; 

        in[1] --> sink.in[1]; 

} 

 

// NetworkSwitch -- 

// 

 

module I_NetworkSwitch like ISwitch //ICN 
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{ 

    parameters: 

 

        int m; 

        int n; 

        int C;         

        int service_time; 

        int cross_delay; 

        int route_delay; 

        int net_level; 

        int address; 

 

    gates: 

        input in[]; 

        output out[]; 

 

    submodules: 

 

        fifo[m]: inFifo { 

 

            parameters: 

                service_time = service_time; 

            gates: 

                in[2]; 

                out[2]; 

        } 

        crsbar: CrossBar { 

 

            parameters: 

                cross_delay = cross_delay; 

            gates: 

                in[m]; 

                out[m]; 

        } 

        rte: Router { 

 

            parameters: 

                num_ports = m; 

                num_trees = n; 

                num_clusters = C; 

                route_delay = route_delay; 

                net_level = net_level; 

                address = address; 

            gates: 

                in[m]; 

                out[m]; 

        } 

    connections: 

 

        for i=0..m-1 { 

 

            in[i] --> fifo[i].in[0]; 

            fifo[i].out[0] --> rte.in[i]; 

            rte.out[i] --> fifo[i].in[1]; 

            fifo[i].out[1] --> crsbar.in[i]; 

            crsbar.out[i] --> out[i]; 

        } 

} 
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module E_NetworkSwitch like ISwitch 

{ 

    parameters: 

        int m; 

        int n; 

        int C; 

        int service_time; 

        int cross_delay; 

        int route_delay; 

        int net_level; 

        int address; 

 

    gates: 

        input in[]; 

        output out[]; 

 

    submodules: 

        fifo[m]: inFifo { 

            parameters: 

                service_time = service_time; 

            gates: 

                in[2]; 

                out[2]; 

        } 

        efifo: eFifo { 

            parameters: 

                service_time = service_time; 

            gates: 

                in[2]; 

                out[2]; 

        } 

        crsbar: CrossBar { 

            parameters: 

                cross_delay = cross_delay; 

            gates: 

                in[m+1]; 

                out[m+1]; 

        } 

        rte: Router { 

            parameters: 

                num_ports = m; 

                num_trees = n; 

                num_clusters = C; 

                route_delay = route_delay; 

                net_level = net_level; 

                address = address; 

            gates: 

                in[m+1]; 

                out[m+1]; 

        } 

    connections: 

        for i=0..m-1 { 

            in[i] --> fifo[i].in[0]; 

            fifo[i].out[0] --> rte.in[i]; 

            rte.out[i] --> fifo[i].in[1]; 

            fifo[i].out[1] --> crsbar.in[i]; 

            crsbar.out[i] --> out[i]; 

        } 

        in[m] --> efifo.in[0]; 
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        efifo.out[0] --> rte.in[m]; 

        rte.out[m] --> efifo.in[1]; 

        efifo.out[1] --> crsbar.in[m]; 

        crsbar.out[m] --> out[m]; 

} 

module Merger like IMerg 

{ 

    parameters: 

        int m; 

        int n; 

        int C; 

        int service_time; 

        int address; 

 

    gates: 

        input in[]; 

        output out[]; 

 

    submodules: 

        fifo_up: Fifo { 

 

            parameters: 

                service_time = service_time; 

            gates: 

                in[(2*n-1)*(m/2)^(n-1)]; 

                out[1]; 

        } 

        fifo_down: Fifo { 

 

            parameters: 

                service_time = service_time; 

            gates: 

                in[1]; 

                out[(2*n-1)*(m/2)^(n-1)]; 

        } 

 

    connections: 

 

        for i=0..(2*n-1)*(m/2)^(n-1)-1 { 

            in[i] --> fifo_up.in[i]; 

            fifo_down.out[i] --> out[i]; 

        } 

        in[(2*n-1)*(m/2)^(n-1)] --> fifo_down.in[0]; 

        fifo_up.out[0] --> out[(2*n-1)*(m/2)^(n-1)]; 

} 

// Multi-Cluster System  -- 

network FatTreeNetwork extends FatTree 

{ 

    parameters: 

 

        C = 8;  

        m = 8;  

        n = 2;  

        nodetype = "Node"; 

        I_swtype = "I_NetworkSwitch"; 

        E_swtype = "E_NetworkSwitch"; 

        mergtype = "Merger"; 

} 
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b) Network Interface module 

//-------------------------------------------------- 

// File: fattreeinterface.ned 

// The m-port n-tree topology 

//-------------------------------------------------- 

 

package mcsf; 

 

moduleinterface IPNode 

{      

   parameters: 

        int m; 

        int n; 

        int C;        

        int address; 

   gates: 

        input in[]; 

        output out[]; 

} 

moduleinterface ISwitch 

{ 

    parameters: 

        int m; 

        int n; 

        int C; 

        int service_time; 

        int cross_delay; 

        int route_delay; 

        int net_level; 

        int address; 

    gates: 

        input in[]; 

        output out[]; 

} 

moduleinterface IMerg 

{ 

    parameters: 

        int m; 

        int n; 

        int C; 

        int service_time; 

        int address; 

    gates: 

        input in[]; 

        output out[]; 

}     

//declare simple 

simple PNode like IPNode 

{ 

    parameters: 
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        int m; 

        int n; 

        int C; 

      

        int address; 

    gates: 

        input in[]; 

        output out[]; 

} 

simple Switch like ISwitch 

{ 

    parameters: 

        int m; 

        int n; 

        int C; 

        int service_time; 

        int cross_delay; 

        int route_delay; 

        int net_level; 

        int address; 

    gates: 

        input in[]; 

        output out[]; 

} 

simple Merg like IMerg 

{ 

    parameters: 

        int m; 

        int n; 

        int C; 

        int service_time; 

        int address; 

    gates: 

        input in[]; 

        output out[]; 

} 

// Definition of physical channel (NET1) 

channel physical_n_net1 extends ned.DatarateChannel 

{ 

    parameters: 

        delay = 0.01s; 

        datarate = 1000bps; 

} 

channel physical_net1 extends ned.DatarateChannel 

{ 

    parameters: 

        delay = 0.01s; 

        datarate = 1000bps; 

} 

// Definition of physical channel (NET2) 
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channel phyNnet2 extends ned.DatarateChannel 

{ 

    parameters: 

        delay = 0.01s; 

        datarate = 1000bps; 

} 

channel phynet2 extends ned.DatarateChannel 

{ 

    parameters: 

        delay = 0.01s; 

        datarate = 1000bps; 

} 

// Definition of physical channel (NET3) 

channel phyNnet3 extends ned.DatarateChannel 

{ 

    parameters: 

        delay = 0.02s; 

        datarate = 500bps; 

} 

channel phynet3 extends ned.DatarateChannel 

{ 

    parameters: 

        delay = 0.01s; 

        datarate = 500bps; 

} 

channel phyNnet4 extends ned.DatarateChannel 

{ 

   parameters: 

} 

 

// M-port, N-tree 

 

module FatTree 

{ 

    parameters: 

        int m; 

        int n; 

        int C;       

        string nodetype; 

        string I_swtype; 

        string E_swtype; 

        string mergtype; 

        @display("bgb=1000,1000;bgp=10,20"); 

         

    submodules: 

           node[(C*2)*(m/2)^n]: <nodetype> like IPNode { 

            parameters: 

                m = m; 

                n = n; 

                C = C; 
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                address = index; 

                @display("p=100,300,row,50;i=comp_s"); 

            gates: 

                out[2]; 

                in[2]; 

        }         

        sw_ICN1[(C*(2*n-1))*(m/2)^(n-1)]: <I_swtype> like ISwitch { 

            parameters: 

                m = m; 

                n = n; 

                C = C; 

                service_time = 0.0; 

                cross_delay = 0; 

                route_delay = 0; 

                net_level = 0; 

                address = index; 

                @display("p=80,120,matrix,8,80,-80;i=queue"); 

            gates: 

                out[m]; 

                in[m]; 

        } 

        sw_ECN1[(C*(2*n-1))*(m/2)^(n-1)]: <E_swtype> like ISwitch { 

            parameters: 

                m = m; 

                n = n; 

                C = C; 

                service_time = 0; 

                cross_delay = 0; 

                route_delay = 0; 

                net_level = 1; 

                address = index; 

                @display("p=80,400,matrix,8,80,80;i=queue"); 

            gates: 

                out[m+1]; 

                in[m+1]; 

        } 

        sw_ICN2[(2*floor((log(C)-log(2))/(log(m)-log(2)))-

1)*(m/2)^(floor((log(C)-log(2))/(log(m)-log(2)))-1)]: <I_swtype> like 

ISwitch { 

            parameters: 

                m = m; 

                n = n; 

                C = C; 

                service_time = 0; 

                cross_delay = 0; 

                route_delay = 0; 

                net_level = 2; 

                address = index; 

                @display("p=80,750,matrix,8,80,80;i=queue"); 

            gates: 

                out[m]; 
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                in[m]; 

        } 

        merg[C]: <mergtype> like IMerg { 

            parameters: 

                m = m; 

                n = n; 

                C = C; 

                service_time = 0; 

                address = index; 

                @display("p=80,600,matrix,8,80,80"); 

            gates: 

                out[(2*n-1)*(m/2)^(n-1)+1]; 

                in[(2*n-1)*(m/2)^(n-1)+1]; 

        } 

    connections: 

       // ***************************************** for ICN1 and ECN1 

**************************** 

        // connect processing node with leaf switches          

        for j=0..C-1, for i=0..2*(m/2)^n-1 { 

            // ICN1 

            node[j*(2*(m/2)^n)+i].in[0] <-- phyNnet2 <-- 

sw_ICN1[i/(m/2)+(j*(2*n-1))*(m/2)^(n-1)].out[i%(m/2)] if n>1; 

            node[j*(2*(m/2)^n)+i].out[0] --> phyNnet2 --> 

sw_ICN1[i/(m/2)+(j*(2*n-1))*(m/2)^(n-1)].in[i%(m/2)] if n>1; 

 

            //ECN1 

            node[j*(2*(m/2)^n)+i].in[1] <-- phyNnet3 <-- 

sw_ECN1[i/(m/2)+(j*(2*n-1))*(m/2)^(n-1)].out[i%(m/2)] if n>1; 

            node[j*(2*(m/2)^n)+i].out[1] --> phyNnet3 --> 

sw_ECN1[i/(m/2)+(j*(2*n-1))*(m/2)^(n-1)].in[i%(m/2)] if n>1; 

 

            // if n==1 (M-port 1-Tree) 

            //ICN1 

            node[j*m+i].in[0] <-- phyNnet2 <-- sw_ICN1[j].out[i] if 

n==1; 

            node[j*m+i].out[0] --> phyNnet2 --> sw_ICN1[j].in[i] if 

n==1; 

 

            //ECN1 

            node[j*m+i].in[1] <-- phyNnet3 <-- sw_ECN1[j].out[i] if 

n==1; 

            node[j*m+i].out[1] --> phyNnet3 --> sw_ECN1[j].in[i] if 

n==1; 

        } 

        //connect internal (not root switch) switches with each other 

        for h=0..C-1, for i=0..(n==1 ? -1 : (2*n-4)*(m/2)^(n-1)-1), 

for j=0..(n==1 ? -1 : m/2-1), for k=i/(2*(m/2)^(n-

1))+1..i/(2*(m/2)^(n-1))+1, for w=((2*n-1)*(m/2)^(n-1))..((2*n-

1)*(m/2)^(n-1)), for q=((m/2)^(k-1))..((m/2)^(k-1)) { 

 

            sw_ICN1[i+h*w].in[j+m/2] <-- phynet2 <-- sw_ICN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q]; 
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            sw_ICN1[i+h*w].out[j+m/2] --> phynet2 --> sw_ICN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q]; 

 

            sw_ECN1[i+h*w].in[j+m/2] <-- phynet3 <-- sw_ECN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q]; 

            sw_ECN1[i+h*w].out[j+m/2] --> phynet3 --> sw_ECN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q]; 

 

        } 

        //connect root switches with sub trees 

        for h=0..C-1, for i=(n==1 ? 0 : (2*n-4)*(m/2)^(n-1))..(n==1 ? 

-1 : (2*n-3)*(m/2)^(n-1)-1), for j=0..(n==1 ? -1 : m/2-1), for 

k=i/(2*(m/2)^(n-1))+1..i/(2*(m/2)^(n-1))+1, for w=((2*n-1)*(m/2)^(n-

1))..((2*n-1)*(m/2)^(n-1)), for q=((m/2)^(k-1))..((m/2)^(k-1)) { 

 

            //ICN1  

            sw_ICN1[i+h*w].in[j+m/2] <-- phynet2 <-- sw_ICN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q]; 

            sw_ICN1[i+h*w].out[j+m/2] --> phynet2 --> sw_ICN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q]; 

 

            sw_ICN1[(i+(m/2)^(n-1))+h*w].in[j+m/2] <-- phynet2 <-- 

sw_ICN1[((((i-i%(m/2)^k)+2*(m/2)^(n-

1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q+m/2]; 

            sw_ICN1[(i+(m/2)^(n-1))+h*w].out[j+m/2] --> phynet2 --> 

sw_ICN1[((((i-i%(m/2)^k)+2*(m/2)^(n-

1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q+m/2]; 

 

 

            //ECN1 

            sw_ECN1[i+h*w].in[j+m/2] <-- phynet3 <-- sw_ECN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q]; 

            sw_ECN1[i+h*w].out[j+m/2] --> phynet3 --> sw_ECN1[((((i-

i%(m/2)^k)+2*(m/2)^(n-1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q]; 

 

            sw_ECN1[(i+(m/2)^(n-1))+h*w].in[j+m/2] <-- phynet3 <-- 

sw_ECN1[((((i-i%(m/2)^k)+2*(m/2)^(n-

1))+(m/2)*(i%q))+j)+h*w].out[(i%(m/2)^k)/q+m/2]; 

            sw_ECN1[(i+(m/2)^(n-1))+h*w].out[j+m/2] --> phynet3 --> 

sw_ECN1[((((i-i%(m/2)^k)+2*(m/2)^(n-

1))+(m/2)*(i%q))+j)+h*w].in[(i%(m/2)^k)/q+m/2]; 

 

        } 

         //***************************************** for Merger 

*********************************** 

        //ECN to merger 

        for h=0..C-1, for i=0..(n==1 ? 0 : (2*n-1)*(m/2)^(n-1)-1) { 

            sw_ECN1[i+h*((2*n-1)*(m/2)^(n-1))].out[m] --> phyNnet4 --

>merg[h].in[i]; 

            sw_ECN1[i+h*((2*n-1)*(m/2)^(n-1))].in[m] <-- phyNnet4 <--

merg[h].out[i]; 

        } 

 

        // ***************************************** for ICN2 
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************************************** 

        // connection to ICN2 

        for Cn=floor((log(C)-log(2))/(log(m)-log(2)))..floor((log(C)-

log(2))/(log(m)-log(2))), for i=0..2*(m/2)^Cn-1 { 

 

            // ICN2 

            merg[i].in[(2*n-1)*(m/2)^(n-1)] <-- phynet3 <-- 

sw_ICN2[i/(m/2)].out[i%(m/2)] if Cn>1; 

            merg[i].out[(2*n-1)*(m/2)^(n-1)] --> phynet3 --> 

sw_ICN2[i/(m/2)].in[i%(m/2)] if Cn>1; 

            // if Cn==1 (M-port 1-Tree) 

 

            //ICN2 

            merg[i].in[(2*n-1)*(m/2)^(n-1)] <-- phynet3 <-- 

sw_ICN2[0].out[i] if Cn==1; 

            merg[i].out[(2*n-1)*(m/2)^(n-1)] --> phynet3 --> 

sw_ICN2[0].in[i] if Cn==1; 

        } 

        //connect internal (not root switch) switches with each other 

        for Cn=floor((log(C)-log(2))/(log(m)-log(2)))..floor((log(C)-

log(2))/(log(m)-log(2))), for i=0..(Cn==1 ? -1 : (2*Cn-4)*(m/2)^(Cn-

1)-1), for j=0..(Cn==1 ? -1 : m/2-1), for k=i/(2*(m/2)^(Cn-

1))+1..i/(2*(m/2)^(Cn-1))+1, for q=((m/2)^(k-1))..((m/2)^(k-1)) { 

             

            sw_ICN2[i].in[j+m/2] <-- phynet3 <-- sw_ICN2[(((i-

i%(m/2)^k)+2*(m/2)^(Cn-1))+(m/2)*(i%q))+j].out[(i%(m/2)^k)/q]; 

            sw_ICN2[i].out[j+m/2] --> phynet3 --> sw_ICN2[(((i-

i%(m/2)^k)+2*(m/2)^(Cn-1))+(m/2)*(i%q))+j].in[(i%(m/2)^k)/q]; 

        } 

 

        //connect root switches with sub trees 

        for Cn=floor((log(C)-log(2))/(log(m)-log(2)))..floor((log(C)-

log(2))/(log(m)-log(2))), for i=(Cn==1 ? 0 : (2*Cn-4)*(m/2)^(Cn-

1))..(Cn==1 ? -1 : (2*Cn-3)*(m/2)^(Cn-1)-1), for j=0..(Cn==1 ? -1 : 

m/2-1), for k=i/(2*(m/2)^(Cn-1))+1..i/(2*(m/2)^(Cn-1))+1, for 

q=((m/2)^(k-1))..((m/2)^(k-1)) { 

 

            //ICN2  

            sw_ICN2[i].in[j+m/2] <-- phynet3 <-- sw_ICN2[(((i-

i%(m/2)^k)+2*(m/2)^(Cn-1))+(m/2)*(i%q))+j].out[(i%(m/2)^k)/q]; 

            sw_ICN2[i].out[j+m/2] --> phynet3 --> sw_ICN2[(((i-

i%(m/2)^k)+2*(m/2)^(Cn-1))+(m/2)*(i%q))+j].in[(i%(m/2)^k)/q]; 

 

            sw_ICN2[i+(m/2)^(Cn-1)].in[j+m/2] <-- phynet3 <-- 

sw_ICN2[(((i-i%(m/2)^k)+2*(m/2)^(Cn-

1))+(m/2)*(i%q))+j].out[(i%(m/2)^k)/q+m/2]; 

            sw_ICN2[i+(m/2)^(Cn-1)].out[j+m/2] --> phynet3 --> 

sw_ICN2[(((i-i%(m/2)^k)+2*(m/2)^(Cn-

1))+(m/2)*(i%q))+j].in[(i%(m/2)^k)/q+m/2]; 

      } 

} 
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c) Routing modules  

a. Routing module Fifo 

//------------------------------------------------------------- 

// file: fifo1.cc 

//        (part of Fifo1 - an OMNeT++ demo simulation) 

//------------------------------------------------------------- 

 

#include "fifo.h" 

#include <math.h> 

#include "gensinkMsg_m.h" 

 

void FF1AbstractFifo::initialize() 

{ 

    msgServiced = NULL; 

    endServiceMsg = new cMessage("end-service"); 

    cModule *parent; 

    parent = getParentModule(); 

    int i = parent->getIndex(); 

    ev << "index= "<< i << endl; 

 

} 

void FF1AbstractFifo::handleMessage(cMessage *msg) 

{ 

 gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

 gensinkMsg *msgServiced = dynamic_cast<gensinkMsg *>(msg); 

 

 if(gmsg!=NULL){ 

 

    src_ix = gmsg->getSrc(); 

    des_ix = gmsg->getDest(); 

 

     if (gmsg->getKind()==1) 

      NCA_NO[src_ix][des_ix] = 0; 

 

     Else 

 

         NCA_NO[src_ix][des_ix] = gmsg->getNCA(); 

         ev << "Merger: NCA of msg " << msg->getName() << " is : " 

<< NCA_NO[src_ix][des_ix] << endl; 

  } 

        if (msg==endServiceMsg) 

        { 

 

         src_ix = msgServiced->getSrc(); 

         des_ix = msgServiced->getDest(); 

      out_ix = NCA_NO[src_ix][des_ix]; 

 

     endService( msgServiced ,out_ix); 

 

            if (queue.empty()) 



Norhazlina Hamid   

144 

 

            { 

                msgServiced = NULL; 

            } 

            else 

            { 

                opp_warning("FF1AbstractFifo::handleMessage: Src3"); 

                msgServiced = (gensinkMsg *) queue.pop(); 

                simtime_t serviceTime = startService( msgServiced ); 

                scheduleAt( simTime()+serviceTime, endServiceMsg ); 

            } 

        } 

        else if (!msgServiced) 

        { 

            arrival( msg ); 

            msgServiced = gmsg; 

 

            simtime_t serviceTime = startService( msgServiced )                  

            scheduleAt( simTime()+serviceTime, endServiceMsg ); 

        

        } 

        else 

        { 

            arrival( msg ); 

            queue.insert( msg ); 

        } 

} 

 

void FF1AbstractFifo::finish() 

{ 

    int j;    

    cModule *parent = getParentModule(); 

    int i = parent->getIndex();     

    int s = parent->size(); 

} 

 

//------------------------------------------------ 

 

Define_Module( Fifo ); 

 

simtime_t Fifo::startService(cMessage *msg) 

{ 

    ev << "Starting service of " << msg->getName() << endl; 

    return par("service_time"); 

} 

 

void Fifo::endService(cMessage *msg, int ix) 

{ 

    send( msg, "out", ix); 

} 
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b. Routing module infifo for Internal Cluster 

//------------------------------------------------------------- 

// file: infifo.cc 

 

#include "infifo.h" 

#include <math.h> 

#include "gensinkMsg_m.h" 

 

void FF1AbstractinFifo::initialize() 

{ 

    msgServiced = NULL; 

    endServiceMsg = new cMessage("end-service"); 

    intCountEntry = 0; 

} 

void FF1AbstractinFifo::handleMessage(cMessage *msg) 

{ 

    gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

    } 

    simtime_t d = simTime()-msg->getTimestamp(); 

 

    if (gmsg!=NULL){ 

 

         if (gmsg->getRouted()==0) { 

 

         ev << "Unrouted header flit; send to router" << endl; 

  endService(msg, 0); 

  return; 

     } 

       gmsg->setRouted(0); 

 } 

        if (msg==endServiceMsg) 

        { 

            endService( msgServiced ,1); 

            if (queue.empty()) 

            { 

                msgServiced = NULL; 

            } 

            else 

            { 

                msgServiced = (gensinkMsg *) queue.pop(); 

                simtime_t serviceTime = startService( msgServiced );

  

                scheduleAt( simTime()+serviceTime, endServiceMsg ); 

            } 

        } 

        else if (!msgServiced) 

        { 

            arrival( msg ); 

            msgServiced = gmsg; 

            simtime_t serviceTime = startService( msgServiced ); 
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            scheduleAt( simTime()+serviceTime, endServiceMsg ); 

        } 

        else 

        { 

            arrival( msg ); 

            queue.insert( msg ); 

        } 

} 

 

//------------------------------------------------ 

 

Define_Module( inFifo ); 

 

simtime_t inFifo::startService(cMessage *msg) 

{ 

    ev << "Starting service of " << msg->getName() << endl; 

    return par("service_time"); 

} 

 

void inFifo::endService(cMessage *msg, int ix) 

{ 

    send( msg, "out", ix); 

} 

 

c. Routing Module efifo for External Cluster 

 

//------------------------------------------------------------- 

// file: efifo.cc 

 

#include "efifo.h" 

#include <math.h> 

#include "gensinkMsg_m.h" 

 

void FF1AbstracteFifo::initialize() 

{ 

    msgServiced = NULL; 

    endServiceMsg = new cMessage("end-service"); 

} 

void FF1AbstracteFifo::handleMessage(cMessage *msg) 

{ 

    gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

    simtime_t d = simTime()-msg->getTimestamp(); 

 

 if (gmsg!=NULL){ 

             if (gmsg->getRouted()==0){  

 

  ev << "Unrouted header flit; send to router" << endl; 

  endService(msg, 0); 
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  return; 

     } 

     gmsg->setRouted(0); 

 } 

        if (msg==endServiceMsg) 

        { 

            endService( msgServiced ,1); 

            if (queue.empty()) 

            { 

                msgServiced = NULL; 

            } 

            else 

            { 

                msgServiced = (gensinkMsg *) queue.pop(); 

                simtime_t serviceTime = startService( msgServiced );

        scheduleAt( simTime()+serviceTime, endServiceMsg ); 

            } 

        } 

        else if (!msgServiced) 

        { 

            arrival( msg ); 

            msgServiced = gmsg; 

            simtime_t serviceTime = startService( msgServiced );  

            scheduleAt( simTime()+serviceTime, endServiceMsg ); 

        } 

        else 

        { 

            arrival( msg ); 

            queue.insert( msg ); 

        }  

} 

 

//------------------------------------------------ 

 

Define_Module( eFifo ); 

 

simtime_t eFifo::startService(cMessage *msg) 

{ 

    gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

 

    ev << "Starting service of " << gmsg->getName() << endl; 

    return par("service_time"); 

} 

 

void eFifo::endService(cMessage *msg, int ix) 

{ 

    gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

    send( gmsg, "out", ix); 

} 
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d) Communication Switch module 

//------------------------------------------------------------- 

// file: switch.cc 

//------------------------------------------------------------- 

#include "switch.h" 

#include <math.h> 

#include "omnetpp.h" 

#include "gensinkMsg_m.h" 

 

void FF1AbstractCB::initialize() 

{ 

    int cross_delay = par("cross_delay"); 

} 

void FF1AbstractCB::handleMessage(cMessage *msg) 

{ 

    gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

 

if (gmsg) 

        out_port = gmsg->getOut_port(); 

  ev << "CrossBar: Cross msg to port: " << out_port << endl; 

 

    if(gate("out",out_port)->getTransmissionChannel()!=NULL) 

    { 

        if(gate("out",out_port)->getTransmissionChannel()->isBusy()) 

        { 

           sendDelayed(gmsg,gate("out",out_port)-

>getTransmissionChannel()->getTransmissionFinishTime()-

simTime(),"out",out_port); 

        } 

        else 

        { 

             send(gmsg,"out", out_port); 

        } 

    } 

} 

Define_Module( CrossBar ); 

 

simtime_t CrossBar::startService(cMessage *msg) 

{ 

    gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

 

    ev << "Starting service of " << gmsg->getName() << endl; 

    return par("service_time"); 

} 

 

void CrossBar::endService(cMessage *msg) 

{ 

    gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

 

    int dest, src ,n; 

    dest = gmsg->par("dest"); 

    src = gmsg->par("src"); 

    dest = dest - (dest/n)*n; 

    ev << "Completed service of " << gmsg->getName() << " in ICN1,send 

to port: "<< dest << endl; 

    send( gmsg, "out", dest); 

} 
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e) Message-Generator module  

// File: gen.cc 

// 

// Implementation of simple module types 

//------------------------------------------------------------- 

 

#include <stdio.h> 

#include <math.h> 

#include <sys/time.h> 

#include <string.h> 

#include "omnetpp.h" 

#include "gen.h" 

#include "gensinkMsg_m.h" 

 

// Turn on code that prints debug messages 

#define TRACE_MSG 

 

// Module registration: 

Define_Module( Generator ); 

 

double Latency[ARY_SIZE][BATCH_NO]; 

int BATCH_SIZE; 

 

void Generator::initialize() 

{ 

    msg_cnt = 0; 

    batch_no = 0; 

    measurment = false; 

    num_messages_measur = par("num_messages"); 

    msg_length = par("msg_length"); 

    fp_length = par("fp_length"); 

    my_address = par("address"); 

    ia_time = par("ia_time").doubleValue(); 

 

    m = par("num_ports"); 

    n = par ("num_trees"); 

    C = par ("num_clusters"); 

 

    num_nodes = 2*(int)pow(m/2, n); 

    parent = getParentModule(); 

    ix = parent->getIndex(); 

     

    if (ix==0) 

 ev << "Number of Nodes: " << C*num_nodes << endl; 

    dix = ix /num_nodes; 

     

    if (dix<C/2) 

 fi[dix] = 1.0; 

    else 

 fi[dix] = 1.0; 

 

    ev << "Pr index: " << ix << ",fi: " << 1/fi[dix] << endl; 

 

    BATCH_SIZE = num_messages_measur/BATCH_NO; 

    num_messages_warm = WARM_UP*BATCH_SIZE; 

    num_messages_drain=DRAIN*BATCH_SIZE; 

    sendMessageEvent = new cMessage("sendMessageEvent"); 

    scheduleAt(0.0, sendMessageEvent); 
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} 

// 

// Activities of the simple modules 

// 

void Generator::handleMessage(cMessage *msg) 

{ 

        int dest = intrand(C*num_nodes); 

  if (dest == my_address) 

  { 

      scheduleAt(simTime(), sendMessageEvent); 

      return; 

  } 

      sprintf(msgname, "%d-->%d", my_address,dest); 

   

  // generate packet 

 

      gensinkMsg *gmsg = new gensinkMsg(msgname); 

      gmsg->setSrc(my_address); 

      gmsg->setDest(dest); 

       gmsg->setNum_nodes(num_nodes); 

       gmsg->setRouted(0); 

 

      if (measurment) 

      gmsg->setBatch_no(batch_no); 

      gmsg->setLevel(n-1); 

      gmsg->setOut_port(-1); 

      gmsg->setBitLength(fp_length*msg_length); 

      gmsg->setTimestamp(); 

      ev << "Generate data packet\n"; 

 

#ifdef TRACE_MSG 

          ev.printf("gen[%d]: Generated new msg: '%s ' by node: 

%d\n",my_address, gmsg->getName(),ix); 

#endif 

       

             ev << "Send packet to Source Queue (Channel)" << endl; 

       

         if ((int)(my_address/num_nodes) == (int)(dest/num_nodes)){ 

      // internal  

 

         ev << "Send to internal Cluster" << endl; 

      gmsg->setKind(0); 

      if (gate("out",0)->getTransmissionChannel()->isBusy()) 

          sendDelayed(gmsg, gate("out",0)-

>getTransmissionChannel()->getTransmissionFinishTime()-

simTime(),"out",0); 

      else 

          send(gmsg,"out",0); 

      } 

  else{ 

      // external 

         ev << "Send to external Cluster" << endl; 

      gmsg->setKind(1); 

      if(gate("out",1)->getTransmissionChannel()->isBusy()) 

      { 

      sendDelayed(gmsg, gate("out",1)->getTransmissionChannel()-

>getTransmissionFinishTime()-simTime(),"out",1); 

  } 

  else 
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  { 

      send(gmsg,"out",1); 

  } 

  } 

  msg_cnt++; 

  if (msg_cnt>=num_messages_warm) 

      measurment = true; 

    

  if (msg_cnt>=num_messages_measur+num_messages_warm) 

      measurment = false; 

     

  if (msg_cnt>=(batch_no+2)*BATCH_SIZE && measurment) 

      batch_no++; 

  if (msg_cnt < 

num_messages_warm+num_messages_measur+num_messages_drain) 

      

scheduleAt(simTime()+(double)exponential((double)ia_time*fi[dix]), 

sendMessageEvent); 

} 

void Generator::finish() 

{ 

    int m = par("num_ports"); 

    int n = par ("num_trees"); 

    int C = par ("num_clusters"); 

    int i; 

    double iicnt,eecnt,in,en; 

} 

} 

 

f) Message-Sink module  

// File: sink.cc 

// 

// Implementation of simple module types 

//------------------------------------------------------------- 

 

#include <stdio.h> 

#include <math.h> 

#include <sys/time.h> 

#include <string.h> 

#include "omnetpp.h" 

#include "sink.h" 

#include "gensinkMsg_m.h" 

 

#define TRACE_MSG 

 

// Module registration: 

 

Define_Module( Sink ); 

 

void Sink::initialize() 

{ 

    parent = getParentModule(); 

    i = parent->getIndex(); 

    s = parent->size(); 

    j = 0;  

    Latency[i][j] = 0; 

    sinked_msg_cnt = 0; 
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} 

void Sink::handleMessage(cMessage *msg) 

{ 

      gensinkMsg *gmsg = dynamic_cast<gensinkMsg *>(msg); 

    simtime_t d = simTime()-msg->getTimestamp(); 

 if (gmsg!=NULL){ 

     j = gmsg->getBatch_no(); 

     sinked_msg_cnt++; 

 

     if (j<0 || j>BATCH_NO) 

  error("error in batch_no: %simTime",gmsg->getBatch_no()); 

     qstats[j].collect( d ); 

 } 

  

 if ((int)par("address")!= gmsg->getDest()){ 

     error ("error in destination, my addr:%d != 

dest:%d",(int)par("address"),gmsg->getDest()); 

    } 

    // message no longer needed 

    delete msg; 

 

} 

 

void Sink::finish() 

{    

    cModule *parent = getParentModule(); 

    double avg_latency[BATCH_NO]; 

    double latency1; 

    int j,k;   

    int ix = parent->getIndex(); 

    int s = parent->size(); 

     

    for(j=0; j<BATCH_NO; j++){ 

 Latency[ix][j]= qstats[j].getMean(); 

 } 

msg_cnt = 0; 

    for(j=0; j<BATCH_NO; j++) 

    msg_cnt+= qstats[j].getCount(); 

 

    if (ix==s-1){ 

     for(j=0; j<BATCH_NO; j++){ 

     avg_latency[j] = 0; 

 

     for (k=0; k<s; k++) 

  avg_latency[j]+= Latency[k][j]; 

     avg_latency[j] = avg_latency[j]/s; 

     ev << "Avg Latency:    " << avg_latency[j] << "  Batch: " <<j<< 

endl; 

 } 

// count avg latency 

 latency1 = 0; 

 for(j=0; j<BATCH_NO; j++) 

     latency1+= avg_latency[j]; 

 

 latency1 = latency1/(BATCH_NO); 

 ev << "Total Avg Latency (BATCH):    " << latency1 << endl; 

 recordScalar("TotalAvgLatency", latency1); 

    } 
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c) Simulation Test Plan 

In order to illustrate the feasibility and the accuracy of the simulation model, four sets 

of experiments were conducted and compared with previous research, using several 

system configurations.  

1. Baseline Experiments 

Baseline experiment involved experiments with a single-core cluster and multi-core 

cluster. The experiments were conducted using the MCMCA simulation model, and 

the MCMCA analytical model for model validation compared to Javadi’s model 

(Javadi et al., 2006) using the same interconnection network parameters from their 

paper. 

a) Experiments with a Single-core Cluster 

This section presents the results of experiments based on Javadi’s model (Javadi et 

al., 2006) conducted on single-core clusters based on the interconnection network 

parameters listed in Table 2 and model cases in Table 3. 

Table 2: Interconnection network parameters 

Parameter Internal-cluster External-cluster 

Network latency 0.01 s 0.02 s 

Switch latency 0.01 s 0.01 s 

Network Bandwidth 1000 bits/s 500 bits/s 

 

Table 3: Model cases for single-core clusters 

C,m,n Message Length (M) Flit length (F) 

8,8,2 32 flits 256 bytes 

8,8,2 32 flits 512 bytes 

8,8,2 64 flits 256 bytes 

8,8,2 64 flits 512 bytes 

 

b) Experiments with Multi-core Clusters 

To test the validity of the simulation of the MCMCA, a simulation experiment was 

performed based on model cases in Table 4. Two different flow control 

mechanisms, store-and-forward and wormhole, were used to verify the 

simulation model. 
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Table 4: Model cases for multi-core clusters 

Items Quantity 

No. of cores nc 1, 2, 4 

Message Length M and Flit Length F 32 flits, 256 bytes 

No. of clusters, m-port, n-tree 8, 8, 2 

 

 

2. Latency and Throughput Performance Experiments on MCMCA 

 

a) Store-and-Forward Flow Control 

 To investigate the latency effect on MCMCA, the simulation experiments involved a 

single-core processor, a dual-core processor and a quad-core processor. To form 

the latency curve, a total of 10 different message generation rates 𝜆𝑔 were used for 

each core, and the accuracy of each result was validated by the analytical 

calculation. The simulation experiments were performed with various combinations 

of parameters by using the interconnection network parameter I given in Table 5 

with simulation input I from Table 6. 

Table 5: Interconnection Networks Parameter I 

Parameter Internal cluster External cluster 

Network latency 0.01 s 0.02 s 

Switch latency 0.01 s 0.01 s 

Network Bandwidth I 1000 bits/s 500 bits/s 

Network Bandwidth II 800 bits/s 600 bits/s 

 

Table 6: Simulation Input I 

Items Message length M 8KB 

No. of cores nc 1, 2, 4 

No. of cluster C 8 

No. of m-port  n-tree 8, 2 

 

b) Wormhole Flow Control 

 

Three different numbers of cores in a processor were analysed. The simulation 

parameters are based on Table 7 and Table 8. 

Table 7: Interconnection Networks Parameters 

Parameter Internal-cluster External-cluster 

Network latency 0.01 s 0.02 s 

Switch latency 0.01 s 0.01 s 

Network Bandwidth 1000 bits/s 500 bits/s 
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Table 8: Input Parameters 

Items Flit length F 

256 bytes 

Flit length F 

512 bytes 

No. Of cores nc 1, 2, 4 

No. Of cluster C 8 

No. Of m-port  n-tree 8, 2 

Message Length M 32 flits 

 

3. The Impact on Cluster Size Experiments 

 

a) Store-and-Forward Flow Control 

 

These simulation experiments were designed to get more insight into the impact of 

the communication latency on the cluster size. The results are based on the 

interconnection network parameters in Table 9, and were compared with a higher 

network latency and a smaller bandwidth setup in the simulation experiments in 

Table 10. 

Table 9: Interconnection Networks Parameter I 

Parameter Internal cluster External cluster 

Network latency 0.01 s 0.02 s 

Switch latency 0.01 s 0.01 s 

Network Bandwidth I 1000 bits/s 500 bits/s 

Table 10: Interconnection Networks Parameter II 

Parameter Internal-cluster External-cluster 

Network latency 0.02 s 0.01 s 

Switch latency 0.01 s 0.05 s 

Network Bandwidth 800 bits/s 600 bits/s 

 

b) Wormhole Flow Control 

The accuracy of the simulation model has been validated as being a cost-effective 

tool to investigate the interconnection network performance in MCMCA. It can thus 

be used to get an insight into the impact of cluster size on maximising network 

performance. A set of simulation experiments were conducted using the 

simulation input in Table 11. 

Table 11: Simulation Input for cluster sizes 

Items Quantity 

No. of cluster C 8, 16, 32, 64, 128 

No. of cores nc 1, 2, 4 

Message generation rate λg 0.001 s, 0.002 s 

Message Length M 18 KB, 16 KB 

No. of m-port  n-tree 4, 2 
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4. The Impact on Message Length and Scalability Experiments 

 

a) Store-and-Forward Flow Control 

In this experiment, to examine the potential scalability in the cluster architecture, 

different message lengths were run, as reflected in Table 12 and Table 13. 

Table 12: Simulation Input II 

Items Quantity 

No. of cluster C 8, 16, 32, 64, 128 

No. of cores nc 1, 2, 4 

Message generation rate λg 0.002 s 

Message Length M 8 KB 

No. of m-port  n-tree 4, 2 

 

Table 13: Simulation Input III 

Items Quantity 

No. of cores nc 1, 2, 4 

Message generation rate λg 0.001 s 

Message Length M/bytes 128 B, 256 B, 512 B, 1 KB, 2 KB, 

4 KB, 8 KB, 16 KB 

No. of cluster, m-port  n-tree 8, 8, 2 

 

b) Wormhole Flow Control 

Testing the various impacts on message length gave insights into scalability. Seven 

message lengths (M/bytes) were involved in an eight multi-core cluster system, as 

in Table 14, with the numbers of cores being 1, 2 and 4. To make this experiment 

comparable with others, the same message length was also been tested in larger 

cluster sizes: 32 multi-core cluster systems with 4, 8 and 16 cores. The same 

message generation rate λg was used to maintain the validity of the results.  

Table 14: Simulation Input for scalability 

Items 8-cluster 32-cluster 

No. of cores nc 1, 2, 4 4, 8, 16 

No. of m-port  n-tree 8, 2 

Message generation rate λg 0.001 s 

Message Length M/bytes 128 B, 256 B, 512 B, 1 KB, 2 KB, 4 KB, 8 KB 
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Appendix 3-B 

Figure 1 shows the OMNeT++ Integrated Development Environment (IDE) and 

workspace to run the simulations. The IDE is based on the Eclipse platform, and 

extends it with new editors, views, wizards, and additional functionality. OMNeT++ 

adds functionality for creating and configuring models (NED and ini files), performing 

batch executions, and analyzing simulation results, while Eclipse provides C++ editing 

and other optional features  such as UML modelling, bugtracker integration and 

database access through various open-source and commercial plug-ins.  

The NED Editor can edit NED files both graphically and in text mode, the user 

switching between the two modes at any time, using the tabs at the bottom of the 

editor window. The list of NED modules are previewed on the left side of the 

workspace. 

 

Figure 1: The OMNeT++ Integrated Development Environment and workspace 

At the start of each execution, the simulator reads the initialisation file omnetpp.ini 

(see Figure 2) that tells the program which network file is to be simulated. Several 

networks can be listed in the same simulation program. omnetpp.ini will pass the 

parameters to the models, for example, it explicitly specifies seeds for the random 

number generators. The parameters are defined in the Network Topology Module 

(FattreeNetwork.ned) shown in Figure 3. In this initialisation file, the parameters of the 

model, such as Number of clusters C, parameter of m-port n-tree, message length M, 
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number of cores nc, number of nodes N and lambda 
𝟏

𝝀
, are specified. The simulation 

can also be run with different initialisation inputs and all the values can be stored in an 

initialisation file containing settings that control how the simulation is executed. 

 

Figure 2: omnetpp.ini file source 

 

Figure 3: Network Topology Module 
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To run the simulation from the IDE, Run Configurations is selected from the menu 

(Figure 4). OMNeT++ simulations can be run under different user interfaces. Currently 

the following user interfaces are supported: 

 Tkenv: the traditional, Tcl/Tk-based graphical user interface 

 Qtenv: the new, Qt-based graphical user interface 

 Cmdenv: command-line user interface for batch execution 

 By default, Tkenv will be used if both runtime environments are present. The user 

interface may be selected by adding the user-interface=Cmdenv (or =Tkenv) option 

to the initialisation file, or by specifying -u Cmdenv or -u Tkenv to the command line. 

If both the configuration option and the command line option are present, the 

command line option takes precedence. The Run button is used to start the simulation, 

and the topology of m-port n-tree will be formed, as shown in Figure 5. 

 

  

Figure 4: The Run Configurations Menu to start the simulation 
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Figure 5: The network topology m-port n-tree 

After initialising the input parameters, the display shows how the messages hop from 

module to module following the routing algorithm (see Figure 5). The 

Message-Generator file will partition each message into a sequence of packets first, 

before being generated at each tree-node, following the assumptions that the message 

destinations are uniformly distributed by using a uniform random number generator. 

In order to get the message to its destination, a packet will access the processor 

through a chip, and a chip can contain one or more processors. Processor n will divide 

the packets into the number of cores. If processor n is busy, it will pass the packets to 

another processor in the same chip within the same node first, before determining, via 

the communication network, if other processors in other chips can process the 

packets. Packets will access the processors, chips and nodes in its cluster first, before 

accessing other clusters via the communication network.  

 The main windows toolbar displays the simulated time (Red box in Figure 6). The 

simulated time is virtual time and is not based on the actual elapsed time that the 

program takes to execute. For this research, the simulation time is the propagation 

delay on the connections.  

 



Norhazlina Hamid   

161 

 

 

Figure 6: Simulation running environment 

 

Figure 7: The simulation events status window 

The routing file will determine the path the packets will follow in the network from the 

source to the destination in the simulation events status window (Red box in Figure 7). 

Based on the path given, the packets will hop on the communication switch to get 

through the communication network. If there is a situation where more than one 

packet needs to use the same route, the communication switch will determine which 

packet can go through first or whether the packet needs to be queued (buffered) until 

the route is available. Each packet is time-stamped after its generation and the 

message completion time is defined in the Message-Sink module on each tree-node to 

compute message latency. The Message-Sink file receives a message, tests the packet 
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type, prints a message and then deletes the packet before gathering the statistics for 

every event in the simulation for analysis of the results. 

 

Figure 8: Inputs page of the simulation events 

Messages about the events and the type of messages generated and received are 

displayed in another window. Simulation results are recorded into output scalar 

files that actually hold statistics results as well, and output vector files. The usual file 

extension for scalar files is .sca, and for vector files .vec, as shown in Figure 8. The 

eventlog file is created automatically during a simulation run upon explicit request, 

configurable in the ini file. The resulting file can be viewed in the IDE using the 

Sequence Chart and the Eventlog Table, or can be processed by the command line 

Eventlog Tool. The result produced by the simulation is the average message latency 

based on traffic generation rate, which has been defined earlier in the initialisation file. 
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Appendix 4-A 

In order to illustrate the feasibility and the accuracy of the simulation model, a set of 

experiments were conducted using several system configurations, as listed in Table 1 

and Table 2, to illustrate the individual behaviour of selected analytical model 

calculations. Two different flow control mechanisms were used to investigate the 

impact on interconnection network performance. 

 

Table 1: Simulation input 

Items Quantity 

No. of cores nc 1 

Message Length M and Flit Length F 32 flits, 256 bytes 

No. of cluster, m-port  n-tree 8, 8, 2 

 

Table 2: Interconnection network parameters 

Parameter Internal-cluster External-cluster 

Network latency 0.01 s 0.02 s 

Switch latency 0.01 s 0.01 s 

Network Bandwidth 1000 bits/s 500 bits/s 

 

a) Average Waiting Time at the Source Node in Internal Cluster 

 

Average waiting time at the source node in internal-cluster is the average time the 

packets will be in a queue while waiting to be transmitted into the network. It can 

be computed by: 

𝑊𝑖 =
(𝛽𝑖)

2𝜆𝑖 

2(1 − 𝛽𝑖 𝜆𝑖)
 

 Where 𝛽𝑖 = 8.202 and 𝜆𝑖 = 0.000122 
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Figure 1: Average Waiting Time at the Source Node in Internal-Cluster 

 

Figure 1 shows the average waiting time at the source node in an internal-cluster, 

based on two different flow controls: store-and-forward flow control and wormhole 

flow control. As the traffic generation rates increases, the load allocation time 

increases, which can affect the pipelining of the router. The zero-load latency tends to 

increase and may slightly decrease the saturation throughput in the internal-cluster 

because of the additional time required to allocate the task into a number of cores. 

The zero-load latency assumption is that a packet has never contended for network 

resources with other packets which applied to store-and-forward flow control. It gives a 

lower bound on the average latency of a packet through the network. Compared to 

wormhole flow control, the average message latency is higher because multiple 

messages can be in transmission and attempt to use the same network link at the 

same time. If this problem occurs, some of the messages must be blocked while other 

messages are allowed to proceed, which affects the performance. 
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b) Average Waiting Time at the Source Node in Internal Cluster 

 

Approximations of packet latency, to predict the average amount of time that a 

packet spends waiting in each queue in the external-cluster, is given by:  

 

𝑊𝑒 =
 (𝛽𝑒)

2𝜆𝑒
2(1 − 𝛽𝑒𝜆𝑒)

 

 Where 𝛽𝑒 = 16.394 and 𝜆𝑒 = 0.0018 

 

 

Figure 2: Average Waiting Time at the Source Node in External-Cluster 

For the same traffic rate, both flow control mechanisms achieve lower latency in light 

traffic, but the latency increases massively with wormhole flow control due to blocking 

probability happening in transmission, as shown in Figure 2. The results show that 

both flow controls perform better in light traffic, but wormhole flow control does not 

achieve optimal performance throughput compared to store-and-forward flow control.  
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